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Abstract

Deepfake detection is formulated as a hypothesis testing problem to classify an image as genuine or GAN-generated. A
robust statistics view of GANs is considered to bound the error probability for various GAN implementations in terms of their
performance. The bounds are further simplified using a Euclidean approximation for the low error regime. Lastly, relationships
between error probability and epidemic thresholds for spreading processes in networks are established.
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I. INTRODUCTION

Deepfake, a portmanteau of “deep learning” and “fake” refers to realistic audiovisual content artificially generated using

advanced generative algorithms like generative adversarial networks (GANs), with an implied use for unethical purposes.

Concerns have been raised over the dissemination of misinformation via online channels [1], and the mistrust that deepfakes

engender [2].

The gravity of the deepfake problem has been outlined in [3]. Technologies capable of generating hyperrealistic fake images

and videos are used for dating scams, “astroturfing,” “catfishing,” and to gain the victim’s trust for blackmail, harassment, or

sabotage [4]. With an active community of developers creating free and easy tools to commoditize such technology, there is

eroded trust in visual content [5]. Such “democratization of fraud,” can have particularly grave consequences for politics and

international affairs where it could be used to incite violence, discredit leaders and institutions, or even tip elections [6] and

exacerbate disinformation wars that disrupt domestic politics [7], [8], [9].

Such alarming consequences of deepfakes present an urgent need to computationally discern fake content from genuine

as they are almost indistinguishable to humans. While several studies use features extracted based on visual artifacts, image

quality, lipsync, blinking, or warping for classification (and might soon be obsolete) [10], [11], [12], [13], this work gives a

generalizable statistical framework with guarantees on its reliability. In particular, we build on the information-theoretic study

of authentication [14] to cast deepfake detection as a hypothesis testing problem specifically for outputs of GANs, themselves

viewed through a generalized robust statistics framework [15], [16].

II. PROBLEM FORMULATION

A. GAN Formulation

The GAN trains on infinite sample images with distribution PX , to select an optimal generator function ĝ from a family

of functions G, which takes an input of Gaussian noise Z ∼ N (0, Ir) to generate an output distribution Pĝ(Z) closest to the

input distribution as follows:

ĝ = argmin
g∈G

L(PX ,Pg(Z)). (1)

Here L : M(Rd) × M(Rd) → R≥0 measures the distance between the two distributions. We assume that the minimum is

attained. The alternate case can be dealt with by a standard limiting argument.

1) Perturbation View of GAN : Intuitively, the generator family G of the GAN should be designed such that infg∈G L(PX ,Pg(Z))
is small. We view GANs as a generalization of the robust statistics framework [16] with the true distribution PX as a slightly

perturbed version of a generated distribution Pg(Z) under the distance measure L(·, ·). Define:

OPT := inf
g∈G

L(PX ,Pg(Z)) (2)

as the oracle error, which is the minimum distance between the generated and input distributions, for a particular GAN and

input distribution. The oracle error is fixed for a choice of L and G. Approximately solving the minimization problem by

training on finite samples from X , we still get a generated distribution within O(OPT ) distance of the true input distribution

[16]. For error analysis, we choose the following L functions — Kullback-Leibler (KL) divergence, total variational distance,

Jensen-Shannon divergence [17], and Wasserstein metric [18].
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B. Hypothesis Test

The distribution of legitimate images is PX . The distribution generated by the GAN is Pg(Z). The n i.i.d. pixels of the input

image are Y1, Y2, Y3, . . . , Yn. Accordingly, the test is

H0 := Y ∼ PX —Legitimate

H1 := Y ∼ Pĝ(Z) —GAN generated

where ĝ is close to the optimal result defined in (1). The assumption of i.i.d. pixels is to make the hypothesis test easier than

the non i.i.d. case seen in realistic images.

III. ERROR BOUNDS

A. General Hypothesis Testing Bounds

We have the following error bounds [19, ch. 11] for hypothesis testing:

Neyman-Pearson error: βǫ
n=̇ exp(−nD(PX ||Pĝ(Z))) (3)

Bayesian error: P (n)
e ≤ exp{−nC(PX ,Pĝ(Z))}. (4)

where C is the Chernoff information, which can further be bounded in terms of total variational distance [20].

C(PX ,Pĝ(Z)) ≥ −
1

2
log(1− TV (PX ,Pĝ(Z))

2) (5)

We assume n is sufficiently large for asymptotic bounds to be valid, which mostly holds as the images we generally deal with

are fairly high resolution (approximately 106).

B. Deriving Bounds for Specific L-functions

We derive bounds for the Neyman-Pearson and Bayesian error probabilities for the chosen L-function implementations of

the GAN.

1) KL Divergence: We have

L(PX ,Pg(Z)) = D(PX ||Pg(Z)) ≥ OPT ∀g ∈ G.

Neyman-Pearson:

βǫ
n=̇ exp(−nD(PX ||Pĝ(Z))) ≤ exp(−nOPT ). (6)

Bayesian: From the bound on Chernoff information in (5)

P (n)
e ≤ exp{

n

2
log(1− TV (PX ,Pĝ(Z))

2)} (7)

and from reverse Pinsker’s inequality (A.54), assuming P ∗
g = minx Pĝ(Z)(x) > 0,

P (n)
e ≤ exp{

n

2
log(1−

P ∗
g

4
D(PX ||Pĝ(Z)))} (8)

≤ exp{
n

2
log(1−

P ∗
g

4
OPT )} (9)

=

(

1−
P ∗
g

4
OPT

)n/2

. (10)

2) Total Variational Distance: We have

L(PX ,Pg(Z)) = TV (PX ,Pg(Z)) ≥ OPT ∀g ∈ G.

Neyman-Pearson: Using Pinsker’s inequality (A.53)

βǫ
n ≤ exp(−2nTV (PX ||Pĝ(Z))

2) (11)

≤ exp(−2nOPT 2). (12)

Bayesian: From the bound on Chernoff information in (5)

P (n)
e ≤ exp{

n

2
log(1 − TV (PX ,Pĝ(Z))

2)} (13)

≤ exp{
n

2
log(1 −OPT 2) (14)

= (1−OPT 2)n/2. (15)
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TABLE I
SUMMARY OF THE ERROR BOUNDS

L-function Neyman-Pearson
Bound
βǫ
n ≤

Bayesian Bound

P
(n)
e ≤

KL divergence exp(−nOPT ) (1−
P∗

g

4
OPT )n/2

TV distance exp(−2nOPT 2) (1− OPT 2)n/2

JS divergence exp(−n
2
OPT 2) (1− 1

4
OPT 2)n/2

Wasserstein exp
(

− 2n
diam(X)2

OPT 2
)

(

1−
(

OPT
diam(X)

)2
)n/2

3) Jensen-Shannon Divergence: From the bound on Jensen-Shannon divergence (A.55):

2TV (PX ,Pg(Z)) ≥ JS(PX ,Pg(Z)). (16)

Thus, we have ∀g ∈ G
2TV (PX ,Pg(Z)) ≥ JS(PX ,Pg(Z)) ≥ OPT. (17)

Neyman-Pearson: From Pinsker’s inequality and (17)

βǫ
n ≤ exp(−2nTV (PX ||Pĝ(Z))

2) (18)

≤ exp(−
n

2
OPT 2) (19)

Bayesian: From the bound on Chernoff information in (5)

P (n)
e ≤ exp{

n

2
log(1 − TV (PX ,Pĝ(Z))

2)} (20)

≤ exp

{

n

2
log

(

1−
OPT 2

4

)}

(21)

=

(

1−
OPT 2

4

)n/2

. (22)

4) Wasserstein Metric: From the bound on Wasserstein metric (A.56)

diam(X )TV (PX ,Pg(Z)) ≥ W (PX ,Pg(Z)) ≥ OPT. (23)

where diam(X ) is the diameter of the space.

Neyman-Pearson: From Pinsker’s inequality and (23)

βǫ
n ≤ exp(−2n TV (PX ||Pĝ(Z))

2) (24)

≤ exp

(

−
2n

diam(X )2
OPT 2

)

(25)

Bayesian: From the bound on Chernoff information in (5)

P (n)
e ≤ exp{

n

2
log(1− TV (PX ,Pĝ(Z))

2)} (26)

≤ exp

{

n

2
log

(

1−

(

OPT

diam(X )

)2
)

}

(27)

=

(

1−

(

OPT

diam(X )

)2
)n/2

. (28)

C. Discussion

The bounds are summarized in Table I. As OPT increases, i.e., the GAN used is less accurate, it is exponentially easier

to detect deepfakes in the Neyman-Pearson case, and polynomially so in the Bayesian case. The bound decays exponentially

with the resolution n. Thus, if we require very high resolution in order to trust images, an extremely accurate GAN would be

required to go undetected.
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D. Generalizing the Problem

Images typically have regions depicting features like eyes, mouth, and hair or objects like vehicles and trees that follow a

common distribution. Consider the image to consist of k patches with m pixels each, following the distribution P
(i)
X , such that

m is still large for the hypothesis testing bounds to be valid. We now similarly define individual oracle errors for each patch

as OPTi := infg∈G L(P
(i)
X ,Pg(Z)), considering that the GAN generates each patch independently. The generalized bounds can

be obtained mutatis mutandis by multiplying together the corresponding bounds for each of the k patches obtained by using m

for n, OPTi for OPT , P ∗
gi for P ∗

g , and diam(Xi) for diam(X ) to represent the values defined for each patch of the image.

IV. EUCLIDEAN INFORMATION THEORY

With advances in deep learning and cheap availability of data, GANs have grown ever more complex and can generate a

very close version of the true distribution. This development suggests further analysis in the low error regime using the concept

of Euclidean information theory, which gives the following approximation for KL divergence [21].

Lemma IV.1 (Euclidean approximation). When two distributions are close to each other, i.e. P ≈ Q , the KL divergence

between them can be approximated as

D(P ||Q) ≈
1

2

∣

∣

∣

∣Q− P
∣

∣

∣

∣

2

P̂
=

1

2
||[P̂−1/2](Q− P )||2 (29)

where the weight P̂ is any distribution in the neighborhood of P and Q.

A. Simplified Bounds Using Euclidean Approximation

On applying the approximation in the hypothesis testing error bounds, we get the following:

βǫ
n=̇ exp(−nD(PX ||Pĝ(Z))) ≈ exp(−

n

2

∣

∣

∣

∣PX − Pĝ(Z)

∣

∣

∣

∣

2

P
) (30)

where the weight (subscript P ) is any distribution in the neighborhood of the two distributions. Also, from [19, ch. 11]

P (n)
e ≤ exp(−nD∗(PX ||Pĝ(Z))), where (31)

D∗(PX ||Pĝ(Z)) = max
λ

min(D(PX ||Pλ), D(P ˆg(Z)
||Pλ)) (32)

Pλ =
P
λ
XP

1−λ
ĝ(Z)

∑

a∈X Pλ
X(a)P1−λ

ĝ(Z)(a)
. (33)

Assuming PX ≈ Pĝ(Z),Pλ is also close to the two distributions. So using the approximation in Lemma IV.1, the maximizing

λ is such that the two quantities are equal.

D∗(PX ||Pĝ(Z)) ≈
1

2

∣

∣

∣

∣

PX + Pĝ(Z)

2
− PX

∣

∣

∣

∣

2

PX
(34)

=
1

8

∣

∣

∣

∣PX − Pĝ(Z)

∣

∣

∣

∣

2

PX
(35)

≈
1

4
D(PX ||Pĝ(Z)). (36)

1) KL Divergence: Neyman-Pearson: The bound stays the same.

Bayesian:

P (n)
e ≤ exp

(

−
n

4
D(PX ||Pĝ(Z))

)

(37)

≤ exp
(

−
n

4
OPT

)

. (38)

2) Total Variational Distance: Neyman-Pearson: The bound stays the same.

Bayesian: Using Pinsker’s inequality

P (n)
e ≤ exp

(

−
n

4
D(PX ||Pĝ(Z))

)

(39)

≤ exp
(

−
n

4
2TV (PX ||Pĝ(Z))

2
)

(40)

≤ exp
(

−
n

2
OPT 2

)

(41)
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TABLE II
SIMPLIFIED BOUNDS USING EUCLIDEAN APPROXIMATION

L-function Neyman-Pearson
Bound
βǫ
n ≤

Bayesian Bound

P
(n)
e ≤

KL divergence exp(−nOPT ) exp(−n
4
OPT )

TV distance exp(−2nOPT 2) exp(−n
2
OPT 2)

JS divergence exp(−2nOPT ) exp(−n
2
OPT )

Wasserstein exp
(

− 2n
diam(X)2

OPT 2
)

exp
(

− n
2 diam(X)2

OPT 2
)

3) Jensen-Shannon Divergence: When P1 ≈ P2 , Jensen-Shannon divergence can also be approximated in the Euclidean

regime as:

JS(P1, P2) =
1

2
[D(P1||

P1+P2

2 ) +D(P2||
P1+P2

2 )] (42)

≈

∣

∣

∣

∣P1 − P2

∣

∣

∣

∣

2

P1

4
≈

D(P1||P2)

2
. (43)

Thus, we have

OPT ≤ JS(PX ,Pg(Z)) ≈
D(PX ||Pg(Z))

2
. (44)

Neyman-Pearson:

βǫ
n=̇ exp(−nD(PX ||Pĝ(Z))) ≤ exp(−2n OPT ) (45)

Bayesian:

P (n)
e ≤ exp

(

−
n

4
D(PX ||Pĝ(Z))

)

≤ exp
(

−
n

2
OPT )

)

(46)

4) Wasserstein Metric: Combining the bound for Wasserstein metric in (A.56) and Pinsker’s inequality, we have

OPT ≤ W (PX ,Pg(Z)) ≤ diam(X )

√

D(PX ,Pg(Z))

2
. (47)

Neyman-Pearson: The bound remains the same.

Bayesian:

P (n)
e ≤ exp

(

−
n

4
D(PX ||Pĝ(Z))

)

(48)

≤ exp

(

−
n

2 diam(X )2
OPT 2

)

(49)

B. Discussion

Table II summarizes the simplified bounds using Euclidean approximation. For the same value of OPT , we see that GANs

with Jensen-Shannon divergence as the L-function are the easiest to detect with lowest bound on the Bayesian error probability.

Also, while the relationship between the error probability and image resolution remains the same, it is exponentially easier to

detect deepfakes from GANs with higher OPT for both tests unlike the results in Table I. The exponent of Neyman-Pearson

bound is simply that of the Bayesian bound multiplied by a factor of four for all L-functions.

V. EPIDEMIC THRESHOLD THEORY AND DEEPFAKES

Deepfakes may disperse rapidly in social networks [22] with spreading dynamics similar to diseases. The SIR (susceptible-

infected-recovered) model for epidemics can be useful to assess the risk posed by a deepfake. Epidemic threshold characterizes

the critical level λc for effective spreading rate λ above which a global epidemic occurs and the spreading cannot be contained.

The threshold can be predicted based purely on the network structure [23]. The spreading rate is expressed as

λ =
β

γ
(50)

where β is the probability of transmission from an infected to susceptible node, and γ is the probability of recovery, i.e.,

probability of correctly detecting the deepfake 1− Pe. Let the bound for P
(n)
e be exp(−nf(OPT )). Thus, we have

λ ≤
β

1− exp(−nf(OPT ))
. (51)
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Along with the condition for containment λ ≤ λc, we get the following condition on OPT for the deepfake to be locally

containable.

f(OPT ) ≥ −
1

n
ln

(

1−
β

λc

)

. (52)

When f(OPT ) is greater than the expression on the right, which depends only on n and the network structure, the deepfake can

be locally confined. From Tables I and II, f is always increasing. A higher OPT , i.e., worse GAN accuracy, guarantees higher

robustness to global spread of misinformation. Thus the network will be less easily fooled by a weaker deepfake generation

system.

VI. CONCLUSION

This work provides a statistical framework to detect deepfakes and error guarantees for these tests. Avenues to extend this

study include— accounting for a possible gender, race, etc. based bias in the training data to prevent incorrect classification,

developing a similar framework for conditional GANs [24] for detecting face swapped content, and deriving error bounds

in terms of more commonly used GAN evaluation metrics as in [25]. Further, by incorporating these results with studies on

spreading dynamics of infectious diseases [26], [27], we can obtain bounds on source detection probability for deepfakes.
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APPENDIX

IMPORTANT INEQUALITIES

A. Pinsker’s inequality:

TV (P1, P2)
2 ≤

1

2
D(P1||P2). (A.53)

Proof. The proof is given in [28].

B. Reverse Pinsker’s inequality:

For the case of finite alphabet X , when P ∗
2 = minx∈X P2(x) > 0,

4

P ∗
2

TV (P1, P2)
2 ≥ D(P1||P2). (A.54)

Proof. This reverse bound on total variational distance has been proved by Csiszár and Talata [29, p. 1012].

C. Bound on Jensen-Shannon divergence:

JS(P1, P2) ≤ 2TV (P1, P2). (A.55)

Proof. The proof is given in [30].

D. Bound on Wasserstein metric:

W (P1, P2) ≤ diam(X )TV (P1, P2) (A.56)

where diam(X ) = sup{d(x, y) : (x, y) ∈ X} is the diameter of the space.

Proof. The proof is given in [31].
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