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Skip-Sliding Window Codes

Ting-Yi Wu

Abstract— Constrained coding is used widely in digital com-
munication and storage systems. In this article, we study a
generalized sliding window constraint called the skip-sliding
window. A skip-sliding window (SSW) code is defined in terms
of the length L of a sliding window, skip length J, and cost
constraint F in each sliding window. Each valid codeword of
length L + kJ is determined by k + 1 windows of length L
where window ¢ starts at (¢J 4 1)th symbol for all non-negative
integers ¢ such that ¢ < k; and the cost constraint £ in each
window must be satisfied. SSW coding constraints naturally arise
in applications such as simultaneous energy and information
transfer, and SSW codes are also potential candidates for visible
light communications. In this work, two methods are given to
enumerate the size of SSW codes and further refinements are
made to reduce the enumeration complexity. Using the proposed
enumeration methods, the noiseless capacity of binary SSW codes
is determined and some useful observations are made, such as
the fact that SSW codes provide greater capacity than certain
related classes of constrained codes. Moreover, we provide noisy
capacity bounds for SSW codes.

Index Terms—SKip-sliding window,
Goulden-Jackson cluster method, capacity.

constrained code,

I. INTRODUCTION

ONSTRAINED coding losslessly maps a set of uncon-

strained sequences into a set of sequences that sat-
isfy certain constraints, and has been extensively used in
several applications. To alleviate timing errors due to the
rapid change of stored bits in magnetic and optical storage,
binary runlength-limited codes [2], [3] are employed to insert
a run of zeros between consecutive ones. In simultaneous
information and energy transmission [4], a minimal num-
ber of ones in subsequences of transmitted codewords are
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required so as to carry enough energy [5]-[11]. Asynchronous
communication necessitates codes with heavy/light Hamming
weight [12], [13].

Two basic constrained coding strategies have been devel-
oped for simultaneous information and energy communica-
tion: sliding window constraint (SWC) codes [5]-[7] and
subblock-energy constraint (SEC) codes [8]-[11]. As Fig. 1
shows, SWC codes restrict the energy of every consecutive
L symbols to be no less than E. This constraint enables
SWC codes to convey energy to meet real-time delivery
requirements, but also reduces the number of valid SWC
codewords and therefore the information capacity. When there
are energy buffers (batteries), energy transmission need not be
so constrained at the level of individual transmitted symbols,
and so SEC codes only restrict the energy of non-overlapping
subblocks to be no less than E; this leads to more allowable
codewords and capacity. In recent related works, an efficient
block code construction for SWC codes was presented in [14],
while practical encoding and decoding schemes, based on
Knuth’s balancing and sequence replacement techniques, for
bounded weight SEC and SWC codes, were presented in [15].

This work introduces a new intermediate type of constrained
code that generalizes both SWC and SEC codes. Instead of
assuring the energy constraint on consecutive L symbols for
all sliding windows, the proposed constrained code that we call
skip-sliding window (SSW) codes loosen the SWC constraint
by lifting the energy constraint for those sliding windows that
do not start at (i + 1)th symbols, where .J is a fixed integer
and ¢ is any non-negative integer. It is immediate that an SSW
code reduces to an SWC code when J = 1, and to an SEC
code when J = L. In this sense, SWC and SEC codes are
two ends of a spectrum of SSW codes as Fig. 1 shows.

Note that although SSW codes are inspired by constrained
codes for simultaneous information and energy transmission,
they may also be useful in several other areas where slid-
ing window constraints arise. In visible light communication
(VLC) [16]. the window constraint is imposed to avoid visible
flickers to human eyes [17]-[20], where SSW constraint can
be adopted. SSW constraint may also be applied for some
special channels, such as the bit-shift channel [21].

The main contributions of this article are as follows.

1) We define SSW codes and characterize their basic
properties to build the mathematical foundation for
SSW-related applications.

2) We introduce two methods to enumerate valid code-
words of binary SSW codes where the cost constraint
FE is defined as the least Hamming weight W: one
is based on the adjacency matrix of a modified de
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Fig. 1. Sliding window constraint codes, skip-sliding window codes, and

subblock-energy constraint codes. As the intensity of the coding constraint
increase (J decrease), it is expected that the capacity of the code will decrease.
However, the skip-sliding window codes may violate this intuition.

Bruijn graph [22] which enumerates the SSW code
in complexity O((EiL:W (f))Q), whereas the other
uses the Goulden-Jackson cluster method [23] which
enumerates the SSW code with . = ¢J for some
positive integer ¢ in complexity O((Eivzgl (5))2)
A modified Goulden-Jackson cluster method is further
proposed which is proved to be equivalent to the first
method when L = ¢J for some positive integer £.

3) When L = ¢J for some positive integer ¢, refinements of
both enumeration methods are given to lower the com-
plexity. The refinement of the first enumeration method
reduces its complexity to be O( min{.J+1, W+1}¢"1),
and the refinement of the second enumeration method
reduces its complexity to be O(min{J, W — 1}*71).

4) Properties of the noiseless capacity of SSW are proven,
and some interesting and useful observations from
numerical simulations are given. In particular, it is
shown that SSW codes can surprisingly achieve higher
noiseless capacity than SEC codes.

5) Several noisy capacity bounds over the binary symmetric
channel (BSC) and the binary erasure channel BEC) are
given for comprehensiveness.

The rest of this article is organized as follows. Section II
introduces SSW codes and their noiseless capacity. Enumera-
tion methods are given in Section III and refined enumeration
methods are further derived in Section IV. Section V gives
properties and numerical results on SSW codes in the noiseless
case. Noisy capacity bounds and their numerical evaluations
are given in Section VI. Section VII summarizes the article
and provides direction for future work.

II. SKIP-SLIDING WINDOW CODES

Let us consider g-ary sequences where each symbol in the
sequence is drawn from Q = {0,1,...,q — 1} and define a
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cost function &(-) which maps each symbol to a real value as
¢ : Q9 — R. A g-ary SSW sequence with a window length
L, a skip length J, and a minimal cost F, denoted as an
(L, J, E)e,q-SSW sequence, guarantees the sum of the cost of
the L consecutive symbols that start at the (¢J + 1)th symbol
to be no less than E for all non-negative integers i.

Definition 1: Given positive integers L and J such that
L > J, a cost function € : Q — R, and the minimal cost
E, a g-ary sequence of length n = L + kJ is said to be an
(L, J, E)¢,q-SSW sequence if

L
> €(cli+mld)>E forall0<m<k, (1)
i=1

where ¢(i) denotes the ith symbol of the sequence c.

Definition 2: The collection of all (L,J,E)¢ -SSW
sequences of length n form the (L,J, E)¢ -SSW code of
length n.

Since binary sequences are of particular interest, we largely
focus on (L, J, E)¢ 2-SSW sequences in the sequel. For sim-
plicity, the cost function is taken as the Hamming weight of the
binary symbol, i.e. €(c(i)) = ¢(i), and the cost constraint E
is replaced by W to specifically denote the Hamming weight.

Definition 3: Given positive integers L, J, and W, such
that L > W and L > J, a binary sequence c of length
n =L+ kJ is said to be an (L, J,W)-SSW sequence if

L
> eli+md) =W forall 0<m<k, 2)
=1

where c(i) denotes the ith bit value of the binary sequence c.

Let MS(SLW"]’W)(L—i—kJ) denote the number of the (L, J, W)-
SSW sequences of length L+k.J for some non-negative integer
k. Our interest is in finding MS(SQJJ’W)(L%— kJ), but especially
the noiseless capacity of binary skip-sliding codes,

CLIW) 2 1y OBM L 4 k)
= L+kJ

The next two sections will introduce several ways to enumerate

ME"YNL + k).

Before closing this section, we present the following the-
orem which states that any (L,.J, W)-SSW sequence with
L = ¢J for some ¢ > 0 is equivalent to a g-ary (¢, 1, E'),-SSW
sequence such that ¢ = 27.

Theorem 1: For any binary (L, J, W )-SSW code where L =
0J for some positive integer (, there is an equivalent 27 -ary
(4,1, E)5s-SSW code.

Proof: Let w(c) be the Hamming weight of the binary
string ¢ and (¢); be the binary representation of length J for
the non-negative integer 7. Then we can construct a 27-ary
(¢,1, E)2,-SSW code such that E =W, @ = {0,1,...,27 —
1} and €(i) = w((i);) for all i € Q. Hence, any 2”-ary
(¢,1,E)9s-SSW sequence of length n can be transformed
to be a binary (L, J, W)-SSW sequence of length nJ by
representing each symbol in binary, ie., ¢ € ({,1,FE)qs-
code of length n if and only if (¢(1))s(c(2))s---(e(n))s €
(L, J, W)-code of length nJ. [ |

3)

k—oo

For example, (5)4 = 0101, hence the w ((5)4) = w(0101) = 2.
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Extending an (L, J, W)-SSW sequence c.

Fig. 3. An example of de Bruijn graph of order 3, which is also the FSM
of the (3,1,0)-SSW code.

II1. ENUMERATION METHODS

L,JW
To enumerate MS(SW )

function g(z), such that

(n), we consider its generating

g(x) =D MG (n)a". @
n=0

Note that MS(SLW’J’W)(n) = 0if n # L + kJ for any
non-negative integer k.

A. Finite State Machine

To extend an (L, J, W )-SSW sequence ¢, as Fig. 2 shows,
the incoming .J bits and the last L —.J bits of ¢ must contain at
least W ones. Hence, the incoming J bits and the last L — J
bits of ¢ can determine if the extended sequence is a valid
(L, J,WW)-SSW sequence, which indicates that the finite state
machine (FSM) with L-bit states can represent all possible
(L, J,W)-SSW sequences.

Let us consider a directed graph G(V, £) with vertex set V
and directed edge set £, which contains all L-bit vertices, i.e.,

V={[b1---br]:b; €{0,1} forall 1 <i < L},

and the vertex [by - - - bz ] can transit to the vertex [b] - - -0} ] if
big1 =0 forall1 <i<L-1,ie,

([a by -- 'bL—l]; [bl s bL_la’]) €€

for all a, @/, and b; € {0,1}. Such a graph G(V, ) is called
the de Bruijn graph of order L [22]. An example of a de Bruijn
graph of order 3 is depicted as Fig. 3. Since the states in the
de Bruijn graph of order L represent the latest L bits of the
incoming path, the de Bruijn graph of order L can be treated
as an FSM of an (L, 1,0)-SSW code. Hence Fig. 3 is also the
FSM of an (3,1,0)-SSW code.

To obtain the FSM of the (L, J,0)-SSW code with a skip
length J > 1, walks of length J in the de Bruijn graph need
to be extracted. An example of the FSM of the (3,2,0)-SSW
code is depicted in Fig. 4. Letting w([by - - - br]) = Zle b; be
the Hamming weight of the vertex [by ---bz] in G(V, €), the
FSM of an (L, J,0)-SSW code can be transformed into the

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

100
101

Fig. 4. The FSM of the (3,2,0)-SSW code, in which each path denotes a
valid walk of length 2 in Fig. 3.

110
111

Fig. 5. The FSM of the (3,2,2)-SSW code, which is a modified FSM
of (3,2,0)-SSW code in Fig. 4 by simply removing those vertices whose
Hamming weight is less than 2.

FSM of an (L, J,W)-SSW code by discarding vertices whose
Hamming weights are less than . An example of the FSM
of the (3,2,2)-SSW code is given in Fig. 5.

We remark that binary sequences satisfying the
(L, J,W)-SSW constraint are closely related to sofic
shift in symbolic dynamics [24], where a sofic shift refers
to the set of bi-infinite sequences generated by a labeled
graph. In particular, consider a labeled graph corresponding
to the FSM of an (L, J, W)-SSW code. Then the sofic shift
generated by this labeled graph is the set of all bi-infinite
sequences satisfying the (L, J, W)-SSW constraints, i.e., if ¢
is a bi-infinite sequence in the sofic shift, and » = L. mod J,
then ZiL:_Ol c(i+r+mJ) > W for all integer values of m.
For example, sequences in the sofic shift generated by the
labeled graph in Fig. 5 satisfy the (3,2,2)-SSW constraints.

Based on the transformation of the FSM of the
(L, J,W)-SSW code described above, the adjacency matrix
of the FSM corresponding to an (L, .J,W)-SSW code can be
derived as the following theorem. We use an operator that
eliminates rows and columns of a matrix: [B]>w is defined
as the submatrix of B which deletes the rows and the columns
of B corresponding to those vertices whose Hamming weights
are less than W.

Lemma 1: Let G(V,E) be the de Bruijn graph of order L
and the corresponding adjacency matrix be A. The FSM of
the (L, J,W)-SSW code can be constructed as the adjacency
matrix [A7]>w.

Proof: By [25, Theorem 1.1], the element at the ith row
and jth column of the adjacency matrix A’ is the number of
valid walks from vertex ¢ to vertex j. Therefore, the adjacency
matrix A7 corresponds to the FSM of the (L, .J,0)-SSW code.
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As Fig. 5 depicts, the FSM of the (L, J, W)-SSW code is
the FSM of the (L, J,0)-SSW code without those vertices
whose Hamming weight is less than W. Hence, the adjacency
matrix of the (L, J, W)-SSW code can be obtained simply by
removing the rows and columns of A7 whose corresponding
Hamming weight is less than W, i.e. [A7]>w. |

It should be noted that elements in matrix [A”]>y are either
0 or 1 when L > J, and the size of the square matrix [ZAJ Is>w
is b x b, where b = Zf - ( ). By Lemma 1, the following
theorem calculates the generating function (4).

Theorem 2: Let A be the adjacency matrix corresponding
to the de Bruijn graph of order L, and let B = [A7]syy.
Then, the generating function of the (L, J,W)-SSW code is

oo

Z (IBa:J)k

k=0

g(x) =17 12t

?

where 1 be the b- length column vector of ones, with b =
Zf:w (f) and (IBx ) is the identity matrix of size b X b.

Proof: The number of (L, J, W)-SSW sequences of length
L + kJ for some non-negative integer k is

MEIWL 4 kJ) = 1TB*1.

SSW

Therefore, the generating function g(x) can be derived as

g(m) — Z lTIBk]le"rk’J
k=0
=1" ) (Bx Q)
k=0
|
As per [26, Lemma 3.5], the logarithm of the largest
absolute eigenvalue of [A”]>y equals J cikm.
T(IAJ k
CS(SLWJW) — lim log, 1 ([A ]ZW) 1 (6)
log, A([A”]5w)
=— 5 (N
where A([A7]>w) is the largest absolute value of all eigen-
w)

values of [A”]>y . Finding ClLIW) s equivalent to finding
the largest absolute eigenvalue of the square matrix [A” I>w.

B. Goulden-Jackson Cluster Method With Bad Words

When the window length of the (L, J, W)-SSW sequences
is a multiple of J, i.e., L = ¢.J for some positive integer ¢,
we can apply Goulden-Jackson cluster method [23] to find
the generating function g(x). The Goulden-Jackson cluster
method is a technique to enumerate the valid sequences
without any “bad” words within it. Let V be a given a set
of letters, and let V* denote the set of all words over V.
The Goulden-Jackson cluster method states that given a finite
set of bad words B C V*, the generating function f(z) for
enumerating sequences containing no bad words within them
can be expressed as

f(z) = !

1 — |V|z — clusterp(x)’

()

2827

where the clusterg(x) is the generating function of the
sequences of overlapped bad words. Since the sequences
of overlapped bad words can be categorized by their last
bad word, clusterg(xz) can be computed by summing the
generating function of all overlapped bad words ending with
a different bad word, i.e.,

= Z clusterp(z|b)

beB

clusterp(z)

©)

where clusterp(z|b) is the generating function of the over-
lapped bad words ending with bad word b. Based on
Goulden-Jackson cluster method, the clusters(x|b) can be
uniquely determined by solving the following |B| linear

equations:
Z Z 2=yl clusters (]b')
b'EByeO(b',b)

clusterp(z|b)

— x”b”, forall be B, (10)
where || - || denotes number of bits, and
£ {y: there exist y,u,u’ € {V*\ 0}
such that b’ = w'y and b = yu}. (11)

Thus (L, J, W)-SSW sequences such that L = ¢.J for some
positive integer ¢ can be enumerated by the Goulden-Jackson
cluster method and its generating function can be calculated
by the following theorem.

Theorem 3: The generating function of the ((J, J, W )-SSW
code for some positive integer { is

1
1 —|V|x? — clusterg(z”/)’
where V = {0,1}7, B={b:b € {0,1}*' and w([b]) < W},
clusterg(z) = ZbeB clusterlg(x|b),

D IRD I

b eByecO(b,b)

g(x) = 12)

clusterp(z|b) = ~Ul/ D cluster (z|b'),

13)

for all b € B, and O(b',b) is as in (11).

Proof:  Since the (£J,J, W)-SSW code is simply the
language with alphabet V' such that no bad word in B is
included, the Goulden-Jackson cluster method can be used
directly. Also, since f(x) in (8) enumerates the sequences from
the alphabet V instead of the binary alphabet, the generating
function of (¢.J,J, W)-SSW sequences can be computed as
g(z) = f(x”) which yields (12). [ |

Hence, finding MEFTW) n) is equivalent to solving a

Ssw
linear system with |B| =3>_." ! (eq) unknowns in (13).

3

C. Goulden-Jackson Cluster Method With Good Words

Conceptually, the FSM approach in Section III-A enu-
merates the (L,J, W)-SSW sequences by listing all legiti-
mate sequences whereas the Goulden-Jackson cluster method
enumerates the (¢.J,.J,W)-SSW sequences by excluding all
invalid ones. The efficiency of the Goulden-Jackson cluster
method for (¢.J, J, W)-SSW sequences depends on the number
of bad words. The linear system (13) is not easy to solve
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when [B] = W0 (%) is large. Borrowing from the FSM
approach, the Goulden-Jackson cluster method with good
words can be considered as an alternative, which computes
the generating function by enumerating all valid sequences.
Ultimately, the Goulden-Jackson cluster method with good
words converges to the FSM approach as the following
theorem shows, providing a further interpretation of the
Goulden-Jackson cluster method.

Theorem 4: To enumerate the (0J,J,W)-SSW sequences
for some positive integer {, the FSM approach is equivalent
to the Goulden-Jackson cluster method for enumerating over-
lapped good words.

Proof: Let V = {0,1}” and G be the set of good words,
G = {0,1}*7\ B. Any (¢J,J,W)-SSW sequence must be
composed of consecutive good words and each good word
must overlap with its neighbors with (¢ — 1).J bits. Hence,
the generating function by Goulden-Jackson cluster method

can be derived as
f(x) = clusterg(z), (14)

where clusterg(z) = ), clusterg(z|b). Similar to (13),
clusterg(z|b) for all b € G can be obtained by solving the
following linear system

clusterg(z|b) = * + Z Z x - clusterg (z|b'), (15)

b'€G yeOg(b',b)
for all b € G, where

Og(b',b) 2 {y: there exist y € V"' uw and v’ € V
such that b’ = u'y and b = yu}.

Since the linear system in (15) can be rewritten in matrix form,

[clusterg(a:|b)]b€g = 12" + B'z[clusterg (x|b)}beg,
which can be solved as
[clusterg(x|b)}beg =[I—B'z] " 12" (16)

Combining (14) and (16),
g(z) = f(z7) =17 [I - B'z’] 1t

which coincides with (5) since B = B’. Therefore, FSM
enumeration can be interpreted as the Goulden-Jackson cluster
method for good words. [ |

IV. REFINED ENUMERATION METHODS

The methods proposed in the previous section find the
generating function with computational complexity governed
by the size of good word or bad word sets, which can be
exceedingly large in most practical cases. For example, to enu-
merate (40, 20,20)-SSW sequences, the FSM approach must
find eigenvalues of the square matrix of size 2?220 (410) ~
6.2 x 10'! and the Goulden-Jackson method needs to solve a
linear system with Zio (41.0) ~ 4.8 x 10'! unknowns. Here,
we refine the methods of Section III to reduce computational
complexity. Just a heads-up, in the case of enumerating
(40,20,20)-SSW sequences, the refined FSM approach and
the Goulden-Jackson method need to solve the linear systems

with at most 21 and 20 unknowns, respectively.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

A. Refined Finite State Machine

Considering the FSM G(V, €) of the (¢.J, J,W)-SSW code
for some positive integer ¢, each state [b] = [by---bes] €
V can be segmented into ¢ subblocks, ie., [by] =
[b(k;il)‘]+1b(k71)]+2 e 'ka] for 1 < k < l. Let ’LU([bk]) be
the Hamming weight of the subblock [by], which is

w([bk]) = w([b(k_l)JH s bkj]), for all 1 < k < L.

The following theorem shows that, for any two states [b] and
[b'] in G(V,E) whose last ¢ — 1 subblocks have the same
Hamming weight, respectively, i.e. w([bx]) = w([b}]) for all
2 < k </, their outgoing edges are the same.

Lemma 2: Let G(V, &) be the FSM of the (¢J, J,W)-SSW
code for some positive integer { and let any two states [b] and
(0] be in V. If w([by]) = w([by]) for all 2 < k < {, then
both edges ([b], [ba---bey]) and ([b],[by---byy]) are in €
for all y € {0,1}” such that w(y) > W — w([b]) + w([b1]).

Proof: Since both states [by - - - by y] and [b), - - - b} y] have
the same Hamming weight:

w([by - bey]) = w([bs-- b y]) (17)
l

= > " w((bx]) + w([y]) (18)
k=2

= w([b]) — w([b1]) + w([y]) > W, (19)

and both edges ([b], [b2---b,y]) and ([b'], [b}--- b} y]) are
valid edges in £. Further, the terminal vertices of these edges
are the same if we group the states whose last £ — 1 subblocks
have the same Hamming weights. [ ]
By Lemma 2, the size of G(V,£) can be reduced by
grouping those states whose last £—1 subblocks have the same
Hamming weights, respectively. Let w = (w1, wa, ..., we—1)
be a vector of £ — 1 Hamming weights and define R(w) as

R(w) 2 {b = [by-bes] - w(b]) =W
and w([bg]) = w—1 forall 2 < k < 6},

which is the set of all valid states in G(V, ) such that the
Hamming weights of the last £ — 1 subblocks equal w. The
size of R(w), denoted as |R(w)], is

()]

We further define the set

R(w)| =

Wé{w:OkaSmin{J,W}foralllngE—l,

-1
and > w; ZW—J},
i=1
which is the set of all valid Hamming weight vectors for
(¢J, J,W)-SSW sequences. The following theorem provides
an efficient way to calculate the generating function (4).
Theorem 5: Let v be the column vector of |R(w)
where |R(w)| is given

>

in (20), for all w € W,
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Fig. 6. Converting the FSM G of (4, 2, 3)-SSW code to its reduced FSM Gg.
The weights of edges in Gg are given as m([w, w']) for all w,w’ € W.

ie, v = [|R(w)|lwew. Then, the generating function of the
(LJ, J,W)-SSW code for some positive integer { is

(o]
g(x) = Z HTZAII;*ZW x P (21)
k=0

where Ag = [m(w, w)](ww)ew2 m(w,w') = (wé] 1),
and A% denotes the identity matrix.

Proof: Any state in R(w) can transit to another state
in R(w') if wy, = wj_; forall 2 < k < ¢ —1 and
the edge can be represented as J bits with wj_, ones.
Therefore, we can construct the reduced FSM Ggr(Vr, Er)
as Vg = {w : w € W} and &g = {(w,w') : w,w’ €
W and wy, = wj,_, forall 2 < k < £ — 1}. The weight of
edge (w,w’) € &g is m(w,w') = (,/ ), which denotes the
total number of possible transitions from vertex w to vertex
w’. Let the adjacency matrix Ag of Gr(Vr,Er) be

AR = [m(wa w/)](w,w’)EWQ'
Then, for k& > ¢, we have

MW (k) = 1TAY v,

SsSW

(22)

and the generating function can be derived as (21). [ |

An example of converting the FSM of (4, 2,3)-SSW code
to its reduced FSM is given in Fig. 6, where the reduced
FSM is a weighted digraph. As shown, grouping all states
in G(V,€) yields a reduced FSM Ggr(Vr,&r) with a size
of |[W|, which is at most min{.J + 1, W + 1}*~!. Hence,
the Gr(Vr, Er) for the (40,20,20)-SSW code has at most
21 states, a significant reduction compared to the 6.2 x 10!
states for G(V, £). Further, using (22), the noiseless capacity
for skip-sliding window codes can efficiently be computed as

CULIW) _ logy )‘(AR)
SSwW J b
where )\(AR) is the largest positive eigenvalue of ARg.

(23)
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B. Refined Goulden-Jackson Cluster Method With Bad Words

Similar to the reduced FSM, we can apply the
Goulden-Jackson cluster method to enumerate the (¢.7, J, W)-
SSW sequences by considering only the Hamming weight of
the subblocks of each window. The following theorem refines
Theorem 3.

Theorem 6: The generating function of the ({J, J, W )-SSW
code for some positive integer { is

1
1—x/ Ezn:ig{‘]’w_l} (7) = clusters(z”)
where V = {O,l,...,min{J,W — 1}} B = {'w Cw =

wy--we € VU and Zf;llwz < W} clusterg(z) =
> wen clusters (z|w),

g9(x) = , (24)

clusterp(z|w)
W3] w1

(%)

>

w’'€O(i,0,w)

clusterg (m|w’)] } , (25)

and

O(i,o,w) 2 {w' :w' € B,w,_, =1,
and wy_,,, = wy forall1<k<o—1}.  (26)

Proof: Similar to Theorem 5, a bit sequence of length
£J can be divided into ¢ subblocks and the Hamming weight
of each subblock is at most min{J,W — 1} to be a valid
(¢J, J,W)-SSW sequence. Hence, the (¢.J,.J, W)-SSW code
can be translated to be a language with alphabet ) such that
no sum of ¢ consecutive weights is less than W. Since the
number of binary sequences of length J whose total Hamming

. . . min{J,W -1} /J .
weight is less than W is > ;o0 (7). equation (8) can
be replaced by (24).

As stated in the Goulden-Jackson cluster method,
the clusterg(x) is the generating function of the overlapped
bad words and clusterz(z|w) denotes the generating function
of those overlapped bad words that end with a bad word
corresponding to w € B. It should be noted that, for each
¢ consecutive weights, only the last £ — 1 weights wy -« - wp_q
is used to denote the element in B since the first weight
can be any integer in {0,1,...,W — Zf;ll w; — 1¢. The
number of binary sequences that are bad words of length /.J
corresponding to w = Wy w1 € B can be computed as
[ . (u‘)’k)J X {ZZ&E-’:l vt (‘Z])}, which is the coeffi-
cient of —z* in (25). We can further enumerate those binary
sequences which are overlapped by the bad words in the same
way to derive the clusterp(z|w) as in (25). [ |

Hence, the refined Goulden-Jackson cluster method can enu-
merate the (¢.J, .J, W)-SSW sequences by solving (25) with |B]
unknowns, where |B| < min{J + 1, W }*~!. For the example
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of (40,20,20)-SSW sequences, the refined Goulden-Jackson
cluster method can find the generating function by solving
the linear system with at most 20 unknowns, which is much
smaller than the original 4.8 x 10'! unknowns.

Since Theorem 4 shows the Goulden-Jackson -cluster
method for good words is an alternative interpretation of the
FSM approach, and since the derivation of the refinement is
similar to that of the bad words setting, it is omitted here.

V. PROPERTIES OF (L, J,W)-SSW CODES
We explore some properties of SSW codes. Let

o log, MSETYN(L + k)
L+kJ ’
UL W)

and let Sesw” (L + kJ) be the set of all (L, .J,W)-SSW
sequences of length L + kJ. Two trivial inequalities of the
noiseless capacity are given as the following lemmas, which
show that the noiseless capacity increases as W decreases
and the noiseless capacity decreases if the skip length J is
multiplied by a constant.

Lemma 3: Given positive integers L, J, W and W' such
that L > J and L >W > W' >0,

CLIWNL 4 kJ) 2

SsSW

27)

CLLM™) < Cl™™h. (28)
Proof: Since any sequence in (L J, W)-SSW is also in
(L, J,W')-SSW, C\&"W) < oL W), n

Lemma 4: Given positive integers L, J, W and k such that
L>FkJ>0,

C«(L,kJ,W) > C(L,J,W) (29)
Proof: Since any sequence in (L J W)-SSW is also in
(L, kJ, W)-SSW, CLFW) > ol W) [

We further examine finite blocklength properties in the
noiseless case. The following lemma shows the size of
skip-sliding window codes can be upper-bounded by dividing
into subblocks.

Lemma 5: Assume L = (J for some integer { > 0. Let
k,h € ZT such that h > £ and k > {, then

MEGM (B k) T) < MEGHW (RT) = MGG (k)
(30)

where equality holds if and only if L = J.

Proof: Let S’ = {bb'} where b € SS(SLv&J’W)(hJ) and
b e SS(SLV;J’W)(IQJ ) be the set of all sequences which are
the concatenations of any sequence in SS(SLV;J’W)(hJ ) and any

sequence in SS(SLVGJ’W)(kJ). Since SS(SLV&J’W)((h +Ek)J)CS,
MGG ((h+k)T) < |5 31)
= MEIM (W YMEIW (k). (32)

Since an (L, J, W)-SSW code reduces to an SEC code when
L = J, the equality of (30) always holds when L = J
[8], [9]. Moreover, letting b = 1"/=EL+WoL=W and o' =
OL=W1J=L+W it is clear that b € S”")(hJ), b €
SEI (kT), but b ¢ SETY) (b + k)J) when L > J.
Hence the equality of (30) holds if and only if L = J. ]
Lemma 5 provides a lower bound for MS(SQV’J’W)(hJ) X
MS(SLW’J’W)(kJ). We next find an upper bound.
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Lemma 6: Assume L = (J for some integer { > 0. Let
h,k € Z% such that h > ¢ and k > ¢, then

MEIW) (b4 k)T + (L - J)) > METW)(h)
x M{LIW)(k.T),

SSW

(33)

where equality holds if and only if L = W.

Proof: Let S’ = {blt=/b'} such that b €
SEIW(hg) and b € SEIY (k). Since ST C
S&A) ((h+k)J+ (L—J)), the number of sequences

LT W) ((h+k)J + (L —J)) is lower bounded by
19" =

MEIW(hT) x METW) (k). (34)

When L = W, it is trivial that the equality of (33) holds since
both sides equal 1. However, when L > W, a binary sequence
b = 1hI01L—I-11k js in S5 ((h+k)J + (L — J)) but
not in S’. Hence the equality in (33) holds iff L = W. [ |

Now consider the concatenation of subblocks with equal
length. Lemmas 5 and 6 can be extended as follows.

Lemma 7: Assume L = (J for some integer { > 0. Let
h € Z such that h > {, then for all integers k > 1,

MEIW) (kh.T)

IN

k
(M ()|
MEIW) (khg + (k —

IA

(L —1J)), (35)

The first equality holds if and only if L = J and the second
equality holds if and only if L = W.
Proof: The proof follows from Lemmas 5 and 6. [ ]
To understand the properties of the noiseless capacity (3),
we further investigate properties of the rate as defined in (27)
when L is a multiple of .J.> Based on Lemma 7, the following
lemma provides a lower bound and an upper bound on the rate.
Lemma 8: Assume L = (J for some integer { > 0. Let
h € Z* such that h > {, then for all integers k > 1,

CLIW) (khg) < LW (h)

o Bt (-1 - 1)CS(SLV&J7W)([M+(

kh

De=1]J).
(36)
The first equality holds if and only if L = J and the second

equality holds if and only if L = W.
Proof: We first verify the first inequality of (36).

logy M%) (kh.T)

(L,J,W) _ 2 Mss

Cose” (kN J) T (37)

(L,J,W)

- klogy Mssw (hJ) (38)
= khJ
logy MG (h) 9,
N hJ
= LW (h), (40)

where equality of (38) holds if and only if L = J. Hence
it proves the first inequality in (36). The second inequality

’Related properties for general constrained spaces are discussed in
[24, Chap. 4].
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in (36) is proved by observing that C’S(SLV&J’W)(hJ ) is equal to

kh - logz [ME7W) ()] (41)
< k; - log, METW) (khd + (k- 1)(L - J)) (42)
1
_ (L, J,W) _
——log, MU ([kh+ (k=)= 1)) @)
_kh+ (k=1 -1 L sw)
= e OO ([kh+ (k= 1)(0 = )]
(44)
where equality of (42) holds if and only if L = W. Hence
the right side of (36) is proven. [ |
By letting k£ of (36) be infinitely large we have the rate of

L JW
convergence of Cs(ew )

as the following lemma.
Lemma 9: Assume L = (J for some integer { > 0. Let
h € Z% such that h > ¢, then

(L,J,W)

(L+kJ) to Cssw when L = ¢J

(45)

O™ < ) < (14 ) ol
The equality of (45) holds if and only if L = J.
Proof: The proof is a direct extension of Lemma 8 by
letting k — oo. [ ]
When L is not necessarily a multlple of J, the rate of
convergence of ngL JW)(L + kJ) to ngLWJ W) can be given
as the following lemma.
Lemma 10: Let B be the matrix of size b X b associated to
the (L, J,W)-SSW code. The rate of the (L, J, W )-SSW code

can be bounded as

kJ
(L,JW)
(#5%)°

CLIWIL 4 k)

SSwW

kJ
v (L,J,W)
(L—l—k‘J)CSSW +

IN

(k) |
L+kJ

IN

0gy(2° — 1)

vy (k) (1B1)"
T A ( 1Bb1 (46)
for all k > 0, where
1
3 (logy k+1)(logy k+2) forb=2,
O—b(k) = (b - 1) logg(b bl) b 2 (47)
(b_2p2 22 for b > 2,
logy k+1 for b =2,
l/b(]f) = (b — ]_)2 103:2(?7 1 (48)
5=2) k Tes2 v for b > 2.

Proof: Let B be the transition matrix corresponding to
the (L, J,W)-SSW code. From [27, Thm. 1], we have

log, 17 (B)"1

(L,J,W) 4
Ol < =R 49)
logy 17(B)"1 (L +kJ 50)
- L+kJ kJ
= CLIL + kJ) <L Z Jk‘]> , (51

2831

which proves the first inequality in (46). We now prove

the second inequality in (46) by noting that CS(SLWJ is lower
bounded by
k
log, 17 (B)"1 oy (k) vy (k) (1B1)"
— 1 -1 1
kJ Ry 10g(2" = D)= log ( 1B°1 >
L+kJ op(k)
_ (LI W) _ b
Ciw (L+EJ) ( w7 ) ™ log,(2° — 1)
w(k),  ((1BL)"
— 1 2
]fJ 082 ( ]].]Bb]]. ’ (5 )
where the lower bound in (52) is from [27, Thm. 1]. [ |

Based on Lemmas 8, 9, and 10, the rate of (L, J, W)-SSW
codes seems to be non-increasing as a function of length L +
kJ, with the rate converging to the capacity Cg(w} W) as k —
oo. However, somewhat surprisingly, the intuition regarding
the rate being non-increasing in length is not true in general.
For instance, when J =5, L =2J, W =9, and k = 2,

COOPNL + (k +1)J) = CLO™(25) = 0.3293
> 1059 (20) = 0.3292. (53)

Now, setting h = 4 and s =
equivalently be expressed as

CLEwP D (sh]) = L™ (25)

> CLu™9(20) =

5/4, we note that (53) can

C(lO 5,9) (hJ)

SSW

(54)

Comparing (54) with (36), we observe that when L is a
multiple of J, then although C%"") (kh.) < &™) (h7)
for any positive integer k, we may have a scenario where
C’S(SLV;J’W)(shJ) > CésLV&J’W)(hJ) for s > 1 when s does not
take an integer value. Further, the next subsection presents
examples demonstrating that the rate could increase with
length L + kJ even when L is not a multiple of .J.

A. Numerical Results

Here, some numerical computations are performed to give
more insights into the performance of (L, .J,W)-SSW codes.
Moreover, some counterintuitive observations are made.

Fig. 7 compares the capacities and the rates of (6, .J, 3)-SSW
codes for different .J, in which capacity is plotted as dotted
lines and rate is plotted as solid lines. Since an (L, J, W)-SSW
code reduces to an SEC code when L = J, the curve of J = 6
has a constant rate as a function of length because the rate of
the SEC code does not depend on length [8]. Some further
remarks can be made from Fig. 7. First, higher capacity can
be achieved by lengthening the skip length J for (6, J, 3)-SSW
codes, which coincides with the intuition that shorter J will
strengthen the sliding constraint and the stronger constraint
should lower the size of the code. Second, the rates of (6, .J, 3)-
SSW codes is non-increasing with length 6 + k.J.

However, the (8,.J,7)-SSW codes have completely differ-
ent properties from (6,.J,3)-SSW codes. Similar to Fig. 7,
the plots in Fig. 8 depict the capacities and rates for (8, .J,7)-
SSW codes. We list some important points from Fig. 8 as
follows:

First, the rates for (8,.J,7)-SSW codes are no longer
non-increasing as a function of the length 8 + k.J. The J =5
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Fig. 7. The capacity of (6, J, 3)-SSW codes for different ./, and correspond-
ing rates when the length of constrained sequences is 6 + k.J. Capacities are
drawn with dotted lines and rates with solid lines.
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Fig. 8. The capacities and rates of (8, J,7)-SSW codes for different .J.
Capacities are drawn with dotted lines and rates with solid lines.

and J = 3 curves show that their rates are non-increasing
except when k is close to 1. More importantly, the curve for
J = 7 shows non-decreasing rate as a function of the length.

Second, comparing the curves for J = 8 and J = 7,
we surprisingly see that an SSW code with a longer J does
not guarantee a higher capacity, contrary to intuition. Fig. 1
had suggested that an (L, J,W)-SSW code with a shorter
J implies a stronger constraint is applied, which means the
capacity of the (L, J, W)-SSW code should be higher than the
(L, J —1,W)-SSW code. However, this numerical computa-
tion shows a contrary result. We remark that this implies that
although ClEIW) < o&T W) \when J' is a multiple of J,
there may exist a scenario where CS(SLV}J’W) > C’S(SLV&JI’W) when
J < J' < L and J’' is not divisible by .J. For simultaneous
information and energy transmission, this observation has the
interesting implication that some SSW codes can have higher
capacity than SEC codes while also guaranteeing smoother
energy transmission.

VI. Noisy CAPACITY BOUNDS

In this section, we present bounds on the noisy capacity of
binary SSW codes. In particular, we consider binary symmetric
channels (BSCs) and binary erasure channels (BECs).

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 5, MAY 2021

We first discuss lower bounds on the noisy capacity. Let

s(va;JisMs%(p) denote the capacity of SSW codes over a BSC
with crossover probability p. The noisy channel capacity

(L,J,W)

ssw, BSC(p) €N be lower bounded as follows.

Lemma 11: We have

(L,J,W)

Cosw BSC(p) = M(xp) = h(p), (55)

where the binary operator x is defined as axb = a(1 —b) +
(1 —a)b, h(-) is the binary entropy function, and o is chosen
such that h(a) = CS(SILV&J’W) with 0 < o < 0.5. The bound (55)
is tight for p — 0.

Proof: Let X{* = (X1, Xao,...,X,) denote a sequence
satisfying the (L,.J,W)-SSW constraint, and let Y" =
(Y1,Ys,...,Y,,) be the corresponding output from a BSC with
crossover probability p. Then
H(Y") — H(Y{"|XT)

Y

(LIW) i sup
SSw, BSC(p) n—oo Q(X") n
1

where the supremum is taken over all input probability distri-
butions Q(X]) of the sequences X7 satisfying the (L, J, W)-
SSW constraint (2). A lower bound on C’S(SLV;Jggé ®) is obtained
when X7 is uniformly distributed over the set of n-length
sequences satisfying the (L, J, W)-SSW constraint. Thus, for
uniformly distributed X7, the constrained capacity over BSC

can be lower bounded as follows.

(L.JW) . HY')  HY'|XT)
ssw, BSC(p) = nh—{go n o n
H(Y]
= i 20T — H(Y1| X))
n—oo n
H(Y]
= lim LIIONS h(p). (56)
n— oo n

Now, the noiseless capacity CS(SLV}J’W) = h(«), denotes the

entropy rate of a binary source which produces sequences
satisfying the (L,.J,W)-SSW constraint, when the feasible
input sequences are uniformly distributed. When these con-
strained sequences are transmitted over a BSC with crossover
probability p, then using Mrs. Gerber’s Lemma (MGL) [28],
the output entropy rate is lower bounded as

i 204

n— oo n
and we obtain (55) by combining (56) and (57). The tightness
of the lower bound (55) follows as

. LW N
;12% CS(SW,BS()J([)) = h(o) = CL"™).

> h(axp), (57)

|
Let C’S(SLV;JEVE)C(E) denote the capacity of SSW codes over a
BEC with erasure probability e¢. Using an extension of MGL
for binary input symmetric channels [29], Csva}:]ing)C(g) can be
lower bounded as follows.
Lemma 12: We have

(L,J,W)

Ol BEC( = (1= CLM), (58)

and this bound is tight for ¢ — 0.
Proof:  Let X} = (X1,Xs,...,X,) denote a
sequence satisfying the (L,J,W)-SSW constraint, and let
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Y = (Y1,Y2,...,Y,) be the corresponding output from a
BEC with erasure probability e. Then,
(LIW) sup HY")  HQY|XT)
ssw, BEC(¢) n—00 (xn) n n
H(Y!"
= lim sup 2O h(e),

TRy

where the supremum is taken over all input probability distri-
butions Q(X7') of the sequences X' satisfying the (L, J, W)-
SSW constraint. When X' is uniformly distributed over the
set of feasible input sequences, we get

(L.IW) 0y 2O
Cssvw BEC(e) = nll—>n<;lo n

— h(e), (59)

Now, the noiseless capacity CS(SLV&J’W) denotes the entropy
rate of a binary source which produces sequences satis-
fying the (L,J,W)-SSW constraint, when feasible input
sequences are uniformly distributed. When these constrained
sequences are transmitted over a BEC with erasure proba-
bility €, then using an extension of MGL for binary-input

symmetric channels, the output entropy rate is lower bounded
as [29]

H(Y"
lim ()

n— oo n

and we obtain (58) by combining (59) and (60). The tightness
of the bound follows as lim._,q C’S(SLV;JEVE)C(E) = C’S(SLV&J’W). [ |
Remark: The noiseless capacity f)rovides a trivial upper
bound on the capacity of noisy channels. Therefore, Lemma 11
(resp. Lemma 12) implies that if the noiseless capacity of
two different SSW codes satisfies CS(SLv&’Jl’Wl) > CS(SL‘,?’JQ’WQ),
then for sufficiently small crossover probability p (resp. era-
sure probability €), we have the inequality Cg(stléngV(lp))
(L2,J2,W2) (resp. C(LlJl,Wl) C(Lsz,Wz)

> (1= e)C&™™) + he),

(60)

ssw, BSC(p) ssw, BEC(e) ~ Ussw, BEC(e) ) -

Alternate lower bounds on the noisy capacity of skip-sliding
window codes can be obtained using a generic bound by
Zehavi and Wolf [30, Lemma 4] on the noisy capacity
of constrained sequences generated by a Markov source.
As shown in Sec. III-A, an (L, J,W)-SSW code can be
represented via a finite state machine (FSM). Thus, a source
producing SSW constrained sequences can be modeled as a
stationary Markov source with non-zero probabilities asso-
ciated with feasible state transitions in the corresponding
FSM.

As shown in Sec. III-A, a binary (L, J, W)-SSW code forms
a FSM, in which J consecutive uses of the channel can be
viewed as a single use of a vector channel with super-letter
input alphabet X = {0,1}” and super-letter output alphabet
YV ={0,1}7. Let S = {s1, 82, ..., 51} be the set of k distinct
states in a FSM associated with the corresponding (L, J, W)-
SSW code. For 1 < i,j <k, let ¢; ; be the probability that
FSM transitions to state s;, given that the current state is s;.
Let Q = [g;,;] denote the state-transition probability matrix,
and let x;; be the super-letter symbol produced when FSM
transitions from state s; to s;. Further, let Pr(S = s;) denotes
the steady-state probability that FSM will be in state s;. Then

2833

the capacity Csfvé{ﬁvgé (p) OVEr BSC with crossover probability
p is lower bounded as follows.

Lemma 13: We have

(L. W) H(Y|S = si)

k
Cosw. BSC(p) = Sgp ZPT(S =s;) 7 — h(p),
i=1

(61)

where the conditional distribution for output super-letter Y,
is given by

k
Pr(y|S =si) =Y _q;Prylz:;),
j=1

Pr(y|a;;) = p"®9) (1 - p)’~4@=0) - (62)

for1<i<k xz; e X, yeY/ whereX =Y ={0,1} and
d(y, ;) denotes the Hamming distance between super-letters
y and x;;.

Proof: For a given (L, J, W)-SSW constraint, consider the
corresponding FSM with state space S = {s1,82,...,Sk}-
The transition probability from state s; to state s; is g; ;.
Let S denote the previous state, and let S denote the
current state. When 27-ary super-letters produced from this
Markov source are transmitted over a memoryless chan-
nel, then the super-letter capacity is lower bounded by
the conditional mutual information term [30, Lemma 4]
Supp,(s,8 (Y, S|S). Because the super-letter capacity cor-
responds to .J uses of the channel, the scalar capacity per

channel use C’S(SLWJBVSV()J (p) CaN therefore be lower bounded by
I(Y,S|S)
sup
Pr(8,S) J
H(Y H(Y|S,S
o (HOS) H(YIS.S)
Pr(8,S) J J

k
= sup ZPT(S =)
Q 4

k

o ) DL e
7j=1

- u HYI|S=5s) <
o sup ZPT(S =si) | ———F" — Z%‘,j h(p)

Q= J j=1

k

= sup ZPT(S = Sl)w — h(p),

Q I

where (i) follows from the memoryless property of BSC. B

Now, consider a BEC with input alphabet X = {0, 1},
output alphabet Y = {0,1, e}, where e denotes the erasure
symbol and let the erasure probability be denoted e. Then
J consecutive uses of this BEC will induce a vector-channel
with input super-letter alphabet X'’ and output super-letter
alphabet V7. Further, for 1 < m < J, let ng”) denote the m-th
letter of super-letter x;; € X7 with ;; = (x(})xg) . xi}j))
Similarly, for y € Y7, let y = (yMy® ...y(!)). Then,
for this induced vector channel, the probability of receiving

Authorized licensed use limited to: University of lllinois. Downloaded on July 17,2021 at 02:02:30 UTC from IEEE Xplore. Restrictions apply.



2834

super-letter y € )/, given that super-letter T;; € X I s
transmitted, is given by

07 if y(TYL) ¢ {x'E;n)7 6}7
for 1 <m < J,

€v (1 —¢)’/~', otherwise ,

Pr(ylzi;) = (63)

where t, denotes the number of erasure symbols in output
super-letter y. The following lemma provides a lower bound to
the capacity of (L, .J,W)-SSW codes over BEC with erasure
probability e.

Lemma 14: We have

(L, J,W) LHY|S = s:)

k
Cssw,BEC(e) ngp ZPT(S = si) 7 — h(e),
=1

(64)

where the distribution for output super-letter Y, given that the
transmitted input super-letter is X = x;;, is given by (63),
and Pr(y|S = s;) = 0, a1 Pr(yleiy).

The proof of the above lemma follows using steps similar
to those used in the proof of Lemma 13, and is hence omitted.

We now provide upper bounds to the noisy capacity of
(¢J, J,W)-SSW codes.

Lemma 15: We have

£J,J,W) . 0J,JW (eJLJW)
C () < min {ngwl ), CSSW’BSC@)} . (65)

ssw, BSC
Proof:  The noisy capacity Cs(:i"%gg(p) is obviously
upper bounded by the noiseless capacity Cs(s%"]’w).

Further, as every ({J,J,W)-SSW sequence is also

an (¢J,0J,W)-SSW sequence, we have the inequality

LI W) (LTI, W) n
ssw, BSC(p) — “ssw,BSC(p)"

Note that Cg(fizéslg()p) corresponds to the capacity of subblock

energy-constrained (SEC) codes with subblock length £.J and
subblock weight at least W, over a BSC with crossover
probability p. This capacity term can numerically be computed
for reasonable subblock lengths using the Blahut-Arimoto
algorithm [31], [32], by applying the super-letter approach
for characterizing the capacity of SEC codes over arbitrary
discrete memoryless channels in [8].

Similar to Lemma 15, the next lemma provides an upper
bound to the capacity of (¢.J,.J, W)-SSW over BEC.

Lemma 16: We have

(0J,J,W) . 0J,J W (LT LT, W)
Cosw, BEC(e) = mm{cs(svv’ )’Cssw,BEcxe)}' (66)

A. Numerical Results

In this subsection, we plot bounds on the noisy channel
capacity of SSW codes. Fig. 9 plots bounds on capacity of
(L, J,WW)-SSW codes over a BSC with crossover probability
p, for L =3, J =1, and W = 2. The blue dotted line plots
the lower bound on the noisy capacity given by (55), while the
red line depicts the lower bound given by (61). In this case,
it is seen that the lower bound (61) is uniformly better than
the lower bound obtained using Mrs. Gerber’s Lemma (MGL)
in (55). The black curve, providing an upper bound on the
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capacity, is obtained using (65). Further, it is seen that the
bounds are tight for cases when p — 0 and p — 0.5.

We further examine the surprising observation from Fig. 8
that SSW codes may outperform SEC codes. Fig. 10 compares
the (8,7,7)-SSW code and (8,8,7)-SSW code over a BSC
with a small crossover probability (0 < p < 0.005). Here,
the SEC capacity Csssx;v&];)SC(p) is numerically computed [8]
using the Blahut-Arimoto algorithm. For the (8,7,7)-SSW
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code, the capacity lower bound is plotted using (55). It can
be observed that the noisy capacity of SSW codes may be
larger than that of SEC codes when p is small, just like
the noiseless case. The intuition behind this observation is as
follows. From Fig. 8, it is seen that for the noiseless setting

p =0, we have c&r1 5 &3 Now, from the continuity

of the lower bound on C’S(:v’:’l?sc(p) in (55) that is tight at
p = 0, and the fact that Cs(fv’f’;)sc(p) is a decreasing function

of p, it follows that there exists a neighborhood of p = 0
where the inequality CS@J&?SC@) > CS(SS\:V&I?SC(;D) continues to
hold. ’ ’

Fig. 11 plots bounds on capacity of (3,1,2)-SSW codes
over BEC(e). The lower bounds on the capacity are given
by (58) and (64), while the upper bound is obtained using (66).
In this case, it is observed that the two lower bounds coincide,

and the bounds become tight for e — 0 and € — 1.

VII. CONCLUSION

This article proposed a new kind of constrained code,
the skip-sliding window code, which is useful for diverse
applications. Efficient enumeration methods were proposed
to calculate its noiseless capacity and several properties
were discussed. Numerical results showed counterintuitive
performance characterizations, such as the fact there can be
skip-sliding window codes that outperform subblock-energy
constraint codes [8], [9] in both the capacity and the smooth-
ness of energy transmission in simultaneous information and
energy transmission. With the help of noiseless capacity
results, some noisy capacity bounds were further investigated;
counterintuitive performance ordering still holds for certain
parameters.

An interesting future work is to extend the results presented
in this article for the binary alphabet to general g-ary alphabet.
It will also be interesting to apply the theory of sofic shifts [24]
to generalize our results for skip-sliding window codes to a
wider class of constrained systems.
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