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Abstract. We show that the spectrum of the Schrödinger operator H = −∆ + V in a smooth
cylinder with Robin boundary condition ∂νu = σu is purely absolutely continuous, assuming that
the coefficients V and σ are periodic in the axial directions.
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Introduction

Let M be a smooth compact Riemannian manifold with boundary ∂M , and let

Ξ = M × Rm, k := dimM, d := dimΞ = k +m, m ⩾ 1.

We are interested in the spectral type of the Schrödinger operator H = −∆+ V in the cylinder Ξ.
On the boundary ∂Ξ = ∂M × Rm we impose the Robin boundary condition

∂u

∂ν

∣∣∣∣
∂Ξ

= σu|∂Ξ. (0.1)

The functions V and σ are assumed to be periodic in the axial directions (see below). Our goal is to
show that, under some assuptions on V and σ, the spectrum of the operator H is purely absolutely
continuous (see Theorem 1.1 below).

The points of the cylinder Ξ will be denoted by (x, y), where x ∈ M and y ∈ Rm. Let Γ be a
lattice in Rm:

Γ =

{
l =

m∑
j=1

ljbj , lj ∈ Z
}
, (0.2)

where {bj}mj=1 is some basis in Rm. We will assume the following periodicity conditions to hold:

V (x, y + l) = V (x, y), x ∈ M, y ∈ Rm, l ∈ Γ, (0.3)
σ(x, y + l) = σ(x, y), x ∈ ∂M, y ∈ Rm, l ∈ Γ. (0.4)

Let

Ω =

{
y =

m∑
j=1

yjbj , yj ∈ [0, 1)

}
(0.5)

be the elementary cell of Γ. Due to periodicity, the functions V and σ are uniquely determined by
their values on M × Ω and ∂M × Ω, respectively.

Let us briefly review some earlier results on the absolute continuity of the spectrum of H.
Sufficient conditions for absolute continuity are usually of the form V ∈ Lp(M × Ω) and σ ∈
Lp(∂M × Ω). One can also consider wider classes, such as the Lorentz spaces L0

p,∞, but we will
restrict ourselves to the Lp case for simplicity. The case k = 0 corresponds to the operator on the



whole space (in which case there are no M and σ) and has been extensively studied. In [14] (see also
[3]) it was shown that the spectrum of H is absolutely continuous under the “optimal” conditions

V ∈ Lp(Ω), p > 1 for d = 2, p = d/2 for d ⩾ 3.

In the case k = 1 (where M is a line segment and Ξ is a plane-parallel layer), the absolute continuity
of H was established in [12] under the assumptions

V ∈ Lp(M × Ω), p > 1 for d = 2, p = 3/2 for d = 3, p = d− 2 for d ⩾ 4,

σ ∈ Lq(∂M × Ω), q > 1 for d = 2, q = 2 for d = 3, q = 2d− 2 for d ⩾ 4.

The above assumptions were relaxed in [5] to the “nearly” best possible assumptions

V ∈ Lp(M × Ω), p > 1 for d = 2, p = d/2 for d ⩾ 3, (0.6)
σ ∈ Lq(∂M × Ω), q > d− 1. (0.7)

Let us now consider the case k ⩾ 2. For the Neumann boundary condition (σ ≡ 0), absolute
continuity was shown in [9] for V ∈ L∞(M × Ω). In [8] this condition was relaxed to

V ∈ Lp(M × Ω), p > d/2 for d = 2, 3, 4, p > d− 2 for d ⩾ 5. (0.8)

In [7], assuming that σ does not depend on the axial variables, that is,

σ(x, y) = σ(x),

the authors established absolute continuity under the assumptions

σ ∈ Lq(∂M), q > 1 for k = 2, q = k − 1 for k ⩾ 3.

The case where σ has nontrivial dependence on y remained open. The second author has established
absolute continuity in the following special cases:

• M = [0, a1]× · · · × [0, ad] is a rectangle, V satisfies (0.6), and σ satisfies (0.7);
• M = {x ∈ Rk : |x| < R} is a k-dimensional ball, d ⩾ 3, V satisfies (0.8), and σ ∈ L4d−8(∂M ×

Ω);
see [5] and [6], respectively.

In this paper we will establish the absolute continuity of the spectrum of the operator H with
coefficient σ of the general form σ = σ(x, y) in the case where M is an arbitrary compact smooth
Riemannian manifold with boundary. Similarly to previous works, our proof will follow the Thomas
scheme [13]. In order to establish resolvent estimates for H(ξ) (see Theorem 1.2 below), we will use
the spectral cluster estimates for the Laplace operator obtained in [11] and [2]. The idea of using
these estimates first appeared in [14]. The boundary estimates from [2] are crucial for considering
the Robin boundary condition with nontrivial σ.

Remark 0.1. The case of the Dirichlet boundary condition σ|∂Ξ = 0 is easier. In this case, the
spectrum of H is absolutely continuous under assumptions (0.8) for a general cylinder (see [8]) and
under assumption (0.6) for a rectangular cylinder (see [5]).

1. Statement of the Result

Let M , dimM = k, be a compact smooth Riemannian manifold with boundary, and let Ξ =
M × Rm. Since the case k = 1 has been covered by previous works, from now on we will always
assume that

d = k +m ⩾ 3.
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Let Γ be a lattice (0.2) in Rm, and let Ω be its elementary cell (0.5). Assume that the real-valued
functions V (x, y) and σ(x, y) satisfy the periodicity conditions (0.3) and (0.4) and

V ∈ Ld/2(M × Ω), σ ∈ Ld−1(∂M × Ω). (1.1)

Consider the following quadratic form on L2(Ξ):

h[u, u] =

∫
Ξ
(|∇u(x, y)|2 + V (x, y)|u(x, y)|2) dx dy

+

∫
∂Ξ

σ(x, y)|u(x, y)|2 dS(x, y), Domh = H1(Ξ).

Here dS denotes the surface area measure on ∂Ξ and H1 ≡ W 1
2 is the Sobolev space. It is well

known that, under (1.1), the quadratic form h is closed and semibounded from below. Therefore, it
defines a self-adjoint semibounded operator H on the Hilbert space L2(Ξ). The operator H will be
called the Schrödinger operator in the cylinder Ξ with Robin boundary condition (0.1).

The following theorem is the main result of the paper.
Theorem 1.1. Let M , Ξ, Γ, Ω, V , σ , and H be defined as above. Assume, in addition, that V

satisfies (0.8) and σ satisfies

σ ∈ Lq(∂M × Ω), q > 5/2 for d = 3, q > 2d− 4 for d ⩾ 4. (1.2)

Then the spectrum of H is purely absolutely continuous.
It will be convenient to identify Ω with the m-dimensional torus Tm = Rm/Γ. Consider the

following quadratic forms that depend on an additional parameter ξ ∈ CCm:

h(ξ)[v, v] =

∫
M×Ω

(|∇xv|2 + ⟨(∇y + iξ)v, (∇y + iξ)v⟩+ V (x, y)|v|2) dx dy,

+

∫
∂M×Ω

σ(x, y)|v|2 dS(x, y), Domh(ξ) = H1(M × Tm).

These forms are sectorial in the sense of [4]. Therefore, they define a family of analytic self-adjoint
operators H(ξ). The embedding H1(M × Tm) ⊂ L2(M × Ω) is compact, and, as a consequence,
the spectra of H(ξ) are discrete. According to the Thomas criterion (see [13], [10], and [1]), it
would suffice to show that the family H(ξ) has no eigenvalues that are constant in ξ. Therefore,
Theorem 1.1 is a corollary of the following result.

Theorem 1.2. Under the assumptions of Theorem 1.1, let b1 be the first basis vector of Γ. For
any λ ∈ C and ξ ∈ Rm , ξ ⊥ b1 , there exists a τ0 > 0 such that, for all τ > τ0 , the operator

H(τ) := H((π + iτ)b1 + ξ)− λI

is invertible and
∥H(τ)−1∥ ⩽ Cτ−1.

Rescaling if necessary, we can assume without loss of generality that |b1| = 1.

2. Some Auxiliary Estimates

The following lemma was proved in [5].
Lemma 2.1. Suppose that 0 < δ < 1/2, b ⩾ 1, and |mµ| ⩽ b for any µ ∈ N. Then

∞∑
µ=1

µ1−2δ

|(µ+mµ)2 − τ2|+ τ
⩽ Cτ−δ

for τ > 1.
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Let
H0(τ) = H(τ)|V=0, σ=0.

In other words, H0(τ) is the operator on L2(M × Ω) defined by the quadratic form

h0(ξ)[v, v] =

∫
M×Ω

(|∇xv|2 + ⟨(∇y + i((π + iτ)b1 + ξ))v,

(∇y + i((π − iτ)b1 + ξ))v⟩) dx dy, Domh0(ξ) = H1(M × Tm).

Let {λj}∞j=1 and {φj(x)}∞j=1 denote the eigenvalues and eigenfunctions of the Laplace operator on
M with Neumann boundary condition. One can easily check that the eigenvalues and eigenfunctions
of H0(τ) are

hj,n(τ) = |n+ πb1 + ξ|2 + λj − τ2 + 2iτ⟨n+ πb1, b1⟩,

φj,n(x, y) = φj(x)e
i⟨n,y⟩, j ∈ N, n ∈ Γ̃, (2.1)

where Γ̃ ⊂ Rm is the dual lattice:

Γ̃ =

{
n =

m∑
j=1

nj b̃j , nj ∈ Z
}
, ⟨bk, b̃j⟩ = 2πδkj .

Since ⟨n, b1⟩ ∈ 2πZ, we have

|hj,n(τ)| ⩾ | Imhj,n(τ)| = 2τ |⟨n, b1⟩+ π| ⩾ 2πτ, τ > 0. (2.2)

We will also need the operator |H0(τ)|−1/2, which can be defined in the basis (2.1) as the operator
of multiplication by |hj,n(τ)|−1/2.

In the following considerations the central object is the spectral projections of the Laplace
operator on M × Tm with Neumann boundary conditions. Let

Eµ = E(−∆)[(µ− 1)2, µ2)

denote the spectral projection operator onto the subspace corresponding to the interval [(µ−1)2, µ2).
Note that Eµ and H0(τ) commute with each other.

Lemma 2.2. If 0 < δ < 1/2 and τ > 1, then

∞∑
µ=1

µ1−2δ∥Eµ|H0(τ)|−1/2∥2 ⩽ Cτ−δ.

Proof. Let b = |πb1 + ξ|. Due to (2.2), we have

[b]+1∑
µ=1

µ1−2δ∥Eµ|H0(τ)|−1/2∥2 ⩽ Cτ−1.

Let us estimate the sum over µ > [b] + 1. The eigenvalues of the Laplace operator on M × Tm are

λj + n2, j ∈ N, n ∈ Γ̃.

The range of Eµ corresponds to the pairs (j, n) satisfying

(µ− 1)2 ⩽ λj + n2 < µ2.
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Hence
|n+ πb1 + ξ|2 + λj ∈ [(µ− b− 1)2, (µ+ b)2),

and, for µ ⩾ [b] + 2, we have

∥Eµ|H0(τ)|−1/2∥2 = max
λj+n2∈[(µ−1)2,µ2)

|hj,n(τ)|−1

⩽ max
|n+πb1+ξ|2+λj∈[(µ−b−1)2,(µ+b)2)

√
2

| |n+ πb1 + ξ|2 + λj − τ2|+ τ
.

Therefore,

∞∑
µ=[b]+2

µ1−2δ∥Eµ|H0(τ)|−1/2∥2

⩽
∞∑

µ=[b]+2

max
|n+πb1+ξ|2+λj∈[(µ−b−1)2,(µ+b)2)

√
2µ1−2δ

| |n+ πb1 + ξ|2 + λj − τ2|+ τ
⩽ Cτ−δ,

where we also used Lemma 2.1. □

3. Proof of Theorem 1.2

The key step of the proof is based on estimates of the spectral projections of the Laplace
operator.

The following theorem was proved in [11].
Theorem 3.1. Let N be a compact smooth Riemannian manifold with boundary, and let d :=

dimN ⩾ 3. Given µ ⩾ 1, let Eµ = E(−∆)[(µ − 1)2, µ2) be the spectral projection of the Neumann
Laplacian on N onto the subspace corresponding to the interval [(µ− 1)2, µ2). If

5 ⩽ r ⩽ ∞ for d = 3, 4 ⩽ r ⩽ ∞ for d ⩾ 4,

then
∥Eµf∥Lr(N) ⩽ Cµd/2−d/r−1/2∥f∥L2(N) for all f ∈ L2(N).

Moreover, if
2 ⩽ r ⩽ 4 for d ⩾ 4,

then
∥Eµf∥Lr(N) ⩽ Cµd/2−d/r+2/r−1∥f∥L2(N) for all f ∈ L2(N).

Remark 3.2. In [11] the estimates of d ⩾ 4 were only obtained for r ⩾ 4. The estimates in the
range 2 ⩽ r ⩽ 4 can be obtained by interpolating the bound ∥Eµf∥L4 ⩽ Cµd/4−1/2∥f∥L2 at r = 4
with the trivial bound ∥Eµf∥L2 ⩽ ∥f∥L2 at r = 2.

Remark 3.3. Similar estimates have been obtained in the Dirichlet case.
The following theorem was proved in [2].
Theorem 3.4. Let N be a compact smooth Riemannian manifold with boundary, and let

dimN ⩾ 3. Given µ ⩾ 1, let Eµ = E(−∆)[(µ − 1)2, µ2) be the spectral projection of the Neumann
Laplacian on N onto the subspace corresponding to the interval [(µ− 1)2, µ2). If

3 ⩽ s ⩽ ∞, d = 3,

then
∥Eµf∥Ls(∂N) ⩽ Cµ1−5/(3s)∥f∥L2(N) for all f ∈ L2(N).
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If

2 ⩽ s ⩽
2d

d− 1
, d ⩾ 4,

then
∥Eµf∥Ls(∂N) ⩽ Cµ(d−1)/3−(2d−4)/(3s)∥f∥L2(N) for all f ∈ L2(N).

We are now ready to obtain the estimates for |H0(τ)|−1/2.

Lemma 3.5. Let

1 ⩽ r < 6 if d = 3, 1 ⩽ r <
2d− 4

d− 3
if d ⩾ 4.

Then there exists a δ > 0 such that

∥|H0(τ)|−1/2u∥2Lr(M×Ω) ⩽ Cτ−δ∥u∥2L2(M×Ω) for all u ∈ L2(M × Ω).

Proof. Theorem 3.1 with N = M × Ω implies that, under the above conditions on r, we have

∥Eµf∥Lr(M×Ω) ⩽ Cµ1/2−δ∥f∥L2(M×Ω)

for some δ > 0. Therefore,

∥|H0(τ)|−1/2u∥Lr(M×Ω) ⩽
∞∑
µ=1

∥Eµ|H0(τ)|−1/2u∥Lr(M×Ω)

⩽ C

∞∑
µ=1

µ1/2−δ∥Eµ|H0(τ)|−1/2u∥L2(M×Ω)

⩽ C
∞∑
µ=1

µ1/2−δ∥Eµ|H0(τ)|−1/2∥ · ∥Eµu∥L2(M×Ω);

in the last inequality we used the fact that |H0(τ)|−1/2 commutes with −∆. Using the Cauchy
inequality and Lemma 2.2, we obtain

∥|H0(τ)|−1/2u∥2Lr(M×Ω) ⩽ C∥u∥2L2(M×Ω)

∞∑
µ=1

µ1−2δ∥Eµ|H0(τ)|−1/2∥2 ⩽ Cτ−δ∥u∥2L2(M×Ω). □

Lemma 3.6. Let

1 ⩽ s <
10

3
if d = 3, 1 ⩽ s <

4d− 8

2d− 5
if d ⩾ 4.

Then there exists a δ > 0 such that

∥|H0(τ)|−1/2u∥2Ls(∂M×Ω) ⩽ Cτ−δ∥u∥2L2(M×Ω) for all u ∈ L2(M × Ω).

Proof The argument is similar to that in the proof of Lemma 3.5. Theorem 3.4 with N = M×Tm

implies that, under the above assumptions on s, we have

∥Eµf∥Ls(∂M×Ω) ⩽ Cµ1/2−δ∥f∥L2(M×Ω)
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for some δ > 0. Therefore, using Lemma 2.2, we obtain

∥|H0(τ)|−1/2u∥2Ls(∂M×Ω) ⩽ C

( ∞∑
µ=1

µ1/2−δ∥Eµ|H0(τ)|−1/2u∥L2(M×Ω)

)2

⩽ C∥u∥2L2(M×Ω)

∞∑
µ=1

µ1−2δ∥Eµ|H0(τ)|−1/2∥2 ⩽ Cτ−δ∥u∥2L2(M×Ω). □

Proof of Theorem 1.2. The conditions on the potential V are invariant under adding a
constant to V . Therefore, without loss of generality we can assume that λ = 0. It will be convenient
to prove the theorem in the following (equivalent) form: For any u ∈ Dom(H(τ)), ∥u∥L2(M×Ω) = 1,
there exists a v ∈ Dom(H(τ)), ∥v∥L2(M×Ω) = 1, such that

|(H(τ)u, v)| ⩾ Cτ, τ > τ0.

Let H0(τ) = Φ0(τ)|H0(τ)| be the polar decomposition of H0(τ). In the basis (2.1), the operator
Φ0(τ) is the operator of multiplication by hj,n(τ)|hj,n(τ)|−1. Let

v = Φ0(τ)u.

Then
(H0(τ)u, v) = (|H0(τ)|u, u) ⩾ 2πτ,

and using (2.2), we obtain

(H0(τ)u, v) = ∥|H0(τ)|1/2u∥2L2(M×Ω) = ∥|H0(τ)|1/2v∥2L2(M×Ω).

We also have
|(V u, v)| ⩽ ∥V ∥Lp(M×Ω)∥u∥Lr(M×Ω)∥v∥Lr(M×Ω),

where r = 2p
p−1 satisfies the assumptions of Lemma 3.5 by virtue of (0.8). Therefore,

|(V u, v)| ⩽ Cτ−δ∥V ∥Lp(M×Ω)∥|H0(τ)|1/2u∥L2(M×Ω)∥|H0(τ)|1/2v∥L2(M×Ω)

= Cτ−δ∥V ∥Lp(M×Ω)(H0(τ)u, v).

Similarly, ∣∣∣∣ ∫
∂M×Ω

σuv dS

∣∣∣∣ ⩽ ∥σ∥Lq(∂M×Ω)∥u∥Ls(∂M×Ω)∥v∥Ls(∂M×Ω),

where s = 2q
q−1 satisfies the assumptions of Lemma 3.6 due to (1.2). Hence∣∣∣∣ ∫

∂M×Ω
σuv dS

∣∣∣∣ ⩽ Cτ−δ∥σ∥Lq(∂M×Ω)(H0(τ)u, v).

Combining the bounds, we eventually obtain

|(H(τ)u, v)| ⩾ (H0(τ)u, v)(1− C(V, σ)τ−δ) ⩾
1

2
(H0(τ)u, v) ⩾ πτ

for sufficiently large τ .
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