

Absolute Continuity of the Spectrum of the Periodic Schrödinger Operator in a Cylinder with Robin Boundary Condition

I. V. Kachkovskiy and N. D. Filonov

Received October 27, 2019; in final form, October 30, 2019; accepted October 31, 2019

ABSTRACT. We show that the spectrum of the Schrödinger operator $H = -\Delta + V$ in a smooth cylinder with Robin boundary condition $\partial_\nu u = \sigma u$ is purely absolutely continuous, assuming that the coefficients V and σ are periodic in the axial directions.

KEY WORDS: Schrödinger operator in a cylinder, Robin boundary condition, absolutely continuous spectrum, spectral cluster estimates.

DOI: 10.1134/S0016266320020045

Introduction

Let M be a smooth compact Riemannian manifold with boundary ∂M , and let

$$\Xi = M \times \mathbb{R}^m, \quad k := \dim M, \quad d := \dim \Xi = k + m, \quad m \geq 1.$$

We are interested in the spectral type of the Schrödinger operator $H = -\Delta + V$ in the cylinder Ξ . On the boundary $\partial \Xi = \partial M \times \mathbb{R}^m$ we impose the Robin boundary condition

$$\left. \frac{\partial u}{\partial \nu} \right|_{\partial \Xi} = \sigma u|_{\partial \Xi}. \quad (0.1)$$

The functions V and σ are assumed to be periodic in the axial directions (see below). Our goal is to show that, under some assumptions on V and σ , the spectrum of the operator H is purely absolutely continuous (see Theorem 1.1 below).

The points of the cylinder Ξ will be denoted by (x, y) , where $x \in M$ and $y \in \mathbb{R}^m$. Let Γ be a lattice in \mathbb{R}^m :

$$\Gamma = \left\{ l = \sum_{j=1}^m l_j b_j, \quad l_j \in \mathbb{Z} \right\}, \quad (0.2)$$

where $\{b_j\}_{j=1}^m$ is some basis in \mathbb{R}^m . We will assume the following periodicity conditions to hold:

$$V(x, y + l) = V(x, y), \quad x \in M, \quad y \in \mathbb{R}^m, \quad l \in \Gamma, \quad (0.3)$$

$$\sigma(x, y + l) = \sigma(x, y), \quad x \in \partial M, \quad y \in \mathbb{R}^m, \quad l \in \Gamma. \quad (0.4)$$

Let

$$\Omega = \left\{ y = \sum_{j=1}^m y_j b_j, \quad y_j \in [0, 1) \right\} \quad (0.5)$$

be the elementary cell of Γ . Due to periodicity, the functions V and σ are uniquely determined by their values on $M \times \Omega$ and $\partial M \times \Omega$, respectively.

Let us briefly review some earlier results on the absolute continuity of the spectrum of H . Sufficient conditions for absolute continuity are usually of the form $V \in L_p(M \times \Omega)$ and $\sigma \in L_p(\partial M \times \Omega)$. One can also consider wider classes, such as the Lorentz spaces $L_{p,\infty}^0$, but we will restrict ourselves to the L_p case for simplicity. The case $k = 0$ corresponds to the operator on the

whole space (in which case there are no M and σ) and has been extensively studied. In [14] (see also [3]) it was shown that the spectrum of H is absolutely continuous under the “optimal” conditions

$$V \in L_p(\Omega), \quad p > 1 \text{ for } d = 2, \quad p = d/2 \text{ for } d \geq 3.$$

In the case $k = 1$ (where M is a line segment and Ξ is a plane-parallel layer), the absolute continuity of H was established in [12] under the assumptions

$$\begin{aligned} V \in L_p(M \times \Omega), \quad p > 1 \text{ for } d = 2, \quad p = 3/2 \text{ for } d = 3, \quad p = d - 2 \text{ for } d \geq 4, \\ \sigma \in L_q(\partial M \times \Omega), \quad q > 1 \text{ for } d = 2, \quad q = 2 \text{ for } d = 3, \quad q = 2d - 2 \text{ for } d \geq 4. \end{aligned}$$

The above assumptions were relaxed in [5] to the “nearly” best possible assumptions

$$V \in L_p(M \times \Omega), \quad p > 1 \text{ for } d = 2, \quad p = d/2 \text{ for } d \geq 3, \quad (0.6)$$

$$\sigma \in L_q(\partial M \times \Omega), \quad q > d - 1. \quad (0.7)$$

Let us now consider the case $k \geq 2$. For the Neumann boundary condition ($\sigma \equiv 0$), absolute continuity was shown in [9] for $V \in L_\infty(M \times \Omega)$. In [8] this condition was relaxed to

$$V \in L_p(M \times \Omega), \quad p > d/2 \text{ for } d = 2, 3, 4, \quad p > d - 2 \text{ for } d \geq 5. \quad (0.8)$$

In [7], assuming that σ does not depend on the axial variables, that is,

$$\sigma(x, y) = \sigma(x),$$

the authors established absolute continuity under the assumptions

$$\sigma \in L_q(\partial M), \quad q > 1 \text{ for } k = 2, \quad q = k - 1 \text{ for } k \geq 3.$$

The case where σ has nontrivial dependence on y remained open. The second author has established absolute continuity in the following special cases:

- $M = [0, a_1] \times \cdots \times [0, a_d]$ is a rectangle, V satisfies (0.6), and σ satisfies (0.7);
- $M = \{x \in \mathbb{R}^k : |x| < R\}$ is a k -dimensional ball, $d \geq 3$, V satisfies (0.8), and $\sigma \in L_{4d-8}(\partial M \times \Omega)$;

see [5] and [6], respectively.

In this paper we will establish the absolute continuity of the spectrum of the operator H with coefficient σ of the general form $\sigma = \sigma(x, y)$ in the case where M is an arbitrary compact smooth Riemannian manifold with boundary. Similarly to previous works, our proof will follow the Thomas scheme [13]. In order to establish resolvent estimates for $H(\xi)$ (see Theorem 1.2 below), we will use the spectral cluster estimates for the Laplace operator obtained in [11] and [2]. The idea of using these estimates first appeared in [14]. The boundary estimates from [2] are crucial for considering the Robin boundary condition with nontrivial σ .

Remark 0.1. The case of the Dirichlet boundary condition $\sigma|_{\partial\Xi} = 0$ is easier. In this case, the spectrum of H is absolutely continuous under assumptions (0.8) for a general cylinder (see [8]) and under assumption (0.6) for a rectangular cylinder (see [5]).

1. Statement of the Result

Let M , $\dim M = k$, be a compact smooth Riemannian manifold with boundary, and let $\Xi = M \times \mathbb{R}^m$. Since the case $k = 1$ has been covered by previous works, from now on we will always assume that

$$d = k + m \geq 3.$$

Let Γ be a lattice (0.2) in \mathbb{R}^m , and let Ω be its elementary cell (0.5). Assume that the real-valued functions $V(x, y)$ and $\sigma(x, y)$ satisfy the periodicity conditions (0.3) and (0.4) and

$$V \in L_{d/2}(M \times \Omega), \quad \sigma \in L_{d-1}(\partial M \times \Omega). \quad (1.1)$$

Consider the following quadratic form on $L_2(\Xi)$:

$$\begin{aligned} h[u, u] &= \int_{\Xi} (|\nabla u(x, y)|^2 + V(x, y)|u(x, y)|^2) dx dy \\ &\quad + \int_{\partial\Xi} \sigma(x, y)|u(x, y)|^2 dS(x, y), \quad \text{Dom } h = H^1(\Xi). \end{aligned}$$

Here dS denotes the surface area measure on $\partial\Xi$ and $H^1 \equiv W_2^1$ is the Sobolev space. It is well known that, under (1.1), the quadratic form h is closed and semibounded from below. Therefore, it defines a self-adjoint semibounded operator H on the Hilbert space $L_2(\Xi)$. The operator H will be called the Schrödinger operator in the cylinder Ξ with Robin boundary condition (0.1).

The following theorem is the main result of the paper.

Theorem 1.1. *Let $M, \Xi, \Gamma, \Omega, V, \sigma$, and H be defined as above. Assume, in addition, that V satisfies (0.8) and σ satisfies*

$$\sigma \in L_q(\partial M \times \Omega), \quad q > 5/2 \text{ for } d = 3, \quad q > 2d - 4 \text{ for } d \geq 4. \quad (1.2)$$

Then the spectrum of H is purely absolutely continuous.

It will be convenient to identify Ω with the m -dimensional torus $\mathbb{T}^m = \mathbb{R}^m/\Gamma$. Consider the following quadratic forms that depend on an additional parameter $\xi \in \mathbb{C}^m$:

$$\begin{aligned} h(\xi)[v, v] &= \int_{M \times \Omega} (|\nabla_x v|^2 + \langle (\nabla_y + i\xi)v, (\nabla_y + i\bar{\xi})v \rangle + V(x, y)|v|^2) dx dy, \\ &\quad + \int_{\partial M \times \Omega} \sigma(x, y)|v|^2 dS(x, y), \quad \text{Dom } h(\xi) = H^1(M \times \mathbb{T}^m). \end{aligned}$$

These forms are sectorial in the sense of [4]. Therefore, they define a family of analytic self-adjoint operators $H(\xi)$. The embedding $H^1(M \times \mathbb{T}^m) \subset L_2(M \times \Omega)$ is compact, and, as a consequence, the spectra of $H(\xi)$ are discrete. According to the Thomas criterion (see [13], [10], and [1]), it would suffice to show that the family $H(\xi)$ has no eigenvalues that are constant in ξ . Therefore, Theorem 1.1 is a corollary of the following result.

Theorem 1.2. *Under the assumptions of Theorem 1.1, let b_1 be the first basis vector of Γ . For any $\lambda \in \mathbb{C}$ and $\xi \in \mathbb{R}^m$, $\xi \perp b_1$, there exists a $\tau_0 > 0$ such that, for all $\tau > \tau_0$, the operator*

$$H(\tau) := H((\pi + i\tau)b_1 + \xi) - \lambda I$$

is invertible and

$$\|H(\tau)^{-1}\| \leq C\tau^{-1}.$$

Rescaling if necessary, we can assume without loss of generality that $|b_1| = 1$.

2. Some Auxiliary Estimates

The following lemma was proved in [5].

Lemma 2.1. *Suppose that $0 < \delta < 1/2$, $b \geq 1$, and $|m_\mu| \leq b$ for any $\mu \in \mathbb{N}$. Then*

$$\sum_{\mu=1}^{\infty} \frac{\mu^{1-2\delta}}{|(\mu + m_\mu)^2 - \tau^2| + \tau} \leq C\tau^{-\delta}$$

for $\tau > 1$.

Let

$$H_0(\tau) = H(\tau)|_{V=0, \sigma=0}.$$

In other words, $H_0(\tau)$ is the operator on $L_2(M \times \Omega)$ defined by the quadratic form

$$h_0(\xi)[v, v] = \int_{M \times \Omega} (|\nabla_x v|^2 + \langle (\nabla_y + i((\pi + i\tau)b_1 + \xi))v, (\nabla_y + i((\pi - i\tau)b_1 + \xi))v \rangle) dx dy, \quad \text{Dom } h_0(\xi) = H^1(M \times \mathbb{T}^m).$$

Let $\{\lambda_j\}_{j=1}^\infty$ and $\{\varphi_j(x)\}_{j=1}^\infty$ denote the eigenvalues and eigenfunctions of the Laplace operator on M with Neumann boundary condition. One can easily check that the eigenvalues and eigenfunctions of $H_0(\tau)$ are

$$\begin{aligned} h_{j,n}(\tau) &= |n + \pi b_1 + \xi|^2 + \lambda_j - \tau^2 + 2i\tau \langle n + \pi b_1, b_1 \rangle, \\ \varphi_{j,n}(x, y) &= \varphi_j(x) e^{i \langle n, y \rangle}, \quad j \in \mathbb{N}, n \in \tilde{\Gamma}, \end{aligned} \quad (2.1)$$

where $\tilde{\Gamma} \subset \mathbb{R}^m$ is the dual lattice:

$$\tilde{\Gamma} = \left\{ n = \sum_{j=1}^m n_j \tilde{b}_j, n_j \in \mathbb{Z} \right\}, \quad \langle b_k, \tilde{b}_j \rangle = 2\pi \delta_{kj}.$$

Since $\langle n, b_1 \rangle \in 2\pi\mathbb{Z}$, we have

$$|h_{j,n}(\tau)| \geqslant |\text{Im } h_{j,n}(\tau)| = 2\tau |\langle n, b_1 \rangle + \pi| \geqslant 2\pi\tau, \quad \tau > 0. \quad (2.2)$$

We will also need the operator $|H_0(\tau)|^{-1/2}$, which can be defined in the basis (2.1) as the operator of multiplication by $|h_{j,n}(\tau)|^{-1/2}$.

In the following considerations the central object is the spectral projections of the Laplace operator on $M \times \mathbb{T}^m$ with Neumann boundary conditions. Let

$$E_\mu = E_{(-\Delta)}[(\mu - 1)^2, \mu^2)$$

denote the spectral projection operator onto the subspace corresponding to the interval $[(\mu - 1)^2, \mu^2)$. Note that E_μ and $H_0(\tau)$ commute with each other.

Lemma 2.2. *If $0 < \delta < 1/2$ and $\tau > 1$, then*

$$\sum_{\mu=1}^{\infty} \mu^{1-2\delta} \|E_\mu |H_0(\tau)|^{-1/2}\|^2 \leqslant C\tau^{-\delta}.$$

Proof. Let $b = |\pi b_1 + \xi|$. Due to (2.2), we have

$$\sum_{\mu=1}^{[b]+1} \mu^{1-2\delta} \|E_\mu |H_0(\tau)|^{-1/2}\|^2 \leqslant C\tau^{-1}.$$

Let us estimate the sum over $\mu > [b] + 1$. The eigenvalues of the Laplace operator on $M \times \mathbb{T}^m$ are

$$\lambda_j + n^2, \quad j \in \mathbb{N}, n \in \tilde{\Gamma}.$$

The range of E_μ corresponds to the pairs (j, n) satisfying

$$(\mu - 1)^2 \leqslant \lambda_j + n^2 < \mu^2.$$

Hence

$$|n + \pi b_1 + \xi|^2 + \lambda_j \in [(\mu - b - 1)^2, (\mu + b)^2],$$

and, for $\mu \geq [b] + 2$, we have

$$\begin{aligned} \|E_\mu|H_0(\tau)|^{-1/2}\|^2 &= \max_{\lambda_j + n^2 \in [(\mu-1)^2, \mu^2]} |h_{j,n}(\tau)|^{-1} \\ &\leq \max_{|n + \pi b_1 + \xi|^2 + \lambda_j \in [(\mu-b-1)^2, (\mu+b)^2]} \frac{\sqrt{2}}{| |n + \pi b_1 + \xi|^2 + \lambda_j - \tau^2 | + \tau}. \end{aligned}$$

Therefore,

$$\begin{aligned} \sum_{\mu=[b]+2}^{\infty} \mu^{1-2\delta} \|E_\mu|H_0(\tau)|^{-1/2}\|^2 &\leq \sum_{\mu=[b]+2}^{\infty} \max_{|n + \pi b_1 + \xi|^2 + \lambda_j \in [(\mu-b-1)^2, (\mu+b)^2]} \frac{\sqrt{2} \mu^{1-2\delta}}{| |n + \pi b_1 + \xi|^2 + \lambda_j - \tau^2 | + \tau} \leq C \tau^{-\delta}, \end{aligned}$$

where we also used Lemma 2.1. \square

3. Proof of Theorem 1.2

The key step of the proof is based on estimates of the spectral projections of the Laplace operator.

The following theorem was proved in [11].

Theorem 3.1. *Let N be a compact smooth Riemannian manifold with boundary, and let $d := \dim N \geq 3$. Given $\mu \geq 1$, let $E_\mu = E_{(-\Delta)}[(\mu-1)^2, \mu^2]$ be the spectral projection of the Neumann Laplacian on N onto the subspace corresponding to the interval $[(\mu-1)^2, \mu^2]$. If*

$$5 \leq r \leq \infty \quad \text{for } d = 3, \quad 4 \leq r \leq \infty \quad \text{for } d \geq 4,$$

then

$$\|E_\mu f\|_{L_r(N)} \leq C \mu^{d/2-d/r-1/2} \|f\|_{L_2(N)} \quad \text{for all } f \in L_2(N).$$

Moreover, if

$$2 \leq r \leq 4 \quad \text{for } d \geq 4,$$

then

$$\|E_\mu f\|_{L_r(N)} \leq C \mu^{d/2-d/r+2/r-1} \|f\|_{L_2(N)} \quad \text{for all } f \in L_2(N).$$

Remark 3.2. In [11] the estimates of $d \geq 4$ were only obtained for $r \geq 4$. The estimates in the range $2 \leq r \leq 4$ can be obtained by interpolating the bound $\|E_\mu f\|_{L_4} \leq C \mu^{d/4-1/2} \|f\|_{L_2}$ at $r = 4$ with the trivial bound $\|E_\mu f\|_{L_2} \leq \|f\|_{L_2}$ at $r = 2$.

Remark 3.3. Similar estimates have been obtained in the Dirichlet case.

The following theorem was proved in [2].

Theorem 3.4. *Let N be a compact smooth Riemannian manifold with boundary, and let $d := \dim N \geq 3$. Given $\mu \geq 1$, let $E_\mu = E_{(-\Delta)}[(\mu-1)^2, \mu^2]$ be the spectral projection of the Neumann Laplacian on N onto the subspace corresponding to the interval $[(\mu-1)^2, \mu^2]$. If*

$$3 \leq s \leq \infty, \quad d = 3,$$

then

$$\|E_\mu f\|_{L_s(\partial N)} \leq C \mu^{1-5/(3s)} \|f\|_{L_2(N)} \quad \text{for all } f \in L_2(N).$$

If

$$2 \leq s \leq \frac{2d}{d-1}, \quad d \geq 4,$$

then

$$\|E_\mu f\|_{L_s(\partial N)} \leq C\mu^{(d-1)/3-(2d-4)/(3s)} \|f\|_{L_2(N)} \quad \text{for all } f \in L_2(N).$$

We are now ready to obtain the estimates for $|H_0(\tau)|^{-1/2}$.

Lemma 3.5. *Let*

$$1 \leq r < 6 \quad \text{if } d = 3, \quad 1 \leq r < \frac{2d-4}{d-3} \quad \text{if } d \geq 4.$$

Then there exists a $\delta > 0$ such that

$$\| |H_0(\tau)|^{-1/2} u \|_{L_r(M \times \Omega)}^2 \leq C\tau^{-\delta} \|u\|_{L_2(M \times \Omega)}^2 \quad \text{for all } u \in L_2(M \times \Omega).$$

Proof. Theorem 3.1 with $N = M \times \Omega$ implies that, under the above conditions on r , we have

$$\|E_\mu f\|_{L_r(M \times \Omega)} \leq C\mu^{1/2-\delta} \|f\|_{L_2(M \times \Omega)}$$

for some $\delta > 0$. Therefore,

$$\begin{aligned} \| |H_0(\tau)|^{-1/2} u \|_{L_r(M \times \Omega)} &\leq \sum_{\mu=1}^{\infty} \|E_\mu |H_0(\tau)|^{-1/2} u\|_{L_r(M \times \Omega)} \\ &\leq C \sum_{\mu=1}^{\infty} \mu^{1/2-\delta} \|E_\mu |H_0(\tau)|^{-1/2} u\|_{L_2(M \times \Omega)} \\ &\leq C \sum_{\mu=1}^{\infty} \mu^{1/2-\delta} \|E_\mu |H_0(\tau)|^{-1/2}\| \cdot \|E_\mu u\|_{L_2(M \times \Omega)}; \end{aligned}$$

in the last inequality we used the fact that $|H_0(\tau)|^{-1/2}$ commutes with $-\Delta$. Using the Cauchy inequality and Lemma 2.2, we obtain

$$\| |H_0(\tau)|^{-1/2} u \|_{L_r(M \times \Omega)}^2 \leq C \|u\|_{L_2(M \times \Omega)}^2 \sum_{\mu=1}^{\infty} \mu^{1-2\delta} \|E_\mu |H_0(\tau)|^{-1/2}\|^2 \leq C\tau^{-\delta} \|u\|_{L_2(M \times \Omega)}^2. \quad \square$$

Lemma 3.6. *Let*

$$1 \leq s < \frac{10}{3} \quad \text{if } d = 3, \quad 1 \leq s < \frac{4d-8}{2d-5} \quad \text{if } d \geq 4.$$

Then there exists a $\delta > 0$ such that

$$\| |H_0(\tau)|^{-1/2} u \|_{L_s(\partial M \times \Omega)}^2 \leq C\tau^{-\delta} \|u\|_{L_2(M \times \Omega)}^2 \quad \text{for all } u \in L_2(M \times \Omega).$$

Proof The argument is similar to that in the proof of Lemma 3.5. Theorem 3.4 with $N = M \times \mathbb{T}^m$ implies that, under the above assumptions on s , we have

$$\|E_\mu f\|_{L_s(\partial M \times \Omega)} \leq C\mu^{1/2-\delta} \|f\|_{L_2(M \times \Omega)}$$

for some $\delta > 0$. Therefore, using Lemma 2.2, we obtain

$$\begin{aligned} \||H_0(\tau)|^{-1/2}u\|_{L_s(\partial M \times \Omega)}^2 &\leq C \left(\sum_{\mu=1}^{\infty} \mu^{1/2-\delta} \|E_{\mu}|H_0(\tau)|^{-1/2}u\|_{L_2(M \times \Omega)} \right)^2 \\ &\leq C \|u\|_{L_2(M \times \Omega)}^2 \sum_{\mu=1}^{\infty} \mu^{1-2\delta} \|E_{\mu}|H_0(\tau)|^{-1/2}\|^2 \leq C\tau^{-\delta} \|u\|_{L_2(M \times \Omega)}^2. \quad \square \end{aligned}$$

Proof of Theorem 1.2. The conditions on the potential V are invariant under adding a constant to V . Therefore, without loss of generality we can assume that $\lambda = 0$. It will be convenient to prove the theorem in the following (equivalent) form: For any $u \in \text{Dom}(H(\tau))$, $\|u\|_{L_2(M \times \Omega)} = 1$, there exists a $v \in \text{Dom}(H(\tau))$, $\|v\|_{L_2(M \times \Omega)} = 1$, such that

$$|(H(\tau)u, v)| \geq C\tau, \quad \tau > \tau_0.$$

Let $H_0(\tau) = \Phi_0(\tau)|H_0(\tau)|$ be the polar decomposition of $H_0(\tau)$. In the basis (2.1), the operator $\Phi_0(\tau)$ is the operator of multiplication by $h_{j,n}(\tau)|h_{j,n}(\tau)|^{-1}$. Let

$$v = \Phi_0(\tau)u.$$

Then

$$(H_0(\tau)u, v) = (|H_0(\tau)|u, u) \geq 2\pi\tau,$$

and using (2.2), we obtain

$$(H_0(\tau)u, v) = \||H_0(\tau)|^{1/2}u\|_{L_2(M \times \Omega)}^2 = \||H_0(\tau)|^{1/2}v\|_{L_2(M \times \Omega)}^2.$$

We also have

$$|(Vu, v)| \leq \|V\|_{L_p(M \times \Omega)} \|u\|_{L_r(M \times \Omega)} \|v\|_{L_r(M \times \Omega)},$$

where $r = \frac{2p}{p-1}$ satisfies the assumptions of Lemma 3.5 by virtue of (0.8). Therefore,

$$\begin{aligned} |(Vu, v)| &\leq C\tau^{-\delta} \|V\|_{L_p(M \times \Omega)} \||H_0(\tau)|^{1/2}u\|_{L_2(M \times \Omega)} \||H_0(\tau)|^{1/2}v\|_{L_2(M \times \Omega)} \\ &= C\tau^{-\delta} \|V\|_{L_p(M \times \Omega)} (H_0(\tau)u, v). \end{aligned}$$

Similarly,

$$\left| \int_{\partial M \times \Omega} \sigma u \bar{v} \, dS \right| \leq \|\sigma\|_{L_q(\partial M \times \Omega)} \|u\|_{L_s(\partial M \times \Omega)} \|v\|_{L_s(\partial M \times \Omega)},$$

where $s = \frac{2q}{q-1}$ satisfies the assumptions of Lemma 3.6 due to (1.2). Hence

$$\left| \int_{\partial M \times \Omega} \sigma u \bar{v} \, dS \right| \leq C\tau^{-\delta} \|\sigma\|_{L_q(\partial M \times \Omega)} (H_0(\tau)u, v).$$

Combining the bounds, we eventually obtain

$$|(H(\tau)u, v)| \geq (H_0(\tau)u, v)(1 - C(V, \sigma)\tau^{-\delta}) \geq \frac{1}{2}(H_0(\tau)u, v) \geq \pi\tau$$

for sufficiently large τ .

Acknowledgements

The authors thank R. Shterenberg for valuable remarks.

Funding

The first author was supported by the Russian Science Foundation 17-11-01069 grant. The second author was supported by the National Science Foundation DMS-1846114 grant.

Bibliography

- [1] M. Sh. Birman and T. A. Suslina, “A periodic magnetic Hamiltonian with a variable metric. The problem of absolute continuity”, *Algebra i Analiz*, **11**:2 (1999), 1–40; English transl.: *St. Petersburg Math. J.*, **11**:2 (2000), 203–232.
- [2] M. D. Blair, “ L^q bounds on restrictions of spectral clusters to submanifolds for low regularity metrics”, *Anal. PDE*, **6**:6 (2013), 1263–1288.
- [3] L. I. Danilov, “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, *J. Phys. A: Math. Theor.*, **42**:27 (2009), 275204.
- [4] T. Kato, *Perturbation Theory for Linear Operators*, Springer-Verlag, 1995.
- [5] I. V. Kachkovskiy, “Nonexistence of eigenvalues for the periodic Schrödinger operator with singular potential in a rectangular cylinder”, *Funkts. Anal. Prilozhen.*, **47**:2 (2013), 27–37; English transl.: *Functional. Anal. Appl.*, **47**:2 (2013), 104–112.
- [6] I. V. Kachkovskiy, *Absence of eigenvalues in the spectra of some Schrödinger operators with periodic coefficients*, PhD thesis, PDMI RAS, 2013.
- [7] N. D. Filonov and I. V. Kachkovskiy, “Absolute continuity of the spectrum of a periodic Schrödinger operator in a multidimensional cylinder”, *Algebra i Analiz*, **21**:1 (2009), 133–152; English transl.: *St. Petersburg Math. J.*, **21**:1 (2010), 95–109.
- [8] N. D. Filonov and I. V. Kachkovskiy, “Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder”, *Zap. Nauch. Sem. POMI*, **385** (2010), 69–82; English transl.: *J. Math. Sci. (N.Y.)*, **178**:3 (2011), 274–281.
- [9] P. Kuchment, *Floquet theory for partial differential equations*, Birkhauser Verlag, Basel, 1993.
- [10] M. Reed and B. Simon, *Methods of Modern Mathematical Physics. Analysis of Operators*, vol. IV, Academic Press, 1978.
- [11] H. F. Smith and C. D. Sogge, “On the L_p norm of spectral clusters for compact manifolds with boundary”, *Acta Math.*, **198**:1 (2007), 107–153.
- [12] T. A. Suslina, “On the absence of eigenvalues of a periodic matrix Schrödinger operator in a layer”, *Russ. J. Math. Phys.*, **8**:4 (2001), 463–486.
- [13] L. Thomas, “Time dependent approach to scattering from impurities in a crystal”, *Comm. Math. Phys.*, **33** (1973), 335–343.
- [14] Z. Shen, “On absolute continuity of the periodic Schrödinger operators”, *Intern. Math. Res. Notes*, 2001, no. 1, 1–31.

I. V. KACHKOVSKIY

Department of Mathematics, Michigan State University, East Lansing, USA

E-mail: ilya.kachkovskiy@gmail.com

N. D. FILONOV

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia

St. Petersburg State University, St. Petersburg, Russia

E-mail: filonov@pdmi.ras.ru

Translated by I. V. Kachkovskiy