


SIGN IN/REGISTER

SIMULATION STORIES FOR ACOUSTICS

Acoustics engineers are using simulation for NVH testing, microphone and transducer design, and more.

The Journal of the Acoustical Society of America

HOME	BROWSE	MORE ▼						
Home > The Journal of the Acoustical Society of America > Volume 149, Issue 4 > 10.1121/10.0004737								
Check for updates		NEXT >						
Full								
Dublished Online, 02 June 2021								

Integrating ultrasound directed selfassembly and additive manufacturing to fabricate engineered materials

The Journal of the Acoustical Society of America **149**, A125 (2021); https://doi.org/10.1121/10.0004737

Bart Raeymaekers

View Affiliations

ılı

Meeting abstract. No PDF available.

ABSTRACT

Engineered materials comprising specifically designed patterns of particles embedded in a matrix material can display exotic physical properties when interacting with an external field, such as metamaterials (electromagnetic wave field) and structural materials (force field), to only name a few. Altering the pattern of particles that constitutes the microstructure of the engineered material enables tuning its properties. We describe a fabrication process to implement macroscale engineered materials layerby-layer using additive manufacturing, where in each layer we organize a user-specified pattern of particles using ultrasound directed self-assembly to tailor the microstructure of the material. In contrast with previous demonstrations of fabricating engineered materials that are limited to laboratory-scale and/or 2D implementations, this process enables fabricating macroscale specimens with complex 3D geometry required for engineering applications. Hence, this platform technology has significant implications for fabricating engineered materials relevant to a wide range of applications including manufacturing of composite materials, engineered materials for acoustic and electromagnetic cloaking and subwavelength imaging, and 3D printing structures with embedded electrical wiring, among others.

© 2021 Acoustical Society of America.

\Box		C		1.1	r		es	-
\Box	ᆫ	J	\cup	ч		◡	C:	Э.

AUTHOR

LIBRARIAN

ADVERTISER

General Information

ABOUT

CONTACT

HELP

PRIVACY POLICY

TERMS OF USE

FOLLOW AIP PUBLISHING:

Website © 2021 AIP Publishing LLC. Article copyright remains as specified within the article.

Scitation

