Artificial Neural Network Based Prediction of Control Strategies for Multiple Air-Cooling Units in
a Raised-floor Data Center

Vibin Shalom Simon, Ashwin Siddarth, Dereje Agonafer
Mechanical and Aerospace Engineering
The University of Texas at Arlington,
P.O. Box 19023
Arlington, Texas, United States, 76019
Email: vibinshalom.simon@mavs.uta.edu

ABSTRACT

A data center cooling system consists of a hierarchy of
systems with dedicated control algorithms dictating their
operational states. There exists a wide range in spatial and
temporal parameter space in an ensemble of non-linear dynamic
systems, each executing a control task, while the global
objective is to drive the overall system to an optimum operating
condition i.e. minimum total operational power at desired rack
inlet temperatures. Certainly, it is beneficial in optimizing
workload migration at temporal scales but, solving the
instability of the cooling systems operating at design points
helps in understanding the whole system and make predictions
to have better control strategies. Several techniques are
available to realistically capture and make predictions. Data-
driven modelling/Machine learning is one such method that is
less expensive in terms of cost and time compared to other
methods like validated CFD simulation/experimental setup.

The objective of this study is to develop a control framework
based on predictions made using machine learning techniques
such as Artificial Neural Network (ANN) to operate multiple
Computer Room Air Conditioning Units (CRAC) or simply
Air-Cooling Units (ACU) in a hot-aisle contained raised floor
datacenter. This paper focuses on the methodology of gathering
training datasets from numerous CFD simulations (Scenarios)
to train the ANN model and make predictions with minimal
error.

Each rack has a percentage of influence (zones) based on the
placement of ACUs and their airflow behavior. These zones are
mapped using steady state CFD simulation considering
maximum CPU utilization and cooling provisioning. Using this
map, ITE racks are targeted and given varying workload to
force the corresponding ACU that is responsible for
provisioning, to operate at set points. Number of such scenarios
are simulated using the same CFD model with fixed bounds and
constraints. Using large samples of data collected from CFD
results, the ANN is trained to predict values that correspond to
the activation of the desired ACU. Such efficient control
network would minimize excessive cooling. The validated
prediction points are used to model a control framework for the
cooling system to quickly reach the operating point. These
models can be used in real-time data centers provided; the
training data is based on in-house sensor values.
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Q Energy consumed by Air-cooling unit, J
M mass flowrate of air, cfm

Cp specific heat capacity of air, J/kg-K

N number of iterations

Trewm Temperature at the hot aisle, °C

Tsupply Temperature at the cold aisle, °C
dT change in temperature of air (Trewmn — Tsupply)s °C
Subscripts

Return Return air at the ACU
Supply Supply air provided by the ACU

Abbreviations

CFD  Computational Fluid Dynamics
ANN  Artificial Neural Network

ACU  Air-Cooling Unit

ITE Information Technology Equipment
CRAC Computer Room Air Conditioning
LMA  Levenberg-Marquardt Algorithm
CA Cold Aisle

HA Hot Aisle

LHS  Latin Hypercube Sampling

MSE  Mean Squared Error
INTRODUCTION

Data centers are facility buildings, housing Information
Technology Equipment (ITE) and provide power and cooling.
Technological advancement and price erosion enabled high
growth rate of electronic packaging [1]. In 2014, data centers in
the U.S. consumed an estimated 70 billion kWh, representing
about 2% of total U.S. electricity consumption, and is estimated
to increase to 75 billion kWh by 2020 [2]. A large data center
at an industrial-scale operation uses as much electricity as a
small town in the United States.

Managing cooling infrastructure is important to guarantee
ITE reliability, working time, and operating scenarios for best
performance. The scale of power consumption depends on
workload, design and the longevity of data centers. Effective air
distribution and provisioning of ITE will have a significant
impact on energy consumption and equipment reliability[3].
The energy used by a typical rack of state-of-the art servers,
consuming 20 KW of power at a cost of 10 cents per kWh is
more than $17,000 per year in electricity. Data centers holding
hundreds of such racks constitute an energy-intensive building.
Efforts to improve energy efficiency in data centers can pay big
dividends [4].
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However, the cooling is generated and distributed by
various systems, but airflow management is a key to optimum
cooling of ITE and corresponding energy consumption.
Optimizing the delivery of cool air and the removal of heat
generated by the ITE can involve many design and operational
practices. The general goal is to minimize or eliminate
inadvertent mixing between supplied air to the ITE and hot air
removed from it. Hot-aisle containment is one method to
maintain the cold air supplied to the racks as generated by the
cooling unit so that they are evenly distributed throughout the
ITE without significant change in the temperature or humidity
due to recirculation [4].

Generally, multiple Computer Room Air Control (CRAC)
units respond altogether increasing cooling power to provision
a localized hotspot which result s in excessive cooling for other
ITEs especially in a co-located datacenter. The unnecessary
cooling expenditure can be cut down by establishing a new
strategy that could involve a particular CRAC unit or a
combination of them to provision any localized hotspot.
Knowing the fact that ITE workload fluctuation results in time-
based temperature variation, the cooling unit also requires a
certain time interval to respond to the scenario and make
changes to address the situation.

Data center Facilities are of various types in terms of design,
layout, ITE workload distribution and cooling strategies. Our
data center design is chosen based on the literature survey from
small-scale raised-floor data centers having indoor Computer
Room Air Control (CRAC) Unit and hot aisle containment. The
necessity of this design is to intentionally use the CRAC unit to
provision localized hotspots due to workload distribution at any
specific ITE so that the cooling power consumption can be
optimized based on the need. The CFD model of the datacenter
room does not involve Power distribution units, cables, pillars,
exhaust vents and other supplementary equipment since they
are considered insignificant in this study.

A robust CFD software, 6SigmaRoom provided by Future
Facilities is used to model and simulate the temperature and
flow characteristics based on a Blackbox model of ITE and
several other units in a datacenter. The difficulties when using
these softwares is that, it needs explicit domain knowledge and
time expensive to produce the results for steady state/transient
simulations. Since data centers are dynamic, CFD is not a
suitable tool to produce real-time results to improve the power
usage. Research has been conducted previously on such
applications and it is found that Data-Driven Modeling (DDM)
is viable option to analyze the data from the CFD model and
validate with real-time raw data from the datacenter facility.
Also, the methodology adopted to move forward in this
research is based on the workflow demonstrated by Athavale et
al. [5]. One such modeling technique is machine learning and
the appropriate tool being used is Artificial Neural Network
(ANN) to learn and mimic the behavior of airflow patterns and
thermal characteristics in a datacenter. ANN has been used in
various HVAC applications as well as in Datacenters for
predicting parameters to control cooling unit based on the
weather and psychrometric bins [6]. Predictions were made on
different modes of cooling provided to datacenters depending
upon the operational psychrometric bins and climatic
conditions [7]. In our case the training dataset is generated by

the CFD model having various configurations for cooling
strategies for multiple Air-cooling units. The data driven model
learns the non-linearity of physics-based systems and predicts
parameters to modify the action space. The ANN is trained until
it delivers the least error without overfitting the sample data,
such that its prediction can be validated with in-house sensors
deployed at specific locations in a datacenter facility.

Observing various configurations and types of data center
we chose a model that is predominantly built in a small-scale
raised-floor data center. The model is purposefully designed in
such a way that the provisioning of ITE is visualized and
quantified for various hotspot scenarios.

Raised Floor Hot Aisle Contained Data Center

Total Room Capacity 300 KW

No. of racks per row 12
No. of Rows 3

Power per rack (KW) 8.4 (max.)

3 Air cooling Units (ACU) of 1140

Cooling system KW max. sensible cooling

Table 1: Datacenter room specifications
OBJECTIVES & STRUCTURE
The objectives of this study were to:

1. Understand the provisioning of ITE before an event of
hotspot based on the zone of influence of the Air-
cooling units over the servers.

2. Construct an ANN model using the CFD generated
dataset for predicting temperature and airflow control
parameters to operate the Air-cooling unit at desired
operating points.

CFD MODEL & ITE SPECIFICATION

CFD analysis is carried out using the model showed in
Fig.1. The model has underfloor supply and false-ceiling return
configuration. The model has 2ft raised-floor design containing
36 racks, 12 racks per row provisioned by 3 ACUs. Ceiling is
built at 14ft from the floor for the hot air to escape from the hot
aisle containment to the return duct of the ACU. Solid
obstructions are built from the hot-aisle containment to the
vents in the ceiling to direct the hot air upwards. Similarly, the
obstructions are built to direct the air from the ceiling to the
return duct of the ACU. Floor grills of size (2 x 2) ft> with 50%
open dampers are arranged in-line in front of the rack inlet to
direct the cold-air upwards.
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Fig.1 (a) Datacenter room model showing hot-aisle
containment (b) Naming scheme for ACU

The underfloor plenum pressure is maintained using two
sensors, one at the bottom of the tiles and the other above the
rack. Usually these sensors are placed in the middle of the room.

Eachrack is filled to its capacity with 1U servers of 200 W,
a total of 42 servers per rack as shown in Fig. 2. Three Inlet and
outlet temperature sensors are equally spaced along the air flow
direction at the cold aisle and hot aisle respectively to capture
the temperature stratification. Typical air leakages of 5% is set
to all the racks. Initially, workload is distributed equally
through all the servers, typical load of 40 W per ITE is given at
idle conditions and 180 W per ITE is given at peak usage
conditions. The above parameter is one such boundary
conditions given during the simulation. The server used for
modeling and analysis is HP SE1120 having an outflow
pressure curve measured using experimental analysis using Air-
Flow bench [8].

D ab
Tile: G6

Fig. 2. Rack with 42, 1U servers and 3 equally spaced
temperature sensors (white sphere)

The outflow pressure curve denotes the pressure difference
across the ITE during its operation at various modes or
workloads. It maintains an indirect relation with the cooling
system performance. ITE power is time dependent and is set to
fluctuate based on the workload distribution and migration.

Pressure Curve

Pressure Difference (in/H20)

Fig. 3 Outflow Pressure Difference vs Air flow rate at the
servers

AIR-COOLING UNIT CONTROL STRATEGIES

ACU uses chilled water-cooling system where the primary
coolant is the water supplied from the chiller. The reference air
i.e. Return air from the ITE is passed through the cooling coils
to cool down to the required temperature. Supply temperature
and flowrate variation is determined based on the thermal
energy consumption equation embedded in the CFD software.
Theoretically, the mass flow rate of air required to remove the
heat generated by the ITEs can be calculated using the equation:
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Q=m*Cp*dT

The Blackbox model of the servers are designed based on
complex energy balance equations in CFD software that
calculates parameters like temperature, pressure, velocity,
humidity etc. The conventional construction of control network
based on best practices for a small scale datacenter room are;
Supply temperature of the air from the ACUs are controlled
based on the temperature of air at the cold aisle, meaning, the
work done/energy consumed by the heat exchanger depends on
the server inlet air temperature. Supply air-flowrate is
determined by the average pressure difference across the ITE in
the datacenter, meaning, Variable Frequency drives are set to
changing frequencies to operate the blower at different speeds
to provide the desired air flowrate.

In this study, to understand the ACU’s influence on
provisioning the ITE’s, we have setup the control network in
such a manner that can be Average ITE outlet temperature
sensor values based on % of influence are taken as Tretum.
Similarly, supply temperature Tsupply Setpoint is set to 22°C such
that the ACUs respond when any of the inlet temperature
sensors read a value of more than 22°C. The blower speed for
the ACU fans are controlled using VFDs and the values are
updated for every iteration to capture different scenarios using
same boundary conditions.

CRAC unit dimensions and specifications are modeled
according to Liebert CW 114, ACU built by Vertiv cooling
technologies.

Major ACU design parameters are listed below:
Total sensible cooling capacity: 114 KW
Max. coolant flow rate: 6 GPM
Supply air flowrate range: 0 — 17,300 CFM

Two CFD analysis were carried out, one to visualize the
zone of influence of the CRAC units in provisioning the ITEs
and the second to calculate the total power consumed by the
CRAC units in various scenarios also to generate datasets for
ANN training.

ZONE OF INFLUENCE ANALYSIS

ACUs supply air to the room through underfloor plenum
and reaches the racks in a random fashion. To visualize and
understand the influence of an ACU supply over the racks we
simulate a steady state analysis with set boundary conditions
given below.

Boundary conditions:
ACU Blower Speed: 90 % (15,570 CFM)
ACU Supply temperature: 22°C
ITE Power/workload: 180 W

Once the spatial locations of the racks are found having
maximum influence (75-100%) of every ACU, they are
assigned as targeted ITEs. Power given to the targeted ITE is
chosen such that it mimics the actual workload based on
consumer usage. To address the fluctuating load on ITE, the

ACU which has the highest influence on the respective servers
start to respond. In a typical datacenter, all the ACUs respond
together for minimal change in the workload but here, we
forcibly allow the corresponding ACU to respond to the
workload.
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Fig. 4 Zone of Influence of ACU-1

From steady state analysis, ACU-1 has the highest
influence on the racks at spatial location: 1. These racks are
targeted and given fluctuating workload for a certain interval
and ACU-1 is forced to respond while the other ACUs are
constantly working on providing cooling to other racks. By
running such simulations, we can find the energy consumed by
ACU-1 to provision the targeted rack.

Similarly, the model is analyzed for similar scenarios
according to the influence of ACUs. To capture the variability,
several combinations of hotspot scenarios were created to
generate training datasets for the Artificial neural network
model.

Using temperature dependent control for the ACU for
varying IT load is one such strategy practiced in data centers.
Datasets are generated by collecting data from a set of
simulations using PAC study in 6SigmaRoom.

PARAMETERIC STUDY

The objective function of this study is to capture the non-
linearity of the physical phenomenon in the data center. A
methodology for choosing the input parameter space out of ‘N’
number of measurable parameters is carried out using Latin
hypercube sampling (LHS), a statistical technique where the
domain of interest is filled with samples portraying the
variability shown in original data.

The multi-dimensional parameter space should be space-
filling and non-collapsing to ensure a good variability in
simulations [9]. CFD simulations are deterministic in nature
therefore, it is important that the input parameter space is
determined using a LHS technique to avoid any bias and
introduce required variability in the training data [5]. Latin
hypercube sampling (LHS), a statistical method for generating
a near-random sample of parameter values from a
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multidimensional distribution, ensures that the ensemble of
random numbers is representative of the real variability [10].

Using Latin Hypercube Sampling from a range of
parameters, the input parameter space is generated to provide
the maximum variability in the CFD simulation thus yielding
datasets having good number of features. The CFD model is run
for different combinations of inputs to generate training
datasets. Python is used to generate the LHS from a list of input
parameters to have a space filling design. From known
parameter values and resolutions, the input parameter space is
defined for different combinations for 27 CFD simulations.

Inputs for the CFD simulations given are: Time based ITE
Load, Spatial Location of targeted ITE, power ratio for the ITE.

Time varying Outputs from the CFD simulations obtained
are total cooling power consumption of all three ACUs in
different scenarios and ACU blower speed.

Input Variables Bounds Constraints
_an o Interval of 20 (50%,
ACU Blower speed 50-90 % 70%,90%)
Total ITE Interval of 2
Workload / rack 4-8KW (4,6,8)

. . Interval of 1
Spatial Location 1-3 (1.2.3)
Temperature rise 5_10°C Interval of 1

of the IT load (5,6,7,...10)

Table 2: Input parameter space

The two functions that govern the control parameters being
captured and learnt mathematically by the ANN model are as
follows:

1. ACU Blower Speed = f(ACU number , Spatial
Location, Outlet Temperature, IT Load)

2. ACU Cooling power = f(ACU number , Spatial
Location, Supply temperature, IT Load)

ARTIFICIAL NEURAL NETWORK

The sheer number of possible equipment combinations and
their setpoint values makes it difficult to determine where the
optimal efficiency lies [11]. Using standard formulas for
predictive modeling often produces large errors because they
fail to capture such complex interdependencies. Data driven
models are the best methods that can completely represent a
non-linear physics-based scenario in mathematical form so that
we can train neural network models to learn and predict the
desired parameters. Neural networks are a class of machine
learning algorithms that mimic cognitive behavior via
interactions between artificial neurons [12].

ANN TRAINING & VALIDATION

Using datasets from the CFD simulations, ANN model is
trained, validated, and tested to predict the desired outputs that
can allow us to frame a control strategy for the provisioning the
ITE running under various workload scenarios. 70% of the
dataset is used for training the neural network, the remaining
30% used for validation and testing. Data pre-processing such

as sampling and data filtration is done using Python (PyCharm
by JetBrains) in conjunction with the NumPy module and
visualization using matplotlib module. MATLAB R2019a has
predefined ANN structures to model train, validate, test and
post-process.

In our study, the input parameters for the ANN are chosen
in such a way that they can be measured directly from the data
center facility. The probability of error becomes negligible. The
list of input parameters for the ANN model are listed as follows:

1.  ACU number

2. Spatial location of the targeted rack
3. Temperature at the cold aisle (°C)
4. Rack IT Load (W)

The output parameters of the ANN model are considered
in a way such that it can be used to frame a control strategy for
every ACU.

The output parameters are as follows:
1.  Blower Speed (cfm) for all 3 ACUs

2. Sensible cooling load on (Power consumed
—KW) all 3 ACUs

Fig. 5 ANN model

Number of neurons required to achieve minimal error in
training the ANN is calculated with a set of values defined by
the thumb rule [11].

[y
o

MEAN SQUARED ERROR (MSE)
N

1 5 10
NO. OF NEURONS

14

Fig. 6 ANN training error vs No. of neurons used in the
hidden layer

In this case 11 neurons in the hidden layer were used for
the ANN to predict results with minimal error. If we have
neurons more or less than 11, we may have predicted results
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with large error values also called as underfitting/overfitting of
data.

The model selected was a three-layer model having one
input, one output and one hidden layer. The dataset was trained
using Levenberg-Marquardt Algorithm (LMA) to minimize the
error as well as to overcome the flaws in using gradient descent
method. Empirical relations are available to determine the
suitable number of neurons for the hidden layer based on the
number of parameters in the input and output layers [13-16].
The model is tested from a sample data that is not in the training
dataset to evaluate the accuracy of the prediction. The Mean
Squared Error (MSE) refers to the difference in original value
and the predicted value, the lesser the value the more accurate
is the prediction. Accuracy is improved by generating training
dataset having higher resolution by increasing the number of
scenarios using the CFD model.
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Fig. 8 ANN Training Error

From these results we can observe that ANN model can
predict the parameters for ACU control with MSE in the order
of 10"! showing the model is a good fit to the data. All these

parameters are fed into the ANN controller module that is
integrated with the DC facility.

Realistic
reference model

Controller Error

Model Error
N

ANN controller
model

controller |

‘ ANN feedback

Fig. 9 ANN — DC controller network

ACU Qutput

The above network shows a one of the implementation
techniques to have a control framework based on the ANN
model thereby merging it with the datacenter facility. The
feedback loop improves the ANN controller model for better
prediction. Model error and controller error obtained from the
comparison is used for further analysis and training of the
system control design.

SUMMARY & CONCLUSIONS

This paper encapsulates an approach to address energy
saving by using multiple ACUs in a datacenter using predictive
modeling with training datasets collected using CFD
simulations. Summarizing ANN test prediction results in an
average error <3KW of energy consumed by the cooling units
and 0.2% of the air flow using a part of the training data as test
data.

The predictions are then used to design a framework that
allows the operation of multiple ACUs to optimally provision
the ITE load. ANN model resulted in a good agreement with the
CFD model having error at the order of 10"! when tested using
a part of the training data can be used to frame a control strategy
based on the hotspot in a typical raised floor data center with
chilled water-cooling system. This ANN model can be
implemented in a realistic data center provided; it is trained
based on in-house sensor values. Cooling strategy can be
essentially based on the ANN predicted results thereby
reducing power consumed by the cooling units.

Following up this research could be, having high resolution
CFD models and a greater number of hotspot scenarios to
address excessive cooling provisioning, increasing the
resolution of input parameter space to get more variability in
the dataset also, cooling unit failure analysis can be included in
predicting ACU operational parameters. Step ahead prediction
of parameters is one such method where we will be able to have
a better response from the cooling unit and suitable for real-time
implementation as well.
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