CONWAY’S WORK ON ITERATION

JEFFREY C. LAGARIAS

ABSTRACT. The paper briefly describes some of John H. Conway’s early work
related to iteration, in set theory, logic and theory of computation. Topics include
his PhD thesis, his book on Regular Algebras and Finite Machines, and his work
generalizing the Collatz problem.

In memory of John Horton Conway (1937-2020).

I learned of John H. Conway’s work on iteration problems generalizing the Col-
latz problem in the late 1970’s. I first met him while working at the Mathematics
Research Center at AT&T Bell Laboratories in the 1980’s. John was coming to
Bell Labs once a week to work with Neil J. A. Sloane on their book, Sphere Pack-
ings, Lattices and Groups. At one lunch gathering he explained a group-theoretic
restriction on solvability of a particular polyomino tiling problem. This led to joint
work ([18]).

At the time I met Conway, he was world-famous. He had constructed new finite
simple groups, he had created a theory of (surreal) numbers and games; he had
invented new polynomials in knot theory. His personality was outsized, yet he was
approachable. I was in awe of him.

John liked to start with simple rules which built up to complicated things. Where
did they lead? Sometimes the rules led to complete clear emergent patterns, some-
times to unpredictability and computationally undecidable problems. John liked
mathematical objects that looked the same everywhere, having internal structure
yet also having large (transitive) symmetry groups. He liked finding new invari-
ants that tell things apart, providing a classification. John liked numbers, and pat-
terns, and experimental computations. He enumerated many knots and links via
his theory of tangles, labeling knots with numbers ([9]). With Simon P. Norton,
he formulated Monstrous Moonshine, tabulating unexpected patterns of numbers
connecting two different fields, the Monster simple group and modular functions,
including the j-function ([19]). These patterns were pursued by his student Richard
Borcherds, who proved them many years later.

John liked finding a good choice of names, making puns with apt terminology.
He replaced FORTRAN with FRACTRAN. To compute (surreal) numbers, play
HACKENBUSH,; to play the combinatorial game Nim, use nimbers. He posed the
(as yet unsolved) thrackle problem.

This article visits some of John’s early work related to iteration. It covers his
1964 PhD thesis on Homogeneous Ordered Sets, his work in the late 1960’s on
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Regular Algebras, then his 1972 paper motivated by the Collatz problem.

Conway’s PhD Thesis

John Conway’s thesis supervisor at Cambridge was Harold M. Davenport, a num-
ber theorist. Davenport initially suggested that he investigate Waring’s problem
for fifth powers. Conway avoided working on the topic but eventually delivered a
solution to Davenport. According to [47, pp.41-42] Davenport felt it would make
a weak thesis. In fact, Davenport had been informed that Jing-Run Chen, a student
of Loo-Keng Hua, had just solved this problem, establishing the optimal bound
g(5) = 37 (7).

Conway’s response was to write a thesis on a completely different topic, in set
theory. It was titled “Homogeneous Ordered Sets”, and with it he completed the
PhD in 1964.

The thesis extends the work of Cantor and Hausdorff on totally ordered sets
(also called linearly ordered sets); Conway terms them “ordered sets". Conway
started from several fundamental papers of Hausdorff on ordered sets, written in
the period 1904-1908, much of it included in Hausdorff’s 1914 monograph [29];
he also cites the 1917 book of Huntington [32]. Hausdorff showed that the set of
order types of countable linearly ordered sets have cardinality the power of the con-
tinuum; in contrast, the countable well-ordered sets have cardinality N;. Hausdorff
showed (assuming the axiom of choice and the generalized continuum hypothesis)
the existence of universal linearly ordered sets for each cardinality N, these being
totally ordered sets containing an order-embedded copy of every linearly ordered
set of cardinality at most R, (see [30], [37, Sect. 3]).

Conway’s thesis contains a large number of results, requiring extensive termi-
nology; it assumes the axiom of choice. Here we indicate only some of his simplest
results.

A totally ordered set H of any cardinality is homogeneous if given two elements
x,vy in H there is an automorphism (i.e. an order-preserving bijection) ¢ : H — H
sending 1)(x) = y. It is 2-homogeneous' if given any 2, < x5 and y; < y» there
is such an automorphism ¢ (z;) = y; for i = 1,2. Totally ordered sets have
a complicated structure, depending on the behavior of their “sections" which are
partitions H = (L|R), where L < R, meaning if / € L,r € R, then { < r, and
LUR=H,LNR =1(.) A section may have either no endpoints in H (a “gap")
, one endpoint belonging to H, either a left endpoint of R or a right endpoint of L
(both are “cuts"), or both a right endpoint L and a left endpoint of R (a “jump").

The Denumerable Homogeneous Sets

In Section 6 of his thesis, Conway classifies countable homogeneous totally or-
dered sets. The only one that is 2-homogenous is the (order type of the) rationals
(Q, <) with its usual order as real numbers (a fact known to Hausdorff). There are
uncountably many different order types of countable homogeneous totally ordered

lConway’s terminology conflicts with current terminology in model theory, where these concepts
would be called 1-o-transitive and 2-o-transitive; the o refers to “order".
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sets H, labeled by an arbitrary countable ordinal (hence there are N; such order
types).

The Ruler Sets R,

In Section 8, Conway defines by transfinite induction a set of “rulers" R, for
all ordinals c. The “ruler"" construction adds points analogous to Dedekind cuts
in the sense that each R, is a totally ordered set, and at the next stage 2,1 it
adds all of the sections < L|R > of R,, while for a limit ordinal 3 one sets
R = U a<B R,. The thesis has a picture of R4 (for the finite ordinal o = 4)

which contains 15 = 2% — 1 elements, labeled 434243414342434, where the num-
bers indicate the stage at which the new elements are added; one may picture them
as marks on a ruler of height 2% where n is the label. Conway [8, Sect. 8, Theorem
2] shows that if one stops?® at ordinals v = w? (any ordinal power of w, the first
infinite ordinal) then 12, is 2-homogeneous. He also shows that for all ordinals «
the set R, is “universal” in the sense of containing embedded copies of all totally
ordered order types a of cardinality strictly smaller than that of a.. ([8, Sect. 8,
Theorem 5]). Furthermore for such a it is a-homogeneous in the sense that its or-
der automorphism group acts transitively on all subsets having order type a. (The
conclusion is a weaker variant of the “universal" property of Hausdorff, but adding
the homogeneity property. )

Intervals in Homogeneous Sets

In Section 10, Conway obtains results on intervals [z1, 23] of homogeneous or-
dered sets. He shows there is an induced total order on order types of intervals in
such a set. An order type of one interval [ is said to be smaller than that of another
interval J if there is an automorphism that moves a copy of I inside a copy of .J.
A version of the Schroder-Bernstein theorem for ordinals ([8, Sect. 2, Theorems 2
and 3]) implies that if J can also be moved inside a copy of I, then [ and J must
have the same order type. This ordering (on order types) is a total order because
there is always an automorphism to move [ so that its left endpoint coincides with
the left endpoint of J, and set inclusion then determines which is smaller. He de-
fines an addition operation on the order types of two intervals / and J by moving J
by an automorphism to an interval o (.J) so that its left endpoint coincides with the
right endpoint of 7, and defining 7 4 J to be the order type of the interval I Uo (J);
one sees the order type is well-defined. He proves that this addition operation on
order-types of intervals is commutative and associative. By lining up copies of an
intervals in a row by using automorphisms moving one copy of an interval so its
left endpoint coincides with the right endpoint of another copy of the interval, one
obtains an order type I : n for the sum of n copies of I. Conway shows using
this device one can attach a well-defined ratio of “size" I/.J (of order types) to be
a nonnegative real number or +oco. Here I/J = 0 means [ is infinitesimal com-
pared to J, and I/J = 400 means it is infinitely large, and otherwise the ratio is
a well-defined positive real number, obtained by comparing the sizes of I : m and

2Theorem 2’s hypothesis is: ordinals v such that o + v = v for all &« < ~.
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J : n for various integers m, n > 1. Conway writes: “The appearance of real num-
bers ‘from nowhere’ is rather startling, but it is not as impressive as it looks at first
sight, as in most cases the value of I/.J is 0 or 1 or co; a rather poor selection of
real numbers." ([8, p. 62]). For (Q, <) the ratios are all 1, since by 2-homogeneity
all intervals are order-isomorphic.

Conway did not publish his thesis. The work [12] may have been stimulated by
it. Work on his thesis helped prepare his mind towards his later discovery of surreal
numbers, originally called “numbers” in [13] but renamed “surreal numbers" by
Donald Knuth [36]. The class of all surreal numbers No was constructed by an it-
erative process proceeding by transfinite induction. The class No is totally ordered
and is homogeneous in a very strong sense: it is (up to isomorphism) the unique
(absolutely) homogeneous universal ordered field ([22, Theorem 1]). Here homo-
geneity means that every isomorphism between subfields of No whose universes
are sets can be extended to an automorphism of No, and universality means every
ordered field whose universe is a class in NBG (von Neumann-Bernays-Godel set
theory + AC) can be embedded in No. Other characterizations of No appear in
[20], [21].

Conway’s work on Regular Algebras and Finite Machines

Soon after the PhD, in 1966, Conway taught a course on topics in algebra and finite
automata. He wrote a book, “Regular Algebra and Finite Machines", published in
1971, growing out of this course. In the book preface he stated that this work
stemmed from his interest since 1960 in fundamental work of S. C. Kleene ([35])
on regular languages, and of E. H. Moore ([45]) in recognizing finite automata
from their outputs, both of their articles appearing in the 1956 book “Studies in
Automata", edited by Claude Shannon and John McCarthy.

In this book Conway reworks earlier results based on his own understanding,
making improvements, and introducing his own terminology and notation. Practi-
cally every chapter of the book contains new insights, results or problems. Chap-
ters 7 to 11 of the book showcase the work of his first PhD student Donald J.
Pilling, presented from Conway’s viewpoint; for more on this, see [42]. We focus
here on one theme of the book, concerning equational axiom schemes for regular
languages, a topic addressed in Chapters 3, 4, 12 and 13. References for formal
languages and finite automata include Minsky [44], Eilenberg [23], and Hopcroft
and Ullman [31].

Given a finite alphabet A = {a;.,aq, ...,a, } let A* denote the set of all finite
words w = a;, a;, - - - a;, With each letter ai; € A, including the empty word €. A
language L is any subset of A*, with 0 denoting the empty language and 1 denoting
the language containing the empty word, so 1 = {e}. A regular language L is a
subset L C A* accepted by a finite Moore automaton (a kind of non-deterministic
finite automaton). (These are often called rational languages, see [3], [4]). Let
Reg(.A) denote the set of all regular languages in .A*. It is known that Reg(.A)
is closed under set union, set intersection, and complement in A*, so it forms a
Boolean algebra of sets. It is closed under the commutative operation, + denoting
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set union and the noncommutative operation - denoting concatenation of words,
with
A-B:={w;-wg: w1 €A and wy € B}.

Additionally Reg(.A) is closed under the Kleene star operation *, a unary opera-
tion defined by

A =1+ A+ A-A+A-A-A+ -

viewed as an infinite set union of languages. The Kleene *-operation encodes the
result of an iteration process applied to the words of A, concatenating words of A
in any order and in any amount. The *-operation can also be characterized as a
least fixed point operator on languages as a solution to a linear equation: For any
E, F, G the set E*G is the smallest F' (in the sense of set inclusion) that satisfies
the equation ' = G + FE - F ([10, p. 27]).

Now consider a universal algebraic structure X = (0, 1, +, -, *), with two binary
operations +, - and a unary operation *, with additional constants for each letter
in the alphabet A. A regular expression E is any well-formed formula in this
algebra, for example E := a(1 + (a*b)*), with letters a, b € A. (Such expressions
are also termed rational expressions.) Each such expression produces a language
L = L(FE) C A* obtained by interpreting the operations +, -, * inside the set .A*.
Kleene’s theorem says that the set of all languages in .A* produced by all regular
expressions coincides with the set Reg(.A) of all regular languages.

An important feature of Kleene’s theorem is that different regular expressions
can yield the same regular language. In Conway’s algebraic framework it raises the
problem of determining a set of equational axioms on the abstract algebra sufficient
to imply exactly the equalities of regular expressions that specify the same regular
language; here we call any such equation a regular identity. Conway introduced
a set of “classical axioms" which are regular identities. The (equational) axioms
(C1) — (C10) for the two operations + and - make the structure X a semiring,
with 0 being the additive unit and 1 the multiplicative unit. Under addition, this
structure is a commutative monoid (semigroup with identity) that need not be a
group.

Further equational axioms address properties of the Kleene x-operation with
respect to the other two operations, thus specifying properties of iteration. Conway
introduced the following three axioms for the *-operation:

(C11) (A+B)" = (A*B)*A* (sumstar)
(C12) (AB)* =1+ A(BA)"B (productstar)
(C13) (A")* = A* (starstar)

Conway called any structure satisfying the finite set of axioms (C1) — (C'13) an
A-algebra. The idempotency of addition A + A = A is deducible from axioms
(C1) — (C13), showing that every A-algebra is a Boolean semiring.

Conway deduced consequences of these axioms. He showed that square matri-
ces of fixed size having entries in an A-algebra, with their usual + and - operations,
could be endowed with *-operations that made it into an A-algebra.
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Redko [46] proved in 1964 that infinitely many equational axioms are needed
to generate all regular identities. Therefore the finite set of axioms (C'1) — (C'13)
cannot characterize all regular identities. Conway included a further infinite axiom
schema (C'14) as part of his “classical axioms", which is:

(Cl4.n) A* = A A" (powerstar)

for n > 2, with A™ = (A™")* and A<" = 14+ A+ A% + --- + A", where
A? = A - A, etc. He improved on Redko’s result by showing that any complete
equational axiom system necessarily must contain infinitely many equational ax-
ioms involving two or more variables ([10, p. 118]). It follows that the “classical
axioms" (C'1) — (C'14) cannot be a complete system for regular languages.

In addition, Conway also constructed three further different infinite systems of
equational identities satisfied by regular expressions. At the end of Chapter 13
he conjectured that adding each of these systems as axiom systems separately to
(C1) — (C13) would result in a complete set of axioms for regular equational
identities. One of his first two sets of equational identities quantifies over finite
monoids, the second quantifies over all finite simple groups. Conway’s third con-
jecture ([10, p. 118] and [38, p.210]) asserts that (C'1) — (C'14) together with the
infinite family of two-letter identities (R(n))>2, is complete for equations satisfied
by regular languages, where

n—2
(R(n)) (A+B)* = [(A+B)(B+(AB*)"2A)|* (1 +(A+ B) (Z(AB*Y)) .
i=0
Conway’s book influenced later developments in theoretical computer science.
These include:

(1) Conway’s axiomatization of a general class of semirings, assuming some
subset of axioms (C'1) — (C14), proved useful in modeling other kinds
of iteration properties in computer science. Bloom and Esik developed in
many papers a theory of iteration algebras, presented in book form in [5].
They introduced a notion of Conway semiring, which includes as axioms
(C1) — (C10) together with certain Conway identities for the x-operator,
including (C11), (C12).

(2) D. Krob [38] proved the first two of Conway’s conjectures on completeness
of equational axioms for regular languages in 1991. Krob’s results were
further generalized by Esik [24], [25]. (Conway’s third conjecture seems
not to be resolved.)

Conway’s work related to the Collatz problem
The Collatz problem concerns the iteration of the Collatz function

{’2‘ ifn = 0 (mod 2)

C(n) =
() 3n+1 ifn=1(mod?2)

for positive integers n € NT. Collatz conjectured that some iterate C’(k)(n) =1,
where k& depends on n.
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Conway reportedly heard of the Collatz problem as an undergraduate at Cam-
bridge University (B.A. 1959). Richard K. Guy told me his son Michael Guy
mentioned the Collatz problem to him in the early 1960’s when Michael was a stu-
dent at Cambridge University with Conway, cf. [41], pp. 293-294. For history and
work on the Collatz problem, which remains unsolved, see the survey paper [39]
and papers in the volume [41], including [6] and [40].

The main result of the 1972 Conway paper ([11]) states:

Theorem. If f(n) is any computable function, there is a function g such that:
@) @ is periodic (with rational values)

) 27 = ¢k)(2n), where k > 1 is the minimal positive value subject to
g®)(2") a power of 2.

The maps g(n) = a;n are linear maps on each congruence class 7 (mod m) where
m is the minimal period given in (1). The iteration n — g¢(n) must an integer n
to an integer g(n) in order to continue iterating the function g. In consequence the

rational number @ must have its denominator dividing ged(n, m), in order for
g(n) to be an integer.

The interesting behavior of the iteration appears on restricting the input to posi-
tive integers that are powers of primes dividing m, i.e. n = Hp|m p® where each
ep > 0. Now each exponent e, serves as an infinite“register", and the computation
is really done on the vector of exponents of the set of primes dividing m.

In Conway’s theorem, the function f(-) is undefined at values n where there is
no k > 1 with an iterate ¢g(¥)(n) that is a power of 2. Here “computable function"
means “partial recursive function." In this regard, Conway states the following
corollary.

g(n)
n
and given a number n, determines whether or not there is k with g*)(n) = 1. The
word “computable” will mean “computable by a Minsky program". This is equiv-

alent to (partial) recursive.

Corollary. There is no algorithm, which, given a function g with periodic,

Conway’s paper has no references. It may be helpful to note that a “Minsky
program" is one designed for the “counter machines" described in Minsky [44,
Section 11.1]. Minsky had previously introduced this machine model in 1961 to
show the unsolvability of Post’s ‘tag’ problem ([43]). Since Conway’s paper is less
than 3 pages, much is left to the reader.

Conway concludes the paper saying: “It is amusing to note that the Theorem
contains the Kleene Normal Form Theorem for recursive functions, since the func-
tions g(n), 2" etc. are obviously primitive recursive." He may have had in mind
the one-variable case of the Kleene Normal Form Theorem ([34, Sec. 63, The-
orem XIX]). Conway’s paper may be summarized thus: Iteration of very simple
arithmetic functions can encode universal computation.
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Conway returned to this method of computation by iteration in 1987, describing
itin [15]. He found a more compact way to describe the computation, describing
a subclass of functions g(n) specified by a finite ordered set of positive rational
fractions {a; : 1 < i < k}. For each input integer n one successively multiplies
the integer by a; and accepts the first ¢ such that a;n is an integer, giving the
next value of the iteration. If none of the a;n are integers, then the computation
stops, and the output is undefined. This use of fractions supplied the “program" for
computing the function g(n), leading to his name FRACTRAN. He gives a proof
that this subclass of functions is sufficient for universal computation.

Richard Guy [26] gave an example of a FRACTRAN program for computing
the primes py in successive order; given n = 2Pk as input, the first power of 2
it would reach would be 2P++1. This program was later titled: “Fourteen fruitful
fractions" in their “Book of Numbers" ([17, pp. 147-148]).

The class of maps g(n) does not include the Collatz function, since x — 3x + 1
is an affine map rather than a linear map. The affine map feature has important
consequences for the dynamics of iterating the Collatz map. By combining two
steps of the Collatz iteration for odd n, the Collatz problem can be rephrased in
terms of the 3n + 1 map,

T(n):{n ifn = 0 (mod 2)

2
Sl ifp =1 (mod 2).

The 3z + 1 map T extends to a (piecewise affine) map on the 2-adic integers Zo,
and the extended map 1" : Zo — Zo is a measure-preserving map with respect to
the 2-adic measure. This map was shown in [2] to be topologically and metrically
conjugate to the one-sided shift map

S(n):{g ifn = 0 (mod 2)

2L ifn =1 (mod 2),

which implies that T'(n) is ergodic and strongly mixing. The dynamics of S(-) on
the nonnegative integers is completely understood; it has n = 0 as an absorbing
fixed point for all starting values n. The difficulty of the Collatz conjecture is
encoded in properties of the 2-adic automorphism doing the conjugation. It maps
all non-zero integers to non-integers, conjecturally to rational numbers, cf. [2].

In particular the ergodic property permits "probabilistic" predictions about the
behavior of almost all orbits. For the map 7' it predicts “generic" orbits on Zg will
have half their iterates odd and half their iterates even, with all finite patterns of
even and odd iterates uniformly distributed in the successive iterates. However the
positive integers N* form a (dense) set of measure zero inside Zs, and ergodic
theory gives no information about its behavior on the iteration on measure zero
subsets of Zs.

In his 2013 paper, “On unsettleable questions" Conway ([16]) expressed the
viewpoint that problems like the Collatz problem might be undecidable, and yet
not be provably undecidable. He says: “For some of my examples, it might even
be that the assertion that they are not provable is not itself provable, and so on."
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([16, p. 192]). His examples include the Collatz problem and also a permutation
of N* which he terms the “amusical permutation":

3n ifn =0 (mod 2)
h(n) = ¢ 2% ifp =1 (mod 4)

Sn=lifn = 3 (mod 4).

The map defines a permutation of Z which leaves N* invariant, whose inverse
permutation is

n - ifp =0(mod 3)
g(n) = ¢ 2L ifn =1 (mod 3)

bl ifp = 2 (mod 3).

The question is: “Is the orbit of n = 8 infinite?" If it is infinite, then it is two-sided
infinite, so the question for g(-) or h(-) is the same. The numerical evidence shows
steady growth (on average) of the orbit in both directions on a logarithmic scale, up
to 10*%°, given in Figure 1 of the paper. There are (separate) probabilistic models
of the type above for the expected exponential growth rate of an infinite orbit,
for the forward orbit (iterating h(n)) and the backwards orbit (iterating g(n)). The

expected growth rate per step of an infinite forward orbit of h(n) is \/g ~ 1.06066,

while the expected growth rate per step of an infinite backwards orbit is 4/ % =

1.08866. This difference in exponential growth rates depending on the direction of
iteration is the “amusical” property motivating Conway’s name (which is also a pun
on “amusing"). Experimental data for n = 8 agrees with both these predictions.

The “amusical permutation" h(n) has a prehistory. In 1963 Murray Klamkin
posed study of the iteration properties of h(n) as an (unsolved) SIAM Review
problem ([33]). Klamkin raised the question of whether the orbit of n = 8 is
infinite, and whether the four known finite cycles on N* (with starting points n =
1,2, 4, 44) were the complete list of finite cycles on NT. Later comments on it were
supplied by Daniel Shanks [48] and A. O. L. Atkin [1]. The permutation g(n) was
formulated by Collatz in 1932 in his personal notebooks, and study of its iteration
was termed the “original Collatz problem" in [39, p. 3]).

Concerning the ergodic-theoretic or probabilistic arguments above, which apply
to the 3z + 1 function, Conway [16, p. 194] suggests the new terminology probvi-
ous, an abbreviation for “probabilistically obvious," for the behavior of such orbits.
However he allows the problem to simultaneously be undecidable. So “probvious"
does not imply “obvious". We arrive at the dictum of Conway’s long-time coauthor
Richard K. Guy: “Don’t try to solve these problems" ([27]).

In a conversation, Conway raised the question (or expressed the opinion) whether
there might exist a piecewise affine map U (n) in the spirit of 7'(n) which extends
to a map U (-) which is provably measure-preserving and ergodic in a similar sense
(say on the m-adic integers Z,, for some integer m > 2) for which analyzing the
long-time features of the iteration restricted to the positive integers N* is provably
undecidable. Candidate questions about long-time features might be: ‘ Is there any
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periodic orbit?" or “Is there an infinite orbit?"

Concluding Remarks

Conway worked on iteration of many other integer sequences, including his famous
“Look and say" sequence ([14]). The simple “look and say" rule, which encodes
a pun, seems to have no a priori reason for interesting structure to emerge. Nev-
ertheless Conway showed it leads to a quite complicated but exactly analyzable
recursion. In later years he explored many other sequences, often leaving further
analysis to others ([28]).

This article reviewed early work of Conway related to iteration and computation.
Conway stated key ideas clearly and simply and formulated precise questions and
conjectures, leading to further work. He formulated new notation, and was terse,
making demands on the reader. He also gave explcit algorithms, computations and
examples. Conway’s early work contains clues how he came to discover entirely
new worlds of mathematics.
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