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We propose a formal definition of transparency in empirical research and apply it to structural estimation
in economics. We discuss how some existing practices can be understood as attempts to improve
transparency, and we suggest ways to improve current practice, emphasizing approaches that impose a
minimal computational burden on the researcher. We illustrate with examples.
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1. INTRODUCTION

Structural empirical research can sometimes look like a
black box. Once upon a time, a structural article might be-
gin with an elaborate model setup containing dozens of as-
sumptions, present a similarly complex recipe for estimation,
and then jump immediately to reporting model estimates and
counterfactuals that answer the research question of interest.
A reader who accepted the full list of assumptions could walk
away having learned a great deal. A reader who questioned even
one of the assumptions might learn very little, as they would
find it hard or impossible to predict how the conclusions might
change under alternative assumptions.

Modern research articles taking a structural approach often
look very different from this caricature. Many devote signif-
icant attention to descriptive analysis of important facts and
relationships in the data. Many provide detailed discussions of
how these descriptive statistics relate to the structural estimates,
connecting specific data features to key parameter estimates or
conclusions. Such analysis has the potential to make structural
estimates more transparent, helping skeptical readers learn
from the results even when they do not fully accept all the
model assumptions.

In this article, we consider the value of transparency in
structural research. We propose a formal definition of the
transparency of a statistical report. We argue that our definition
provides a rationale for many current practices, and suggests
ways these practices can be improved. We discuss these poten-
tial improvements, emphasizing those that impose a minimal
computational burden on the researcher.

Our definition of transparency follows the one proposed
in Andrews, Gentzkow, and Shapiro (2017).1 We situate it
in a model of scientific communication based on Andrews
and Shapiro (2020). In the model, a researcher observes data
informative about a quantity of interest c¢. The researcher

ISee also the discussions of transparency in Angrist and Pischke (2010) and
Heckman (2010).
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reports an estimate ¢ of ¢ along with auxiliary statistics 7 to a
set of readers indexed by r. Under the researcher’s maintained
assumptions ag, ¢ is valid, for example, in the sense that it
is asymptotically normal and unbiased. Not all readers accept
ap, however, and different readers may entertain different
alternative assumptions a # ag. After receiving the report
(¢,7), each reader updates their prior beliefs, selects an estimate
d, of ¢, and realizes a quadratic loss (d, — ¢)%. For a given
reader, we define the transparency of the report to be the
reduction in expected loss from observing (&,7), relative to the
reduction from observing the full data. In other words, research
is transparent to the extent that it makes it easy for readers
to reach the same inference about ¢ that they would reach by
analyzing the data in full under their preferred assumptions.
‘We show that transparency is distinct from other econometric
desiderata such as efficiency and robustness.

After describing our model and definition of transparency
in Section 2, we discuss several practices that we believe can
improve the transparency of structural estimation. We illustrate
throughout with stylized examples drawn from our model and
real-world examples drawn from the literature.

Section 3 discusses descriptive analysis, which we interpret
as including in 7 statistics § that are either directly informative
about the parameter of interest ¢, or informative about the
plausibility of the assumptions ag. We argue that descriptive
statistics of both kinds can aid transparency.

Section 4 discusses the analysis of identification. Although
transparency is a distinct property from model identification,
we argue that clear discussion of identification can improve
transparency by sharpening readers’ beliefs about the appro-
priateness of the researcher’s assumptions.

Section 5 discusses ways to improve the transparency of
the estimator. We argue that transparency is improved when
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¢ depends to a large degree on some interpretable statistics §
and when the form of the relationship between the two is made
clear to the reader. We suggest this as a rationale for targeting
descriptive statistics directly in estimation. Building on work
by Andrews, Gentzkow, and Shapiro (2017, 2020), we discuss
how local approximations can be used to clarify the relationship
between ¢ and 5.

Section 6 discusses sensitivity analysis, which we take to
encompass a range of approaches for demonstrating the sensi-
tivity of conclusions to alternative assumptions. When readers
are concerned about a small number of known alternative
assumptions «, the researcher can improve transparency by
reporting estimates ¢, that are valid under these alternatives, as
in a traditional sensitivity analysis. When readers are concerned
about a richer or unknown set of alternatives a, then it is no
longer practical to report an estimate corresponding to each of
these. Building on work by Conley, Hansen, and Rossi (2012)
and Andrews, Gentzkow, and Shapiro (2017), we discuss how
including in 7 statistics based on local approximations can help
readers assess a larger set of assumptions. For cases where
a qualitative conclusion (e.g., the direction of a causal effect
or welfare change) is important, we also discuss the value of
reporting features of alternative realizations of the data that
would lead to a conclusion different from the researcher’s.

2. TRANSPARENCY IN A MODEL OF SCIENTIFIC
COMMUNICATION

2.1. Setup

A researcher observes data D € 2. The researcher makes a
set of assumptions ag under which D ~ F (ag,n) for n € H an
unknown parameter. The researcher computes a point estimate
¢ = ¢ (D) of a scalar quantity of interest ¢ (ag, n) , along with
a vector of auxiliary statistics 7 = 7 (D). The latter may include
descriptive evidence, sensitivity analysis, and various auxiliary
statistics as discussed in Sections 3-6.2

The researcher reports (¢,7) to readers r € % who do
not have access to the underlying data. In most applications,
researchers and readers focus on statistics of much lower di-
mension than the raw data (though researchers might also make
the data available), so we will primarily consider dim (7) <«
dim (D) and ask what readers learn from (¢,7). Readers are
concerned that the researcher’s model may be misspecified, and
they consider assumptions a € .o/ that may be different from
ag. Under assumption @ € &7, D ~ F (a,n) where 7 is again
unknown, and the quantity of interest is ¢ (a, ) 3 Bach reader
r has a prior m, on the assumptions a and model parameter 7,
and aims to estimate c (a, 1), choosing a decision d, € R and
incurring quadratic loss L (d;, ¢ (a, 1)) = (d; — ¢ (a, n))z.

Following Andrews and Shapiro (2020), we define reader r’s
communication risk from (¢,7) as their ex-ante expected loss

’In settings where c is partially identified under the assumptions ag, one could
instead take ¢ to report an estimate for the identified set. Some of our analysis
(particularly in Section 5) would need to be adapted to this case. See Tamer
(2010) and Molinari (2020) for overviews of the partial identification literature.
3We assume a common parameter 1 for simplicity, but one could more
generally have different model parameters 7, for each a € .</. Alternatively,
one can view a as just another unknown parameter, though in many interesting
cases (a, ) will not be jointly identified.
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from taking their optimal action based on (¢, 7). Under squared
error loss this optimal action is simply 7’s posterior mean for ¢
given (¢,7), so

E, [n[llin E, [(d,. -8, ?]] = E, [var, (c[¢,)].
Here, E,[-] and var, (-) denote the expectation and variance
under 7,, respectively, and we write ¢ as shorthand for ¢ (a, ).
Reader 7’s risk from observing the full data is E, [var, (c|D)] <
E, [var, (cle, ?)] < var, (¢), with equality in the first compar-
ison only if ’s posterior mean based on (¢,7) is almost surely
the same as that based on the full data.

We define the rransparency of (¢,1) for r as the reduction
in communication risk from observing (¢,7), relative to the
reduction from observing the full data

var, (¢) — E, [var, (c[¢,7)]
vary (c) — E; [var, (c|D)] ’

and define transparency to be one when the denominator is zero.
Thus, the transparency of (¢,7) for r lies between zero and one,
is equal to one when observing (¢, ?) yields the same risk for r
as observing the full data, and is equal to zero when observing
(¢,7) yields no reduction in risk, while observing D would yield
some reduction.

It is sometimes straightforward to construct fully transparent
reports, that is, reports with transparency equal to one. If 7 is
sufficient for (a, n), for instance, then (¢,7) is fully transparent
for all readers. When it is infeasible to report a sufficient
statistic, we can still construct a fully transparent report for
reader r by reporting that reader’s posterior mean 7 = E, [¢|D].
Note, however, that in this case (¢,7) need not be transparent
for readers r’ with 7, # 7,. Heterogeneity in 7, across readers
is thus central to the study of transparency.

T, (6(),7() =

2.2. Example and Comparison to Other Econometric
Properties

A linear IV example helps to fix ideas and clarify the
difference between transparency and other econometric prop-
erties. Suppose that the data D = {(¥;,X;,Z;)}_, consist of
observations of an outcome Y;, an endogenous regressor Xj,
and a candidate instrument Z;, all of which are scalar. Readers
believe that the data follow

Y; = Xic + Zia + ¢;, (D
Xi=Zy+V, ()

where the instruments Z; are fixed. The reduced-form error
from regressing Y; on Z; is U; = cV; + ¢;. We assume the
errors (U;, V;) are iid normal across i, (U;, V;) ~ N (0, E), with
& commonly known, so the parameter is n = (c,y) € R2.
Suppose that &7 = RR, so that assumptions a € %7 correspond to
the coefficient on Z; in (1), and that the researcher’s assumption
is ap = 0. Under assumption ag, Z; is a valid instrument in the
regression of ¥; on X;, while under a # 0 the exclusion restric-
tion fails. Denote the usual IV estimate by ¢ = > Z;Y;/ > Z:X;
and the first-stage coefficient by y = Y Z;X;/ " Z?.

The report ¢ may not be fully transparent. For example,
consider a reader » who has a degenerate prior on a # ag
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but a continuous joint prior on (c,y). Note that for n large,
¢ converges in probability to ¢ + a/y under mild conditions.
Because the reader is uncertain about the value of y, however,
they cannot infer the value of ¢ from the estimate ¢ even in
a large sample. By contrast, with access to the full data they
would learn the value of y, and thus be able to infer c. Thus,
as n — oo the transparency of ¢ for such a reader is bounded
away from one. In contrast, the report (¢,7) has transparency
T, = 1 for all readers r, as (¢, ) is sufficient for the unknown
parameters (c,y). Reporting the auxiliary statistic y can thus
improve transparency in this example.

Transparency is distinct from a number of other properties
discussed in the econometrics literature. For example, esti-
mators are often evaluated based on their efficiency in mean
squared error, where the mean squared error of ¢ under (a, n)

. 2 . ~ . . n
18 Erga,n [(c — c) ] The estimator ¢ dominates the estimator ¢

in mean squared error under the assumptions « if it achieves
a lower mean squared error for all n, with strict inequality
for some 7. Efficiency and transparency can imply substan-
tially different rankings of estimators. To illustrate, continue
with the instrumental variables example and suppose along
the lines of Andrews and Shapiro (2020) that all readers
believe ¢ lies between values ¢, and cy with probability
one, Pr, {c € [cL,cy]} = 1 for all r. Let ¢ again denote the
IV estimator, and let ¢ denote the IV estimator censored to
lie in [cz,cyl, ¢ = max{c,,min{¢ cy}}. The estimator ¢
dominates ¢ in mean squared error (indeed, the mean squared
error of ¢ is infinite whenever E has full rank).4 At the same
time, since ¢ is a non-invertible transformation of ¢, the report
¢ is weakly more transparent than the report ¢ for all readers r,
and the report (E, )7) achieves full transparency (7, = 1) for all
readers 7, while the report (¢, 7) does not.

While we allow the possibility that the readers and the
researcher contemplate different assumptions, transparency is
also distinct from traditional measures of robustness. To illus-
trate, note that in our instrumental variables example with &/ =
R, the report (E, )?) is fully transparent, but all estimators ¢ of
¢ have infinite worst-case mean squared error over (c,a) € R?
for any y, sup(. 4)er? EF(an [(c - 5)2] = 00, and so are non-
robust in that sense.

Finally, transparency is distinct from identification. In our
instrumental variables example, (6, )?) is fully transparent, but ¢
is unidentified under .27 absent further restrictions, in the sense
that any distribution for D allowed by the model is consistent
with any value of c.

2.3. Relationship to Other Recent Discussions of Trans-
parency and Interpretability

We define transparency as a property of the statistics that
the researcher reports. The usefulness of a given statistical
report depends on the reader’s understanding of the process
that generated the statistic. Transparency as we define it is
thus related to growing literature on research transparency in

“The absolute deviation of ¢ from c is weakly smaller than that of ¢ for all
realizations of the data, and strictly smaller for some, so ¢ also dominates ¢
in many other senses, for example, as measured by quantiles of the absolute
deviation.
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economics, which emphasizes issues such as clear documen-
tation of experimental procedures (see, e.g., Christensen and
Miguel 2018). One focus of that literature is the open sharing
of research data, which achieves transparency equal to one for
any reader r with the capacity to analyze the full data D.

We focus on applications to structural research in eco-
nomics, where statistical methods are often derived from ex-
plicit assumptions about economic primitives. Applications of
machine learning, by contrast, often focus on exploring rela-
tionships among observed variables without an explicit causal
framework. A recent literature considers ways to improve the
interpretability of the models used in machine learning, and of
the resulting estimates (see, e.g., Murdoch et al. 2019). Some
of the approaches emphasized in that literature, such as the
highlighting of data features important for a given prediction,
seem related in spirit to those we discuss below.

2.4. Routes to Improved Transparency

The remaining sections of the article discuss practical ap-
proaches to improving transparency in structural estimation.
We emphasize alternative assumptions « that we think are likely
to be of most interest to readers of structural research. Likewise,
we limit attention to reporting strategies that we view as reason-
able, ruling out for instance that researchers encode the full data
in the decimal expansion of 7. Finally, because working with
nonlinear structural models is often computationally expensive,
we emphasize approaches that impose a minimal additional
computational burden on the researcher.

3. DESCRIPTIVE ANALYSIS

The first element that can contribute to transparent structural
research is descriptive analysis. In our framework, a descriptive
analysis takes the auxiliary statistics 7 to include some statistics
5 that are either directly informative about ¢ or informative
about the plausibility of the assumptions a¢. Examples include
summary statistics, data visualization, or correlations illus-
trating key causal relationships. Such evidence is sometimes
described as “model-free,” in the sense that it has a meaningful
interpretation that does not rely explicitly on the assumptions
of the structural model.® Pakes (2014) formalized the role of
descriptive analysis in providing a set of facts that the structural
model should rationalize.

Our framework suggests two ways that such descriptive
analysis can improve transparency. First, descriptive statistics §
may provide evidence about ¢ that is informative under a wider
range of assumptions than ag. This would be true, for example,
if |corr, (c,3)| is large under many priors 7, including those
that do not put much mass on ag.’

A leading case is where § includes convincing experimental
or quasi-experimental estimates of treatment effects closely
related to c. Autor et al. (2019), for example, presented quasi-
experimental evidence on the effects of disability insurance
(DI) receipt in Norway on outcomes including total income,

5See, for example, Polyakova (2016) and Rossi and Chintagunta (2016).

6See also the discussion in Lewbel (2019, sec. 5.1).

"In particular note that for scalar 3, E,[var-(c|3)] < var(c) (1— corr.(c, fv)z),
so a large correlation directly bounds the average posterior variance.
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consumption expenditure, and transfer income, using random
assignment of DI judges as a source of exogenous variation.
They then estimated a structural model that allows them to
back out the welfare effects of DI awards. A reader who is
skeptical of the structural model’s assumptions might still learn
a lot about the welfare effects based on the descriptive evidence
alone. For example, such a reader might update positively on
the welfare effects to the extent that DI substantially increases
consumption or update negatively to the extent that it crowds
out other transfer income.

Similarly, Attanasio, Meghir, and Santiago (2012) presented
treatment-control differences from a randomized evaluation of
the PROGRESA conditional cash transfer that show how the
program affected school enrollment of children in various age
groups. They then estimated a dynamic model of the school
enrollment decision that allows them to simulate alternative
policies such as one that reallocates grant funding from younger
children to older children. The observed treatment-control dif-
ferences do not speak directly to the effect of this reallocation
because it was not part of the original experiment. A reader who
does not accept all of the assumptions of the structural model
might nevertheless learn a fair amount about the likely effects of
the reallocation from comparing the treatment effects on older
and younger children.

Second, descriptive statistics § may provide evidence that
helps readers evaluate the researcher’s assumptions ag. Allcott
et al. (2019) estimated a structural model of grocery demand
that allows them to decompose sources of nutritional inequality
in the United States. To estimate price sensitivity, the authors
instrumented for the price of a product in a given store with the
price of the same product in other stores in the same chain. The
exclusion restriction is that the variation in prices due to the
composition of chains in a particular market is orthogonal to
unobserved preference differences. In their descriptive analysis,
the authors support the plausibility of this assumption by
showing that this variation in prices is orthogonal to observed
demographics that predict choices.

Agarwal et al. (2018) used an estimated structural model of
bank lending to predict the extent to which credit expansions
are passed on to borrowers. A key assumption of the model is
that borrowers’ unobserved characteristics are smooth around
a set of credit score thresholds where credit limits change
discontinuously. The authors’ descriptive analysis confirms the
“first stage” effect of the discontinuities on credit limits and
then shows that observed borrower characteristics are smooth
around the discontinuities, increasing the plausibility of the
assumption that unobserved characteristics are smooth as well.

An important strength of descriptive analysis is that it
permits a wider range of robustness and sensitivity analysis than
is typically possible for computationally demanding structural
estimates. Considering many alternative sets of controls, isolat-
ing variation along discontinuities, or adding highly saturated
fixed effects are often not possible in complex models. Perform-
ing such checks is typically easier for the statistics reported
in a descriptive analysis, and reporting them can strengthen
confidence in model assumptions.

Descriptive statistics § can improve a reader’s ability to eval-
uate the researcher’s model even if they do not directly test its
formal assumptions. For example, if an important assumption in
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the model is that a jurisdiction-level policy variable is assigned
independently of unobservables, providing a map illustrating
the spatial distribution of the policy can be very helpful to a
reader.® Because many readers will have prior beliefs on the
spatial distribution of unobservables, such a map can comple-
ment more formal balance tests that evaluate the correlation
of the policy variable with observable characteristics of the
jurisdiction. In a similar way, many types of summary statistics
and data visualization can help to sharpen readers’ priors on the
researcher’s assumptions and thus aid readers’ interpretation of
the estimator ¢, in the sense that corr, (c,¢|§) is much larger
than corr, (c, ¢) for some realizations of 5.

4. |IDENTIFICATION

A second element that can contribute to transparent re-
search is explicit discussion of identification. Such discussion
is now common in much empirical research including structural
research. Angrist and Pischke (2010) called “a conceptual
framework that highlights specific sources of variation” one of
the “hallmark([s] of contemporary applied microeconomics” (p.
12). Kleven (2018) showed that the share of NBER working
papers in public economics discussing identification has risen
from roughly 0% in 1980 to almost 50% today. Of the 123
structural articles published in the American Economic Re-
view, Econometrica, the Quarterly Journal of Economics, and
the Journal of Political Economy between January 2018 and
November 2019, 80% included explicit discussion of identifi-
cation.”

Formally, a quantity c is identified in the researcher’s model
if ¢ (a0, n) # c (ao,n’) implies F (ag,n) # F (ag,n’) (Matzkin
2013; Lewbel 2019). In other words, distinct values of ¢ corre-
spond to distinct distributions of the data under the researcher’s
maintained assumptions. A quantity c is identified by a specific
vector of statistics § if ¢ (ap,n) # c (ao, r]’) implies distinct
distributions of § under F (ag,n) and F (g, n’).

There is a disconnect between this formal econometric
definition and the discussions of identification that appear in
some empirical articles. Keane (2010, p. 6) wrote,

What is meant by “identified” [by some authors] is subtly
different from the traditional use of the term in econometric
theory. ... Here, the phrase “how a parameter is identified”
refers... to a more intuitive notion that can be roughly
phrased as follows: What are the key features of the data,
or the key sources of (assumed) exogenous variation in the
data, or the key a priori theoretical or statistical assumptions
imposed in the estimation, that drive the quantitative values
of the parameter estimates, and strongly influence the sub-
stantive conclusions drawn from the estimation exercise?

There are two important differences between the formal defi-
nition of identification and the “intuitive notion” Keane (2010)
described. First, point identification is formally a binary prop-
erty. A quantity of interest ¢ either is or is not identified by a

8See, for example, Fetter and Lockwood (2018, Figure 3), Bernard, Moxnes,
and Saito (2019, Figure 8), and Hackmann (2019, Figure 3).

“Here, we define “structural” broadly to include any article that explicitly
estimates the parameters of an economic model.
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statistic 5. It is not clear in what meaningful sense a particular
feature or source of exogenous variation could be the “key”
source of identification. Second, identification is a property of
a model, not a property of an estimator. Whether or not c is
identified by s need not be related to whether or not § “drive[s]
the quantitative values of the parameter estimates.” Indeed, it
is possible that ¢ is identified by § yet the estimator ¢ does not
depend on § at all.

Many discussions of identification in recent structural work
fit Keane’s (2010) description. A number refer to particular
quantities as “primarily,” “mainly,” or “largely” identified by
particular data features.'® Some focus on properties of estima-
tors rather than models, using “identification” as essentially a
synonym for “estimation.”!’ Many acknowledge that they are
departing from formal statements by saying they discuss iden-
tification “intuitively” or “loosely,” or by noting explicitly that
they discuss relationships of individual parameters to specific
statistics even though all parameter estimates are determined
jointly.!2

We believe that clear and precise discussions of identifi-
cation have an important role to play in making structural
research transparent. In our framework, such discussions can
be understood as a way to communicate and clarify the impli-
cations of the baseline assumptions ag and the space of relevant
alternatives a # ag, allowing readers to form more precise
priors 7,. Focusing on partial identification, Tamer (2010)
wrote: “[The partial identification approach] links conclusions
drawn from various empirical models to sets of assumptions
made in a transparent way. It allows researchers to examine the
informational content of their assumptions and their impacts
on the inferences made.” We believe clear discussions of point
identification can likewise increase transparency.

Such clarifying discussions would of course be unnecessary
if readers could fully evaluate all of a model’s assumptions di-
rectly. In reality, doing so is difficult. The abstract mathematical
space in which assumptions are stated is often not one in which
readers have well-formed intuitions. An assumption that sounds
innocuous may in fact be highly restrictive, while another that
sounds obviously unrealistic may in fact be a reasonable ap-
proximation. Identification discussions can illuminate the way

'0For example, Beraja et al. (2018) wrote, “Any empirical measure of refinanc-
ing elasticities to interest rate reductions will always be primarily identified
from recession periods” (p. 156, emphasis added). Fu and Gregory (2019)
wrote, “The dispersion... is thus identified mainly from the size of RDD
parameter” (p. 407, emphasis added). Crawford et al. (2018) wrote, “The pro-
competitive effects of vertical integration are largely identified from the degree
to which RSN carriage is higher for integrated distributors” (p. 893, emphasis
added).

See, for example, the subsection titled “Identification Strategy” in Harasztosi
and Lindner (2019, p. 2701), the section titled “Identification of Structural
Parameters” in Head and Mayer (2019, p. 3095), and the section titled
“Estimation and Identification” in Hackmann (2019, p. 1702).

2For example, Allcott et al. (2019) wrote, “Loosely, the first set of moments
identify the 8 parameters...” (p. 1827, emphasis added). Autor et al. (2019)
wrote, “While the mapping between model parameters and sample moments is
less direct for the disutility parameters, there are data moments that intuitively
provide identifying information. While all parameters are estimated simulta-
neously, it can be instructive to focus on one parameter at a time” (p. 2644,
emphasis added). Fu and Gregory (2019) wrote, “Although all of the structural
parameters are identified jointly, we provide a sketch of identification here by
describing which auxiliary models are most informative about certain structural
parameters” (p. 407).
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the model’s assumptions map the distribution of observables to
the key quantity c. This is often a valuable complement to direct
inspection of the assumptions in mathematical terms.

To illustrate what we mean, suppose a discrete-choice de-
mand model assumes that the utility of a consumer i for
a good j contains an additive error g; which is iid Type I
extreme value. How would a reader unfamiliar with such
models evaluate the distributional assumption on the error
term? Mathematically, the assumption is that the CDF of ¢;
is F(e) = exp(—exp(—e¢)). Plotting the implied CDF or
PDF would show that this is a single-peaked distribution not
too different from a normal. It seems challenging to judge
by introspection whether either the formula or the plot is
a reasonable representation of the distribution of consumer
utility, or under what circumstances it would be a better or
worse approximation.

Studying the implications of the extreme value assumption
for identification turns out to be instructive. As is now well
understood (e.g., Anderson, De Palma, and Thisse 1992),
imposing this form on the errors can mean that the share of
consumers choosing each good j is alone sufficient to identify:
(i) the relative own-price elasticities and markups of any two
goods j and k; (ii) how consumers reallocate if any good is
removed from the choice set; (iii) relative consumer welfare
under different choice sets. An unfamiliar reader who learned
these implications might update in the direction of thinking
the distributional assumption is stronger than they thought
and worth additional scrutiny. The reader might also be able
to form new intuitions about what alternative assumptions a
are most relevant to consider—for example, alternative error
distributions that decouple substitution patterns from market
shares (Berry, Levinsohn, and Pakes 1995).

We suggest that two principles should guide discussions
of identification. First, these discussions should be precise,
with the verb “identify” used only in its formal econometric
sense. It is best to avoid quantitative modifiers like “primarily
identifies” or “mainly identifies” with uncertain meaning. Like
any other theoretical statement, statements about identification
that are not immediately obvious should either be accompanied
by formal proof or introduced explicitly as conjectures.

The statement that a quantity ¢ “is identified by” a par-
ticular vector of statistics § should mean that the distribution
of § is sufficient to infer the value of ¢ under the model. If
this statement applies only given knowledge of some other
parameters, then this should be made explicit. Looking over
cases in the recent literature where authors claim something
is “identified by” specific features of the data, one sees three
common structures of argument.'? The first structure is to prove
identification as a formal proposition.'* The second structure is
an informal “triangular” argument. In the case where the object
of interest is a parameter vector 7, this might show that n; is
identified by a statistic §; alone, 1, is identified by §, once the
value of 1| is known, 13 is identified by 53 once the values of

13See also Gentzkow, Shapiro, and Sinkinson (2014, secs. V.A and VLA).
14See, for example, Agarwal and Somaini (2018), Bonhomme, Lamadon, and
Manresa (2019), and Chiappori et al. (2019).
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n1 and 1, are known, and so on.!> When formalized, this can of
course be a valid method of proof that n is identified by 5. The
final structure is an elementwise argument where saying that n;
is identified by $x means this is true given that all other elements
of n are known. Many “heuristic” or “informal” discussions of
identification seem to take this form, though sometimes without
making explicit the requirement that the other elements of n
are known.'® Enumerating such relationships for all n; does
not establish identification of n from §. In many models, the
statement that 1; is identified by 5 in this sense will be true for
many different statistics 5;. Such discussions may nevertheless
provide some useful intuition about the model.

Some authors support discussions of identification with
simulations showing how the distributions of some statistics
§ change when each parameter is varied in turn, holding all
other parameters constant.!” A statistic is then sometimes
said to “identify a parameter” if the distribution of the statis-
tic responds strongly as the parameter varies. Note that this
amounts to a version of the third argument structure above,
establishing elementwise relationships that do not imply formal
identification of the model as a whole. We see this kind of
simulation as valuable provided it is clear that it speaks to
identification of the parameter of interest only if the values of
the other parameters are known.

The second principle we would recommend is that discus-
sion of model identification be clearly distinguished from dis-
cussion of estimation. How § and c are related under the model
is distinct from how § is related to the specific estimator ¢, and
the statement “c is identified by §;” need not imply that §; is an
important determinant of ¢. How to clarify the data features that
actually do drive ¢ is the topic we take up in Section 5. As we
note there, transparency is often improved when the discussion
of identification elucidates the same relationships that turn out
to be important in estimation.

In some cases, discussion of the construction of an estimator
can itself constitute a heuristic proof of identification. For
example, it may be that estimation consists of a series of plug-
in or linear estimators for parameters whose identification is
well understood.'® Such cases may explain how “identification
strategy” has come to be used in some of the literature as a
synonym for “estimation strategy.”'?

5. ESTIMATION

Descriptive analysis and discussion of identification can
together help readers understand how the researcher’s model
maps features of the data to conclusions about ¢, and assess the
validity of the assumptions underlying this mapping. Research

15See, for example, Eckstein, Keane, and Lifshitz (2019, pp. 235-236),
Fréchette, Lizzeri, and Salz (2019, p. 2976), and Fu and Gregory (2019, pp.
407-409).

16Two articles that make this requirement explicit are Autor et al. (2019, pp.
2644-2645) and David and Venkateswaran (2019, pp. 2548-2549).

'7See, for example, Autor et al. (2019, Figure 4) and David and Venkateswaran
(2019, sec. IIL.C).

18See, for example, the section titled “Identification of Structural Parameters”
in Head and Mayer (2019, p. 3095).

“The “Identification Strategy” section in Harasztosi and Lindner (2019, p.
2701) is a recent example.
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is most transparent when readers can use this and other infor-
mation to interpret the structural estimates ¢ taking account of
the forms of misspecification they find most relevant.

To do so, the reader needs to understand how the specific
estimator ¢ depends on the data D. There are often many
distinct vectors of intuitive statistics § that each identify ¢ under
the researcher’s model, and in over-identified settings there
are many different transformations of a given vector § that
estimate c. Identification discussions can at best clarify the sets
of possible statistics and transformations.

Knowing the form of the estimator ¢ is essential to trans-
parency for two reasons. First, for reasons related to the
discussion in Section 4, the statistics § on which the estimator
depends—the statistics that “drive” the estimator in common
parlance—influence which violations of assumptions matter
most. Second, as we elaborate below, knowing how the esti-
mator depends on these statistics can allow a reader to judge
the likely bias induced by specific violations.

In this section, we consider how to make estimation more
transparent. We focus on the value of both highlighting a
specific vector of statistics § that determine the estimator ¢
either exactly or approximately, and making the form of the
relationship between the two clear to the reader. To fix ideas,
without loss of generality we can write

c=h (3) + v,
where £ (-) is some function and vy, is a residual whose structure
depends on / (-). The first approach we discuss is to choose an
estimator ¢ such that v, = 0 and then characterize the form
of the function A (-). The second approach we discuss is to
choose an estimator ¢ such that v, # 0 and then demonstrate
that vy, is small in an appropriate sense so that ¢ ~ h (3) In

Section 6, we discuss how a reader can assess specific forms of
misspecification in the context of such estimators.

5.1. Target Descriptive Statistics in Estimation

The first approach is to target § directly in estimation, so that
¢ = h (8). This is of course only sensible when c is identified by
5. If ¢ is identified by the population value s of § and the implied
relationship ¢ = T (s,a) does not vary across the alternatives
a of interest (i.e., ¢ = I'(s) for all a € &), the plug-in
estimator & = / (3) = I' (5) may have high transparency for all
readers. Related ideas appear in the literature as a justification
for basing model estimation and testing on matching certain
statistics of interest. (See, e.g., Dridi, Guay, and Renault 2007;
DellaVigna 2018; Nakamura and Steinsson 2018.) Even when
I (s,a) depends on a, an estimator of the form ¢ = h(5) =
r (3 ao) may still be reasonably transparent if the form of the
relationship ¢ = T (s, ag) is made clear.

In practice, estimation based on targeting a vector of descrip-
tive statistics § is often implemented via some form of minimum
distance estimation that chooses parameters to match the ob-
served § to the value predicted under the model. Transparency
provides a potential justification for choosing such estimators
even when more efficient estimators, such as the MLE, are
available.

The literature contains numerous examples of estimators
that target descriptive statistics. Gourinchas and Parker (2002)
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estimated a lifecycle model of consumption and savings with a
precautionary motive. After estimating properties of the income
process in a first step, Gourinchas and Parker (2002) estimated
structural preference parameters in a second step by minimizing
the distance between the observed age profile of consumption
and the profile predicted by their economic model. De Nardi,
French, and Jones (2010) likewise estimated a model of con-
sumption and savings by retirees by targeting observed median
asset profiles for different groups of individuals. See also
Goettler and Gordon (2011), DellaVigna, List, and Malmendier
(2012), Nikolov and Whited (2014), and Autor et al. (2019).

These examples have in common that the estimator is (at
least asymptotically) a function of descriptive statistics that
a reader might find intuitively related to the parameters of
interest. Part of the reason for this choice of estimator may be
computational, for example, due to the difficulty of computing
the likelihood. However, in some cases the authors invoke
non-computational considerations in justifying their choice of
moments to match, some of which seem related to the consid-
erations we discuss here.?’

To formalize the value of targeting descriptive statistics,
we consider a variant of the instrumental variables example
introduced in Section 2.2.

Example. Suppose that the underlying data consist of # iid
draws {(Y:, Xi. Zi 1, . ..Ziﬂ])}?:l for Z; = (Zi1. ... Zi;) a vector
of J mutually orthogonal and mean-zero instruments proposed
by the researcher. For ¢ € R and a € ./ = R/, the data follow

Y; =XiC+Z;a+8[,

where we now treat the instruments Z; as random and allow the
error &; to be nonnormal. Let G denote the joint distribution of
(Z;, X, &;) and assume all readers believe that G € ¢ for some
class of distributions with Eg [Z;¢;] = 0 for all G € 4.

The instruments are valid under the researcher’s assumption
ap = 0, but readers suspect they may in fact be invalid. Suppose
that each instrument j has a nonzero first-stage coefficient,
EG[ZijXi] # 0 for all G € 4. Under distribution G, true
parameter value ¢, and assumptions a, the probability limit of
the instrumental variables estimator based on the jth instrument
alone, E‘j = ZZiJYi/ Zzi,in» is

2
Eg [ZiJ] aj
=c+ a=c—+ —,
EG [ZiJXi] V4

EGao [ZijY]
Eg [ZijXi]

for y; = Eg [ZijXi] /Ec [Zl%]] the first stage coefficient on the
Jjth instrument.

To illustrate the value of targeting descriptive statistics in
this example, let the descriptive statistics § consist of the first

20For example, De Nardi, French, and Jones (2010) wrote that “Because our
underlying motivations are to explain why elderly individuals retain so many
assets and to explain why individuals with high income save at a higher rate, we
match median assets by cohort, age, and permanent income” (p. 47). Nikolov
and Whited (2014) wrote that “The success of [the approach to estimation]
relies on model identification, which requires that we choose moments that
are sensitive to variations in the structural parameters ... We now describe
and rationalize the ... moments that we match” (p. 1899). Autor et al. (2019)
included certain moments “...to discipline the model to recover our estimates
of the causal effects of” a policy variable of interest (p. 2645).

7

m single-instrument coefficients § = (81, e, ém) form < J.
We suppose that readers have sharp priors on the bias in these
estimates, in the sense that reader r believes the first m elements
of the bias vector b = (a;/y1,...,ay/ys) equal aknown vector
b, with probability one, Pr, {(al/yl, e am/ym) = b,} =1.
Thus, all readers are certain about the bias from using the first m
instruments, while they may be uncertain about the remaining
instruments. This could be because the potential biases from the
first m instruments are especially intuitive, for instance, because
these instruments are highly credible and b, = 0, or because
the researcher has clarified the potential biases, for example,
through descriptive analysis and discussion of identification.

In this case, an estimator targeting the descriptive statistics
§ may be more transparent than the maximum-likelihood esti-
mator under the researcher’s assumption ap = 0. To provide
a concise illustration, suppose the sample size is large enough
that ¢ is approximately normal and neglect the approximation
error to obtain

C=t1wc+b+E E~NOQ), 3

for ¢ the vector of ones. In this asymptotic model n = (c, y, 2).
Suppose further that the researcher observes only D = (¢, Q),
that ¢ and (b, 2) are independent under 7, for all r € #, and
that 2 is commonly known.

We let &g = (L’SZ_IL)_l /Q71¢ denote the maximum-
likelihood estimator under the assumption ag = 0, and we let
¢s denote the estimator that efficiently minimizes the distance
between Sc and § = S¢ for S the selection matrix such that S¢
picks out the first m elements of ¢. The variance of ¢( given ¢
under 7, is

—1 2
var, (¢olc) = (t’Q_lt> + (t’Q‘lt) /Q var, () Q71

where the first term is the sampling variance of the MLE and
the second term reflects instrument invalidity. By contrast, the
variance of ¢g given c under 7, is simply the sampling variance
of ¢5. When reader r is very uncertain about instrument validity
(in the sense that the variance of the last J — m elements of b is
large), ¢s may be more transparent than ¢o.2! This is intuitive
in the case where b, = 0, so reader r believes that the first m
instruments are valid. Note, however, that it remains true even
when b, # 0. Hence, what is important for transparency in
this setting is not that the first m instruments are valid, but that
readers have precise beliefs about the bias these instruments
induce.

While we have motivated (3) as an asymptotic approxima-
tion to over-identified instrumental variables regression with
potentially invalid instruments, it is equivalent to some other
important problems. For instance, (3) can be interpreted as
a regression model for ¥ = ¢ with omitted variable b. As
discussed in Armstrong and Kolesar (2019), this model can also
be understood as an asymptotic approximation to GMM under
local misspecification.

Knowing that the estimator has the form ¢ = % (§) means
that readers know the estimator depends on the data only

2'For such a reader, if we hold var, (c) fixed and take var, (¢ylc) — oo by
taking var; (b) — oo, we have that var, (clﬁo) — var; (¢).
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through the statistics 5, but they may not know the nature
of the dependence. As noted above, there are often many
different functions 4 () that constitute valid estimators under
the model—in particular, whenever different subsets or trans-
formations of s are each sufficient to identify ¢. Some of these
functions £ (-) may be convincing to a large set of readers, in the
sense that " (s,a) ~ h(s) for many a € o, while others may
only be convincing to readers who accept ap. In such cases,
communicating the geometry of % () can help readers evaluate
the estimator and so improve transparency.

In practice, research articles typically provide a formal
definition of the estimator. Even a precise definition may not
make the geometry of / () obvious, however. In linear models,
for instance, recent articles characterized regression disconti-
nuity estimators (Gelman and Imbens 2019) and two-way fixed
effect estimators (e.g., Athey and Imbens 2018; Goodman-
Bacon 2019; Sun and Abraham 2020; de Chaisemartin and
D’Haultfoeuille 2020; Imai and Kim 2020) and in some cases
argued that these estimators use the data in ways that may be
unanticipated and undesired by many readers and researchers.

In nonlinear models, such characterizations may be even
more difficult to come by and therefore even less obvious ex
ante. One solution could be to fully describe /4 (-) by brute-
force enumeration, but this is often infeasible. For example,
Gourinchas and Parker (2002) summarized the age profile
of consumption with the mean adjusted log consumption at
each of the 40 ages from 26 through 55. As even a single
estimation step may be computationally demanding, computing
and visualizing Gourinchas and Parker’s (2002) estimator on a
40-dimensional domain seems daunting.

Andrews, Gentzkow, and Shapiro (2017) proposed to focus
on the local sensitivity of the estimator to the statistics targeted
in estimation. Sensitivity corresponds (in a sense made precise
in Andrews, Gentzkow, and Shapiro 2017) to the derivatives
of h(-) when h(-) is differentiable. It is possible to approx-
imate this derivative numerically, for example, by evaluating
the estimator at perturbations of the form § + €e; for € a
small number and e¢; the jth standard basis vector, and then
computing the numerical derivative (h (5 + eej) — h(3)) /e.
Repeated estimation may be computationally demanding, but
Andrews, Gentzkow, and Shapiro (2017) showed that in many
applications (including Gourinchas and Parker 2002) repeated
estimation is unnecessary if the reader is willing to focus on the
asymptotic value of the derivative.

Andrews, Gentzkow, and Shapiro (2017) plotted the local
sensitivity of the estimators of key structural parameters in
Gourinchas and Parker (2002) with respect to the statistics §
targeted in estimation. They argue that the local properties of
h () revealed by this exercise make qualitative sense in light of
the economic analysis and discussion in Gourinchas and Parker
(2002), and that knowledge of sensitivity could be useful to
a reader who wishes to learn from ¢ but is concerned about
misspecification of the assumptions ag.

Example (continued). Continue to suppose that the first m
elements of b are known under ., but now suppose that 2 may
not be commonly known. The estimator ¢g can be written as

—1
es= (s (s28) " s) 0s(s@s) = A
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for § = 8¢, where Ag is the sensitivity of ¢g to § as de-
fined by Andrews, Gentzkow, and Shapiro (2017). Reporting
(¢s, 05, As)—that is, taking ¢ = &s and 7 = (o5, Ag) for o
the standard error of ¢s—is weakly more transparent for all
readers r than reporting (Eg,as) alone. To see that it may be
strictly more transparent, suppose that reader r has a normal
prior on ¢, ¢ ~ N (0, w,z) The average posterior variance
for reader r based on the full data is then bounded below by

-2 2\7!
E,[var, (c|D,b)] = E, <w,. + o0, ) for o( the usual

standard error of ¢, while the average posterior variance
-1
based on observing (65, os, As) isE, [(a)r—Z + ()'S—2> i| . This

bounds the transparency of reporting (63, os, AS) from below.
By contrast, the transparency of (és,ag) alone may be small
when b, is large. Consider, for instance, priors which imply that
oy is fixed while Agb, is uniformly distributed on some interval.
The transparency of (Cg, o) goes to zero as var, (Agb,) — co.
Intuitively, even if the reader knows the bias b, of estimates
based on the first m instruments, to infer the bias of ¢g they
must also know how these m estimates are combined to form
¢s. Absent such knowledge, uncertainty about how the bias in
§ translates to bias in ¢g renders ¢g uninformative when b, is
large.

5.2. Show How Much the Estimator Depends on the
Descriptive Statistics

Basing estimation directly on § may not be feasible or
desirable. For example, it may be that even though § are
intuitive statistics closely related to c, their distribution is not
sufficient for identification. It may be that § identifies ¢ but that
identification using these statistics alone is weak. Or, it may
be that the share of readers who accept the researcher’s exact
parametric assumptions is large enough that the efficiency gain
for these readers from learning the MLE outweighs the loss of
transparency for those who are more skeptical.

In these cases, ¢ = h (fv) + vy, for vy not necessarily equal to
zero. Then, making clear to readers the magnitude of v, as well
as the form of % (-) can improve transparency. An example is
where at least some readers believe that ¢ = T (s, a), in which
case they may find ¢ especially informative when v, ~ 0 and
h()=~T(,a).

Characterizing the finite-sample relationship between ¢ and
s, either analytically or numerically, can be difficult. For exam-
ple, numerical exploration by repeatedly drawing data D from
one or more data-generating processes and then computing
the implied values of ¢ and § may be very computationally
demanding.

Andrews, Gentzkow, and Shapiro (2020) showed that, under
asymptotic conditions related to those considered in Andrews,
Gentzkow, and Shapiro (2017), many common estimators can
be represented in the form

¢ ~ constant + AS + v

for A an analogue of the local sensitivity defined in Andrews,
Gentzkow, and Shapiro (2017), and v asymptotically uncorre-
lated with S. Andrews, Gentzkow, and Shapiro (2020) proposed
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to measure the size of v by the local informativeness of s for ¢,
which is given by
Avar (A3)
© Avar(e)

_ Avar (v)
Avar (2)

for Avar (V) the asymptotic variance of a random variable V.
‘When local informativeness A = 1, Andrews, Gentzkow, and
Shapiro (2020) showed that (under the maintained conditions)
v = 0 and the setting collapses to that considered in Section 5.1.
When local informativeness A = 0, ¢ is asymptotically inde-
pendent of §, in which case a reader believing that ¢ = T (s, a)
may not find ¢ to be very informative about c.

Andrews, Gentzkow, and Shapiro (2020) showed that it
is often possible to approximate local sensitivity and local
informativeness without the need for additional simulation or
estimation of the structural model. Moreover, although both
local sensitivity and local informativeness can depend on
the data-generating process, Andrews, Gentzkow, and Shapiro
(2017, 2020) showed that the approximations they consider
hold under local violations of the researcher’s assumptions,
meaning that these objects can be interpreted even if the reader
does not have complete confidence in the researcher’s model.
Andrews, Gentzkow, and Shapiro (2020) also established con-
ditions under which a greater informativeness A corresponds
to a larger reduction in the worst-case bias of the estimator ¢
from accepting the model-implied relationship between ¢ and
the population value of the descriptive statistics .

Andrews, Gentzkow, and Shapiro (2020) applied their
framework to Hendren’s (2013) study of the market for long-
term care insurance. They took ¢ to be the maximum likeli-
hood estimator for the minimum pooled price ratio, a quantity
that determines the range of preferences for which insurance
markets cannot exist, and § to be statistics summarizing the
joint distribution of individuals’ subjective beliefs about the
likelihood of needing long-term care and their eventual need for
such care. Andrews, Gentzkow, and Shapiro (2020) estimated
that these descriptive statistics have an informativeness of 0.68
for the estimator ¢, implying that the descriptive statistics can
explain (in an R? sense) 68% of the variation in the estimator
under the joint asymptotic distribution of the estimator and de-
scriptive statistics, and that (under given conditions) accepting
the model-implied relationship between the minimum pooled
price ratio and the population value of the descriptive statistics
reduces the worst-case bias of the estimator by a factor of

/1 —0.68 ~ 0.43.

Example (continued). The asymptotic results of Andrews,
Gentzkow, and Shapiro (2020) hold exactly in the linear instru-
mental variables example that we consider in this section. To
illustrate the value of informativeness calculations, let us again
suppose that under 7, the first m elements of b are known to
equal b, and ¢ ~ N (0, w?) . Let us further suppose that reader r
thinks the degree of misspecification is bounded relative to sam-

pling uncertainty, in the sense that Pr, {\/ Qb < ,uz} =1

for some constant w. In this case, one can show that for ¢ again
the maximum likelihood estimator, the increase in reader r’s
average posterior variance from observing (Eo,oo, Ao) for o
the standard error of ¢g and Ay the sensitivity of ¢ to §, rather
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than the full data, is bounded above by

E, ﬁ agu” (by) (1 — A)
Wy + 0

for u (by) = \/ u2 — b, (SQS")~" b,.2* Thus, when reader r
is confident about the impact of misspecification on § and the
informativeness A of § for ¢ is high, observing ¢ is nearly as
good as observing the full data.

6. SENSITIVITY ANALYSIS

A key premise of the model in Section 2 is that dif-
ferent readers may accept different assumptions. Ideally the
researcher would report the estimator that is optimal for each
reader. When the set of assumptions entertained by the readers
is small enough, this ideal may be achievable. This situation is
one way to understand the sensitivity analysis that is common
in research articles, showing how the key conclusions of the
analysis change under a small set of assumptions different from
those on which most of the analysis is based. When the set
of assumptions entertained by the readers is rich, however,
such an approach has limits, and it is desirable to help each
reader assess how their own ideal estimator differs from the
one reported by the researcher. In cases where a key conclusion
of the researcher’s analysis is qualitative, it may be useful, in
addition, to report the properties of a data realization that would
have led to a different qualitative conclusion.

6.1. Show the Conclusion Under Specific Alternative
Assumptions

Suppose that under each set of assumptions a € .o/ there is
a natural estimator ¢, (e.g., maximum likelihood or efficient
GMM). If the researcher knows that all (or many) readers
entertain only a limited set of assumptions, in the sense that
each prior 7, puts mass on a single a € o7 and the number of
distinct elements |.<7| is small, then it is natural to report the
estimate ¢, under each of element of .o7.

For example, in their study of automobile demand Berry,
Levinsohn, and Pakes (1995, Table IX) reported how a key
conclusion—the markup associated with each of a set of vehicle
models—changes under six different alternative models, each
of which corresponds to a modification of the cost or utility
function specified in the baseline model. A reader who believes
in one of these alternative specifications g; is therefore able to
learn about ¢ from an estimator that is asymptotically valid
under a;. Tables reporting estimates of key parameters of
interest under alternative assumptions are a common feature of

22Reader r’s average posterior variance from observing D is bounded below
by that from observing both D and b. In the latter case, r’s posterior mean

2 ~ ~ —1
is ErlelD,b] = " (¢g = Ab), for A = (V@) /27! the sensi-
wrtog
tivity of ¢ to ¢&. When r observes only (&9, 00.Ag) they cannot construct
2
E;y [c|D, b], but can construct c* = 2:_’ 3 (éo - Aobr) , and the results of
wi+tog

Andrews, Gentzkow, and Shapiro (2020) showed that if V5’ Q- 1p < uz, then
~ 2
(Rb— Ngbr)™ < ogu® (br) (1= A).
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many applied research articles (see, e.g., Gourinchas and Parker
2002, Table V).23

It is useful to contrast such a sensitivity analysis with a
bounds analysis that reports the set of estimates {Ea rae€ o }
without specifying which estimate corresponds to which as-
sumption (see, e.g., Leamer 1981). In some cases the mapping
from assumptions to elements of the set of estimates may be
obvious, at least for extreme points (e.g., the upper and lower
bounds). In other cases, however, a bounds analysis can be
less transparent than a sensitivity analysis with respect to the
same set of assumptions. Similar considerations can apply to a
partial identification-robust analysis that ensures validity under
all a € <7 .2* At the same time, bounds and identification-robust
analyses often remain feasible with large sets of assumptions
(again, see, e.g., Leamer 1981).

6.2. Show How the Conclusion Depends on Assump-
tions

If the set of assumptions <7 entertained by the readers is
sufficiently rich, then reporting an estimator ¢, associated with
each assumption a € &/ is no longer feasible. A possible al-
ternative is to provide information about the (possibly random)
function u (@) = ¢4 — &4, that relates the estimator under the
researcher’s baseline assumption ag to the natural one under the
reader’s preferred assumption a. If all readers knew u (-), then
each reader could adjust the baseline estimate ¢4, to reflect the
reader’s own preferred assumption a.

The omitted variables bias formula (OVBF) is perhaps the
most famous tool for intuiting the properties of u (-). Given
beliefs a about the covariance properties of an omitted regres-
sor, the OVBF allows a reader to determine the bias in the
estimator of a given coefficient resulting from the exclusion
of that regressor, which might correspond to a researcher’s
baseline assumption ag. The OVBF thus avoids the need to
enumerate the bias implied by all possible beliefs about omitted
regressors. Conley, Hansen, and Rossi (2012) generalized the
OVBEF to an instrumental variables setting, showing how to
translate beliefs about violations of the exclusion restriction
to beliefs about bias in the IV estimator. Like the OVBE,
Conley, Hansen, and Rossi’s (2012) approach allows different
readers to reach different conclusions regarding the appropriate
adjustments to the reported estimator.

23We focus on cases where ¢ is point-identified under each a € 7. When point
identification may fail, the researcher can report an estimate of the identified set
under each a € /. If the assumptions in ./ can be ranked in increasing order of
strength, this approach allows the reader to see how conclusions sharpen with
each incremental strengthening of the assumptions. See the discussion in, for
example, Manski (2003, 2007) and Tamer (2010).

%To give an extreme example, consider the instrumental variables model
discussed in Section 2.2. The maximum likelihood estimator for ¢ under
assumption a in this setting is ¢ — a/y, for ¢ again the usual instrumental
variables estimator, so the set of maximum likelihood estimators under a € &/
is equal to R almost surely, and thus has transparency equal to zero for readers
r who find the full data informative. Correspondingly, the identified set for ¢
under 7 is equal to R, and therefore any confidence set with coverage 1 — «
for c under all @ € o/ and n € H must have infinite length with probability at
least 1 — «. See Dufour (1997).
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Andrews, Gentzkow, and Shapiro (2017) studied the
problem of translating these ideas to nonlinear structural
models, where the OVBF does not apply directly. In the
wide class of models that can be estimated via minimum
distance, the identifying assumptions can be represented as
restrictions on the population value a of a moment condition
under the true value of the structural parameters. For example,
in nonlinear instrumental variables estimators such as that in
Berry, Levinsohn, and Pakes’s (1995) study of automobile
demand, the restriction is that a vector of observed instruments
is orthogonal in population to a vector of unobserved structural
errors. In indirect inference and other moment-matching type
estimators, such as that in Gourinchas and Parker (2002), the
restriction is that the population values of some statistics must
match those predicted by the model.

In such settings, specific violations of the identify-
ing assumptions can be represented as specific alternative
restrictions—for example, that the covariance between the
instruments and the structural error takes some specific nonzero
value in population, or that the model systematically mispre-
dicts the population value of some statistics by some specific
amount. For linear models, the OVBF and its analogues tell
the reader how to adjust the estimator to accommodate such
perturbations to the researcher’s identifying assumptions. For
nonlinear models, we are not aware of a similar formula,
and exhaustively checking the implications of each possible
perturbation can be costly or impossible.

Andrews, Gentzkow, and Shapiro (2017) showed that if
the perturbations are local—that is, small in an appropriate
asymptotic sense—then the implied asymptotic bias of the
estimator is given by A (a — ap), where the coefficients A are
the local sensitivity discussed in Section 5.1, now replacing
the descriptive statistics with the vector of estimation moments
evaluated at the true parameter value. It is thus practical to
approximate and report the coefficients of the asymptotic bias
formula in many applications. In this sense, local sensitivity
provides an analogue of the OVBF for general minimum
distance estimators under small violations of identifying as-
sumptions.

Andrews, Gentzkow, and Shapiro (2017) reported the local
sensitivity of the estimated average vehicle markup to vio-
lations of the identifying assumptions in Berry, Levinsohn,
and Pakes (1995). This analysis shows that the estimator is
especially sensitive to violations of the assumption that unob-
served shocks to the utility from or cost of producing a given
vehicle model are orthogonal to the number of other models
offered by the same or rival firms. Berry, Levinsohn, and Pakes
(1995, p. 854) discussed the economic interpretation of these
and other identifying assumptions. Andrews, Gentzkow, and
Shapiro (2017) showed how a reader could use information on
sensitivity to approximate the effect of different economically
interesting violations of the identifying assumptions. Impor-
tantly, this approach does not require the researcher to know the
alternative assumptions « of interest in advance, as readers can
use information about sensitivity to calculate the implications
of different assumptions a for themselves. Andrews, Gentzkow,
and Shapiro (2017) reported a similar analysis of the sensitivity
of the estimated preference parameters in Gourinchas and
Parker (2002) to violations of the identifying assumptions.



Andrews, Gentzkow, and Shapiro: Transparency in Structural Research

6.3. Show How to Reverse the Conclusion

Some of the questions answered by structural analysis are
qualitative—for example, will a given policy increase or de-
crease consumer surplus? Will a merger increase or decrease
product quality? Empirical answers to such questions depend,
by definition, on the realization of the data. To characterize this
dependence, it can be helpful for researchers to discuss data
realizations that would have led to the opposite conclusion. In
some cases the properties of the data required for such a reversal
are obvious. For example, if the effect of some policy on an
outcome is estimated in a multivariate linear regression, then
to reverse the researcher’s conclusion about whether the policy
increases the outcome requires changing the sign of the residual
covariance between the policy and the outcome.

For estimators in nonlinear models, by contrast, it is some-
times not obvious what realizations of the data would lead to
conclusions different from the one reached by the researcher’s
analysis, or even whether such realizations exist. We think that
exhibiting such realizations can improve transparency, both by
showing that the researcher’s answer to the qualitative question
is indeed an empirical one, and (in the spirit of Section 5.1)
showing what sort of data realization is associated with a given
conclusion.

Such an exercise might be called a reverse sensitivity analy-
sis: rather than changing the inputs (e.g., data or assumptions)
and investigating the effects on the outputs (conclusions), as
in a traditional sensitivity analysis, here we seek to change the
outputs and reverse engineer sufficient changes to the inputs. In
this section, we focus on describing the required changes in the
data or parameters. A complementary approach characterizes
the required change in assumptions (see, e.g., Horowitz and
Manski 1995; Kline and Santos 2013; Masten and Poirier
2020).

Goettler and Gordon (2011) studied whether Intel is more
innovative in the production of microprocessors as a result of
competition from AMD. To answer this question they estimated
a dynamic model of the microprocessor industry and simulate
behavior under alternative market structures. Goettler and Gor-
don (2011) concluded that the presence of AMD reduces the
rate at which Intel innovates. They observed that their model is
able to generate the opposite conclusion and exhibit parameter
values for which the presence of the competitor increases the
rate of innovation.

Likewise, Cuésta, Noton, and Vatter (2019) studied whether
vertical integration between hospitals and insurers raises total
surplus in the health care system. They found that it does.
The article shows that changing the degree of consumer price
sensitivity can reverse this qualitative conclusion.

Example. Suppose for simplicity that we are interested in
a binary conclusion (e.g., that ¢ is positive). Following Abadie
(2020), consider how much reader r updates their beliefs about
¢ based on learning that ¢ > 0. As noted in Abadie (2020), the
law of total probability implies that for any set of values € for
[

Pt {€} — Pr, {€¢ > 0}

Pr, {E < 0} R
= b (e 0] |Pr, (¢} — Pr, {€)c < 0}] <
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Hence, if reader r thinks it very likely that the model will
generate a positive estimate, Pr, {¢ > 0} ~ 1, they barely
update their beliefs when told that ¢ > 0. By contrast, if a
researcher can provide evidence that plausible realizations of
the data would have led to a different conclusion, learning that
¢ > 0 becomes much more informative. To formalize this in
our model, suppose the report is (1 {¢ > 0},7(X,)), where
Pr,{¢ > 0l7} <« Pr.{¢ > 0}. For example, 7(X,) might
record a set of values % for Y that would have led to negative
estimates. Since we still have

|Pr, {€]7} — Pr, {€)¢ > 0,1}

_ Pr, {6 < OI?}
 Pr,{¢ > 0]t}

b}

P, {€i} — Pr. {€¢ < 0,7}

the reader may now update substantially after learning that
¢>0.

7. CONCLUSION

Estimators of nonlinear models with multiple interacting
agents or sectors can be complicated functions of the data
and therefore difficult for readers to understand. Yet such
models form an important part of the economist’s toolkit for
many real-world problems. Fortunately, economists working
with such models have developed many practices that aid the
transparency of their research. Here, we survey those practices
and suggest areas for further improvement. Many of these
improvements can be adopted at little or no computational cost
to the researcher.
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