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Abstract—This paper describes hardware, signal processing,
and machine learning methods for Doppler radar-based accurate
and robust detection of micro unmanned aerial systems (UAS).
Typical detection accuracy of ~98% was obtained in over-the-air
tests with a 2.4 GHz continuous wave (CW) radar and a variety of
commercially-available micro-UAS devices. Several methods are
described for further improving detection performance, including
multi-beam synthesis with uniform circular arrays to provide
360° azimuthal sensitivity; dielectric lens antennas and focal
plane arrays at mm-wave frequencies (28 GHz) for improved spa-
tial resolution; and polyspectra-based feature extraction methods
for improved modeling of nonlinear phase modulation processes
within the measured Doppler signatures.

I. INTRODUCTION

Remotely-piloted or self-piloted micro unmanned aerial sys-
tems (UAS) are everywhere. Commonly known as “drones” by
the general public, micro UAS have become a rapidly growing
area of development for 5G/6G wireless communications,
wireless Internet of Things (IoT), aerial robotics, and surveil-
lance/security [1]-[4]. The low cost and mass producible
nature of micro UAS has led to a plethora of applications
making UAS one of the most exciting and exponentially
growing sectors in aerospace and wireless engineering in
modern times. However, like many high technologies, micro
UAS can be highly dangerous when used by bad actors [5]-
[8]. One of the most pressing problems in today’s war on
terror is the increasing use of micro UAS as weapons. An
improvised explosive device (IED) or biological weapon can
wreak havoc in the community when UAS are used as vectors
for clandestine transportation.

The problem is detecting an unauthorized micro-UAS can be
addressed using two approaches: 1) detection of the wireless
remote control signal [9], [10] , and 2) detection of the UAS
itself using physical methods [11]-[16]. In our work, we
explore the latter because the real danger lies in automated
flight controller-based micro-UAS that have no detectable
wireless signal as there exists no need for a human pilot. In
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such situations, the UAS must be detected using its physical
interaction with the environment. Examples include optical
detection using a camera, audio detection, and radio detection
using radar techniques. Optical- and audio-based detection
is unreliable in cloudy/smoky and loud environments, which
would be the norm in conflict situations. Therefore, one
must resort to electromagnetic signatures for reliable detection
at sufficiently long distances. The primary approach that is
pursued here is to exploit the repeating “chopping” of a radar
interrogation signal by the rotors of a UAS as a method
for identifying a unique signature that can classify different
types of UAS as well as different types of motion. In our
previous work, we developed deep learning approaches for
single Doppler radar sensor based UAS detection [17]-[19].
In this paper we discuss the use of such rotational micro-
Doppler signatures for UAS type detection with improvements
including multi-beam synthesis with uniform circular arrays,
dielectric lens antennas and focal plane arrays at mm-wave
frequencies (28 GHz), and polyspectra-based feature extrac-
tion methods. The possible use of rotational micro-Doppler
radar returns for learning the control motions of a UAS that
is changing its position is left for another paper.

II. PHYSICAL ORIGIN OF MICRO-DOPPLER SIGNATURES

When the transmit waveform encounters an UAS, it is
subjected to a periodically time-varying radar cross-section
due to reflections from the rotors, e.g., the four rotors of
a quadcopter. This generates red- and blue-shifted Doppler
components in the backscattered rotational micro-Doppler sig-
nal. The spectra of these signals was experimentally analyzed
using standard FFT-based DSP algorithms. They were found
to depend on several physical parameters, so that the radar
return is approximately

M

2(t) = Y cos (wt+ fulri B ziy) (D
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for k = 1,2,...M. These parameters include i) carrier fre-
quency w = 27 f,, ii) number of rotors M, iii) orientation
of the rotor with respect to the incident signal, iv) speed of
rotation G'k, v) number of blades per rotor Ny, vi) relative di-
rections of rotation of multiple rotors, and vii) the relative size
of each rotor (dy = 2rj) compared to the radar wavelength
A = cf., where c is the speed of light.

The phase modulation of z(t) is governed by the modulation
functions fx(-). In the simplest quadrotor case (M = 4 and
N = 2) where A > d, the reflected signal is phase-modulated
with a low modulation index, resulting in two sidebands (red
and blue shifted). In practice, A ~ d, making the phase mod-
ulation strongly non-linear. Several algorithms can be used to
extract uniquely identifiable signatures from these modulated
signals. These include the DFT, the power spectrum density
(PSD), and higher-order statistical techniques. In particular,
the spectral correlation function (SCF), which is an optimum
algorithm for extracting signatures from cyclostationary sig-
nals, can be used as a pre-processing step.

III. MICRO-UAS DETECTION AND IDENTIFICATION
A. SCF-based Feature Extraction

The cyclic autocorrelation function (CAF) can quantize the
correlation between frequency shifted versions of a given sig-
nal and represents the fundamental parameters of any second-
order perigdicity [20], [21]. Let T be the process period and

let o = n be the cyclic frequency that indicates the cyclic

evolution 8f the waveforms, where m is an integer; the CAF
can be calculated as follows:
N
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where z[-] denotes the rotational micro-Doppler radar return
signal, which is modeled by a cyclostationary process. The
desired SCF can be calculated by implementing the discrete
Fourier transform (DFT) using a fast Fourier transform (FFT)
algorithm. The FFT is implemented on RS such that:

1

Ryl = | Jim o

Sefl =Y Rele >
l=—00
where RS[l] is defined in Eq. (2), and f denotes the digital
temporal frequency of the radar return signal at baseband.
Typically, we expect the rotational micro-Doppler signals to
have less than 10 kHz of bandwidth.

The two-dimensional (2-D) SCF output matrix (i.e., im-
age/pattern) can be obtained by calculating Eq. (3) for different
values of a and f. For practical implementations, it is not
possible to consider an infinite number of samples; however,
we use the largest possible number of samples. In our current
implementations, N in Eq. (2) is limited to 2048, [ is consid-
ered to be an integer and within the range of [-1024,1024], and
f in Eq. (3) is the digital frequency in the range of [—m,x]
with a normalized discrete circular frequency resolution of
27 /2048 (FFT bin size in rad/sec).

3)

The SCF patterns effectively embody the features of the
associated cyclostationary properties even in the presence of
high levels of additive white Gaussian noise (AWGN). This
is because that AWGN is a stationary process, and thus there
are no cyclostationary features in AWGN [21]. In other words,
SCF gives good results when a radar return corrupted by
AWGN has poor signal-to-noise ratio (SNR).

B. DBN-based Classifier

The idea is to automate the recognition of each type of
UAS based on its unique rotational micro-Doppler radar return
by using the SCF as a pre-processing step. Ideally, the SCF
generates a unique output image depending on the physics
of the UAS rotational micro-Doppler return, thus enabling
reliable recognition. Various machine learning algorithms have
been tried for this purpose, and it has become apparent that the
deep learning approach gives the best results for our particular
set of test cases. The fact that deep learning happens to give
the best results is based on experimental observation. It has not
be proven mathematically as such. Nevertheless, we seek to
provide the reader with a summary of our results, as follows.

A deep belief network (DBN) is formed via a stack of
restricted Boltzmann machines (RBMs) that in turn are energy-
based generative stochastic models capable of learning proba-
bilistic distributions of the input data [22]. RBMs consist of a
visible layer and a hidden layer of binary units that do not have
intra-layer connections [23]. The goal of training RBMs is
to learn optimum values for visible-hidden connection weight
matrix and biases, such that, the trained RBMs have the
ability to probabilistically re-generate inputs from a given
set of hidden units. RBMs are trained via the well-known
contrastive divergence (CD) unsupervised procedure [24], in
which the training method is developed as a gradient-descent
method on the negative log-likelihood loss function [25] and
then approximated to the CD training [26]. Hidden units of
a trained RBM represents abstract features of the input data.
However, RBMs are only capable to process binary inputs.
SCF signature patterns generated contain real-valued data.
Therefore, in order process SCF pattern data, we revise the
conventional DBN structure by replacing the first RBM of the
DBN with a Gaussian—Bernoulli RBM (GBRBM), which can
process real-valued inputs [27].

In order to achieve an effective DBN-based classifier, we
first conduct unsupervised training on a stack of RBMs and
then place a softmax output layer above the structure. The
softmax activation probability for the jth output unit can be
calculated as follows:

. WTh
Ply = jif) = 2 @
> exp(Weh)
k=1

where exp(-) is an exponential function, h is the activation
vector of the previous hidden layer, Wy is the weight vector
associated with the connections from the kth output to the

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 16,2021 at 23:31:24 UTC from |IEEE Xplore. Restrictions apply.



2020 IEEE International Conference on RFID (RFID)

Class Labels

t t 1t 1

Output Layer

P W
| Hidden Layer 5

t Was ¥
| Hidden Layer 4

t Wiy v
| Hidden Layer 3

£ Wes i
| Hidden Layer 2

£ We ¥
| Hidden Layer 1

£ Wiy ¥

Input Layer

R

SCF Patterns

RBM 4

RBM 3

RBM 2

—

— T
——

RBM 1

GBRBM

Fig. 1. The DBN-based classifier structure used in the proposed method.

top hidden layer, and ¢ is the number of output units. Using
the labeled SCF pattern data, the DBN-based classifier is fine-
tuned via the backpropagation supervised training method to
act as a classifier [28]. In each iteration of backpropagation
supervised training, the actual label of each input SCF pattern
is compared with the value predicted by the DBN-based
classifier. The achieved prediction error is propagated through
the network for updating all the weights and bias parameters.
In the backpropagation training of this DBN-based classifier,
the initial weights and bias values used are learned from
RBM training, which reduces the possibility of the network
converging to a local minimum.

C. Initial Micro-UAS Experiment Setup

For the initial experiment, we consider a continuous-wave
(CW) Doppler radar setup operating on 2.4 GHz with transmit
power of 5 dBm. The receiver RF chain consists of a band-
pass filter (BPF) having a passband of 2.355 - 2.435 GHz,
a low noise amplifier (LNA) with a gain of 48-dB, a down-
converting stage, and a low-pass filter (LPF) with a cut-off
frequency of 45 MHz. Additionally, LPF with 90 Hz cutoff
with analog operational amplifiers with 60 dB gain is used to
enhance the Doppler signals related to micro-UAS motion.
The Doppler radar setup is implemented in an indoor lab
environment. Several commercially-available Micro-UASs are
placed in a fixed position with 3m distance from antennas of
the Doppler radar setup and the reflected signals are captured
and analyzed to characterize the associated SCF signature
patterns. Additionally, a reference SCF pattern is generated
for the lab environment from the captured signals when there
is no UAS in front of the radar sensor.

D. Experimental Results

Examples of SCF patterns obtained from several
commercially-available UAS the initial radar setup are
shown in Fig. 2. The patterns are visually distinct, which is

promising for automated classification. In particular, one can
observe a particular pattern for the reference case, i.e., when
there are no micro-UASs present in the radar beam. Further,
when the radar beam illuminates different micro-UAS, the
resulting rotational micro-Doppler returns generate strikingly
different-looking SCF images, as visible in the figure. In our
hardware implementation, the DBN is trained using 1400
SCF patterns including 200 patterns corresponding to each
UAS and the reference. Trained DBNs are tested by using
200 SCF patterns from each category. Table. I shows the
confusion matrix for the MATLAB implementation of our
DBN-based classifier. In Table I, the rows represent the actual
class that each tested SCF pattern belongs to (i.e., the ground
truth), while the columns represent the class predicted by the
DBN-based classifier.

The detection accuracy as well as the rate of false alarms for
the DBN-based classifier have been obtained using the results
in Table I. Figs. 3 and 4 show the detection and identification
accuracy, respectively. The rate of false positives obtained by
the DBN-based classifier was 2%.

Authors would like to mention that this deep learning struc-
ture and experimental results were used as a comparison to
evaluate a low-complexity hardware-optimized DBN structure
in [19].

TABLE I
CLASSIFICATION OF SCF PATTERNS FOR MICRO-UAS DETECTION AND
IDENTIFICATION USING A MATLAB IMPLEMENTATION OF A DBN-BASED

CLASSIFIER

Actual Classification from DBN

Pattern | UAST | UAS2 | UAS3 | UAS4 | UAS5 | UAS6 | Ref
UASI1 198 0 2 0 0 0 0
UAS2 5 191 0 1 0 2 1
UAS3 3 6 191 0 0 0 0
UAS4 4 0 5 190 1 0 0
UAS5 0 0 0 0 199 0 1
UAS6 0 0 2 0 1 197 0
Ref 1 0 3 0 0 0 196

IV. ONGOING WORK
A. Multi-Directional Situational Awareness at 2.4 GHz

Circular array geometries find applications in micro-UAS
detection due to their ability to scan a full 360° in the
azimuthal plane. The use of circular arrays also enables
2-D beamforming in both azimuthal and elevation planes.
Our recent work has focused on digital multi-beam synthesis
with N-element uniform circular arrays (UCA) for achieving
simultaneous sensitivity over the entire 360° range. The digital
N-beam generation technique that we propose can generate N
equi-spaced beams in the azimuthal plane that can be digitally
steered in both elevation and azimuthal planes.

B. Circular Multibeam Synthesis

A narrowband beam at a direction (¢yaz,0maz) can be
generated using an N-element UCA having a radius a. The
complex weights «,, (i.e., phasing factors) needed at each
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antenna element to form a beam in the (@44, Omaz) direction

are given by [29], [30]

2
N) mez.
5)

The formation of circular symmetric multibeams requires
implementing the beam matrix W given by

oy, = £2mm — ka sin 0,44 cOS (qzﬁmax -

@p aq anN—2 ON_—1
anN-1 Qp ... QN-3 OQN-_2

Wy = ) .. ) : . (6)
aq e} aN-—1 Qg

Here, W takes the form of a circulant matrix. The above
computation yields an orthogonal decomposition of Wy, i.e.,

Wy = Fy'DFy, 7

where Fp is the N—point DFT matrix and D is a diagonal
matrix containing the phased-array coefficients from the orig-
inal beam generation vector such that D = diag{Fn(w)};

T . ;
here w = [ao, aq, . ozN_l] . Thus, by implementing
(7), the complexity of the IN-beam computation can be reduced
from O(N?) to O(N log N).

C. Hardware Design and Measured Beams

The overall system architecture for realizing (7) digitally is
shown in Fig. 5(a). Fig. 5(c) shows the hardware prototype,
comprising of a 16-element dipole UCA at 2.4 GHz that
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ROACH-2 digital processing platform that implements the circular N-beam computation. (c) 16-element UCA and the RF front-end circuits using commercial

off-the-shelf (COTS) electronics.

was custom-built for verifying the circular N-beam algorithm.
Fig. 5(b) shows the ROACH-2 field-programmable gate array
(FPGA) platform [31] that was used for i) sampling all 16 in-
termediate frequency (IF) channels, and ii) digital computation
of the circular N-beams.

The array front-end supports 100 MHz bandwidth, while
the digital back-end can be clocked up to 240 MHz. The
circularly-symmetric simultaneous beams generated using the
setup were measured in real-time in an open field by using
a 2.4 GHz transmitter. The digital coefficients v, were set to
achieve a maximum sensitivity at § = 70° (elevation angle). A
transmitter was set approximately in the same elevation with
a 4 m separation and beam energy was computed by rotating
the receiver array in the azimuthal plane from 0-360°. The
measured responses of all 16-beams are shown in Fig. 6.

Fig. 6. All 16 measured beams from the prototype UCA.

D. Multi-Directional Situational Awareness at 28 GHz

Our recent design and implementations of multi-beam dig-
ital array receivers has led to ongoing work on fully-digital
multi-beam digital array receivers operating at mm-wave for
micro-UAS detection, 5G wireless communications, and RF
sensing. This ongoing work focuses on sensing with high
spatial resolution at 28 GHz using dielectric lens antennas fed

with focal plane array (FPA) feeds that have dedicated 28 GHz
receivers at each feed element. Each feed element of the FPA
provides a highly-directional far-field RF beam. Several such
FPA signals can be combined using focal plane beamforming
algorithms, such as the conjugate field matching method which
is optimal for AWGN-contaminated radar returns.

Fig. 7(a) shows a typical 28 GHz micro-UAS detection
system. Here, the receiver array contains a lens+ 2D FPA
architecture to provide very sharp beams that sense and detect
the micro-UAS with the help of a similar architecture at
transmit side. Since, the operation is at mmWave frequencies,
each receiver chain contains a downconversion stage supported
by very high amplification stages at back-end as shown in
Fig. 7(b). Currently, we developed a 28 GHz digital array re-
ceiver as shown in Fig. 7(c) and (d). The dielectric lens antenna
was designed and 3D-printed to achieve four independent far-
field beams at 28 GHz using a 4-element FPA and set of 4
down-converters. A 4-element patch antenna array, where each
patch is built as an 8-element series fed vertical sub-array,
serves as the FPA, whereas Analog Devices (HMC1065LP4E)
module is employed for down-conversion. Complete details
of the antenna array design and receiver setup can be found
in [32], [33]. Current experiments have resulted in measured
receive-mode RF beams at 28 GHz using the custom-designed
lens and FPA system shown in Fig. 8. Ongoing work focuses
on transmit-mode 28 GHz lens antenna beamforming and the
combination of both multi-beam transmit and receive lens
antenna systems for multi-beam MIMO approaches to micro-
UAS detection at mm-wave.

The modulation properties of a rotating UAS blade at
28 GHz is expected to be significantly non-linear compared to
the same UAS illuminated by a 2.4 GHz or 5.8 GHz waveform.
This is because the wavelength at 28 GHz or higher mm-
wave bands is much smaller than the typical rotor diameter,
which makes the phase modulation highly non-linear. The
experimental verification of a mathematical model for such
mm-wave radar modulation remains an open question.
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V. ONGOING WORK IN POLYSPECTRA FEATURE
EXTRACTION

Currently, we have explored physics-aware modeling of
the rotational micro-Doppler signatures, the use of DFT and
SCF for extracting recognizable signatures from the received
signals, and the use of DBN (and deep CNN)-based machine
learning algorithms for classifying the signatures. In ongoing
and future work, we are exploring the use of higher-order sta-
tistical methods based on the bispectrum and trispectrum [34]
that can potentially better extract highly non-linear frequency
relationships from the rotational micro-Doppler radar sig-
nals at mm-wave bands [35]. Such highly non-linear fre-
quency relationships in the rotational micro-Doppler Doppler
backscatter are expected when the RF carrier wavelength is
much shorter than the dimensions of the UAS rotors: for
example, when using mm-wave radar beams for detecting and
identifying micro-UAS (e.g., a typical hexacopter with 30 cm
blades being interrogated with 77 GHz “automotive” radar).

The linear transform based DFT leads to the straightforward
computation of the power spectrum (PS) of the signal, which is
based on autocorrelation properties. However, the PS estima-
tion considers the process under consideration a superposition
of statistically uncorrelated harmonic (i.e., Fourier) compo-

nents. Therefore, only linear physics processes governing the
process can be captured using a purely DFT (and therefore, PS
based) methods. In real-world mm-wave Doppler radar, highly
non-linear physics causes multiple highly phase-correlated
spectral components that must be efficiently detected as part
of baking in the physics of such non-linear effects into a
deep learning or other machine learning model. The use of
higher-order statistical methods leads to polyspectrum based
digital signal processing (PDSP), which can extract the cor-
related phase relationships that may exist between frequency
components. PDSP techniques can also capture the possible
non-Gaussian nature of the mm-wave micro-UAS rotational
Doppler return signal [36].

Higher order spectra (that is, the so-called polyspectum)
are defined in terms of the higher order cumulants of the
underlying process. The third-order spectrum, known as bis-
pectrum, and the fourth-order spectrum, known as trispectrum,
can extract quadratic and cubic non-linearity from the under-
lying process. Using both bispectrum and trispectrum as a
pre-processing step before machine learning algorithms can
allow for the efficient recognition of quadratic and cubic non-
linearity arising from the physics of the UAS rotors chopping a
high-frequency RF carrier (28, 60, 77, 94 GHz etc.,) better than
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linear DFT-based methods. The comparison of the bispectrum
and trispectrum with the SCF is also of interest, since the SCF
does contain higher-order statistical information.

Thus, the use of PDSP as a pre-processing step before
machine learning achieves several important advantages: 1)
optimal extraction of information due to deviation from Gaus-
sianness (normality); 2) estimation and recognition of phase
relationships between non-Gaussian parametric signals, such
as the frequency components of rotational micro-Doppler UAS
radar return signals [37]; and 3) detection, characterization,
and recognition of the non-linear properties of underlying
physical mechanisms (rotor size, number of blades, rotor
orientation, rotational speeds, relative position, RF carrier
wavelength, polarization etc.). The rotational nature of the
physics of the UAS rotors is a good example of how an UAS
can generate a non-Gaussian radar return, which can become
either periodic or quasi-periodic as the UAS hovers at a set
location or changes its position/correcting attitude/altitude.

Apart from tracking the non-linear phase relationships be-
tween the frequency components of micro-Doppler returns,
the use of PDSP [37] is also expected to facilitate machine
learning algorithms for recognizing both UAS type as well as
various control functions for each type (i.e., motion sequence
M for a type-N UAS, which is “left lift and move up”).

PDSP also preserves the phase of non-Gaussian parametric
signals [37], which may lead to new capabilities in UAS detec-
tion in high clutter (urban and highly built environments like
downtown areas) which is increasingly relevant for modern
anti-terrorist operations. Results for this ongoing research will
be reported when available.

VI. CONCLUSION

The paper has summarized our work on hardware, physics-
aware signal processing, and machine learning for surveillance
radar designed to detect and classify micro-UAS. Promising
over-the-air UAS detection results have been obtained using
SCEF for feature extraction and a DBN for classification. Future
work will focus on i) improved multi-directional situational
awareness by using uniform circular arrays and lenses; and ii)
using polyspectrum-based DSP (PDSP) methods to model the
nonlinear phase modulation processes present in the rotational
micro-Doppler signatures generated by UAS.
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