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Abstract—The rapid progress of deep learning-based tech-
niques such as Convolutional Neural Network (CNN) has enabled
many emerging applications related to video analytics and
running them on mobile devices can help improve our daily lives
in many ways. However, there are many challenges for video
analytics on mobile devices using multiple CNN models. CNN
models are resource hungry, and each model requires a large
amount of computational power and occupies a large portion
of memory space. Although video processing can be offloaded to
reduce the computation time, transmitting large amount of video
data is time consuming. Thus, offloading is not always the best
option. Moreover, different CNN models have different memory
usage and processing time, making the scheduling problem
more complex. As a result, besides deciding which task to be
offloaded, we must decide which CNN model should reside in
the memory and for how long, and which CNN model should be
switched out due to memory constraint. In this paper, we propose
resource aware scheduling algorithms to address these challenges.
We identify the task scheduling problem for running multiple
CNN models on mobile devices under resource constraints and
formulate it as an integer programming problem. We propose
resource-aware scheduling algorithms which combine offloading
and local processing methods to minimize the completion time
of video processing. We implement the proposed scheduling
algorithms on Android-based smartphones and demonstrate its
effectiveness through extensive experiments.

I. INTRODUCTION

Over the past few years, there has been significant progress
in deep learning-based techniques such as Convolutional Neu-
ral Network (CNN), and researchers have been applying these
techniques to solve computer vision and natural language
processing problems [1], [2]. These techniques can provide
much better results than traditional methods and some of them
even outperform human beings in specific datasets [3].

With the help of CNN models, more intelligent analytics
can be performed on videos captured by mobile devices. Video
analytic usually includes two phases: detecting objects in the
video frames and recognizing them. The extracted information
from the captured video can help improve our daily lives in
many ways. For example, a traveler with a Google Glass can
continuously capture images of different people, objects, or
even street signs written in a foreign language. Multiple CNN
models are applied to recognize them to improve the accuracy
since each CNN model is only good at recognizing some
class of objects. For example, buildings are recognized with
PlacesCNN [4] so that the traveler can quickly recognize the
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well-known landmarks and never miss important tour points.
Human faces are recognized with VGGNet [5] in case an
old friend or a celebrity shows up, and GoogleNet is used to
detect the words in street signs, restaurant menus, and replace
them with translated texts if necessary, so that the traveler can
quickly adapt to a new environment. Such video analytics are
also useful for content-based indexing, which can help people
find the necessary information quickly; otherwise, all videos
have to be searched to find a particular object. It can also
help people with memory disorder to restore their memories
by retrieving the relevant video collected earlier [6].

There are many challenges for video analytics on mobile
devices using multiple CNN models. CNN models are re-
source hungry, and each model requires a large amount of
computational power and occupies a large portion of memory
space. The problem becomes worse for mobile devices which
have limited resources and the time for running a CNN model
on mobile device is usually long. For example, it takes about
900ms to use a pre-trained Resnet model to process one image
on Samsung S8 with the Android Caffe library, and it occupies
more than 700 MB memory space to hold its parameters and
intermediate result during execution. Moreover, when multiple
CNN models are needed, the memory space will become a
problem. For example, the available memory space is usually
less than 1.3 GB on advanced smartphones like Samsung S8,
since the operating system will occupy some memory space.
As a result, to run multiple CNN models locally, memory
switch is necessary since a mobile device cannot hold all
CNN models in memory at the same time. Switching the
models in/out of the memory is time consuming, and hence
the scheduler should minimize such memory switches.

Videos can be offloaded to the edge server for processing.
Although the server can reduce the computation time, it takes
much time to transmit the videos which are usually large
and mobile devices have limited wireless bandwidth. We can
first detect the objects and only offload the extracted images
from the video frames, but the mount of transmitted data may
still be high. Thus, offloading is not always the best option.
Moreover, different CNN models have different memory usage
and processing time, making the scheduling problem more
complex. As a result, besides deciding which task to be of-
floaded, we have to decide which CNN model should reside in
the memory and for how long, and which CNN model should
be switched out at which time. Although researchers have



proposed offloading techniques [7]-[9] which can determine
jobs to be offloaded to the edge server or processed locally
to minimize the completion time, none of them considers the
memory constraint and its effect on scheduling. Recently, there
is some work [10], [11] on using multiple versions of the same
CNN model to achieve tradeoffs between processing time and
accuracy. However, none of them considers running multiple
CNN models or design scheduling algorithms to minimize the
overall video processing time.

In this paper, we propose resource aware scheduling algo-
rithms to address these challenges. Our goal is to minimize the
completion time of video processing, which is accomplished
by first deciding whether an incoming image processing task
should be offloaded or executed locally. If a task is decided
to be executed locally, its corresponding CNN model must
be loaded into the memory, possibly by switching out some
other models due to memory constraint. We formulate this
scheduling problem as an integer programming problem and
propose two heuristic based algorithms: a naive algorithm
which decides whether to offload or run locally based on their
completion time difference, and an advanced algorithm which
addresses some weaknesses of the naive algorithm to further
reduce the completion time.

Our contributions can be summarized as follows.

o We identify the task scheduling problem for running
multiple CNN models on mobile devices under resource
constraints, and formulate it as an integer programming
problem.

o We propose resource-aware scheduling algorithms which
combine offloading and local processing methods to
minimize the completion time of video processing.

+« We implement the proposed scheduling algorithms on
Android-based smartphones and demonstrate its effec-
tiveness through extensive evaluations.

The organization of the paper is as follow: We discuss re-
lated work in Section II. In Section III, we give the motivation
and the basic idea of our solution. We formulate the scheduling
problem in Section IV, and present the proposed resource-
aware scheduling algorithms in Section V. Section VI presents
the evaluation results, and Section VII concludes the paper.

II. RELATED WORK

There are some existing researches on supporting CNN
models on mobile devices. Many of them focus on optimizing
the CNN model with techniques such as model compres-
sion to reduce its resource requirement and execution time.
Teerapittayanon et al. [12] inserts an early exit point to a
CNN model, so that less accurate results can be obtained by
running part of the model to reduce the completion time. Tan et
al. [13] leverages Neural Processing Unit (NPU) and model
partition techniques to improve the performance of running
CNN models on mobile devices. Chameleon [14] achieve
a better tradeoff between accuracy and processing time by
dynamically changing the configuration of DNN used in video
analytics. Liu et al. [15] not only considers how to reduce the

network size, but also proposes methods to guarantee that the
compressed model can satisfy the performance requirement.

Another widely used technique to improve the performance
of video analytics is computation offloading, and there is con-
siderable amount of existing research on computation offload-
ing. For example, MAUI [7] profiles the energy consumption,
offloading latency and task dependency for each function, and
it uses offloading to optimize the energy usage. Computation
offloading techniques [16], [17] have also been proposed to
save energy by considering the long tail problem in 4G/LTE
network, and by considering the energy performance tradeoff
in multicore-based mobile devices. Some researchers studied
how to satisfy the delay constraints by running different
DNNs locally under various network conditions [10], [18].
DeepDecision [10] and MCDNN [11] aim to achieve the
tradeoff between video processing speed and accuracy by
using different versions of the same CNN model to process
images. FastVA [18] leveraged Neural Processing Unit (NPU)
and offloading techniques for video analytics on mobile de-
vices. However, none of them considers the memory constraint
of mobile devices and the characteristics of different CNN
models.

Multiple CNN models have been considered in DeepEye
[19], which uses separate threads to run the fully connected
and convolutional layers, and it interleaves the execution of
different layers so that multiple models can be executed on
wearable devices with limited memory. However, DeepEye
only runs CNN models locally, while our work considers
offloading some images to the server. As a result, besides
deciding which task to be offloaded, we must decide which
CNN model should reside in the memory and for how long,
and which CNN model should be switched out at which time.

III. PRELIMINARY

Our goal is to find an efficient job schedule for video
analytic using multiple CNN models on mobile devices. In
order to achieve this goal, we first need to understand the
CNN models. Although different CNN models share some
common characteristics such as similar types of layers, there
are many differences among them when considering their
memory usage, loading time and processing time. Such differ-
ence plays an important role in making scheduling decisions,
since a mobile device may not have enough memory to hold
all the CNN models and some models can be executed more
efficiently locally than others. In this section, we first introduce
the general procedure of video analytic. Then we discuss the
common layers in CNN models, which are directly related
to the characteristics of CNN models. Finally, we present the
motivation and general idea of our solution.

A. Video Analytic

There are two stages to process a video frame, which is
shown in Fig. 1. The first one is object detection, where an
object detector is used to locate the objects and classify the
objects into different categories. Some methods [20], [21] have
been proposed to do the detection in real time. For each frame,
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Fig. 1: The procedure of detecting and recognizing objects for
a video frame.

the object detector will find out the location for each object and
crop its image from the frame. Based on the detection result,
the number of objects in each frame is obtained. The second
stage is object recognition, in which the cropped object images
are sent to the corresponding CNN models for extracting
features and matching. Multiple CNN models are needed in
this stage to improve the accuracy since each CNN model is
only good at recognizing some class of objects.

We focus on minimizing the completion time for feature
extraction using different CNN models, since most of the
video processing time is in this stage. As in the examples
introduced in the introduction, reducing the video processing
time will help reduce the user waiting time and assist users
adapt to the new environment quickly or find the necessary
information quickly. Many similar examples can be made for
law enforcement where completion time is important.

A mobile device can choose to process an object image
locally or offload it to the edge server. A good scheduler
decides which images are offloaded to the edge server and
lets the device to run the rest of them locally, so that the
completion time can be minimized. We try to find out such a
schedule given the CNN models, memory limitations, object
image sizes and the wireless bandwidth.

B. Convolutional Neural Network

During video processing, different CNN models are used
for extracting information from the object images. Although
many CNN models have been proposed, most of them contain
some common types of layers. Here, we only discuss the con-
volutional layer and the fully connected layer, which generate
most of the processing time and loading time.

Convolutional Layer: The convolutional layers are located
at the beginning of the CNN models which include dozens
of filters. These filters are used to extract features from the
input image. The convolution operations are performed when
a filter is applied on the input data. Although storing the
parameters for these filters does not need too much memory,
performing the convolution operation requires lots of memory.
Meanwhile, the intermediate results produced by this layer
occupy a large amount of memory space. Since CNN models
usually construct their convolution layers with different set-
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tings, the processing time and the memory usage spent on
their convolutional layers are different.

Fully Connected Layer: The fully connected layers are
usually located at the end of the CNN model. Normally, there
are millions of parameters needed in a fully connected layer.
Although the computation of fully connected layers can be
completed quickly, the memory space required to hold the
parameters is very large and most of the loading time for a
CNN model will be spent on reading these parameters.

C. Motivation and Basic Idea

There are many CNN models. Some of them are frequently
used and have been fine-tuned for different tasks. For example,
the googleNet proposed in [3] is fine-tuned to recognize
places in images [22]. Here we choose several well-known
models from Caffe Model Zoo, which have been adopted by
many researchers. To understand the characteristics of different
CNN models, we measure the memory usage, loading time
and processing time of the selected CNN models, since they
directly affect the job scheduling decision. The deep learning
framework we use is Caffe [23], and we export it to Android
for evaluation on a Samsung S8. The measurement result is
shown in Fig. 2.

As shown in Fig. 2(a), some CNN models require much
more memory space than others. Since mobile devices have
limited memory, it is impossible to hold all CNN models in
memory. For instance, a device with 1 GB available memory
space can either run an instance of Resnet or execute CaffeNet
and GoogleNet simultaneously. These choices will lead to
different completion time of video processing. Fig. 2(b) shows
the loading time and the processing time of different CNN
models. As can be seen, some models can process their data
more efficiently than others, while some of them have a faster
loading time. All these differences will affect the completion



time of video processing, and we need to carefully decide
which jobs should be processed locally and which of them
should be offloaded. To see how these CNN models affect
the job scheduling decision, we use an example to show the
completion time difference of two schedule schemes in Fig.
3.

In Fig. 3, suppose 40 images need to be processed by
ResNet at time ¢ = 0s. At time ¢ = 3s, 40 more images
need to be processed by ResNet and 40 images need to be
processed by GoogleNet. For simplicity, we assume all input
data are 227x227 pixel RGB images, which are the inputs for
all CNN models as well. We assume that the uplink bandwidth
is 4Mbps and the available memory space on the mobile device
is 1 GB.

We show two different schedules in Fig. 3. The yellow line
means that the CNN model is currently used by the mobile
device for processing images, while the blue line means that
the CNN model is not in memory and its input images are sent
to the edge server for processing. At the beginning, since there
are only input images for Resnet, the mobile device loads the
Resnet model into memory to process the data. Meanwhile,
some of the input images are transmitted to the edge server
in parallel to reduce the completion time. At ¢ = 3s, there
are jobs coming for both Resnet and GoolgeNet. At this
point, scheme-1 chooses to keep Resnet in memory based on
the intuition that model switching is time consuming, and it
offloads the new arrived images for GoogleNet to the edge
server. On the other hand, scheme-2 decides to switch out
Resnet in order to run GoogleNet model on the mobile device,
since Resnet is not as efficient as GoogleNet when being run
locally.

From Fig. 3, we can see that scheme-2 can save 25% of time
compared with scheme-1. Although this example is simple, in
many real cases, there are many CNN models, and it is hard to
decide which model should be run locally and which images
should be offloaded. The decision is affected by many factors,
and we will formulate and study it in the following sections.

IV. PROBLEM FORMULATION

Table I shows the notations used in the problem formulation.
For an image I;, it can be processed locally or offloaded.

Notation | Meaning
I; The *" Image
ci The CNN model used to process I; locally
Si The data size of Image I;

The loading time of the j** CNN model

Local processing time of one image using the ;%'

L

P; model
m; The memory requirement to run the 5% CNN model
t;

M

B

The time when [; is processed or offloaded
The total available memory space of the device
The uplink bandwidth

TABLE I: Notations
Local Processing: If I; is processed locally, its completion
time can be calculated as L. X! + P., + t;, where X[
is 1 if the c!® CNN model is in memory at time ¢; and
it is O otherwise. There are several constraints. First, the

total memory usage of all CNN models loaded into the
memory should not be greater than M at any given time; i.e.,
v, 5o, mXE < M.

Second, for the same CNN model, it cannot process I;
before it finishes the processing of the images that arrive
earlier, ie., t; > ty + L., Xci + Pe,, VI, where i’ < i
and Cir = Cj.

Third, the CNN model must be kept in memory when we
use it to process image I; locally, i.e., during time t' € (¢;,t;+
Lo, Xl +P.,), XL = 1.

Offloading: to offload I;, the completion time is #;+ 7. The
only constraint for offloading is that the network interface can
only start offloading I; after transmitting all the images that
have arrived before I,. That is, t; > t;; + %, for all offloaded
image I;;, where i’ < i.

We do not consider the time for the server to process
and return results. The server inference time and the result
returning time are negligible due to the following. After the
mobile device offloads an image to the server, it does not
need the result from the server to offload or process the next
image. As a result, the server processing is not the bottleneck
for calculating the completion time, and it can be processed in
parallel with the (next image) uploading or local processing,
and thus is ignored. Similarly, transmitting the processing
results (several bytes for each image) is not the bottleneck and
can be done in parallel with the uploading or local processing,
and thus it is ignored.

Let el . denote the completion time for the last image
to be processed locally, and then e/ == max; Le, X% +
P., + t;. Let e denote the completion time of the last
offloaded image, and then e;’ﬁaz = max; % + t;. Let emax
denote the completion time of the last image, and it can be
calculated as max (e, e . In fact, €, is the time when
we finish processing the video, and our goal is to minimize
emaz- Therefore, the problem can be formulated as an integer
programming in the following way:

min  emay
st M> ijX;,Vt € (0, emaz)

J
XU >y, V' € (tisti + Lo, X5 + P,
ti > (yiyi/)(ti’ + L61/X£;: + Pci/)7Vi/ <, = ¢
t > (1—ya) (1 =y )t + o), Vil <

B
Xj,yi €{0,1},Vi,5,t
where y; 1s an indicator to show whether the image I, is
offloaded or processed locally. If y; = 1, it will be processed
locally, and it will be offloaded to the edge server if y; = 0.
This problem is NP-Hard and thus we design heuristic-based
algorithms to solve it.

V. RESOURCE-AWARE SCHEDULING ALGORITHMS

In this section, we first propose a naive algorithm to
optimize the completion time, and then propose an advanced
algorithm to further reduce the completion time.



A. The Naive Algorithm

For each CNN model, there is a job queue, and jobs in the
queue are images to be processed by the CNN model. Since
there is limited memory space, some CNN models may not be
in the memory and must be loaded into the memory. Therefore,
the time for processing all jobs in the j** job queue locally
can be computed as:

> P
loc _ I;eU;

’ L;+ Z P;  otherwise.

L,eU;

where Uj is the set of images needed to be processed by
the j** CNN model. We can also choose to offload all jobs in
the j*" job queue to the edge server, and the offloading time
is T — Z1Ev %

J B

The running time difference between offloading and local
processing for the 4t job queue is denoted as 9;, where
9; = TJ’»"" - T;ﬁ . It represents the amount of time to be
saved by offloading the jobs in the 5 job queue to the server.
Therefore, jobs in the job queue that has the largest Z; should
be offloaded, and jobs in the job queue which has the smallest
2; should be processed locally. Our naive algorithm can be
summarized as follow:

The ;%" model is in the memory.

1) For the jobs to be processed, compute the running time
difference %; for the jt" job queue, and sort the job
queues in ascending order based on Z;.

2) Pick the job queue with the largest Z; and offload the
jobs in this job queue.

3) Meanwhile, starting from the first job queue, load the
corresponding CNN models into the memory in ascend-
ing order of Z; until there is not enough memory space
for loading another one. The jobs in these job queues
are processed locally.

4) Repeat the above steps when a job queue becomes
empty. The algorithm terminates when there is no job
to be processed.

The Naive algorithm has a low time complexity of O(n),
where n is the total number of jobs for all the job queues.
Therefore, it can be executed very efficiently. It is simple and
can be easily implemented.

B. Our Resource-Aware Scheduling Algorithm

1) Motivation: There are some weaknesses in the Naive
algorithm. First, it only considers the running time difference
between offloading and local processing for the whole queue,
but ignores the data size difference of different images. For the
same job queue, offloading the processing of an image with
smaller data size can save more time compared to offloading
the larger ones. This is because the processing time does not
depend on the image size, and all images are scaled to the same
resolution to run CNN models. At the same time, it takes less
time to offload smaller images than larger ones. Therefore, it
is better to offload small images from different queues, instead
of offloading images in a specific job queue.

Mbpeqas | oM Modelz 1 T
Model 2 Model 3

Model 1 Model 1

Model 4 Model 4

1
|
1
1
!
t

(a) naive method schedule scheme (b) a better schedule scheme

Fig. 4: Suppose the time difference for each job queue is
2;(1<i<4)and 1 < P53 < P2 < P4. Therefore, the naive
algorithm first loads Model 1 and Model 3 into the memory
and processes the corresponding jobs locally. It fails to find a
better solution.

Second, the Naive algorithm may miss some better solu-
tions. Consider the example shown in Fig. 4. In the figure, x
axis shows time, and y axis shows the memory usage where M
is the maximum available memory. The rectangle represents
the job queue of each CNN model. The width of the rectangle
stands for the local processing time for the corresponding
job queue, while the height represents the runtime memory
requirement. Since the Naive algorithm only considers the
time difference between offloading and local processing, it
generates a schedule shown in Fig. 4(a). However, a better
schedule with less completion time can be found in Fig. 4(b).

2) Scheduling Image processing within a Time Slot:

In the Advanced algorithm, time is divided into fixed time
slots, and we first assign jobs to different time slots based on
their arrival time. For each time slot, we try to minimize the
completion time for processing all images. We first discuss
how to optimize the completion time within a time slot, and
then discuss how to further reduce the completion time by
rescheduling jobs among different time slots.

During scheduling, the Advanced algorithm tries to deter-
mine which images should be offloaded for each job queue and
optimize the completion time for the local processed jobs.

A brute force method is to list all the possible schedules
(i.e., what images for each job queue should be offloaded),
compute the running time for each schedule and find out the
optimal one among them. For each job queue, time can be
saved by offloading the smaller images first. Therefore, the
advanced algorithm sorts the images in the ascending order
based on the data size in each job queue. For each job queue,
it always chooses the images from the head of the queue to be
offloaded. Therefore, we have [, (|U;|+1) different schedule
decisions using the brute force method. When the number of
images is large, it is impossible to find the optimal.

To improve the search efficiency, we adopt the idea of
dynamic programming. We choose a parameter 6 to limit the
total number of decisions. For each job queue j, the jobs are

divided into 6 groups. For instance, the first |U9j| images are
|U; |

put into the first group, and the next images are put into
the second group, and so on. All jobs belong to the same
group can either be offloaded to the server or run locally. In
this way, the number of choices is significantly reduced.

For each possible schedule, Algorithm 1 is used to find out
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the optimal schedule for the jobs that need to be run locally.

Algorithm 1: Local Scheduling within a Time Slot

Data: job queues, the set of CNN models in memory (V)

Result: the local processing time (71" which is initialized
to be 0), and the loading sequence of these CNN
models (S which is initialized to be empty)

1 Function Main:

2 Append V to S

3 while there exists images to be processed do

4 V + FindNextCombination (V)

5 Append V to S

6 for job queue j €V do

7 compute Tj = X[ Lj + 31 cpp. P

8 T+ T+ minj Tj

9 UpdateJobQueues (1)

10 return 7, S

11 Function FindNextCombination (V):

12 for each job queue j do

13 if U; = ¢ then

14 for each valid combination V' do
15 | V<V —{j}

16 for each valid combination V' do

17 if |V’| > |V| then

18 | V<V

19 return V'

20 Function UpdateJobQueues (T'):

21 for each job queue j do

22 for I, € U; do

23 if t; + P; + L;X;' <T then
24 ‘ Uj<—U]—{Il}

In Algorithm 1, different job queues need to be processed
by different CNN models. Since each CNN model can be in
the memory or not, there are many possible combinations.
However, due to memory constraint, not all CNN models can
be in the memory, and then not all combinations are valid.
Then, a valid combination, denoted as V', is a set of CNN
models which can be in the memory at the same time. Given
the jobs that need to be processed locally, the algorithm finds
a loading sequence of CNN models to minimize the local
processing time.

3) Rescheduling Across Time Slots: Through the
above discussion, we obtain a schedule within each time slot.
However, such schedule may not be the best solution across
time slots. An intuitive solution is to run all of the scheduling
decisions for all time slots one by one, but this method cannot

fully utilize the device memory to run jobs locally.

Consider the example shown in Fig. 5, where the notations
are similar to that in Fig. 4. Here we have time slots,
represented by the vertical dashed line. As shown in Fig. 5(a),
for time lot 1, model-2 does not process any image after it
finishes its jobs. However, model-2 still occupies the memory
and model-3 cannot be loaded before model-1 finishes its
jobs in time slot 1. As can be seen, in time slot 1, model-
2 has been idle for some time, although it should run the
jobs represented with dark color. As shown in Fig. 5(b), with
rescheduling across time slots, the jobs represented with dark
color is rescheduled from time slot 2 (shown in Fig. 5(a)) to
time slot 1. As a result, the processing completion time is
reduced.

Algorithm 2: Reschedule across time slots
Data: The schedule for the time slot.
Result: new schedule

1 for each model j do

2 | Lett < T/"+3, . P+ L

3 | while TP — ¢ > P; do

4 for U]/» in each of the following time slot do
5 a mlnlieUJ/_ a;

6 if a # ¢ then

7 | break

8 t + max(a,t)

9 ift+ P < TjO“t then

10 Reschedule the image to this time slot
11 t<—t+ Pj

12 else

13 | break

14 return new schedule

To reschedule jobs across time slots, we first need to find
out the time period when a CNN model is idle in a time
slot. For a CNN model j in a time slot, let TIn denote the
time it is loaded into the memory, and let T] ut denote the
time that the model is switched out. The idle period for this
model is: (T/" + 3, cpp. Py + Lj, T""). We can make use
of this idle time period and ask model j to process images
in the following time slots. The rescheduling procedure is
summarized in Algorithm 2.

If some jobs at a time slot are rescheduled to another time
slot, their corresponding CNN models will have more idle
time. The local processing time for the time slot will not
change if we can reschedule enough jobs to it. However, there
are some cases that such reschedules cannot be done. For
example, we cannot reschedule any jobs to the last time slot,
since no jobs will arrive. In such cases, Algorithm 1 will be
run again to find a more efficient schedule for this time slot.

VI. PERFORMANCE EVALUATIONS

In this section, we evaluate the performance of the proposed
resource-aware scheduling algorithms: the Naive algorithm
and the Advanced algorithm. In the evaluation, we consider



two sets of traces, one is generated by us and the other one is
based on real world video dataset.

A. Evaluation Setup

In our evaluation, we use a Samsung Galaxy S8 smartphone,
and a Dell desktop with Intel i7-3770@3.4GHz CPU and
16GB RAM as the server. We use classic HoG and linear SVM
detectors for object detection which can run in real time and
achieve high accuracy. We do not use CNN model for object
detection since it is too resource-hungry for mobile devices.
We choose Caffe [23] as the deep learning framework and
choose some of well-known CNN models from Caffe Model
Zoo for our tests. Since the original version can only be run
on computers, we use the library ported to Android. However,
this library does not support for running multiple CNN models
simultaneously, thus we modify its code to allow smartphones
to load multiple CNN models and execute them at the same
time.

The evaluation compares our proposed algorithms with the
following three approaches.

o Offload-Only: This method always offloads images to

the server for processing.

e Local-Only: This method processes all input images on
the mobile device. Algorithm 1 is used to find out the
best schedule.

o DeepEye: We implement DeepEye [19] to optimize the
video processing with the help of cloud server. DeepEye
loads the CNN models into the memory based on the
descending order of model sizes until there is not enough
memory space for loading another one. The DeepEye
does not switch out CNN models from the memory and
always offloads the data if the corresponding CNN model
is not in the memory.

The input images that need to be processed are randomly
generated following uniform distribution. All the input images
are assigned a random arrival time ranging from 0 to 100
seconds, and then assigned to a CNN model to be processed.
The image size ranges from 40 x 40 pixels to the maximum
input size of its corresponding CNN model. Images that
smaller than 40 x 40 pixels are ignored. All the random
values are generated following a uniform distribution. We
use workload to represent the number of arriving images per
second.

B. Comparisons of Different Approaches in Various Settings

Model Memory Processing | Loading (s)
Usage(MB) Time (s) Time (s)
Resnet 716 0.95 0.606
CaffeNet 317 2.38 0.36
GoogleNet 472 0.69 0.39
LightCNN 788 0.96 0.2
VGG 563 2.15 0.34
HybridCNN 604 391 0.45

TABLE II: The models used in our experiment.
We first evaluate our algorithms under different uplink data

rates, and the result is shown in Fig. 6. In this experiment, we
use the models described in Table. II.

DT — . R e
300
Method
I Advanced Method 1500
Z200 z -#- Local-Only
! Z 1000 Offioad-Only
100
500
0 | - 3 p '
1 6 8 10 12 14 4 6 8 10 12 14
Bandwidth Bandwidth (Mbps)
(a) (b)

Fig. 6: Performance under various uplink rates.
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Fig. 7: Performance under various device memory limitations.

We set the workload to be 80 images/s and limit the
available memory to be 1 GB. As we can see in Fig. 6(a), when
the data rate is small, the advanced algorithm outperforms the
DeepEye and naive algorithm and it can save up to 50% of
the processing time when the data rate is 4 Mbps. When the
data rate becomes larger, DeepEye, the naive algorithm and
the advanced algorithm will be similar to the Offload-Only
method, since most of the input images will be transmitted
to the server for processing. In the experiments, we do not
separate the running time of our scheduling algorithms, since
the overhead of our scheduling algorithm (0.02s for nave, 0.5s
for resource-aware algorithm) is negligible compared to the
video processing time (100s level).

In Fig. 7, we compare the five algorithms under different
memory limitations. For this test, we still use all the models
described in Table. II, and set the workload and the uplink
data rate to be 80 images/s and 8 Mbps respectively. Fig. 7(b)
compares Offload-Only and Local-Only. When the available
memory is less than 700 MB, Local-Only cannot finish all jobs
since some of the CNN models require more memory space to
run. As the memory size increases, the processing time for the
Local-Only method decreases, since it can run more models
at the same time. Fig. 7(a) shows the comparison between the
naive method and the advanced method.

As can be seen from the figure, some part of the advanced
algorithm is flat. This is because the advanced algorithm tries
to load as many CNN models as possible. When the memory
increases a little bit, it is possible that the advanced algorithm
cannot load another model into the memory. Hence, it will
still have the same completion time. Since the naive algorithm
cannot fully utilize the device memory, it takes 50% more time
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Fig. 9: Performance using various CNN model combinations.

than the advanced one in some cases. When the memory size
increases, the performance of both methods becomes close
since they can load the same number of CNN models.

In Fig. 8, we perform tests under different workload settings.
The bandwidth and the memory limitation are set to be 8 Mbps
and 1 GB. Fig. 8(a) compares the performance of Offload-
Only, DeepEye, Naive and Advanced. When the workload is
low, the processing time of these four algorithms is similar.
This is because most devices have enough time to offload most
of the images before more images arrive. As the workload
increases, not all images can be transmitted in time. At this
time, our algorithms can save time by processing some images
locally. The advanced algorithm can save more time than
DeepEye and the naive one, since it will not only consider
the size of the offloaded images, but also utilize the memory
space better.

In Fig. 9(a), we evaluate the effects of different combina-
tions of CNN models on our algorithms. There are four test
cases, as shown in Table. III, and each test case selects a
subset of the CNN models used in previous experiments. The
uplink bandwidth and the workload are set to be 8 Mbps and
70 images/s individually. As shown in Fig. 9, the advanced
algorithm can save 25%, 30% and 40% of the processing
time than the naive algorithm, DeepEye and the Offload-Only
method.

Fig. 10 shows an example of model switching on smart-
phone, and it is taken from the first five time slots in test case
1 shown in Table III. Fig. 10(a) shows the job arrivals for
each CNN model, and Fig.10(b) shows the number of local
processed jobs. Fig. 10(c) shows which models are in memory
at each time slot. At the beginning, due to the variations of
image size, not all jobs of a model will be offloaded to the edge
server. Resnet and LightCNN are loaded first to process their

Test | Selected Models Memory
1 All models 1.5 GB
2 Resnet50, caffenet, googlenet, lightcnn, ilsvrel3 1.5 GB
3 caffenet, googlenet, lightcnn, ilsvrcl3 1.25 GB
4 Resnet50, googlenet, lightenn, ilsvrcel3 1.25 GB

TABLE III: The test cases used in Fig. 9.

jobs locally, then GoogleNet replaces Resnet and executes
its job locally. For time period 2 and 3, since the number
of Resnet jobs is small and Resnet has a longer processing
time compared with the other two models, all of its jobs are
offloaded. At time slot 4, when GoogleNet finishes all its jobs,
there are still some jobs of Resnet left, and the Resnet model
is loaded to process them locally. At time slot 5, since Resnet
is in the memory, it will run its jobs first (a very short time
period at the start of time slot 5) and then the GoogleNet
model will replace it.

C. Real World Video Analytics

Video Index | Text | Person | Vehicle
1 764 1892 0
2 120 1428 48
3 192 1560 6
4 203 13473 337
5 87 2410 101
[§ 327 1212 0
TABLE IV: The number of detected objects in each video.
Selected Models | Extracted Information
Resnet text recognition
GoogleNet vehicle models
Caffenet age
LightCNN face features
VGG gender
HybridCNN scene detection

TABLE V: CNN models used in real world video analytics.

Besides using generated images to evaluate our algorithms,
we also use the real world video data for evaluations. We use
videos from the newest dataset in Multiple Object Tracking
Benchmark (MOT) [24]. These videos are taken at different
places, where some of them capture views on street, and others
record scenes in shopping malls. In this experiment, we use
different CNN models to extract features from the videos for
different objects including people, vehicles and texts. Table
IV lists the number of objects detected in the videos. Table.
V shows the models used in the experiment.

Most videos in the MOT dataset are captured with a high
frame rate, ranging from 25 to 30 fps. It is not necessary
to process all frames in the videos since consecutive frames
are similar. Thus, before processing videos, we perform a
sampling by picking the first frame for every 5 frames. The
device memory limitation is set to 1.5 GB and the network
bandwidth is set to 8 Mbps.

The results are shown in Fig. 11. Since the Local-
Only method significantly underperforms the other four ap-
proaches, the figure shows the completion time ratio of
different approaches to the Local-Only method. Compared
with Offloading-Only, the naive algorithm can reduce the
completion time by about 16% on average, whereas the
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advanced algorithm can reduce it by about 35%. In addition,
the completion time of the advanced algorithm is about 24%

shorter than the naive algorithm.

VII. CONCLUSIONS

In this paper, we identified the research challenges of
running multiple CNN models on mobile devices under re-
source constraints, and proposed resource aware scheduling
algorithms to support multiple CNN models on mobile de-
vices. Our goal is to minimize the completion time of video
processing, which is accomplished by first deciding whether
an incoming image processing task should be offloaded or
executed locally. If a task is decided to be executed locally, its
corresponding CNN model must be loaded into the memory,
possibly by switching out some other models due to memory
constraint. We formulated this scheduling problem as an inte-
ger programming problem and proposed two heuristic based
algorithms: a naive algorithm which decides whether to offload
or run locally based on their completion time difference, and
an advanced algorithm which addresses some weaknesses of
the naive algorithm to further reduce the completion time.
We have implemented the proposed scheduling algorithms
on Android-based smartphones and have demonstrated its
effectiveness through extensive evaluations.
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