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ABSTRACT. We show that the spectrum of the Schrédinger operator H = —A + V in a smooth
cylinder with Robin boundary condition 0,u = ou is purely absolutely continuous, assuming that
the coefficients V' and o are periodic in the axial directions.
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Introduction

Let M be a smooth compact Riemannian manifold with boundary M, and let
E=MxR" k:=dmM, d=dmZ=Z=k+m, m>1.

We are interested in the spectral type of the Schrodinger operator H = —A + V in the cylinder =.
On the boundary 9= = M x R™ we impose the Robin boundary condition

ou
s o oulpz. (0.1)

The functions V' and ¢ are assumed to be periodic in the axial directions (see below). Our goal is to
show that, under some assuptions on V' and o, the spectrum of the operator H is purely absolutely
continuous (see Theorem 1.1 below).

The points of the cylinder = will be denoted by (x,y), where z € M and y € R™. Let " be a

lattice in R™: .
= {z:szbj, l; ez}, (0.2)
j=1

where {b;}"; is some basis in R™. We will assume the following periodicity conditions to hold:

Viz,y+1)
o(x,y+1)

Vix,y), reM, yeR" leTl, (0.3)
o(x,y), redM,yeR™ lel. (0.4)

Let "
Q= {y = yibj, y; €0, 1)} (0.5)
j=1

be the elementary cell of I'. Due to periodicity, the functions V' and o are uniquely determined by
their values on M x © and OM x €, respectively.

Let us briefly review some earlier results on the absolute continuity of the spectrum of H.
Sufficient conditions for absolute continuity are usually of the form V' € L,(M x Q) and o €
L,(OM x ). One can also consider wider classes, such as the Lorentz spaces L0 . but we will

p?m,
restrict ourselves to the L, case for simplicity. The case k = 0 corresponds to the operator on the



whole space (in which case there are no M and o) and has been extensively studied. In [14] (see also
[3]) it was shown that the spectrum of H is absolutely continuous under the “optimal” conditions

Ve L,(Q), p>1for d=2, p=4d/2 for d>3.

In the case k = 1 (where M is a line segment and = is a plane-parallel layer), the absolute continuity
of H was established in [12] under the assumptions

VeL,(MxQ), p>1ford=2, p=3/2ford=3, p=d—2 for d >4,
o€ Ly(0M x Q), g>1ford=2, g=2ford=3, ¢=2d—2 for d>4.

The above assumptions were relaxed in [5] to the “nearly” best possible assumptions

VeL,(MxQ), p>1for d=2, p=d/2 for d >3, (0.6)
o€ Ly(0M xQ), g>d-—1. (0.7)

Let us now consider the case k > 2. For the Neumann boundary condition (¢ = 0), absolute
continuity was shown in [9] for V € Lo (M x §2). In [8] this condition was relaxed to

VeLy,(MxQ), p>d/2 for d=2,3,4, p>d—2 for d>5. (0.8)
In [7], assuming that o does not depend on the axial variables, that is,
o(z,y) = o(x),
the authors established absolute continuity under the assumptions
o€ Ly(0M), g>1for k=2, g=k—1 for k> 3.

The case where ¢ has nontrivial dependence on y remained open. The second author has established
absolute continuity in the following special cases:

o M =10,a1] X --- x [0,a4] is a rectangle, V' satisfies (0.6), and o satisfies (0.7);

e M = {x € R¥: |z| < R} is a k-dimensional ball, d > 3, V satisfies (0.8), and ¢ € Lyq_g(OM x
Q);
see [5] and [6], respectively.

In this paper we will establish the absolute continuity of the spectrum of the operator H with
coefficient o of the general form o = o(z,y) in the case where M is an arbitrary compact smooth
Riemannian manifold with boundary. Similarly to previous works, our proof will follow the Thomas
scheme [13]. In order to establish resolvent estimates for H (&) (see Theorem 1.2 below), we will use
the spectral cluster estimates for the Laplace operator obtained in [11] and [2|. The idea of using
these estimates first appeared in [14]|. The boundary estimates from [2] are crucial for considering
the Robin boundary condition with nontrivial o.

Remark 0.1. The case of the Dirichlet boundary condition o|g=z = 0 is easier. In this case, the
spectrum of H is absolutely continuous under assumptions (0.8) for a general cylinder (see [8]) and
under assumption (0.6) for a rectangular cylinder (see [5]).

1. Statement of the Result

Let M, dim M = k, be a compact smooth Riemannian manifold with boundary, and let = =
M x R™. Since the case k = 1 has been covered by previous works, from now on we will always
assume that
d=k+m > 3.



Let T' be a lattice (0.2) in R™, and let © be its elementary cell (0.5). Assume that the real-valued
functions V (z,y) and o(z,y) satisfy the periodicity conditions (0.3) and (0.4) and

VELyp(MxQ), o06€Lg (M xQ). (1.1)

Consider the following quadratic form on La(Z):

hmnd=1KUVumﬂnF+v«mynwan%dxm/

+/:U(:B,y)]u(:):,y)|2d5(x,y), Dom h — H(Z).

Here dS denotes the surface area measure on 9= and H' = Wi is the Sobolev space. It is well
known that, under (1.1), the quadratic form & is closed and semibounded from below. Therefore, it
defines a self-adjoint semibounded operator H on the Hilbert space Lo(Z). The operator H will be
called the Schrédinger operator in the cylinder Z with Robin boundary condition (0.1).

The following theorem is the main result of the paper.

Theorem 1.1. Let M, Z, ', Q, V, o, and H be defined as above. Assume, in addition, that V
satisfies (0.8) and o satisfies

o€ Ly(0M xQ), q>5/2 for d=3, ¢g>2d—4 for d>4. (1.2)

Then the spectrum of H is purely absolutely continuous.

It will be convenient to identify © with the m-dimensional torus T™ = R™/T". Consider the
following quadratic forms that depend on an additional parameter £ € CC™:

h(§)[v, v] = /MXQ(IVIUI2 +{(Vy +i&)v, (Vy +i&)v) + V(z,y)|v]?) dz dy,

+/‘ o(a,y)[v?dS(z,y),  Domh(€) = H'(M x T™).
OM xQ)

These forms are sectorial in the sense of [4]. Therefore, they define a family of analytic self-adjoint
operators H(€). The embedding H'(M x T™) C Lo(M x ) is compact, and, as a consequence,
the spectra of H () are discrete. According to the Thomas criterion (see [13], [10], and [1]), it
would suffice to show that the family H (&) has no eigenvalues that are constant in . Therefore,
Theorem 1.1 is a corollary of the following result.

Theorem 1.2. Under the assumptions of Theorem 1.1, let by be the first basis vector of I'. For
any A € C and £ € R™, & | by, there exists a 19 > 0 such that, for all T > 19, the operator

H(r) := H((m + )by + &) —

1s invertible and

IH(n ™ < e

Rescaling if necessary, we can assume without loss of generality that |by| = 1.

2. Some Auxiliary Estimates
The following lemma was proved in [5].
Lemma 2.1. Suppose that 0 < § <1/2,b> 1, and |my| < b for any p € N. Then
—26

> <or
|u+m 2 -7+

forT > 1.



Let
HO(T) = H(T)‘Vzo, o=0-

In other words, Hy(7) is the operator on Lo(M x Q) defined by the quadratic form

ho(§)[v, v] = /MXQ(!VW!Q + (Vy +i((m +i7)b1 +§))v,

(Vy +i((m —i7)by + &))v)) drdy,  Domho(¢) = H'(M x T™).

Let {A;}52 and {¢;(x)}32, denote the eigenvalues and eigenfunctions of the Laplace operator on
M with Neumann boundary condition. One can easily check that the eigenvalues and eigenfunctions
of Hy(r) are
hjn(T) = |n+ by + €2 + Nj — 72+ 2iT(n + by, by),
0in(z,y) = j(x)e!™¥  jeN, nel, (2.1)

where I' € R™ is the dual lattice:

f: {n:anl;j, n; EZ}, <bk,l~)j>:27'f'5kj~
j=1
Since (n, by) € 27Z, we have

\hjn(T)| = | Im b n(T)| = 27|(n, b1) + 7| > 27, 7> 0. (2.2)

|—1/2

We will also need the operator |Ho(T) , which can be defined in the basis (2.1) as the operator

of multiplication by |h;,(7)|~1/2.
In the following considerations the central object is the spectral projections of the Laplace
operator on M x T™ with Neumann boundary conditions. Let

E, = E_nl(p—1)% 1%

denote the spectral projection operator onto the subspace corresponding to the interval [(pu—1)2, u?).
Note that E,, and Ho(7) commute with each other.

Lemma 2.2. If0 <0 <1/2 and 7 > 1, then

00
S WP By Ho(r)| AP < O,
p=1

Proof. Let b = |wb; + £|. Due to (2.2), we have

[b]+1
S BB Ho(r) [P < o,
p=1

Let us estimate the sum over p > [b] + 1. The eigenvalues of the Laplace operator on M x T™ are
Aj+n%  jeN nel.
The range of E, corresponds to the pairs (j,n) satisfying

(n— 1) <\ +n? < 2



Hence
In+7by + €24+ N € [(u—b—1)% (u+b)?),

and, for u > [b] + 2, we have

EH —-1/2)12 _ B (7)] 7!
IBH@IT P = max (7))

V2

< max
Inmbi+E24 0 €[(u—b—1)2,(u+b)2) | [0+ by + &2+ Aj — 2|+ 7

Therefore,

oo
> w I Ho(r)

p=[b]+2
00 \[Ml—% 5
<Cr7°,
. %ﬁ In+mb1+€)2 4+, 6[(# b—1)2,(ut+b)2) | [0+ by + &2+ N — 12|+ 7
where we also used Lemma 2.1. O

3. Proof of Theorem 1.2

The key step of the proof is based on estimates of the spectral projections of the Laplace
operator.
The following theorem was proved in [11].

Theorem 3.1. Let N be a compact smooth Riemannian manifold with boundary, and let d :=
dim N > 3. Given p > 1, let E), = E_a)[(p — 1)2, u2) be the spectral projection of the Neumann
Laplacian on N onto the subspace corresponding to the interval [(pn — 1)%, u?). If

5<r<oo ford=3, 4<r<oo ford=>4

then
1Bl vy < Cu®= 412 £y for all f € Ly(N).
Moreover, if
2<r<4 ford=>4
then
1B L,y < Cut= 421 £y for all f € Ly(N).

Remark 3.2. In [11] the estimates of d > 4 were only obtained for > 4. The estimates in the
range 2 < r < 4 can be obtained by interpolating the bound ||E, f|r, < C’,ud/4 12| fllL, at r =4
with the trivial bound [|E, f||z, < || f||lz, at r = 2.

Remark 3.3. Similar estimates have been obtained in the Dirichlet case.
The following theorem was proved in [2].

Theorem 3.4. Let N be a compact smooth Riemannian manifold with boundary, and let
dim N > 3. Given pp > 1, let E), = E_p)[(p — 1)2, u?) be the spectral projection of the Neumann
Laplacian on N onto the subspace corresponding to the interval [(pn — 1)%, u?). If

3<s<o00, d=3,

then
IE.fll .oy < OO fll,yy  for all f € La(N).



If

then
1B f |1y ony < Cpld=DB=R=0/G9)) 11 vy forall f € Ly(N).

We are now ready to obtain the estimates for |Ho(7)|~'/2.

Lemma 3.5. Let

2d — 4
1<r<6 ifd=3 1<r<

Then there exists a § > 0 such that
I[Ho (M)~ ?ul], (arxay < CT 70Nl aenay  for all u € La(M x Q).
Proof. Theorem 3.1 with N = M x  implies that, under the above conditions on r, we have

1Bl sy < CHY* 7 Fll Lo arxo)
for some 0 > 0. Therefore,

o0

I Ho(7)] 2 ull L, vy < Y Bl Ho(m)| ™ ?ull L, (arxey
,u:l

< O3 W B ) Pl oy
pn=1

<O WP B Ho(m) 72| - | Bl y vy
pn=1

in the last inequality we used the fact that |Ho(7)|~'/? commutes with —A. Using the Cauchy
inequality and Lemma 2.2, we obtain

IHo(MI™2ull7, (e < CllullZ,arxay X w2 I Ho(m)|7V21P < Cr 0 ulf, gy O
pn=1

Lemma 3.6. Let

4d — 8
2d -5

10
1<s<§ if d=3, 1<s< if d>4.
Then there exists a & > 0 such that
I1Ho(P) |2 ull7 orrxay < CT 0 Null ey for all we Lo(M x Q).

Proof The argument is similar to that in the proof of Lemma 3.5. Theorem 3.4 with N = M xT™
implies that, under the above assumptions on s, we have

B f | Looarxay < Cu 270 fll o=



for some 0 > 0. Therefore, using Lemma 2.2, we obtain
o) 2
|||H0(T)|_1/2UH%S(8M><Q) < C(ZM1/2_5||EM|HO(T)|_1/2uHL2(M><Q)>
pn=1

0o
< Olfullfyarxey > 1P IENHO TP < Cr0llull?yarwey- O
pn=1

Proof of Theorem 1.2. The conditions on the potential V' are invariant under adding a
constant to V. Therefore, without loss of generality we can assume that A = 0. It will be convenient
to prove the theorem in the following (equivalent) form: For any u € Dom(H (7)), [[ull,(mx0) = 1,
there exists a v € Dom(H (7)), ||v|[z,arxq) = 1, such that

|(H(T)u,v)| = CT, T > T10.

Let Ho(1) = ®o(7)|Ho(7)| be the polar decomposition of Hy(7). In the basis (2.1), the operator
®(7) is the operator of multiplication by hj,(7)|hj. (7). Let

v = Pp(7)u.

Then
(Ho(7)u,v) = (|Ho(7)|u,u) > 27T,

and using (2.2), we obtain
(Ho(r)u,v) = [[[Ho(7)|"2ull?, (nrxey = I Ho(T)[V20ll7, arxe)-

We also have
|(Vu, 0)| < V| 2,y |l n, ey 101 2 (arx2)

where r = % satisfies the assumptions of Lemma 3.5 by virtue of (0.8). Therefore,

|(Va,0)] < CT°V Ly sy (P 2ull oy (s 1 Ho ()20l (a1
= CT 0V, (ar ey (Ho(T)u, v).

Similarly,

\ / auvds\ < Nolloontxen o, onrxa ol oarxa,
OM xQ

where s = % satisfies the assumptions of Lemma 3.6 due to (1.2). Hence

[ ouwds| < Cr ool oarea (Ho(r)u).
OM xQ
Combining the bounds, we eventually obtain

[(H(T)u,v)| = (Ho(T)u,v)(1 = C(V, 0)7'_5) > —(Ho(1)u,v) > 71

N

for sufficiently large 7.
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