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Abstract

Despite great progress in the study of critical percolation on 74 for d large,
properties of critical clusters in high-dimensional fractional spaces and boxes re-
main poorly understood, unlike the situation in two dimensions. Closely related
models such as critical branching random walk give natural conjectures for the
value of the relevant high-dimensional critical exponents; see in particular the
conjecture by Kozma-Nachmias that the probability that 0 and (n,n,n,...) are
connected within [—n, n]9 scales as n=2724

In this paper, we study the properties of critical clusters in high-dimensional
half-spaces and boxes. In half-spaces, we show that the probability of an open
connection (“arm”) from 0 to the boundary of a sidelength n box scales as n™3.
We also find the scaling of the half-space two-point function (the probability of
an open connection between two vertices) and the tail of the cluster size distribu-
tion. In boxes, we obtain the scaling of the two-point function between vertices
which are any macroscopic distance away from the boundary. Our argument
involves a new application of the “mass transport” principle which we expect
will be useful to obtain quantitative estimates for a range of other problems.
© 2020 Wiley Periodicals LLC

1 Introduction

In this paper, we primarily consider the (bond) percolation model on the canon-
ical d-dimensional hypercubic lattice Z4 and its subgraphs, the half-space with
normal direction e; and boxes or £°° balls. When d = 2 or d is large, it is known
that critical percolation on Z4 does not admit infinite open clusters. A great deal
of research has been devoted to studying the finer properties of critical open clus-
ters on Z4 for these values of d (and on the triangular lattice, where the model is
closely related to the model on Z?).

There is also a fairly well-developed theory of critical percolation on half-planes
and other sectors of Z2 and the triangular lattice. For instance, on the triangular
lattice, the asymptotic behavior of the probability the open cluster of the right half
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plane containing 0 touches the line {z : z - ¢; = n} (the “one-arm probability”)
obeys a power law, behaving as n~1/3+t°()_ Importantly, this power law is re-
lated to several others via scaling relations similar to those proved in the entire
triangular lattice. The proofs of these scaling relations are quite robust, even ap-
plying to subgraphs of Z? (where exact computations of power laws are generally
unavailable).

For Z¢ with d large, by contrast, there has been little work on the behavior of
critical percolation in half-spaces (or general sectors). In this paper, we build a
foundation for such a study. We compute the asymptotic behavior of the one-arm
probability in high-dimensional half-spaces along with several other power laws
of interest; in this introduction, we also describe how these results imply certain
scaling relations one would expect in high dimensions; see, for instance, (1.5). As
part of our work, we build tools (e.g., Theorem 1.2) that may be of interest in a
study of percolation in general high-dimensional sectors.

1.1 Definition of Model and Main Results

We will consider two graphs having vertex set 74, as well as subgraphs of either
of these. In the hypercubic lattice, we take as our edge set {{x,y}: [|x—y|1 = 1}.
In the other, the spread-out lattice, we take as our edge set {{X,y}: ||[X—¥|lco < A},
where A is a fixed positive integer. All definitions in this subsection apply equally
well to either of these graphs.

The usual standard basis coordinates of a vertex x € Z¢ will be denoted x(i) =
Xx-e,s0Xx = (x(1),x(2),...,x(d)). The origin 0 = (0,0,...,0). The half-
space is the subgraph of either the hypercubic lattice or the spread-out lattice that
is induced by the set of vertices Zi that have a nonnegative first coordinate: 74 =
{x € Z%: x(1) > 0} (note that “half-space” for us always means one of these
particular graphs or a translate thereof—we do not use the term in its more general
sense). The boxes or £°° balls in these graphs are the following vertex sets:

B(n) = [—n,n]d and Bg(n) = B(n)N 74, respectively.

With some abuse of notation, we sometimes identify Z<, B(n), and other vertex
sets with the subgraphs of the hypercubic or spread-out lattice that they induce. In
particular, when there is no ambiguity or when the choice of edge set is irrelevant,
we write Z¢ for either the hypercubic lattice or the spread-out lattice.

The main object of study will be the Bernoulli bond percolation model—perco-
lation for brevity—on the above and other subgraphs of Z¢. To define the model,
fix p € [0,1] and let w = (we)e be a collection of i.i.d. Bernoulli(p) random
variables indexed by the edges e of the hypercubic or spread-out lattice. An edge
e such that w, = 1 (resp. we, = 0) will be referred to as open (resp. closed). The
model of percolation on Z2 consists of the study of the open graph, the random
subgraph of the hypercubic or spread-out lattice whose vertex set is 74 and whose
edge set consists of the edges e that are open in w.
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The preceding definition induces a percolation model on subgraphs of the am-
bient hypercubic or spread-out lattice in the natural way. Given a set G C Z< of
vertices, consider the subgraph (which we, via abuse of notation, identify with G)
of the ambient hypercubic or spread-out lattice which it induces. Using the same
random variables (w, ), to define the open/closed status of edges of G, one arrives
at the definition of percolation on G: the open graph now has vertex set G and
edge set consisting of those e of the ambient lattice having both endpoints in G
and having w, = 1. For an introduction to percolation on Z4 and its subgraphs,
and for an expository treatment of fundamental results, we recommend [8]. See
also [24, chap. 7] for the treatment of percolation on general graphs, including
homogeneous trees.

For a particular realization of w, the open clusters of G are the components of
the open graph on G. For fixed @ and vertex x but different choices of G, the open
cluster containing x may be different. To track this dependence on G, we write

€g (x) for the open cluster containing X when considering percolation on G; we
abbreviate €(x) = Cza(x) and €y (x) = @Zi (x). The symbol {x <i> y} denotes
the event that € (x) = €g(y), and we again abbreviate
7d
{x<—y} to {xoy}.

This notation extends naturally, replacing x and y by sets A, B of vertices: we

G G
write A <— B if there exist x € A and y € B such that x «<— y (and omit the G
superscript when G = Z%). We use the symbol <4 in the obvious way; for instance,
X < y means that €(x) # €(y). When discussing a cluster &g or properties
thereof in the case G # 74 , we sometimes use the term restricted; for instance,
szi (x) = Cg (x) is the cluster of x restricted to the half-space Zi.

The distribution of @ will be denoted by PP, to indicate its dependence on the
parameter p (we soon will fix a particular value of p). We define the critical prob-
ability (of our ambient lattice, that is either the hypercubic or spread-out lattice)
by

(1.1) Pe = inf{p :Pp(#€z7a(0) = 00) > 0}

(here and later # denotes cardinality). When p < p. (resp. p = pc, p > Pec),
the model is said to be subcritical (resp. critical, supercritical). This paper is
exclusively concerned with critical percolation, and so in what follows we will
always take p = pc. In particular, we will often write PP for IP,,_., except when we
wish to emphasize the fact that we are talking about the critical model. We stress
that the value of p. depends on the particular hypercubic or spread-out lattice being
considered. We also note that p. is taken relative to the ambient hypercubic or
spread-out lattice, even when we are discussing percolation on a subgraph of this
ambient lattice.
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On the hypercubic or spread-out lattices with d > 2, it is widely conjectured
that [P, -almost surely there exists no infinite open cluster. Among others (see
Section 1.2 below for background and references), this conjecture is proved in
“high dimensions,” which we define as follows.

DEFINITION 1. The phrases high dimensions and high-dimensional refer to both
of the following settings:

e the hypercubic lattice, with d > 11;
e the spread-out lattice with d > 6 and A larger than some large d -dependent
constant Ag(d).

All new results of this paper are proved in the setting of high dimensions; after
the introduction (see the “standing assumption” at the very end of the introduction)
we will exclusively consider this setting. In fact, our arguments would apply to
the hypercubic lattice for all d > 6, as well as other possible edge sets for 74,
if certain past work could be extended to this setting. We return to this issue in
Section 1.2 after discussing more background, and we state this extension as a
conditional theorem (see Theorem 1.3 below).

The main results of the paper, Theorems 1.1 and 1.2 in this section, relate to the
behavior of the open clusters QZi (x) and €p(y)(x) in high dimensions. To state

them precisely, we now define several events and quantities (to allow us to discuss
past results outside of the high-dimensional setting, we state them for general d).

DEFINITION 2. Consider critical percolation on either the hypercubic or spread-
out lattice.

e The two-point function t(x,y) denotes the connectivity probability
Zd
Px <y = P(x<—>y).

More generally, when G C Zd, the two-point function restricted to G
is 1g(X,y) = P(x<i>y). The particular case of the preceding when
G = Zi is the half-space two-point function and will be abbreviated to
tH(X.Y) = 774 (X.Y).

e The site x has an arm to distance 7 in G if sup{||ly—x||oo: ¥ € €c (X)} > n.
In the case G = Z¢, we often simply say that x has an arm to distance n
without referring to G. Similarly, in the case that G = Z‘i, we say that x
has a half-space arm to distance n—in other words, x has a half-space arm
to distance n if sup{||ly — X[loc : ¥ € QﬁZi (x)} > n. The corresponding
events are called arm events or one-arm events. The probability that the
origin 0 has an arm (resp. half-space arm, arm in G > 0) to distance n will
be denoted 7 (n) (resp. g (n), 7g(n)).
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Note that there is another natural definition of 7 (n), wherein we demand that
the open cluster of 0 contain a vertex with ej-coordinate at least n (rather than any
coordinate at least 7). It will turn out that this probability has the same asymptotic
behavior as the above-mentioned 7 g ; see Section 2.2 and (7.1) below.

We now state the first main theorem of this paper. In it, we use the usual as-
ymptotic notation: given two functions f, g : {1,2, ...} — [0,00), we write
f(n) < g(n) to mean that limsup,,_, ., f(n)/g(n) and limsup,_,, g(n)/f(n)
are both finite. If f and g instead have domain 74 x 7.9 andif A C 74 x Zd, we
say that f(x,y) =< g(x,y) in A if both

g(x.y) fx.y)
sup < oo and sup < 0.
xyed J (X, ¥) xyed §X.Y)
THEOREM 1.1. In the setting of critical percolation in high dimensions, the fol-

lowing asymptotic power laws hold.

(a) wg(n) < n=3.

(b) Fix a constant K > 0. Then

Ix—ylI25¢  in {(x.¥): 0 < [|x = ylloo < K min{x(1), y(1)}},
tr(X,y) < 1 Ix—ylig? in{(xy): x(1) =0and 0 < |x —y|oo < Ky(1)},
Ix—ylsd in{(x.y):x#y. x(1) = 0and y(1) = 0}.
(©) Py, (#Cg (0) > n) = n~3/4,

In the high-dimensional settings of Definition 1, it is known that the “unre-
stricted” two-point function 7(x,y) = 7z« (X, y) is asymptotic to [|x — y||35 4 (see
(1.7) below). In fact, this is a main input our proofs will require; we give an ac-
count of this and related high-dimensional results in Section 1.2. In this light, the
first asymptotic of part (b) of Theorem 1.1 informally says that (X, y) behaves
like 7(x,y) when both x and y are far from the boundary of Zi.

Our second main result, Theorem 1.2, is an analogous statement for the two-
point function in boxes B(n) € Z4: roughly, TB(n) (X, y) scales as 7(x, y) for x and
y far from the boundary of B(n). This result is proved before Theorem 1.1 and is
necessary for making key estimates in the proof of Theorem 1.1. We also believe
it is interesting in its own right and is a potential tool for studying other properties
of open clusters.

THEOREM 1.2. Consider percolation in high dimensions, and fix any constant
M > 1. There are constants C > ¢ > 0 (depending on M and d only) such that
for all n and for all x # 'y € B(n),

_ B(Mn) —
clx =yl = Pp(x <="y) = Cllx—yI 57
As alluded to above (and stated formally at (1.7)), the two-point function 7 (X, y)
is known to scale as [|[x — y[|2¢ in both settings of Definition 1. Given that

T3(Mn)(X,y) =< 7(X,y), the upper bound on tp(pr,) in Theorem 1.2 is trivial;
the new result of the theorem is contained in the lower bound.

Changed “Since” to
“Given that” to avoid a
bad line break.
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1.2 Background and Conditional Version of Results

Percolation has been the focus of a great deal of research in recent decades,
with much of this effort dedicated to the case of percolation on the hypercubic
lattice. The model has received attention on half-spaces, sectors, and other proper
subgraphs of 72 in part for the illuminating comparisons these settings provide
with the full lattice. A key example relates to the well-known conjecture (“absence
of percolation at criticality”) that, at p = p,, there is almost surely no infinite
cluster on the hypercubic lattice for d > 2. While this conjecture is still open in
general, the corresponding result is established for percolation on half-spaces [4].

Among hypercubic and spread-out lattices, absence of percolation at criticality
has so far been proved on the d = 2 hypercubic lattice (by Kesten [18]) and in
the high-dimensional setting of Definition 1. The latter result is due originally to
Hara and Slade [10], though their work applied on the hypercubic lattice only for
d > 19; this was improved by Fitzner and van der Hofstad [7] to the d > 11
setting considered in this paper. In such settings where absence of percolation is
proved, one is led to ask for more quantitative results on just “how large” critical
clusters may be.

Critical percolation on Z¢ and in many other settings is believed to be charac-
terized by the validity of power laws for various measures of open clusters. For
instance, the upper tail of the cluster size is expected to obey P, (#&€(0) > n) =
n~1/8+0Q) where § is some critical exponent. According to a widely held uni-
versality conjecture, critical exponents should depend only on the “large scale”
structure of the lattice, but not on the “microscopic details” thereof; for instance,
the value of § above should be the same on the d-dimensional hypercubic lattice
and the d-dimensional spread-out lattice, but could change when d is changed.

In two dimensions and in high dimensions, many critical exponents are known,
and others are explicitly conjectured. This leads naturally to the question of how
or if these power laws change when the lattice is replaced by a half-space (or other
sector). This question is the main focus of this paper. For definiteness, we restrict
the discussion to the power laws studied in the above theorems—that is, on the
behavior of the two-point function, the arm probability, and the upper tail of the
cluster size #€(0). On the full lattice Z¢, recall the traditional symbols for the
relevant critical exponents (assuming they exist):

n(n) = n—l/p+0(1)’ 7(0,x) = “X”g;d+n+0(l),

(-2 and P#E(0) > n) = n~V/3+o)
While such power laws should hold for half-spaces, different exponents n should
govern the behavior of 24 (0, x) for x on and far away from the boundary of Z4 ,
as in Theorem 1.1.

A comparison of critical exponents between the full lattice and half-spaces is
most developed in two dimensions. Indeed, a main goal of the present paper is
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to begin to develop the comparison in high dimensions. We thus begin the dis-
cussion by recalling past work for percolation on the two-dimensional hypercubic
(“square”) lattice and site percolation on the two-dimensional triangular lattice,
where sites are open or closed instead of bonds. In two dimensions, the precise
power laws obeyed by the two-point function and other quantities considered in
this paper are known only for critical site percolation on the triangular lattice,
though the widely conjectured universality of these exponents suggests that the
same behavior should hold on the square lattice.

Past Work in Two Dimensions

For the purpose of studying p, 1, 8, there exist two broad families of techniques
in two dimensions. One family, based on the Russo-Seymour-Welsh (RSW) tech-
nology and “gluing,” is applicable in the settings of both the square and triangular
lattice. The other family, based on conformal invariance and SLE methods, so far
applies only in the setting of the triangular lattice. We begin by discussing what
can be established using only gluing methods, or in other words what is known on
Z2.

Gluing, RSW, and the square lattice. Gluing and RSW are not enough to estab-
lish the existence of the exponents in (1.2), let alone their values. However, it is
relatively easy to establish inequalities for these exponents, in the sense that the
relevant quantities are upper- and lower-bounded by constant multiples of particu-
lar power functions. See, for instance, [31] for a short and elegant argument, valid
on both the square and triangular lattice, that 7z (n) > en~ 12, The values of certain
critical exponents (though apparently not those of (1.2)) do follow from RSW-type
arguments, including the exponent governing the “polychromatic five-arm event”;
see the first exercise sheet of Werner’s lecture notes on two-dimensional critical
percolation [33].

Although gluing methods seem unable to establish the values of most critical
exponents, they suffice to prove strong relationships between many of these expo-
nents. Kesten [19] proved that if one of the exponents of (1.2) exists on the square
or triangular lattice, so must the other two. Moreover, in this case, the values of the
other two exponents are completely determined by the relationships

(1.3) n=2/p, §=2p—1=4/n—1.
Remarkably (and in contrast with the situation in high dimensions—see the discus-
sion immediately following (1.7)), this result was proved long before the existence
of any of these exponents was known on any two-dimensional lattice.

A straightforward application of the arguments leading to (1.3) gives the two-

dimensional analogue of our Theorem 1.2 in two dimensions: if M > 1 is fixed,
there is a constant ¢ = ¢(M) > 0 such that

TB(Mn)(X,y) > ct(X,y) uniformlyinn andx,y € B(n).

Moreover, such arguments would allow the proof of scaling relations for the quan-
tities appearing in (1.2) in the two-dimensional half-plane (and other sectors). For
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instance, given the critical exponents governing 7 in Z? and Zi, the critical expo-
nent for 72 (0, neyp) follows via the relationship

1.4) CJTZz(n)JrZ%r (n) < 72 (0,neq) < CJTZz(n)JrZ%r (n).

As we will discuss further below, such scaling relations have taken longer to
establish in high dimensions, and their half-space versions have been completely
unexplored before now. A main goal of the present paper is to fill such gaps in
high dimensions. One can consider our Theorem 1.1 as establishing an appropriate
high-dimensional version of such scaling relations in the half-space. For instance,
it implies the following analogue of (1.4):

(1.5) cn6_d7er (n)nzi (n) < rzi (0,neq) < Cn6_d71Zd (n)T[Zi (n).

The factor of n6~¢ reflects the fact that in high-dimensional cubes having diameter
of order n, there are order n¢~° distinct open clusters having diameter of order n,
in contrast to the two-dimensional setting (where the number of such clusters is
stochastically bounded).

Beyond the above, the RSW technology also suffices to prove a monotonicity
property of the arm exponent p within sectors. Considering the sector G, :=
{(rcos@,rsinf) € 72 :r>0,0<6 < @}, Kesten and Zhang [20] showed
a version of the statement that the one-arm exponent p is strictly monotone in ¢.
Formally, given ¢ < v < 27, there exist constants C, & > 0 such that 7g » (n) <
Cn~*ng,, (n) uniformly in n.

The triangular lattice and exact critical exponents. With the advent of SLE [28]
and the proof of Cardy’s formula [29], the existence of a critical exponent for
was shown for site percolation on the triangular lattice T'; in fact, p = 48/5 [23].
From this and Kesten’s result (1.3), the values of § and n follow. See Table 1.1 for
a summary and comparison of exponents with the high-dimensional lattices and
corresponding half-planes/spaces. The values of p, §, and 7 should be the same on
the triangular and square lattices, but this remains a challenging open problem.

SLE methods also give the value of the one-arm exponent p in the half-plane
T :=TnN [[0, 00) X (—oo,oo)]. Indeed, it has been shown (see [30, sec. 3])
that rp, (n) = n~1/3+e()  Using gluing methods, one can derive from this the
scaling of the two-point function and the tail of the cluster size. See Table 1.1
for a summary. Using the value of p in T4 and the conformal invariance of the
percolation scaling limit, one can also compute the value of p in the sectors G,
0<¢<2m.

Past Work and Conjectures in High Dimensions

In 1990, Hara and Slade [10] used the lace expansion to prove the absence of
percolation at criticality on the square lattice for d > 19 and in the spread-out
lattice setting of Definition 1. In fact, they proved the stronger triangle condition
of Aizenman and Newman [2]. Combined with contemporaneous work of Barsky
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and Aizenman [3], this showed that the exponent & of (1.2) exists and has the value
2 in these settings. In fact, the stronger bounded ratio asymptotic is known:

(1.6) Py, (#€(0) > 1) =< 1712,

(Indeed, a more precise asymptotic has been shown for sufficiently high d—see
[11D.

The fact that § takes the same value for all large d (and differs from its two-
dimensional value) is emblematic of the so-called mean-field behavior of high-
dimensional percolation. Roughly speaking, when d is above the upper critical
dimension—conjecturally, when d > 6—Ilarge critical clusters should exhibit a
certain degree of independence. (See [16] for an extensive review of research on
mean-field behavior in high-dimensional percolation, along with related results.)
Many quantities of interest related to the critical model should exhibit the same
behavior for all hypercubic and spread-out lattices with d > 6. As we will discuss
below in Section 1.2, our results could be extended to any hypercubic or spread-
out lattice with d > 6 if a few fundamental results—among them, (1.6)—were
established in this generality.

The values of numerous other critical exponents have been rigorously estab-
lished in high dimensions, through methods very different from those available in
two dimensions. Over a decade after the establishment of the triangle condition, the
stronger result 7 = 0 was shown in the spread-out [13] and d > 19 square lattice
[9] settings. Here again an asymptotic result is known: there are lattice-dependent
constants 0 < a1 < A1 < oo such that

.7 ay||x —y||2_d <t(x,y) < A1|x —y||2_d forallx #y e ze.

We note that [9,13] in fact show much more than (1.7) (namely, the precise leading-
order behavior of 7, with error estimates); we direct the interested reader to the
original articles for more information.

The time elapsed between determination of § and 7 is in sharp contrast to the
situation on the square lattice, where the early result (1.3) allows determination of
one exponent from the other. This is one way in which two-dimensional techniques
are more developed and robust than high-dimensional ones. Similarly, existing
high-dimensional techniques seem less able to deal with settings (like half-spaces)
lacking all the symmetries of Z¢. It is hoped that the methods in this paper will
provide a starting point for attacking other such problems in the future.

By developing an improvement of the lace expansion known as the non-back-
tracking lace expansion, Fitzner and van der Hofstad [7] established (more than)
that (1.7) holds on the hypercubic lattice for all d > 11, i.e., the setting of Defini-
tion 1. By establishing the triangle condition, this work also allowed the extension
of (1.6) to the d > 11 hypercubic lattice.

Obtaining the value of p required still more work over several years. A first
attempt was due to Sakai [26], who gave an elegant scaling argument for p = 1/2
under unproven assumptions. In addition to assuming a form of existence of p,
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Sakai also assumed that
(1.8) E[#[€(0) N B(n)] |0 <4 dB(2n)] < E[#[€(0) N B(n)]].

In two dimensions, the above would again follow easily from the gluing methodol-
ogy used to prove (1.3)—another instance where two-dimensional methods seem
more robust in certain settings than high-dimensional ones. We note that Sakai’s
assumption (1.8) follows from Theorem 1.2 of this paper, whose proof is very dif-
ferent than its two-dimensional analogue. We direct the reader also to the work
[6], where a statement of a similar flavor to Sakai’s assumption (1.8) is shown for
the incipient infinite cluster (IIC), an object which could be thought of as a critical
percolation cluster conditioned to be infinite.
The asymptotic

(1.9) an™ 2 <7m(n) < Apn~2 forn > 1 and constants 0 < a» < A, < 00

was shown in the setting of Definition 1, without any unproven assumptions, by
Kozma and Nachmias [22]. The iterative method we use to upper-bound g as in
Theorem 1.1 is related to that used for upper-bounding 7 in [22], though we must
overcome several complications related to the fact that we work on ZfL; see the
discussion at the beginning of Section 6.

A conjecture made at [22, p. 378] was a major impetus for the present work.
This conjecture suggested the correct asymptotic behavior of the two-point func-
tion tp(,) within a cube for vertices at the corner of the cube:

B
(1.10) Py (022 (n.n.....n)) = n?~24.

One could hope to conjecture the correct asymptotic behavior of the two-point
function in other subgraphs of 74 —for instance, quarter-spaces—based on a hy-
pothesized connection between critical branching random walk (BRW) and critical
percolation. It has been argued (see [16, sec. 2.2]) that BRW “can be viewed as the
mean-field model for percolation,” which would suggest that the probability ap-
pearing in (1.10) scales as the two-point function of a critical BRW started at 0 and
killed at the boundary of B(n), evaluated at (n,n, ..., n). This entry of this critical
BRW two-point function indeed has the asymptotic 72724 . Establishing the scal-
ing (1.10) appears difficult due to the comparative lack of symmetry of B(n). We
however believe the techniques developed in the present work will be useful for
the study of critical exponents on general subgraphs of Z¢, including the critical
exponent appearing in (1.10).

There have been a number of other works studying properties of high-dimen-
sional critical clusters, indeed far more than could be surveyed here; we will discuss
several that are particularly relevant to our results. In [1], Aizenman showed that
for d > 6, assuming (1.7), there are typically at least of order nd—6 spanning clus-
ters of B(n)—that is, open clusters touching opposite sites of B(n)—and that the
largest of these contains at most n*to(M vertices. A number of other authors have
studied properties of large spanning clusters and the IIC, including the behavior of
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76(0,neq) 76 (0, neyz) g (n) P#CG(0) > 1)

G=T — p—5/24+0(1) — p—5/24+0(1) = p—5/48+0(1) | — ;—5/91+0(1)

G =T, — p—7/16+0(1) — p2/3+0(D) — p=1/3+0(1) | — ;—16/9140(1)
G = 74, high dimensions | = (¢ +o0(1))n2"? | = (¢ + o(1))n2~4 =n"? = ¢~1/2
G = Zi, high dimensions = nl=d =n—d =n3 = 173/4

TABLE 1.1. This table expresses the values of the exponents p, 1, and §
described in (1.2) on the two-dimensional triangular lattice T, the half-
plane T, the high-dimensional settings of Definition 1: both the case
of the full lattice Z¢ and the half-space subgraph Zi of these high-
dimensional graphs. The constant c, as well as the constants implied by
“x=”, depend on the particular lattice considered.

random walks on these clusters and closely related questions about resistances and
intrinsic balls, and scaling limits of large open clusters [11,12,17,21,27].

Finally, we mention several papers that investigate the behavior of high-dimen-
sional percolation not on subgraphs of Z4, but rather on large tori [14, 15, 32].
These works find, among other things, that percolation on a high-dimensional torus
mimics the critical Erd6s-Rényi random graph in several ways.

Conditional Version of Our Results

The results of Theorems 1.1 and 1.2 were stated unconditionally, under the
“high-dimensional” assumption of Definition 1. As alluded to above, however,
physicists believe that many critical exponents should take their mean-field values
above the upper critical dimension d = 6 on a wide range of graphs. We will give
a restatement of Theorems 1.1 and 1.2 here in a conditional form that makes clear
that our proofs are valid on any hypercubic or spread-out lattice above the upper
critical dimension. The missing ingredient, or in other words the reason why this
version of the theorem is conditional, is the two-point function asymptotic provided
by the lace expansion.

THEOREM 1.3. Consider either the hypercubic or spread-out lattice (in the latter
case, A > 1 is not required to be large) for d > 6. Suppose that the two-point func-
tion asymptotic of (1.7) holds. Under this assumption, all the results of Theorems
1.1 and 1.2 hold.

The proofs of Theorems 1.1 and 1.2, verbatim, give the result of Theorem 1.3.
In these proofs, the bounds (1.7) are used both directly and indirectly. The indi-
rect usage of (1.7) occurs in three ways: through (1.6), through (1.9), and via the
application of open cluster cardinality estimates appearing in Section 2.4. The ar-
guments given in the original papers [3] and [22] to establish (1.6) and (1.9) are in
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fact valid under the assumptions of Theorem 1.3. The tail asymptotics appearing
in Section 2.4 are either direct consequences of (1.7) (in the case of Lemma 2.2) or
ultimately follow from (1.7) via the “tree graph inequalities” [2] of Aizenman and
Newman.

Our arguments do not extend in their present form to d < 6. Here they break
down both on their own terms (various error terms are only small when d > 6) and
because existing of proofs results on which they rely (e.g., (1.9)) explicitly require
d > 6. It is easy to see that at least one of the asymptotics in Theorem 1.1 must
be false for d < 5. Indeed, for the vertices 0 and ne, to be connected by an open
path in Z< , each of these vertices must have an open arm to distance |n/2] in Zi.

If Theorem 1.1 held for Zd, d < 5, the probability of two such arms would be
of order n %, but this would contradict the two-point function asymptotic of part
(b) of that theorem. See [16, sec. 11.4] for more discussion of the upper critical
dimension d = 6.

1.3 Summary of Some Main Arguments

We use this space to attempt to clarify the structure of certain parts of the proofs
of Theorems 1.1 and 1.2. The most complicated and technically involved argu-
ments are those used to establish Theorem 1.2 and the asymptotics on wgy from
Theorem 1.1. In the interest of space, we give a detailed outline of the proof of
these claims only (and in fact, only for the lower bound on 7z (n)).

Proof of mg (n) > cn™3. We first argue for the lower bound on g from Theo-
rem 1.1; this argument does not depend on Theorem 1.2 or on any other new results
of this paper. The main step of the proof involves establishing the result

B2
(1.11) ]P’(there are at least cn*™? vertices x € dB(2n) satisfying x <2>) BB(n))
>c>0.

To establish (1.11), we define a set .¥ of open clusters C that touch both dB(3n)
and dB(n) and that satisfy

(1.12) #{x € C: x 227 IB(n)} > cn?.

The clusters in . also must contain order n* vertices of B(3n), the “typical”
number of vertices for a cluster of this diameter; see (3.2) for a precise definition
of ..

We argue that

(1.13) E[#] > cn?™® and E[#5)?] < Cn??712,
To show the bound on E[#.7], we note that
(1.14) E[#{y € B(n): y < dB(3n)}] > cn®n(n) > cn?2.

The cluster €(y) of the typical y as in (1.14) should satisfy (1.12), with €(y) playing
the role of C. Indeed, we show that, conditional on €g(;,)(y), the probability that
¢(y) reaches dB(3n) is at most 7 (n) x #[Cp2p)(y) N 0B(2n)] (see Lemma 3.2).
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Since 7(2n) > cm(n), we must have #[Cp(25,)(y) N 9B (2n)] typically at least cn?
on {y < dB(2n)}, so (1.14) holds. Since each cluster of . contains at most
Cn* vertices of B(n), (1.14) implies the bound on E[#.7] from (1.13); this bound
appears at (3.8) below.

The second moment bound of (1.13) follows by an argument of a similar flavor,
but with additional complications; this argument may be found beginning at (3.9).
Given (1.13), by the Paley-Zygmund inequality we see

P#Y > cnd_G) >c >0,

so by (1.12), we have (1.11).

On the other hand, each vertex x € dB(2n) having an open connection to dB ()
as in (1.11) has an arm of length order n in an appropriate half-space, namely,
a half-space whose boundary hyperplane contains a side of dB(2n) in which x
lies. The expected number of x € dB(2n) having such half-space arms is at most
Cnd_ler (n); comparing to (1.11), we find

nd—l 4—d 3

g (n) > cn so mwg(n)>cn°.

Proof of Theorem 1.2 The core of the proof of Theorem 1.2 is an iterative or
inductive argument, where the induction is on a parameter M. The inductive hy-
pothesis is that there exists a constant ¢ = ¢(M) such that

B(M

(1.15) foralln > 1andallx € B(n) P(0 <—>n)x) > c|x|?74.

The base case—i.e., the existence of some M < oo such that (1.15) holds—follows
directly from existing results; see Proposition 4.1. In the inductive step, we show
that (1.15) for a given M > 1 implies the existence of an «(M) < M such that the
analogue of (1.15), with a (M) replacing M and a reduced value of the constant ¢,
holds. (In fact, « (M) is essentially (M + 1)/2—see Claim 4.4—so the induction
will eventually show (1.15) holds for any M > 1.)

For simplicity, let us describe the anatomy of the inductive step in a particular
case: suppose we have shown (1.15) for M = 3, and we wish to show

B(2
(1.16) P(0 <2 ney) > /n2~4
for some constant ¢/ > 0. Define the random set
+B(12n/3
X = {x € d[ne; + B(2n/3)]: x"REe )nel};

see Lemma 4.6, where the analogous variable is called Xp. By an argument similar
to the one used to show (1.14) we establish

P (ne; < d[ne; + B(2n/3)],cn? < #{X N B(2n/3)] < #X < an)

1.17) )

>cn

for small enough ¢ > 0. This is (4.4), where X ¢ plays the role of X N B(2n/3).
The crucial point here is that the vertices in X are close enough to 0 to apply (1.15)
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to. We will show that, conditional on the event in (1.17), we can often find further
open paths connecting some vertex of X to 0.

Let B be the event in (1.17) (compare B of (4.4)) and for each x € d[ne; +
B(2n/3)], choose some neighbor x’ ~ x with x’ ¢ [ne; + B(2n/3)]. Let

Y = {edges e = {x,x'} for some x € X:

, B@2n) . . B(2n)
X <— ne; and e is open and pivotal for 0 <— nel}.

B2
Clearly #Y < 1,and if #Y = 1, then we have 0 <2>) ne;. We devote the remainder
of the argument to showing

(1.18) P#Y =1| B) > cn* 9.

The result (1.18) establishes (1.16); the argument for (1.16) appears just below the
statement of Lemma 4.6.

To show (1.18), we perform a second-moment argument conditional on B. To
upper bound E[(#Y)? | B], we note that the conditional probability a particular x’
has a connection to 0 (necessarily avoiding &,¢, 1+ B(n/2)(n€1)) is at most C n2-4.
See (4.5) and the argument immediately following. Since the number of edges e
as in the definition of Y is at most Cn? on B, and since Y < 1 almost surely, the
upper bound E[(#Y)? | B] < Cn*~? follows.

We show E[#Y | B] > ¢n*¢ by a similar but more delicate version of the
above reasoning. Suppose x € X N B(n/4) and x’ € B(2n/3) is a neighbor of x
outside of ne; + B(2n/3) as above (note many such x exist on the event B). By
the induction hypothesis, X’ would have (unconditional) probability at least en?—d
of being connected to 0 in B(2n). To remove the effect of the conditioning and to
guarantee the pivotality of the edge e = {x, X'}, we use cluster regularity estimates
(see Theorem 2.3), which, combined with the two-point function asymptotic, allow
us to establish “enough independence” between the cluster of x” and the cluster
of nej. See the proof of part (2B) of Lemma 4.6, where this entire argument is
accomplished. This shows the conditional first moment of #Y is at least order
(n2)(n2—d) — n4—d’ S0
E[#Y | B]? r—d
P#Y =1) > CP(B)IE[(#Y)Z " B] >cn"4,
completing the proof.

1.4 Organization of the Paper, Constants, and a Standing Assumption

In Section 2, we provide further notation for graphs and subsets of Z¢, along
with some further notation related to percolation. We then (in Section 2.3) define
the mass-transport method and prove an abstract mass-transport result, Lemma 2.1.
Finally, we present useful results on the tail behavior of open cluster cardinalities.

In Section 3, we show the lower bound on the one-arm probability from (a)
of Theorem 1.1: g (n) > cn™3. In Section 4, we prove Theorem 1.2. Section
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5 is devoted to results on cluster “extensibility” that will be crucial for proving
the upper bound on the one-arm probability in Theorem 1.1. The proof of these
extensibility results relies on Theorem 1.2.

In Section 6, we use the extensibility results of Section 5 to show mg(n) <
Cn=3, completing the proof of (a) from Theorem 1.1. This section breaks up
into two parts: the choice and analysis of a particular mass-transport rule, and an
iterative bound on wg relying on our mass-transport results. Finally, in Section 7,
we bound tg and the tail of the half-space cluster size distribution, proving (b) and
(c) of Theorem 1.1.

A note about constants. The symbols C, ¢ generally represent positive constants
whose values may change from line to line (and even within lines); we sometimes
number them to refer to them locally. Other symbols such as ¢ will sometimes
refer to constants depending on context. When we wish to make clear the possible
dependence of a constant on a parameter, we do it on a case-by-case basis, for
instance, by writing C = C(K). Numbered constants designed to be retained
on a long-term or global basis will be denoted a;, A;; certain specially labeled
constants, such as c¢s from Theorem 5.1, will also be referred to several times
throughout the paper.

Standing assumption. For the remainder of the paper, we consider critical per-
colation in one of the high-dimensional settings of Definition 1.

2 Further Definitions and Preliminary Results

In this section, we give some further definitions that will be useful in the course
of our proofs (in Sections 2.1 and 2.2). We also state a version of the mass-transport
principle (in Section 2.3) and several auxiliary results describing the tail behavior
of percolation cluster sizes (in Section 2.4).

2.1 Graph Notation

Recall that we often abuse notation and write Z¢ for the vertex set of the hy-
percubic or spread-out lattice, as well as for the lattice itself (with similar abuses
common for subgraphs of Z4). We will write x ~ y if x and y are neighbors in
72 —that is, if there is an edge e in the edge set of Z¢ with e = {x,y}. The norm
notation [|x|| refers to the £°° norm |[|x||o unless an alternate subscript is given.
The symbol #A4 denotes the cardinality of a set A.

Define the shifted half-spaces

Z4(n) = {x e 29: x(1) > n};

%n this notation, we have Zi = Zi (0). The corresponding boundary “hyperplane”
is

S(n) := {x € Z4(n): x ~ y for some y ¢ Z4}.
Note that S(n) is a (discretized) hyperplane in the usual sense if the ambient graph
is the hypercubic lattice; in the case of the spread-out lattice, it is a union of finitely
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FIGURE 2.1. Left: Anng (m,n). Right: Ann’(m, n).

many such hyperplanes. Recalling the £°°-box is B(n) := {x: ||x|| < n}, we define
the shifted box centered at x by x 4+ B(n). Note that the above definitions extend
to noninteger values of n, so that for instance B(3.5) = B(3).

Generally, for a set of vertices V', we let 3V denote the interior vertex boundary
relative to Z4:

WV =4{xeV: EIyeZd\Vsuchthatywx}.

The half-space analogue of a box will be denoted By (n) := B(n) N Zf{_. The
boundary of By (n), considered as a subgraph of Z< , is written

S'(n) :={xe By(n): 3y ¢ Zi \ By (n) withy ~ x}.

This type of graph boundary with respect to a general subgraph of 72 will often
arise, so we introduce some notation to describe it. If A9 C A are subsets of (the
vertices of) 749 let

2.1 04,40 = {x € Ay: thereis some y € Ay \ Ag withy ~ x}.

With the notation of (2.1), we can write S’(n) = aZi Bp(n). We introduce one

more standard box, Rect(n) := [0,n] x [—4n,4n]?~1, as a fattened version of
B (n).

The annulus Ann(m,n) := B(n) \ B(m). The corresponding half-space annuli
are Anng (m,n) := By (n) \ By (m). We will often refer to shifted annuli, where
one side of the inner box lies along S(0). Namely, we define B_(n) = —e; —
By (n), and (for n > m) Ann’(m,n) = [B(n)\ B—(m)] (see Figure 2.1). The
outer boundaries of annuli are defined as the vertex boundaries of their outer boxes,
relative to the ambient subgraph: dTAnn(m,n) = 9T Ann'(m,n) = 9dB(n), and
3t Anng (m,n) = S’(n). Similarly, the inner boundary 8~Ann(m,n) = 3(Z4 \
B(m)), with analogous definitions for the other annuli: 9~Ann’(m,n) = 3(Z% \
B_(m)), and 0~ Anng (m.n) = dz4 (24 \ By (m)).
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2.2 Correlation inequalities and More about Percolation

Recall that a generic percolation configuration is written @ = (we )., Where the
random variables w, are i.i.d. Bernoulli(p.), and the edge e is open (resp. closed)
if we = 1 (resp. we = 0). The open graph is the random subgraph of 74 whose
vertex set is Z¢ and whose edge set is {¢ = {x,y}: X ~ y, w, = 1}. Recall that
open clusters are subgraphs of this open graph; we sometimes identify an open
cluster with its vertex set.

In many places where the two-point function asymptotics of (1.7) appear, we use
the convention ||0]2~¢ = 1; this minor abuse allows us to avoid some cumbersome
expressions when summing products of t.

An edge e is said to be pivotal for an event A in a configuration w if changing
the status of w, while leaving the rest of @ fixed changes whether or not A occurs.
In other words, letting (€T (resp. w(¢>7)) denote the configuration agreeing with
w except possibly at w,, where it takes the value (uf,e’Jr) = 1 (resp. 0), then e is
pivotal for 4 in w if 14(w© 1)) # 14(w® ).

Above, we defined the half-space one-arm probability by

Zd
mr(n) :==P(0 PN S’(n)).
&
There is a possible alternate definition of 7z : namely, P(0 <— S(n)), the prob-
ability that there is a half-space arm to distance n in the e;-direction. We note
that the arguments in this paper in fact show that both of these probabilities are
asymptotic to n~3; see (7.1) and the surrounding discussion below.

Another minor issue arises when discussing 7z (n) in the setting of the spread-
out lattice. Since edges extend £°° distance A here, each vertex x with 0 < x(1) <
A —1is on the “hyperplane” forming the boundary of Zf{_. But the probability that
in (x) has diameter at least n is not exactly 7z (n). This issue is remedied by the

following observation, whose proof is immediate:

(2.2) for each fixed x such that |x||co < A,
PQy € €z¢ ¥): ¥lloo = 1) < 7 ().

We will make use of (2.2) sometimes without explicit reference.

We will make reference to the Harris-FKG (or “FKG”) and BK-Reimer (or
“BK”) correlation inequalities. We direct the reader to [5, chap. 2] for statements
of, and references to the literature on, these and related inequalities.

2.3 Mass Transport

Our proof of the upper bound 7 (n) < Cn™3 of Theorem 1.1 involves con-
sidering the point of view of a boundary vertex of a spanning cluster of a large
box—that is, the configuration seen from a typical x € dB(n) lying in such a span-
ning cluster. This is made precise by the following lemma, which is an application

OK to change 1 to 1?
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of the general mass-transport technique. See [24, chap. 8] for more information
about mass transport.

LEMMA 2.1. Let h(x,y) be a function from Z% x 74 t0 [0, 00| that is translation-
invariant in the following sense: h(x + z,y +z) = h(x,y) for all x,y,z € Z°.
Then, for any X € Z4,

D h(0.2) =) h(xz) =) h(z.x) =Y h(z.0).
PROOF. Note that h(0,z) = h(0 —z,z — z) = h(—z,0), so

D h(0.2) =) h(=2.0) = ) h(z,0).

The fact that the value is unchanged when replacing 0 by x follows similarly, again
using the translation invariance of /. O

Lemma 2.1 will be applied to particular mass-transport rules. A mass-transport
rule is a function m(-,-) on Z¢ x Z¢ assigning to each pair X,y a nonnegative
random variable m(x,y) = m[w](x,y) for each percolation configuration in a
translation-covariant way. In other words, for almost every realization @ = (we ).
of the percolation process, we have

m[o](x + 2.y +2) = m[O,0](x.y).

where (0,®), = we+, (and addition of a vertex and an edge is defined by {a, b} +
z={a+1zb+1z}).

Such an m(x, y) is referred to as the “mass sent from x to y.” For a given choice
of m, we apply Lemma 2.1 to A(X,y) = Em(x,y) (translation invariance of 4 fol-
lows from the translation covariance of m). In this case, letting send = ), m(0, z)
and get = ) , m(z, 0), the lemma states

Esend = [Eget.

2.4 Open Cluster Cardinality Estimates

In this subsection, we provide several estimates on the cardinality of open clus-
ters within boxes. We begin with a pair of well-known moment estimates in the
following lemma. These will be useful for controlling the probability of events that
imply that the cluster of a particular site is “large.”

LEMMA 2.2. We have
E[#€(0) N B(n)] < n?, E[#E(0) N B(n))*] < Cn®.

PROOF. The first moment is just ) . B(n) T(0,%), and the asymptotic follows
by summing (1.7). The second moment bound follows using the “tree graph”
method of Aizenman and Newman [2], decomposing P(x < 0,y <> 0) based
on the meeting point of the open paths from x to 0 and from y to 0. See, for
instance, lemma 2.1 from [22]. Il
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The remainder of this subsection is devoted to the presentation of specialized
cluster regularity results. Roughly speaking, these will allow us to argue that, even
when the cluster of a particular site has large diameter, its intersection with a meso-
scopic cube of sidelength s is very unlikely to contain more than s**¢ vertices. The
fact that open clusters are so sparse will allow us to show that, when we explore
the open cluster of a particular site, different stages of the exploration proceed
approximately independently.

The statement of these regularity results requires further terminology. Consider
a vertex z within some connected vertex set D € Z¢ and some subset O € 9D of
its boundary. D is generally a box or annulus. We introduce the notation X o (D, z)
for the number of “boundary vertices” of €p(z) on Q:

Forz € D € Z% and 0 C aD, let
Bxe 0: x>z = #[¢p(z) N 0.

Our regularity result says roughly that, if X is large, the clusters of most of the
vertices contributing to X ¢ are not larger than their typical size. For s > 0 and

x e 724 arbitrary, define the event
Ts(x) := {#(€(x) N (x + B(s))) <s*log’s}.

(2.3)

DEFINITION 3. Let D € Z9 and x € dD. For s > 0, we say that x is s-bad with
respect to D if

P(Ts(x) | €p(x)) < 1 — exp(—log”s).
We say that x is K-irregular with respect to D if x € dD and there is some s > K

such that x is s-bad with respect to D. Otherwise, X is said to be K-regular with
respect to D. We denote the set of K-regular vertices of D by REGp (K).

We define the “irregular version” of X (D,z), which counts the number of

boundary vertices whose clusters are abnormally large (recall that D C Z2 and
Q C dD):

(2.4) Xg'i’r(D, z) .= #{x € €p(z) N Q: x is K-irregular with respect to D}.

The following lemma provides a tail bound for X 5 ~iT when X o is large for a
growing sequence of annuli or boxes D. Suppose that for each n, the set D is a
dilation of the same box or annulus—that is, D is a translate of ]_[f-l=1 [ain, Bin],
or the annuli Ann(cn,n), Ann’(cn,n), or Anng (cn,n), where the o;’s, B;’s, or ¢
are fixed. We say Q is a dilated subrectangle of dD for each n if Q is a (d — 1)-
dimensional rectangle in dD with nondegenerate sides and if, for each n, Q is
dilated and translated as D is—i.e., as n increases, O changes by the same dila-
tions/translations as D.

LEMMA 2.3 (Cluster regularity). Consider a sequence of growing (in n) domains D
that are dilations/translations of the same box or annulus having sidelength order
n as in the above paragraph. Suppose that Q is a dilated subrectangle of dD, also
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as above. There exist constants C > ¢ > 0 and Ko > 0 such that for any n, M
and any K > Ky, the following holds: Uniformly inz € D, we have

. 1
IP’(XQ(D,Z) > M and X§"(D.z) > EXQ(D,z)) < Cn% exp(—clog? M),

where X o9 and Xg'i” are defined at (2.3) and (2.4) respectively.

A version of Lemma 2.3 in the case that D is a cube B(n) and O = dB(n)
was proved as theorem 4 of [22]. Lemma 2.3 follows by an argument similar to
the proof of that result; we omit the details. The main use of Lemma 2.3 will be
in “extensibility” arguments allowing the enlargement of the cluster of a site x,
conditional on the value of €p (x).

3 Lower Bound on rg (n)

Our main goal in this section is to prove the lower bound of part (a) of Theorem
1.1:

PROPOSITION 3.1. There is a constant ¢ = c(d) such that wg (n) > cn™3 for all
n>1.

Recall that Ann(m,n) = B(n) \ B(m) is the annulus of in-radius m and out-
radius 7.

DEFINITION 4. For r,s € N with r < s, let [Ann(r, s)] be the set of all open
clusters of Z¢ that intersect both B(r) and dB(s).

The clusters belonging to [Ann(r, s)] will be called Ann(r, s)-spanning clusters.
Note that connectivity in the above definition is determined relative to Z4 and
not the annulus; in particular, if C € [Ann(r,s)], then C N Ann(r,s) may be a
disconnected set. We will mostly work with the annulus Ann(n,3n). For C €
[Ann(n,3n)], let X¢ denote the number of vertices of dB(2n) N C that can access
dB(n) via open paths within B(2r). More precisely,

B(2n)
(3.1) Xc = #{X €dB2n)NC:x <«~— B(n)}.
Next we define a collection .7 of “regular” annulus spanning clusters with certain
regularity properties. Roughly speaking, C € . if:
(1) Xc is large enough so that C is likely to extend to the boundary of a larger
ball of radius ®(n), say, B(5n). That is, X¢ = n2.
(2) C contains A n* vertices in boxes of sidelength ~ n.

To be more precise, let n > 0 and
32) Sy = {C € [Ann(n,3n)]: X¢ > nn2, #[C N Ann(3n, 5n)] > nn*,
' #[C N B(5n)] <0~ 'n*}.

Note that .7, depends on 7.
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The following lemma will be useful for showing that X is typically large (and
thereby proving the existence of many points with half-space arms). We state it in
a general form so that later in the paper it can also be applied to the case of, for
instance, nested half-space boxes.

LEMMA 3.2. Let Ay € Ay C Z¢ be arbitrary finite vertex sets withz € Ay. Let
B C 0A1 be a distinguished portion of the boundary of Ay, and suppose that the
£ distance from Ag to B is A. Recall the definition of 04, Ao from (2.1). Let C be
a set of vertices of Ao that is admissible in the sense that P(C4,(z) = C) > 0, and
suppose further that #{C N 94, Ao] = M. We then have

P(z <5 B | C40(2) = C) < Ma(d).

PROOF. For a vertex set C of Ay, note that the event {€4,(z) = C} depends only
on the status of edges having either both endpoints in C or one endpoint in C and
one endpoint in Ag \ C. Conditional on {€4,(z) = C}, if {z <i> B} occurs, then
there must be some 'y € C N d4, Ao (see Figure 3.1 for a sketch) such thaty <> B
off C. That is, y has an open path (in Z¢) to B which touches C only at y. We thus

have the inclusion

A
{25 B, €4,(z) = C} C {€4,(2) = C}
N{Jy € CNadq, Ao withy <> B off C}.

(3.3)

For any fixed C, the events on the right-hand side of (3.3) are independent, and the
probability that any y € C N d4, Ao has such a connection is clearly bounded above
by m(A). Thus, for any set C C Ag that is admissible as in the statement of the
lemma, we have

P(z <5 B.C4y(2) = C)

A
= P(z <5 Bl €40 = OP (s =C) |
Y€[CNada, Aol

§P(€A0(z)=C)}P’( U {y<—>BoffC})

yelcnda, Aol
<P(Csp® =C) Y P(y< BoffC)
yelcnda, Aol
< Ma(M)P(Cyy(2) = C). O

Our main technical work in the remainder of this section is to show the follow-
ing.
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Clay (2)

FIGURE 3.1. Depiction of a definition appearing in Lemma 3.2. This
A
is an instance of the event {y <> B} o {y<—0>z} fory € 04,40 as

illustrated.

LEMMA 3.3. There exist no > 0 and positive constants c; = c1(no,d) and ¢ =
c2(no, d) such that, uniformly in n and n < no,

IP’(#&’,7 > clnnd_6) > cs.
We first assume the truth of Lemma 3.3 and use it to prove Proposition 3.1.

PROOF OF PROPOSITION 3.1. Let ng,c1 = c1(no,d) and ¢c» = c2(n9,d) be
the constants from Lemma 3.3. First note that if C,C" € [Ann(n, 3n)] are distinct,
then X¢ and X¢r count disjoint sets of vertices. So for any 1 > 0,

(3.4) #{x € IB(2n) : x e Bm)} = Y Xe.
ceSy
B@2m) 2,,d—4
and hence #{x € dB(2n) : x «<— B(n)} > cin°n on the event {#.7; >

clr)nd_G}. In view of Lemma 3.3, the above event has probability > ¢, for all
n < no. Therefore, for such an 7,

B(2n)
E#{x € 0B(2n) : x < B(n)}
B(2n)
(3.5) > E[#{x € B(2n) : x <— B}y 5 > ¢\ pni—ey]

> clnznd_4P(#yn > clnnd_é) > clcznznd 4,

B(2
On the other hand, if a vertex x € dB(2n) satisfies x <2>) B(n), then x must
have a half-space arm to distance n (in fact, a half-space arm in a “rectangle”
similar to that of Rect(n); we return to this point in the proof of Proposition 7.1).
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Using (2.2), we obtain an upper bound for the expectation appearing in the last
display:

B(2n) d—1
(3.6) E#{X € 0B(2n) : x <— B(n)} < Crg(n)#0B(2n)] < C1n“" "y (n)

for some constant C; = Cy(d). Comparing (3.4), (3.5), and (3.6) gives g (n) >
(c1c2n?/C1)n~3, which completes the proof of the proposition. O

To complete the proof of Proposition 3.1, it suffices to prove Lemma 3.3. The
key fact that we need to prove Lemma 3.3 is the following. Recall that for x € Z¢,
€(x) is the open cluster containing X.

LEMMA 3.4. There exists no > 0 and ¢ = c(ng,d) > 0 such that for all n < no
andx € B(n/2), P(€(x) € %) > cn=2.

First, we show how to use Lemma 3.4 to prove Lemma 3.3; we then prove
Lemma 3.4.

PROOF OF LEMMA 3.3. We apply Lemma 3.4 to obtain 79, c(1o, d) such that
3.7 P(C(x) € ) > en™2 uniformly inn,n < no and x € B(n/2).
Now we will use a second-moment argument for #.%,. First note that

> Lewesy = Y #HCNBm/2)] < 'n*w,.
xeB(n/2) ceSy

The last inequality follows from the fact that #{CN B(5n)] < n~1n* forall C € .7,
From the last display and (3.7),

3.8 E#7 > 14 E P(€(x) € o) = i4C2ndcn_2 = Czcnnd_6
n n
xeB((n/2)

for some constant C; = C»(d). Now we estimate the second moment of #.77,.
Note that

Y Lewesy = Y #HCNAmGn,5n)] = gn*#hs.
x€Ann(3n,5n) CeSy

The last inequality follows from the fact that #[C N Ann(3n,5n)] > nn* for all
C € .%. Thus,

1
(39) #7 < W Z ﬂ{@(x)etsf’n}
x€Ann(3n,5n)

1
and so (#5”,,)25 2,8 Z ﬂ{@(x),c(y)ey,,}.
x,yEAnn(3n,5n)
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For each of the above summands there are two possibilities based on whether €(x)
and ¢(y) intersect or not. If €(x), €(y) € ., and €(x) N €(y) = &, then X and y
are connected to B(n) using disjoint paths, so using the BK inequality

P(€(x), &(y) € S, €x) N&(y) = @) < P({x < B(n)} oy <> B(n)})
<P(x < B(n)P(y < B(n)).
On the other hand, note that for any x € Ann(3n, 5n),
Y. lewemes, cwnew)+a)

y€Ann(3n,5n)

< Z Lige.s,; = #HEX) N BG) Lewes,y <1 'n* lewes,
ye€(x)NB(5n)

by the definition of .. Combining the last three displays,

| _
E[(#.5)%] < 2n8[ Yo T ntPER) € #)
n x€Ann(3n,5n)

+ Z P(x < B(n))P(y < B(n))].
x,yEAnn(3n,5n)
Using (1.9), we have P(x < B(n)) < A,n~2 uniformly in x € Ann(3n,5n).
Since #B(5n) = (51 + 1)?, the two terms in the right-hand side of the above

display are at most C7~3n%~% and C 2124712 respectively. Therefore, there is
a constant C3 > 0 such that

E[(#yn)Z] < C3T]—3n2d_12.

Using the estimates in the above display and (3.8), and applying the Paley-Zyg-
mund inequality,

1 1
P(#y,, > 5Czncn”l—ﬁ) > P(#yn > z]E#y,,)

] (E#.)?
T AE[#A)Y]
d—
_ 1C22n2c2n2 12 _ C2202n5,
— 4 C3T}_3ﬂ2d_12 4C3

While the above bound depends on 7, we can replace it by a constant for 7 < 7
since the probability appearing in the statement of Lemma 3.3 is decreasing in 7.
This completes the proof of the lemma. O

Lastly, we need to show Lemma 3.4. The lemma follows from moment estimates
and Lemma 3.2, which says that clusters of boxes with a small number of boundary
vertices are likely to die out.
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PROOF OF LEMMA 3.4. Since #.#7 is monotone in 7, it suffices to show that
there is a 79 > 0 and ¢ = c(n9,d) > 0 such that P(¢(x) € #,) > cn™2 for all
x € B(n/2). The proof consists of the following steps:

Step 1. There are positive constants Cy, C» depending on d such that for any
X € B(n/2),
(3.10) IP’(#[C(X) N Ann(3n, 5n)] > nn4) > (C; — Can®)n~2.

Step 2. There are positive constants Cy, C, C3 depending on d such that for
any X € B(n/2),
IP’(#[Qf(X) N Ann(3n,5n)] > nn*, #€(x) N B(5n) < n_1n4)

3.11
G0 > (C1 — Co” — Can)n ™.

Step 3. There are positive constants Cy, Ca, C4 depending on d such that for
any x € B(n/2),

(3.12) P(€(x) € ) = (C1 — Can” — Can)n™>.

The proof of the lemma follows from Step 3 by taking ¢(n,d) := C1 — Can? —
C4n and choosing 19 > 0 small enough so that c(n9,d) > 0. Now we give the
proof of the three steps.

STEP 1. We will use a second moment argument for the distribution of #[&€(x) N
Ann(3n, 5n)] given {x <> dB(3n)}. First note that

E(#[€(x) N Ann(3n, 5n)]|x < dB(3n))

= Z P(x < y|x <> 0B(3n))
y€Ann(3n,5n)

_ P(x <y)
N Z P(x < dB(3n))’

y€Ann(3n,5n)

as x <> y implies x <> dB(3n) for all y € Ann(3n,5n). Equation (1.9) and the
symmetries of the lattice give that P(x <> dB(3n)) < n~2. This, together with the
two-point function estimate (1.7), gives

E(#[€(x) N Ann(3n, 5n)]|x <> dB(3n))

(3.13) > Y |x—ylP = en?
y€Ann(3n,5n)
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for some constants ¢y, ¢ that depend only on d. Next note that
E((#[C(X) N Ann(3n,5n)])? | x < 83(3n))

= Z P(x <> y,x <> z|X <> 0B(3n))
y,z€Ann(3n,5n)
P(x < y,Xx < z)
Z P(x < 0B(3n)) ’

y,z€Ann(3n,5n)

as X <>y, z implies x <> dB(3n) for all y, z € Ann(3n, 5n). Now,

Z P(x <y, z)

y,2€Ann(3n,5n)

is upper-bounded by E[(#[¢(x) N [x + B(6n)]])?], which is at most c4n° for some
constant ¢4 > 0 by Lemma 2.2.
Combining this estimate with the fact that P (x <> 0B(3n)) =< n~2, we obtain

(3.14) E((#[¢(x) N Ann(3n,5n)])* | x <> 9B(3n)) < csn®

for a constant c5 that depends only on d. Using the inequalities in (3.13) and
(3.14), and applying the Paley-Zygmund inequality, we find

]P’(#[@(x) N Ann(3n, 5n)] > r]n4}x <~ 8B(3n))

> ]P’(#[(’:(x) N Ann(3n, 5n)] > (n/c2)E#[E(x) N Ann(3n, 5n)] ‘ X < 88(311))

22 (E#[E(x) N Ann(3n, 5n)]|x <> aB(3n)])’
= (1= 1/ e ®) A A 3m)|x < 9BGH)R)

> (1117 /c3)c3/cs.

The above estimate together with the fact that P (x <> dB(3n)) =< n~2 gives (3.10).

STEP 2. Combining the first moment bound of Lemma 2.2 with the Markov in-
equality gives

(3.15) P#[¢(x) N B(5n)] > n~'n*) < conn™2.

Using this with the estimate in (3.10), we get (3.11).
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STEP 3. We now argue that the condition X¢(x) > nn? can be further imposed on
the event in (3.15) without substantial probability cost. Write

P(Xe) < nn?,x < 0B(3n))
=P(0 < X¢) < nn?,x < 0B(3n))

= Z Z P(€p(an)(x) = C, x <> 0B(3n))

M<nn? CSB(2n),
#[CNOB(2n)]=M

< E E Mr(n)P(Cgan(x) = C),
M<nn? CCB(2n),
#[CNOB(2n)]=M

where in the final inequality we applied Lemma 3.2. Upper-bounding M < nn? in
the last display, using the asymptotics (1.9) for 7 (n), and performing the sum over
M and C, we find

P(Xew) < nn’x <> 0B(3n)) < CnP(0 < X¢@ < nn?)
< CnP(x < dB(2n)) < Csnn™2,

where C5 > 0 is a constant, uniformly for x € B(n/2).
Combining the above estimate with (3.11), we see

P(E(X) € )
= P(#[€(x) N Ann(3n,5n)] > nn* #[€(x) N B(5n)] < 1~ 'n*)
— P(#[€(x) N Ann(3n,5n)] > nn*,
#[€(x) N B(5n)] < n~'n*, Xew) < nnz)
> ]P’(#[Q:(X) N Ann(3n,5n)] > nn*, #[¢(x) N B(5n)] < n_1n4)
—P(Xer) < nn2,x <> dB(3n))
> (Cy — Con® — C3n— Csmn™2 =: c(mn2.
This shows (3.12). O

4 Proof of Theorem 1.2

This section is entirely devoted to the proof of Theorem 1.2. Theorem 1.2 will
be used in an essential way in the proofs of the remaining results of Theorem 1.1.

Note that the upper bound claimed in Theorem 1.2 follows from the unrestricted
two-point function: 7p(0,x) < 7(0,x) < A;|x|?>¢ for any D € Z%. We will
first give the matching lower bound in a more restrictive setting than claimed in the
theorem. The restriction will be removed via an inductive argument that bootstraps
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a lower bound on the two-point function tg(,) far from the box boundary to one
slightly closer to the box boundary.
We now state the “restrictive setting” version of Theorem 1.2 alluded to above.

PROPOSITION 4.1. There exist constants Mo > 1 and ¢1 > 0 such that the follow-
ing holds uniformly in n:

B (0,%) > c1|x]|>7¢  forallx € B(n) \ {0} and all M > M.
PROOF. We say x <> y through D if x <> y but every open path from x to y uses
a vertex of D. Suppose x € B(n). Note that for any M > 1, the event {0 <> x} is
a disjoint union of {0 Bﬂ) x} and {0 <> x through B(Mn)¢}. Thus,
8(Mn)(0,X) = P(0 < x) — P(0 <> x through B(Mn)°).

The latter term of the right-hand side is bounded above by C(M n)2—4, uniformly
inx € B(n), by [32, (1.12)]. Using (1.7), the first term of the above is at least
a1|x|>~¢. Choosing M large completes the proof. O

The result of Proposition 4.1 will serve as the base case for an induction argu-
ment, which will prove Theorem 1.2. In fact, our argument shows that the nested
cubes of that theorem can be replaced by possibly oblong rectangles of arbitrary
fixed aspect ratio. We state this strengthened version of the theorem for future
reference:

THEOREM 4.2. Fix a;, B; > Ofor1 <i <d; fixalso M > 1. For each n, let the
rectangle
Ry := [—aqn, prn] x -+ x [—agn, Bgn].
There is some ¢ = ¢(M, (¢;), (Bi)) such that, uniformly in n and in X € Ry,
TRy (0.%) = cl|x]>77.

For use in the proof, we introduce some shorthand for the boundary vertices of
cubes reachable from 0 within the cube. Recalling the definition of X ¢ (D, z) at
(2.3), set

box B(n)
X"(n) 1= Xpg(m)(B(n),0) = #{x € dB(n) : 0 <—> x},

where in the first equality we use the notation of Section 5 with D = B(n) and
O = 0B(n). We need a lemma bounding IE X ?°*(n) for our proof of Theorem 1.2.

LEMMA 4.3 (Theorem 1.5(a) of [32]). There is a constant C; > 0 such that
EX%*(n) < Cy uniformly inn > 1.

PROOFS OF THEOREM 1.2 AND THEOREM 4.2. We prove the notationally sim-
pler case of a cube—that is, we prove Theorem 1.2—in detail, then describe the
modifications necessary for other rectangular regions. Let

FRC) = |- 19 2p(x) (0, ).
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For M > 1, say that t is M -good if there are constants ¢(M),no(M) so that
FM”|B(n) > ¢ for all n > ng. The proof of Theorem 1.2 is inductive, and
Proposition 4.1 initializes the induction. The inductive step is accomplished by
the following claim. U

CLAIM 4.4. If T is M-good and o (M) := min{4/3,(M + 1)/2}, then t is
(M/a(M))-good.

It is not hard to see that if t is My-good for some My > 1 (which is guaranteed
by Proposition 4.1), then one can show that ¢ must be M-good for any M €
(1, My) by applying Claim 4.4 finitely many times. This proves Theorem 1.2.

To prove Claim 4.4 it is enough to show that if F Mn| B(n) 18 bounded away from
0, then so is FM"|B(a(M)n). So, if Bj(n) := {x € 74 x(D)],....|x(j)| <
a(M)n; |x(j + 1),...,|x(d)] <n} obey
CLAIM 4.5. If FM» |B;(n) (Where 0 < j < d) is bounded away from 0 for all n
large enough, then so is FM" 1B, 1 (n)-
then Claim 4.4 follows from Claim 4.5 by using induction on j. Note that the
hypothesis of Claim 4.4 initializes the induction argument for Claim 4.5 at j = 0.

To show Claim 4.5 suppose FM"| B; (n) 1s bounded away from O for some 0 <
J < d, so for some constant cpr > 0,

4.1) 8(Mn)(0,X) > cM||x||2_d foralln > 1and x € Bj(n).
Fix an arbitrary x € Bj11(n) \ Bj(n). We will bound tg(ar5) (0, X) from below.
Without loss of generality we can assume that x (i) > 0 for all i, as other cases are
similar. Let
4.2) D =x+4 B((a(M)—1)n), so D < B(Mn)\ B(n/3)
by our choice of «(+). Also, dD contains the (d — 1)-dimensional “quadrant”
Q:={yeD:y@)<x()foralli # j +1,andy ~ y for some
y ¢ Dwithy'(j +1) <x(j + 1) — [(«(M) — Dn]}.

Each vertex of Q has a lattice neighbor in B; (n) (as long as n is sufficiently large).

If x is on the i axis for some 7, then all the vertices in an entire “side” of D
(perpendicular to the i™ axis) containing Q are adjacent to vertices of B i (n). At
the other extreme, when X is at the corner of Bj1(n) belonging to {y € VA

y(i) > 0}, then no (or almost no) vertices of dD \ Q are adjacent to vertices of
Bj(n). See Figure 4.1 for possible locations of D. Now note that if

F, = {z&x,zBﬂ)O},

then Claim 4.5 will follow if we show that there is a constant ¢ > 0 (independent
of x and n) such that
4.3) IP’(U FZ) >cn®*? foralln large enough,

zeQ

“obey” what? And what
“obeys”? Please rewrite
this and clarify.

Please rework and
clarify.



Note addition of “Proof™
format added here.

30 S. CHATTERIJEE AND J. HANSON

B(Mn)

= Dn
R
@ 3
3 D
: =
Bj(n) o] x2
N .

Byia(m)\ By(n)

FIGURE 4.1. Referenced above (4.3). (x;, D;, Q;),i = 1,2, are two
possible locations of (x, D, Q).

because UZEQ F, implies {x B&) 0}. For each z € Q, fix a deterministic neigh-
bor z’ ~ z with 2’ € Bj(n) \ D. To prove (4.3), let Yg be the number of z in
ONCp(x)NREGP (K) such thatz B&) 0 and such that the edge {z, 2} is pivotal
for the event {x <> 0}. The following lemma gives bounds for the (conditional)
moments of Yé{ . As above, we introduce abbreviated notation for X¢g(D,x) in

order to make equations more readable.

LEMMA 4.6.

(1) Let Xpp = #9D N <Cp(x), Xo = #0 N Cp(x), and Xg'reg = #0 N
Cp(x) N REGp(K). There are constants 1, c1(n) > 0 (independent of x
and n) such that

(4.4) if By = {nn? < Xg"eg < Xg < Xop < n 'n?}, then P(By) > c1n™ 2.

(2) Let n > 0 be such that (4.4) holds. There are constants Ko, Ca,c3 > 0
such that for all K > Kg and all nn*> < N < n~'n?,

@A) E[(rE)hxg =N, B,,] < Con*IP(X57 = N; By),

0
(2B) E[YE: X5 = N.By] = con*™P(X57 = N: By).

PROOF. Using Lemma 4.6 and the second-moment method, if K > K then

2
P(rK >0 X5 = N.B,) > é—zzn“—d VN € (2,5~ 'n?),
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which implies

P(YS >0)
= Y P(E 0| X5 = NB)R(XETT = N.By)
nn2<N<n—1n2
3 4a €165 5y -
> 25 P(B,) > —=n using (4.4).
C2 C2

This proves (4.3), as {Yé< > 0} implies UZGQ F,, and thus completes the proof of
Claim 4.5. g

We end the section by proving Lemma 4.6.

PROOF OF LEMMA 4.6. From the definition of Q and the symmetries of the
lattice it is not hard to see that #[¢p (x) N dD] is bounded above by a sum of d2¢
copies of X that are identically distributed (but not independent). So, using a
union bound and Lemma 3.4, there are constants 1o(d) > 0 and c(no, d) > 0 such
that

1
P(Xg > 2nn?) > WIP’(#[(’:D(X) NaD] > d2¢tyn?)

c _
> ﬁn 2 forall 5 < no.
Also, Lemma 2.3 implies
IP’(XQ > 2nn?, Xg'reg < r)nz) <Cn? exp(—c log?(2nn?))

for some constants C, ¢ > 0. Finally, using Lemma 4.3 and the Markov inequality,
P(X3p = n~'n?) < Cinn~2. Combining this with the last two displays,

P(By) > ;7”—2 —Cn® exp(—c log?(2nn?)) — Cinn™2 forall 5 < 1.
So we get the desired result if we choose 1 > 0 small enough and n large enough.

(2A). First we argue that Yé( < 1 a.s. via the method of contradiction. Sup-

pose, if possible, z; and z, are two vertices counted in Yé( . Then x <« O,
so we can choose a self-avoiding open path y joining x to 0. By pivotality, y
must contain the edges {z;,z;} for i = 1, 2. Suppose (without loss of gener-
ality) that y passes through z, first when traversed from O to x. Then we can
find a path y’ C y joining O and z> such that the edge {z;,z]} ¢ y’. On the
other hand, since z; € €p(x), we also have a path y” that stays entirely within
D and joins x and z,. This contradicts the fact that the edge {z;,z}} is pivotal
for {x < 0}, as y’ U y” avoids the edge {z1,Z} and connects x and 0. Thus
Yé( < 1. In particular, (Yg 2=y, 1¢; counted in Yo }- Conditioning on the cluster
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Nt

B;(n)

FIGURE 4.2. The event {Z <> y} o {y <> 0} fory € C as in the proof of
Claim 4.7. The shaded region represents Cp (x).

of x, E[(Yé()z; Xg"eg = N, Byl is

< Z E[(Yé()z;QD(X) =C]
ceB,n{X5 =N}

< Z Z P(Cp(x) =C, z <> 00off C)

K—regz ZGQZZGCQREGD (K)
CGB"O{XQ N} when ¢p (x)=C

4.5)

(recall that “z <> O off C” means that there is an open path from z to 0 touching
C only at z). Using (1.7) and the fact that Q N B(n/3) = @, along with the
independence of the above events, we see as in the proof of Lemma 3.2 that the
above is bounded by

A3y IP’(z € ¢p(x) NREGp(K). X5 = N: B,,)
z€Q

= A1(n/3)> 9EX K

0 {x5™=N}nB,

< Al(n/3)2_dn_1n21P’(Xg_reg = N; B,,).

This completes the proof of (2A) of Lemma 4.6.

(2B). We will define some events that force Yé( to be nonzero. Forz € Q,
consider the box D, = z — [K/2, K]¢. Since x(i) > 0, D, € Bj(n) \ D aslong
asn > K and also K is larger than some lattice-dependent constant. In fact, for K
larger than a lattice-dependent constant, the £°° distance of D, from D is at least
K /4. In what follows, for a fixed z € Q, Z will typically denote a vertex of Dy;
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N will also always be a value between nn? and n~'n2. Define

E1(2.N) := By N {x S 2, z € REGp(K), and X5 ' = N}

B(Mn)

&7 = (7 2 0 off Cp(a)),

E3(z,7) := {€(z) N €(z) = T}.

We successively bound probabilities of the intersections of the &;’s via a series of
claims.

CLAIM 4.7. Let cpr be the constant from (4.1). There is a constant Ko> 2 (de-
pending on cpr) such that P(E1(z, N) N Ex(2,7)) = (cpr/2)n2 2P (E1(z, N)) for
allx, K > Ko, n > 10K, z€ Q,Z€ D,and N > 1.

Note that for any realization C of €p (z) satisfying £1(z, N),
P(&2(2.2) | €p(z) = C)
equals
B(M B(M
@6 a0t 0)=p@ o)~ B(|JE o vioty < 0}).
yeC

See Figure 4.2 for a sketch. Using (4.1) and recalling that Z € B; (n), the first term
in the RHS of (4.6) is > cpn?~4. Using a union bound and the BK inequality,
(1.7), and the fact that C € (B(n/3))¢ (see (4.2)), the second term in the RHS of
(4.6)is < A1(n/3)*¢ ZyEC P(z <> y). From (4.6) and the last two observations,
P(&(z.2) | €p(z) =C) is

2—d
4.7 > epn® 4 — Ay (g) Zp(z <y).

yeC
In order to estimate the sum in (4.7), let U, := Z + Ann(2",2" 1) for r > 0. So
Pz < y) < 41272 D for all y € U,, which gives
YPGoy=s Y A2@TDwcnu).

yec r=log,(K/2)

Since ||z —Z|| < K, we have U, C z + B(2""2) for all r > log,(K/2). Hence,
whenever C satisfies £1(z, N), we have

#C N U, <E[#C(z) N (z+ BQ 2)) | ¢p(z) =]
< 24(r+2) 10g7(2r+2) + 2(r+4)d]P>(7~2r+2 (Z)C | ¢p (Z) — C)
< C2* log’ (27)
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for all r > log, (K /2), where C is independent of r and K (as long as K is large).
In the above, we have used the definition of K-regularity and Lemma 2.3. This
implies

Z Pz <y) <c Z (r7276=d)y < o, K674 log’ K

yeC r>log,(K/2)
for some constants ¢y, ¢cp (independent of K and n). Using this bound and (4.7),
we see that if K is large enough then

P(&2(2,7) | €p(z) = C) > (ear/2)n* ices, unyy-

Taking an expectation over €p (z) completes the proof of Claim 4.7.
Having proved Claim 4.7, we move on to the next subsidiary claim, which deals
with 3.

CLAIM 4.8. Let cpr be the constant from (4.1). There is a constant K1 > Ky
(depending on cpyr) such that for all x, K > Ky1,n > 10K and z € Q, we can find
aZ € D, satisfying

P(E1(z, N) N Ex(2,7) N E3(2,7)) = (ep /D> P (E1(z, N)).

Claim 4.8 will follow if we show that there is a constant K 1> K such that, for
any z € Q,if { denotes a uniformly chosen random vertex in D, and if E¢ denotes
expectation over {, then

4.8)  E;P(E1(z, N) N &2, 0) NE3(2,0) = (em /> TP (E1(z, N))

forall N and K > K;.

Fixz € Q and ¢ € D,. Consider the event (£1(z, N) N & (z, ¢)) \ E3(z, ¢). On
this event, we can find a self-avoiding open path y; joining ¢ and 0 and avoiding
¢p(z), then subsequently find a path y, starting at z and terminating at its first and
only intersection point with y;. So if v € y1 N y5 is the unique such intersection
point of y; and y», then the event {x <> v;&1(z, N)} o { <> v} o {v <> 0} occurs
(see Figure 4.3 for a sketch). So, using the union bound, the BK inequality, (1.7),
and the convention 0279 = 1,

P((€1(2,N) N &2, 0) \ E(2.0))
<47 ), Pxoewa@N)E—vIP v
“4.9) veB(n/100)
47 Y Paevi&i@N) 6=V VP =+ L
véB(n/100)

We bound E¢I; and E¢l> uniformly in K large, and in n large relative to K.
First consider /;. If n > 10K, then using the triangle inequality || — v| >
lz|| — ||z —&|| — ||v|| = n/2 for each v € B(n/100). Also,

Px < v;&1(z,N)) = Z P(p(x) =C)P(x < v | €p(x) = ().
Ce&(z,N)
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If {x < v} occurs, then there must be some w € €p(x) N dD such that {w <«
v off €p(x)} occurs. In particular, using (1.7) and the fact that ||v — w|| > n/2 for
allw e 0D,

Pxov|E&E=0=< Y PWwov)=<A41/2>Xp
weCNnaD
< Ain~'n?(n/2)° 7

for all C satistying £;(z, N). Pulling the above bounds together and summing over
Candv,

4100 I <ciPE@ N4 3" VP4 < P (E(z N)n® 2
veB(n/100)
uniformly in £, for some constants ¢y, ¢ (independent of K and n).
To control I», we bound ||v||2~¢ uniformly by (1n/100)2~¢. Define Cer =
¢(x) N [¢ + Ann(2!71,2")] for t > 0 and tg := log,(4K). Since || — v| > 2!~}
whenv € Cg 4,

L<C@M00P4Yy" 3 Paovib@N)|E-v|*

1=0vel+Ann(2:—1,21)

= (Y 2 EMC: 12, N))
“4.11) t>tx

+ Y PEeva@N)E v )n2
<ty
vel+Ann(2171,2%)

=: 171+ I

for some constant C > 0. To bound /51 note that C¢ ; C z+ B!t forallt > tx

and ¢ € D,, so using Lemma 2.3 and discarding a negligible contribution from the
event T,:+1(2z)¢ as before, there is a constant C independent of n and (sufficiently
large) K such that

E[#Ces: E1(z, N)]

= Z E[#e(z) N (z+ B2'™))] | €p(z) = CIP(Cp(z) =C)
CeE(z,N)

< CP(&1(z N))2* log”(2"),
which implies

D1 = C3P(E1(z N)n®~4 ) 1 172107

[ 2476

< C4P (&1 (2, N))nz_d Ko log” K
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where the C;’s are constants independent of x, of K sufficiently large, of z and £,
and of n large relative to K.

We turn now to estimating E¢(/22). Consider the expectation E¢ of the inner
sum for a typical value of t < tg.

Ee Y Pxevi&@N)E-v[P
vel+Ann(21—1,20)

~ 1 )
= [#Dz] Z Z P(x < v;E1(z, N))||¢ — V||2 d
¢eD, vet+Ann(21=1,21)
< CK™ 2. P(x < v:&i(z, N))
velUe C+Ann(2!—1,20)

K
Z Kz—d + Z Z lz—d]
teDy:lg—v|>K I=1¢teD,:)|lt—v]oo=I
<ck > P(x < v:&1(z, N))
velJg {+Ann(21—1,2)

K
. |:(K/2)dK2_d + szid—llz‘d}
=1
< C5K2_d]E[#( U Cg’t); &1(z, N)] for some constant Cs.
teD,
Note that C; ; C z+ B(5K) forallt < tg and ¢ € Dy, as ||{ —z| < K. Therefore,
the above is

< CsK* E[#C(2) N (z+ BGK)]: E1(z V)]

4.12) =Csk>¢ Y P(Ep(2) = OER[E® N (z+ B(GK))] | €p(@) = C]
Ce€(z,N)

< CsK2 4 (5K)*10g” (5K)P(E1(z, N)) + Ce K> K9 &K P (&1 (2, N)),

again using K -regularity.
The second term of (4.12) is negligible, which implies
E¢(In) < C7K* @ 1og® (5K)n? 9P (E1(z, N))

for some constant C7. Inserting our estimates for /1, /21, and E¢(/22) in (4.9), we
bound E¢P([£1(z, N) N E2(z,0)] \ E3(z,§)). Using this bound, the LHS of (4.8)
is at least
4.13)  Ef[P(&1(z, N) N E(2.0)] - Csn® ! K log* (SK)P(E1 (2, N))

for some constant Cg. Choosing K large enough and applying Claim 4.7, (4.8) is
established. This finishes the proof of Claim 4.8.
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B(Mn)

FIGURE 4.3. Bounding a cluster intersection event in the proof of Claim
4.8. Depicted is the event {x <> v; E1(z, N)} o {{ < v} o{v <« 0}.

We now move to complete the proof of (2B) of Lemma 4.6. Suppose we have
a pair (z,Z), where z € Q and Z € D,, as in Claim 4.8. We claim that there is a
constant cg = c9(K) > 0 such that
P (z is counted in Yg; Xg'reg = N, B,,)
(4.14) 3
> coP (51 (z.N) 0 () Si(z,i)).

i=2

The argument for (4.14) is a usual edge modification argument, which we now
sketch. We define a function Y mapping each edge configuration w € £1(z, N) N
ﬂ?=2 &i(z,7) to a new edge configuration Y (w) as follows. Consider such an
outcome w, with Z chosen as in Claim 4.8. We can choose according to some
deterministic search algorithm a path 7 of open edges from Z to 0 lying entirely in
B(Mn). Since €(z) and €(z) are disjoint, this path is guaranteed not to intersect
&(z). Now, we close all edges having an endpoint in the box [z + B(4K)] \ D,
except those edges belonging to 7r; we then open {z,z’}. Last, we open one-by-one
the edges in a path from z’ to 7 which lies entirely in

z+ BBK)|\ [x+ B((¢(M) — 1)n + 1)]

(i.e., the set D widened by one unit) except possibly for its initial vertex z’.

It is easy to see that the above procedure connects z to O within B(M n) but that
every open path from z to 0 must pass through z’. Because, in the outcome w, z
was in €p(z) NREGp (K) and B, N{X g 7® = N} initially occurred, and since no
edges of D were modified by T, these facts still hold true for Y (w). Lastly, since



38 S. CHATTERJEE AND J. HANSON

the function is at most eCX* -to-one, the probability of the image Y (1 N &> N E3)
is at least c(K)P (&1 N & N E3).

Given (4.14), the conclusion of the proof is immediate. Summing (4.14) over z,
we find

3
z i=2

Using Claim 4.8, the probability appearing on the right-hand side is at least

cn®> 4P (& (z, N))

when Z is chosen appropriately. Now, on By, N {X g 7% = N}, there are N vertices

z such that £ (z, N) occurs; since N > nn?, this completes the proof. O

5 Extending Large Clusters

We now give a collection of results that could be said to relate to “extensibility”;
these are collected in Theorem 5.1. We use this term in the sense of the two-
dimensional percolation literature [25, prop. 12] to mean, roughly, that when €¢ (0)
is conditioned to be large in some sense, it has nontrivial probability to be “still
larger.” Such extensibility arguments were also a key part of the argument showing
(1.9) appearing in [22].

The setup we will use differs from previous high-dimensional extensibility re-
sults in a major way: namely, we typically want to extend clusters restricted to lie
in the subgraph G = Zi. This poses a couple of serious obstacles. The first prob-
lem is that we cannot use the usual two-point function 7 (X, y) for lower bounds on
the probability that long open connections exist, since 7(x,y) includes contribu-
tions from the event where such connections leave Zi. More precisely, we need to
compare tg (X,y) to 7(X,y). A main aim of Theorem 1.2 is to provide a compari-
son between these two connectivity probabilities when X and y are a macroscopic
distance from S(0).

The second problem relates to our inability to effectively localize the half-space
arm from O on the event

&
{0« S'(n)}.

Ideally, we would prove g (2n) > cmg (n) by conditioning on the existence of an
arm to distance n and showing it is likely to be extended. This would require one to
show that the distance-n arm does not typically terminate close to S(0), since the
two-point function in Zi behaves very differently near S(0) than far from S(0).
Proving that half-space arms can be localized away from the boundary appears to
be difficult a priori; to solve this problem we work in an annulus Ann’ and compare
to the case of the half-space. As mentioned above, such a localization result does
ultimately follow as a consequence of 7y (n) < C n=3 (see (7.1)); this will be
important for our work on the two-point function in (b) of Theorem 1.1.
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B(4n) \ B (k+ L)
)

B_(n/2) (/:
Bru (k)

FIGURE 5.1. Depictions of a definition appearing in (5.1). All edges are
closed except the two paths drawn above, and x; € A%, x, & A",

For simplicity, we introduce the following abbreviations for stating the extensi-
bility result. If z € By (k), wheren < k < 2n,and if 0 < L < 3n —k is an
integer, we define (see Figure 5.1 for a sketch)

(5.1) A (n kL) := [€an(n/2.4n)(@) O Anng (k. k + L)].
If z € By (4n), we define

A™(n) := [€(z) N B_(n/4)].
In this language, the main theorem on extensibility is as follows:

THEOREM 5.1. There is some constant cx > 0 such that the following hold uni-
formly inn > c;l, inn/19 < [, <3n—k,inn <k <2n, andin M and z as
specified.
o Let D = By (k) and Q = S'(k). Uniformly in M > L?/2,
P(#AJ“(n, k, L) < cxML?*, Xo(D,0) = M)
< (1-c)P(Xo(D.0) = M).

e Let D = Rect(n) and Q = 8Zi Rect(n) (the union of sides of Rect(n) not

lying along S(0)). Uniformly in M > n?/2,

P (#A3“(4n,4n,8n) < cxMn>, Xo(D,0) = M)
< (1 —c)P(Xo(D.0) = M).

o Let D = Ann'(n/4,5n) and Q = d_Ann'(n/4,5n). Uniformly in z €

By (4n) and in M > n?/2,
(54) P#AI'(n) < cxMn®, Xo(D,z) = M) < (1 —cx)P(Xo(D,z) = M).

5.2)

5.3)
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The remainder of this section is devoted to the proof of Theorem 5.1 (Section
5.1).

5.1 Proof of Theorem 5.1

We will prove only (5.2), since (5.3) has a very similar proof, and since both
(5.2) and (5.3) are harder than (5.4) (involving, in particular, the restricted cluster
appearing in A°"). For the purpose of abbreviation, for X /() (Bg (m),0) we
write X (m) throughout this section only, and similarly set

XK (m) = X§ & (B (m),0) and  REG(K,m) = REGp,; (m)(K)

(recall Definition 3).

Although some parts of the arguments here are similar to that of Section 4, there
are many differences in the details. We will need to build extensions of spanning
clusters of large boxes, involving a number of parameters. The statements that
follow will provide various bounds that are uniform in n sufficiently large with
n<k<2nn/"<[L<3n—k,and M > L2/2. The main restriction on n
will come from it having to be very large relative to the regularity parameter K,
which will be fixed relative to all other parameters but larger than some constant
depending on d and the particular edge set of Z4 chosen.

We say a pair of vertices (z,y) is (k, L, K)-admissible if

(1) ze S'(k) andy € (z + Bu (L)) \ By (k),

(2) z € REG(K. k),

By (k
(3) 0 n®

Ann’ (n)2,4
@) z nn'(n/2,4n) v,

(5) The status of the edge {z,z’} is pivotal for the event 0 <> y, where 2 is a
deterministically chosen neighbor of z in [z + By (K)] \ Bg (k).

Define the random number of admissible pairs
Y(k,L,K)=#{(z,y): (z,y) is (k, L, K)-admissible}.

Let XX7¢(k) = X(k) — XK (k) = #REG(K, k). The argument will follow
from the second-moment method, using the bounds in the following pair of lem-
mas, followed by a local modification argument similar to that in the proof of
Lemma 4.6.

LEMMA 5.2. Let K be fixed larger than some dimension- and edge-set-dependent
constant. There exists a constant ¢ = ¢(K) > 0 such that

(5.5) EY(k, L, K)lykrery=ps = cML*P(XE72(k) = M),

uniformly in n large (relative to K), forn < k < 2n, n1/10 <L <3n-—k, and
M > L2%)2.
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LEMMA 5.3. Let K be fixed larger than some dimension- and edge-set-dependent
constant. There exists a constant C = C(K) such that the following holds for all
n large, forn <k < 2n, n1/10 <L<3n—-k,and M > L2/2:

(5.6) EY(k, L, K)* Iy xnegy=py < CM2L*P (XK (k) = M).
PROOF OF LEMMA 5.2. As in the proof of (2B) from Lemma 4.6, we introduce
three events that can be used to build connections from z to y. In these definitions,

we generally have z € S’(k),y € [z+ By (L)]\ By (k),andZ € (z+ By (2K)) \
Bu(k + K). Let

By (k
1z K. M) =tz 2% 0, 2 € REG(K. k). and XK (k) = M),

- _Ann'(n/2,4n)
E(2.7.y) :={7 <= yoff Cg, ) (2)}.
E3(z,z) == {€(z) N &(z) = T}.

We continue by proving a pair of claims about the probabilities of these events.
CLAIM 5.4. There exists a ¢ > 0 depending only on d such that the following
holds. Let K be larger than some fixed dimension- and edge-set-dependent con-
stant, and n be large relative to K; let n1/10 <L<3n—kand M > L2/2. For
anyz € S'(k) andZ € (z + Bg(2K)) \ By (k + K), we have

> P(E1(z, K, M) N &x(2,7.y)) > cL*P(E1(z, K, M)).
y€lz+ B (L)\Bp (k)

PROOF. Note that the status of £; can be determined by examining €g,, (k) (2).
We can thus condition on €p,, x)(z) and bound the conditional probability of &>,
similarly to the beginning of the proof of Claim 4.7:

> P& (z. K, M) N E(z.Z, y))
yelz+Bu (L)\Bp (k)

> Y P@,u(@ =0C)

Ce&y
_Ann’(n/2,4n)
> P@E <= yoffC|Cg, k) (@ =C)
velz+Br (L)]\Br (k)
= Y P@s (@) =0C) ) pE "2y off ),
Ce& y€l[z+ By (L)\By (k)

where we have used the fact that the events in the last sum depend on disjoint sets
of edges. We estimate the terms of the second sum using a union bound on vertices
of C:
Ann (n/2,4 _ Ann'(n/2,4n _
P(z e {n /24 yoffC) > P(Z <« ) V)= > PUL < Zo{l <y,
teC
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-  Ann'(n/2,4n) Lo .
where we have used the fact that {z <> {} D {Z ~<— ~ (} and similarly with

{¢ <> y}. Applying the BK inequality gives the bound

Y) =D Pl o Zo{l <y
teC
Ann’(n/2,4n)

>P@E <> y)-Y PCoDPC oy >

P (,i Ann/(n/2,4n)

teC
Ann'(n/2,4n) ad
>PE <>y - Y. > P({ < DP(¢ < y).
t=|logy(K)] tec,

te[z+Ann(2! 211

Note we began the sum above not from ¢z = 0 because Z is at least distance K away
from C.

We sum the above over y and use Theorem 1.2 on the first term on the right-hand
side, finding a lower bound of ¢L? for a ¢ uniform for parameter values as in the
statement of Claim 5.4. (Our restrictions on the value of n and L force L to be
large relative to K so that the distance between Z and the “typical” y is order L.)
For the other term, we use (1.7) for an upper bound on the two-point function; the
result is

Ann' (/2,4
Z P(i nn<(n—/> n)yoffC)
y€[z+Bp (L)\Bp (k)
o0

>cL?-CL? Z Z P(¢ < 7).
t=|log,(K)] gec,
fe[z+Ann(27 21 F1))

Furthermore, we have Z+ B(2°) C z+ B(2°*1) for s > log,(2K), and note that
for any C satisfying the requirements of £; and any m > K, we necessarily have
#(C Nz + B(m)) < m*log’ (m). Using these in the above gives a lower bound of

o0
>cL?—CL> ) (#CN[z+ B2
t=log, (K)
o0
> CL2 _C/LZ Z t724t2t(2_d)
t=log, (K)
> cL? — C"L?*K% 4 10g’ (K).

Again, the constant C” is uniform for parameter values in the appropriate range.
Therefore, whenever K is sufficiently large and fixed relative to the other parame-
ters, the second term is negligible relative to the first. O

Our next claim gives the ability to add on &3 to the intersection in the last claim.
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CLAIM 5.5. For each K > 0 sufficiently large, there exists a ¢ = ¢(K) > 0 such
that the following holds uniformly inn, k, L, and M as in the statement of Theorem
5.2. Forany z € S'(k), there exists aZ € [z + By (2K)] \ By (k + K) such that

> P(€1(z, K, M)NE(2,7,y)NE3(2,7)) = cL*P(E1(z, K, M)).
yelz+ By (L)\Bw (k)
PROOF. Let ¢ be a uniformly chosen (independently of the percolation process)

random vertex of [z + By (2K)]\ By (k + K), and let E¢ denote expectation with
respect to this random choice. We will prove that for K large,

(5.7) E¢ > P(E1 N E N E) > cL?P(&).
y€lz+Br (L)\Bg (k)

where & = &3(z,¢,y) and &3 = &3(z, (). This will suffice to show the claim.
Indeed, for (5.7) to hold, there must be some Z such that, when ¢ = Z, the quantity
inside the expectation E¢ is at least cL?P(&)).

For any possible value of ¢, if £1 N & N &5 occurs, then there exists a vertex v
such that

E1N{0 < Vio{l < Vvio{v<ey)}

occurs. (Compare to the reasoning above (4.9), where a similar vertex v is found.)
In particular, by the BK inequality, for this value of { we have

P(ENENE) < D PEN{0 < VP < VPV < y).
veZd

Summing the above overy € [z + By (L)] \ By (k) and using (1.7), we get a
factor of at most a constant multiple of L2, uniform in the value of . Applying
(1.7) again:

> P (& N & N ES)
yE€lz+ By (L)\Bp (k)
(5.8) <CL?> ) P(EN{0 < V)P« V)
veZd
<C'L? )y PEN{0 < v - VP
veZd

The right-hand side of (5.8) is nearly identical to that of (4.11). The differences
are that now 0 plays the role of x, there is a different prefactor (C’L? instead of
Cn?~4), and the definition of £ is somewhat modified. A proof very similar to
the one used to treat (4.11) gives that (compare to the negative term in (4.13))

Eg Y PEN{0 < v)E—v[>¢ ="K log® (K)P (&),
veZd

uniformly over K sufficiently large and over n, k, L, M, and z as in the statement
of Claim 5.5.
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We can thus uniformly lower-bound E¢P (&1 N & N &3):

E¢ Z P& NéENEs)
y€lz+ B (L)\By (k)

(5.9) = E; > [P(£1 N &) —P(E1NENES]
yelz+ By (L)\Bp (k)
> cL?P (&) — CL?K% 4 10g® K P(&)).

where we have used Claim 5.4 for the inequality. Taking K sufficiently large and
using the uniformity of the constants ¢, C’ establishes (5.7). U

We will now complete the proof of the first moment bound (5.5) from Theorem
5.2 using Claim 5.5. We claim that for any pair (z,y) withz € S’(k) andy €

[z + Bu (L)]\ Bu(k),
P((zy) is (k, L, K)-admissible and X K¢ (k) = M)

©-10) > c(K)P(E1 N & N E5)

for a constant ¢ = ¢(K) > 0, for all K larger than some constant (depending only
on the dimension d and the edge set of z4 being considered). The bound of (5.10)
is uniform in n, k, L, and M as in the statement of Theorem 5.2, where Z is chosen
for z according to Claim 5.5 (note z, Z appear as arguments in the &; events on the
right-hand side). The proof of (5.10) is via an edge modification argument similar
to the one used to prove (4.14), so we do not detail it here. Roughly speaking, one
must open edges to connect z to Z in a way that guarantees the pivotality of {z,z'}
without, for instance, changing the condition z € REG(K, k) guaranteed by &;.

Given (5.10), the conclusion of the proof is immediate. Summing the bound
overy € [z + By (L)] \ By (k) and using Claim 5.5 gives

Y P((z.y)is (k. L. K)-admissible and X" (k) = M) > cL*P(&)).
velz+ B (L))\By (k)

Summing now over z in the above gives a lower bound ¢ M L2P (X K¢ (k) = M),
since on & we have X K7¢(k) = M definitionally. O

PROOF OF LEMMA 5.3. We abbreviate 1ps for Iy kres(gy=pr and ¥ = Y(k, L,
K) and write

(5.11) IE[YZ]IM] = Z P((z1,y1) and (z3,y>2) are (k, L, K)-admissible).

Z1,Y1;
72,y2

A typical term of the above sum can be written as (using the abbreviation “z;
pivotal” instead of “{z;,z;} pivotal”)

P(€p;; x)(0) = C)

(5.12) Al (n/2.4
P (yi e n)z,-,zg pivotal for {0 <> y;}, i = 1,2 | €p,,4)(0) = C)
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where C is such that conditions 1, 2, and 3 of the definition of admissibility hold
for the given z; and z; (note that these depend only on €p,, (x)(0)). We consider
first the case that z; # 7z, and y; # Y.

On the event

{yi Anl /2,4 zi, z; pivotal for {0 < y; }, i = 1,2} N{Cg,, x)(0) = C}

we claim there exist disjoint open paths y; (resp. y2) connecting y; to z) (resp.
¥y2 to z,) and avoiding C. To choose y1, consider any path o from 0 to y;. Since
{z1,2)} is pivotal for the connection, this path passes through z; the path must
subsequently never intersect C (otherwise {z1, z} } could be bypassed, contradicting
pivotality), and so the terminal segment of ¢ starting from z| may be used as y.
If one chooses y» similarly, we see that necessarily y; N y2 = &. Indeed, if y;
and y, intersected at some v, then following y, from y» to v and then following y;
from v to z (or following y; from y; to v and then following y»), one sees that
one of the edges {z;,z;} is not pivotal, a contradiction.

Having found such y; and y», one sees that when z; # z, and y; # ya», the
conditional probability in (5.12) is at most

P(y1 7, off C)P(v2 < 7, off C) = A} |2 —Y1H2_d |z} —Y1H2_d.

Summing the above over y; # y» gives a uniform upper bound of CL*. Putting
this in (5.12) and performing the sum over C, then doing an additional sum over

Z) # 7o gives
Z P((z1,y1) and (z2,y>) are (k, L, K)-admissible)

71 #12,
(.13) Y17#Y2

< CM?L*P (XK (k) = M).

When summing over terms in (5.11) where z; = z;, one is essentially comput-
ing an upper bound of the second moment of the cluster size of z;; the resulting
bound is CMLOP(XX-"8(k) = M). Since M > L?/2, this sum has an upper
bound identical to that in (5.13), completing the proof. O

Given (5.5) and (5.6), Theorem 5.1 now follows by a second moment argument
similar to the one immediately following Lemma 4.6 above. 0

6 Upper Bound on 7y (n)

This section is devoted to the proof of the upper bound 7z (n) < Cn~3 from
part (a) of Theorem 1.1, using the results of Theorem 5.1. This proof has two
main ideas. The first main idea is an upper bound on the cardinality of €z (0) N
Anng (n,2n), which gives some information about scaling in large clusters and
plays the role that knowledge of the cluster size exponent § would otherwise play
(recall we have not yet proved part (c) of Theorem 1.1). A key ingredient is a mass-
transport inequality, which controls the number of large half-space clusters. The
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second main idea is an inductive argument that allows us to “bootstrap” control of
g (2n) from g (n). This argument is based on a lemma that is similar in spirit
to lemma 2.3 of [22], with some major differences. These reflect the different
geometry of Zi and the fact that we cannot use the two-point function or size
exponents—which were used in [22]—having not yet proved parts (b) or (c) of
Theorem 1.1.

Recall the definition of a mass-transport rule from Section 2.3. In proving the
upper bound for 7z (n), we fix a particular m once and for all for each fixed value
of n:

1 ifx e A}"(n,n,2n),

m(0,x) =
©0.%) 0 otherwise.

The set AJ" was defined at (5.1).

The bound we will need for proving our main theorem comes from a comparison
of asymptotics for Esend and Eget. Let k > 0 be arbitrary (in practice, typically
small). We define the event

(6.1) A(k) 1= {send > «kn*}.
By the definition (6.1),
(6.2) Esend > kn*P(A(k)).

An upper bound on Esend follows via Theorem 5.1; Lemma 2.1 and (6.2) then
show a corresponding upper bound for P(A(k)). This is encapsulated in the fol-
lowing lemma.

LEMMA 6.1. There exists a C such that, uniformly in n,
(6.3) Eget < Cn.

In particular, we have the following bound uniformly in k and n:
C
(6.4) P(A(k)) < —3-
Kn

PROOF. Note that 0 receives mass from x if and only if both
x+Ann'(n/2,4n)
(i) 0ex+Anng(n,3n) and (i) {0 <«—— x|
(recall Anng (£1,42) = Bg(£2) \ B (£1)). The set o fx which satisfies the non-
random condition (i) is exactly —Anng (n, 3n). We break get into a sum of contri-
butions over “slices” depending on e -distance, setting T(j) = [-Anng (n,3n) N
S(—j)] and
x+Ann'(n/2,4n)
(6.5) Y(j)={xeT().x <«—— 0} 0<,<3n
See Figure 6.1 for a sketch. In particular, get = > ;i #Y(j). We will use (5.4)
of Theorem 5.1 to argue that if Y(j) is too large, then €(0) N [z + B—(n/2)] is
abnormally large for some choice of z € T'(j ).
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x + B(4n) TG
X ¢ » 0
—Annyg(n,3n) . \\J\
x + B_(n/2)

FIGURE 6.1. Referenced below (6.5). This is an instance of the event
when x € T'(j) has an open connection to 0 staying within x + B(4n)
and avoiding x + B_(n/2).

To that end, for x € T'(j) we set
Xx(j) =#yeY(j): |y —x[ =n/4}.

There exists a deterministic set S; € T'(j) of no more than 59=1 vertices such
that, for any y € T'(j), there is an x € S; such that |y — x|| < n/4. It follows that
#Y(j) < ersj Xx(j). If we can show that

(6.6) EX,(j) <C uniformlyinn, 0 < j <3n,z€S;,

we can immediately conclude that ) ; E#Y(j) < Cn and the lemma is proved.

We now prove (6.6). We will apply the third part of Theorem 5.1, but in shifted
form. Define D = x + Ann’(n/4,5n) and Q = 0_[x + Ann'(n/4,5n)]. Bach
y € Y(Jj) having ||y — x|| < n/4 also satisfies y € Q. The vertex y is connected
to 0 by a path lying entirely in 'y + Ann’(n/2, 4n); in particular, this path lies in D.
We therefore have the upper bound
67 P(Xx(j) = M) < P(Xo(D,0) > M) forall M,
©7 andso E[Xx(j)] = E[Xo(D,0)].
We now bound the right-hand side of (6.7) by

P (#€(0) N [x + B(5n)] > cxn*M)
+P(Xo(D,0) > M, #€(0) N [x + B(5n)] < cxn’*M),

where c, is from Theorem 5.1. We note that the shifted analogue of #Ag’ (shifted
so x plays the role of 0) is a lower bound for #[€(0) N [x + B(5n)]]. Applying
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Theorem 5.1 to the second term in the case when M > n? and rearranging, we see
P(Xo(D,0) > M)
65) < '"P(#E0) N [x + B(5n)]] = cxn*M) forall M > n?.
Thus, beginning with (6.7), we see
EXx(/)
<E[Xg(D,0); 0 < Xo(D,0) <n?] +E[Xo(D,0); Xo(D,0) > n?]

<n*P(Xg(D.0)>0)+ Y P(Xo(D.0)> M)
(6.9) M=n?

<n*P(Xg(D.0) > 0) +c;' Y P(#EO) N [x + B(5n)]] = can®M)
M=n2
<n?mw(n) + ¢ 2n2E[#E0) N [x + BGn)]|;#[€(0) N [x + B(Sn)]] > cxn?],

where in the second-to-last line we used (6.8). Using (1.9), the first term of (6.9)
is uniformly bounded by a constant. Using Lemma 2.2, the second term of (6.9)
is also bounded by a constant, giving EXx(j) < C and completing the proof of
Lemma 6.1. U

We continue with the proof of the upper bound from part (a) of Theorem 1.1,
namely

(6.10) ng(n) < Cn3.

The main remaining ingredient is the following lemma, which relates g (n(14+1))
to gy (n), where A > 0 is small but fixed relative to .

LEMMA 6.2. There exist positive constants C1, Cy, c1 such that the following hold:
For each A € (0, 1], there exists a constant g9 = eo(A) € (0, 1) such that, for all
0<e<egyp,

(6.11) g1+ 1)) < ;—13 + C23PA 2y (n) + (1 — 1) g (n)

uniformly in n large relative to A.

We first prove (6.10) assuming the veracity of Lemma 6.2 and then establish the
lemma.

PROOF OF (6.10). We begin by choosing A small enough to make the third term
of (6.11) negligible. Namely, fix 0 < A < 1/2 such that

(6.12) A+2)20—=c) <1 —c1/2).

We will bootstrap a bound for g (n) assuming it holds for &g (m), m < n. To
this end, set g := [8A™1 + ¢, '] and let K > 0 be a large constant such that

g (m) < K/m3 forall 1 <m < nyg.
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We will also enlarge K if necessary so that

C1(36C2)%/3 ¢

6.13 ,
613 cf/3A10/3 €0

<c1K/64.

We show inductively that, for each m > 0,

mr (no(1+ 1)) < K/(no(1+ 2)"*1)3
assuming g (no(1 + A)™) < K/(no(1 + 1)™)3.
Setting n = no(1 4+ 1), we apply (6.11) with the choice

(6.14)

‘ cf/3)L10/3
£ = minggg, ——————¢.
(36C2)*"3
Note that (1 + A)3 < 8, so by the bound (6.13) we have

K
First term of (6.11) < Cl—
8[(1 + A)n]3

A direct calculation similarly gives
2C1 K
oLt + M)n]?’

[1—c1/2].

Second term of (6.11) <

K
. < K
Third term of (6.11) < TEE
Pulling the three bounds above together completes the proof of (6.14).
To finish the argument for (6.10), let n > ng be arbitrary and fix m to be the
largest integer such that N := (1 + A)"ny < n. Note that, since (1 + 1) < 2, we
have N > n/2. Using (6.14), (6.13), and the monotonicity of 7z, we see

mg(n) <mg(N) < KN73 <8Kn—3,
establishing (6.10) with C = 8K. Il
We now prove Lemma 6.2.

PROOF OF LEMMA 6.2. Fix A as in the statement of the lemma. If ¢ < n™1,
then the above bound is simple using the one-arm exponent. Indeed, using (1.9)
we see

T (1 + M) < g (n) < m(n) < 22 < 22
n en
and we are done. Otherwise, we will prove the bound by breaking up the connec-
tion event to S’((1 + A)n), depending on the structure of the cluster of 0.

Recall the definition of the event A(k) in (6.1) and the definition of the mass-
transport rule m above it. We write X(k) for Xo(D,0) with D = By (k) and
0O = S’(k), where k is an integer satisfying (1 + A/4)n < k < (1 + A/2)n. The
reason for emphasizing the k-dependence is that we will wish, in our definition of
D1 below, to consider the first such integer value of k for which X (k) is small. The
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idea here is similar to that of the proof of Lemma 6.1, but from the perspective of
vertices receiving mass instead of sending it.

Given a value of ¢ € (n~1, 1), we define L = £3/10

n and the events

Di(e) := {3k € [n + An/4,n + An/2]: X(k) < L? and 0 <Z—+> S'((1+ M)n)};

Dy(e) := {Vk € [n + An/4,n + An/2]: X(k) > L* and send < en*}.
The union bound and (6.4) give
7 (14 2)n) < P(A(e) + P(Di(e) + P(Da(e))
< L BDIE) + P,

It suffices to show that the two P (D;) terms above have upper bounds of the form
of the second and third terms of (6.11).

To bound the second term, let / denote the (random) smallest integer value of k
as in the definition of D; such that 0 < X (k) < L?2. Note that on D; we never have
X(k) = 0, so we set I = 0 whenever some X (k) is equal to 0. We explore the
cluster of the origin in successive half-space boxes Bg (k) until reaching k = 1.
At this point, the probability of further connection to S’(n(1 + A)) is, by Lemma
3.2

P(D1(e))

Zd
- 3 3" P05 S'(n(1+A)), Cpyy 0 (0) = C)
keln(1+A/4),n(1+A/2)] Ce{I =k}
Ce3/5
<L’z(An/4) > PU =k < =
k>n(14+A/4)

g (n),

where the second sum is over C giving / = k and where we have used (1.9) to
bound 7.

The bound on D, is where we use Theorem 5.1, namely (5.2). Since ¢ > n~L,
we have L > n7/19 and so our choice of L from above is a valid choice of L in
the statement of the theorem.

To set up our application of Theorem 5.1, we consider a sequence of values of k
and corresponding annular regions in which extensions can be made. For each
integer i € [0, %8_3/10] setki = (1 4+ A/4)n + iL and note that (1 + A/4)n <
ki < (1 4+ A/2)n. Recall that cx is the constant from Theorem 5.1 and set

J={i: X(ki) > L? #A3"(n. ki, L) < cxL*}.
Here we recall the notation

ASW(I’I,/C, L) = Q:Ann'(n/2,4n)(0) ﬂAnnH(k,k + L).
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Note that (by disjointedness of the annuli Anng (ki, ki + L))
cx L*#{i: #AY" (n, ki, L) > ¢ L*} < send,

and so on D, (&) we have

.. ou 4
(6.15) #li: #AG (1. ki L) z e2 L) < .

In particular, on D5, the cardinality of J must be large; namely,
(6.16) onDa(e), #J > [(A/4)e 310 — ¢ 1e71/5,

On the other hand, using Theorem 5.1 on each value of i and summing, we have
(6.17) E#3 < (1 — cx)mg (n)[(A/4)e=3/10 1 1],

z We may now apply Markov’s inequality with the bound (6.17) and compare to

the lower bound for E#J in terms of D, which follows from (6.16). This yields
618) [(A/4)e73/10 — 1715 — 1P (D2 (e))
' < (1 —c)mgm)[(A/49e310 1],

If ¢ is sufficiently small (relative only to A and cx), the left-hand side of (6.18) is
at least

1 —
—— (/e 4 1P (Da(e)).
1 —cx/2
Comparing the above to (6.18) gives P (D3 (g)) < (1 —cx/2)mg (n) and completes
the proof. U

7 Half-Space Two-Point Function and Cluster Sizes

In this section, we prove the remaining parts of Theorem 1.1 involving the two-
point function and the tail of #Czi (0). The arguments use the asymptotics for

g (n) that have already been proved (in Sections 3 and 6). As a first step, we
prove the promised alternate formulation of the half-space one-arm probability.

7.1 Alternate Version of g (n)

In this section, we show that the probability that 0 has an arm in Zji_ to S(n) is
of order n~3; in other words, it has the same asymptotic behavior as the probability

that 0 has an arm in Zi to S’(n). Recall that Rect(n) = [0, n] x [—4n, 4n]¢~ 1.

PROPOSITION 7.1. There exists a uniform ¢ > 0 such that

.0 = if P(0 Y S(1). #Cheariy(0) N S()] > cn?),

then g (n,c) > cn3.

(7.1
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Proposition 7.1 shows that the probability of 0 having a half-space arm directed
in the e;-direction has the same order as the probability of an undirected half-
space arm. We will make use of the strengthened result (7.1) later in this section
(see (7.9)).

PROOF OF PROPOSITION 7.1. The proof is very similar to that of Proposition
3.1 in Section 3, and we will need to use results from that section in the argument.
The main new input in the present argument is the upper bound g (n) < Cn™3
proved at (6.10) above.

Suppose x € dB(2n) is such that

B(2n)
X < B(n)
as in (3.6); let us for simplicity consider the case that x ~ y for some y with
y(1) < —2n. Note that any open path from x to B(n/2) in B(2n) must first
reach S(n) without exiting x + Rect(n), then continue to B(n/2) without exiting
X + B(4n). Thus, applying Lemma 3.2 with B = B(n/2), Ay = X+ Rect(n), and
A1 = x + B(4n), we see that

P (" B(1/2) | st recrin (30 0 S()] = M)

<Mn(@n/2) < CMn™2.

(7.2)

If instead x ~ y for y having y(1) > 2n, or |y(i)| > 2n for some i # 1,
the situation is similar, with a shifted and rotated version of Rect(n) used instead.
Applying (3.5) with these observations and using (2.2) along with a variant for
the event {#[(’:X+Rect(n)(x) ns (n)] > An?}, we see that there are some uniform
C, ¢ > 0 such that, foreach A > 0,

end™4 < E#{x € dB(2n): xf(ﬂf B(n/Z)}
< Cn?7 P (#[€Recr(n)(0) N S()] > An?) + Amp (n)]
= CAn?™* 4+ Cn 1P (#[Crecr(n)(0) N S(n)] > An?).

In the last line of the above, we applied (6.10) to upper-bound the g (n) term.
Choosing A > 0 small and fixed relative to n, we see that the left side of the above
is at least twice the first term on the right for all large n. In particular,

'™ < CndTP (#Cxt rear(m (%) N S ()] = An),
uniformly in 7. Dividing both sides of the above by 791 completes the proof. [

7.2 Two-Point Function

To better separate the proofs of the individual pieces, we restate the contents of
part (b) of Theorem 1.1, consisting of bounds on the two-point function in Zi.

THEOREM 7.2. There exists a constant C1 > 0 such that
(7.3) 1 (0,x) < C1||X||1_d uniformly in X € Zi \ {0}.
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Fix ¢ > 0. Then there exists a constant ¢1 = c1(¢g) such that a matching lower
bound holds for all points macroscopically far from S(0), relative to ¢:
(7.4) w7 (0,%x) > c1|x|'™  uniformly inx € Z% with x(1) > ¢||x||.

There exist constants cp, Co > 0 such that the following holds uniformly in'y €
22\ {0} with y(1) = 0:

Zd
_ + _
(7.5) callyl ™ < P(0<y) < Callyl ™.

Our proof of Theorem 7.2 relies crucially on the result of Theorem 1.2 as input.
We first prove a lemma that is in some respects a half-space analogue of Lemma
3.4 and Lemma 4.3. For the statement, recall the definition Rect(n) = [0,n] x
[—4n, 4n]d1.

LEMMA 7.3. Let D = Rect(n), and let Q1 = Bzi Rect(n) and Q> = S(n) N
Rect(n) (the “top” of Rect(n)). Define X g (D, 0) as usual for Q = Q1, Q2. There
exists Cy > 0 such that, uniformly in n,

(7.6) EXg,(D,0) < Can™ .

Recall the definition of Kg: the constant from Theorem 2.3, chosen for the growing
sequence (Rect(n)),. There exist n,co > 0 and such that the following holds
uniformly in n and in K > Ky:
(1.7) P(nn?® < X5"(D.0) < Xg,(D.0) < n~'n?) = can™>.

PROOF. We first show the bound on the expectation. By Lemma 6.1 (recall the
notation of A°*" defined before Theorem 5.1), we have
(7.8) EAJ"(4n,4n,8n) < Cn.
By (5.3) from Theorem 5.1, we have

E[AJ“(4n,4n,8n) | Xo,(D,0)] > ¢2Xg,(D,0)n* on{Xp,(D,0) > n?/2}.
Combined with (7.8), the above gives
E[Xg,(D,0); Xg,(D,0) > n?/2] < Cn~'.
On the other hand,
E[Xg,(D,0); Xo, < n?/2] < (n*/2)wp(n) < Cn~ !,

where we have used part (a) of Theorem 1.1. This completes the proof of (7.6).
To show (7.7), we note that by Theorem 2.3 it suffices to show

(7.9) P(nn* < Xg,(D,0) < Xg,(D,0) <y~ 'n*) > cn™> foralln

for some ¢,n > 0. By (7.1), we have P(Xg, > nn?) > cn=3 for some fixed
small ¢ (independent of 1 and n) for n sufficiently small. By (7.6) and the Markov
inequality, P(X g, (D,0) > n~'n?) is at most Cpn—3.

Bounding the probability in (7.9) by P(X¢,(D,0) > nn?) — P(Xp,(D,0) >

n~'n?) and taking n sufficiently small completes the proof. U
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PROOF OF (7.3) AND THE UPPER BOUND OF (7.5). To prove (7.3). Let 8n =
d

o 25 : Rect(n)
|Ix||. Note that if 0 «— x, there exists a z € Bzi Rect(n) such that {0 «<—"z} o

{z <> x} occurs. Taking a union bound and using the BK inequality gives

Rect(n)

d
(7.10) IP’(0<Z—+>X)§ Y PO )P x)

z€ 8Zd Rect(n)
+

Rec
(7.11) <cn®® Y PO ) z) = Cn®>“EXg,(D,0)

€04 Rect(n)
with D = Rect(n) and Q1 = azi Rect(n), and where we have used (1.7). Apply-
ing (7.6) completes the proof.

The upper bound of (7.5) follows from a decoupling argument similar to the one
used for (7.3), this time using (7.3) as input. As before, letting 8n = |y||, for

z4 R z4
0« y to hold, there mustbe az € 8Zi Rect(n) such that {0 cer) z}o{z i y}

holds. This gives (7.10) with x replaced by y and the connection from z to y

restricted to Zi. Now the same reasoning used to produce (7.11), but now using
Zd
the upper bound from (7.3) to estimate P (z P y), gives the analogue of (7.11),

with Cn2~4 replaced by Cn 1—d, Using (7.6) as before completes the proof. [

PROOF OF (7.4) AND THE LOWER BOUND OF (7.5). We first prove (7.4). The
argument is a modification of the proof of Theorem 1.2: roughly, we condition
on 0 having an arm to distance of order n ~ ||x||, and then show an open con-
nection from x to this arm can be made. There are three major modifications.
First, if the arm from O terminated too close to S(0) (more carefully speaking: if
€B,; (m)(0) N S’(n) had too few vertices at macroscopic distance from S(0)), this
connection would not be possible; because of the lack of symmetry in the half-
space, we must resort to the second part of Lemma 7.3 to direct this arm. Second,
there is no inductive improvement needed in the argument. Third, we must rely
on the result of Theorem 1.2 as input to insure the further connection to x does
not cross the half-space boundary (the earlier argument required only information
about the unrestricted t as input in the base case).

Fix & > 0 and suppose x € Anng (8n, 16n) with x(1) > en. Let D = Rect(n),
and let Xop, = Xg,(D,0) be as in the statement of Lemma 7.3. Let K > Kq be

fixed, to be chosen. Define Y é{z = YQK2 (x) to be the number of z € Q5 such that

D
(a) z<—0, (b) z € REGp(K) (recall Definition 3), and (c) the edge {z,z + e1}
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Zd
is pivotal for {0 <—+>x}. As in the proof of Lemma 4.6, we have Y 52 < 1as,

since no pair of vertices z; # z, can simultaneously satisfy parts (a) and (c) of the
definition.

Defining B;, to be the event in (7.7), we argue that for K > K| fixed sufficiently
large,

(7.12) E[Y§: X537 = N.By] = cn* P(X 5 = N: B,) forc = c(K),

uniformly in X € Anng (8n,16n) with x(1) > en and in nn? < N < n~'n?

Set 51 =z + [K/2, K]d and let Z range over vertices of 51; define R, =
By (0,20n). We show (7.12) by defining events

D By
£1(z.N) = By N {0<—z.2 € REGp(K) and X5 = N},

E(x.7.2) = [T xoff Cp(2)}. E3(z.7) = {€(z) N C@) = B},

Similar arguments to those of Claim 4.8 show that we can choose K > Ky
and find a constant ¢ > 0 such that the following holds: for each n, each x €
Anng (8n,16n) with x(1) > en, and each z € Q», there is az € D, such that

(7.13) P(E1(z, N) N E(x.Z,2) N E3(2.Z)) = cn®> 4P (E1(z, N)).

A main complication in proving (7.13), compared with the proof of Claim 4.8,
comes in the bound on P (&; \ &). Namely: for the analogue of (4.6), we bound,
on the event €p (0) = C,

(7114 P@E<SxoffC) = PE>x) = Y P({F < y} o {y < x}).
yeC

To show the first term of the above is at least c(e)nz_d using Theorem 1.2, we
use crucially the fact that z is macroscopically distant from S(0). This necessitates
the condition z € Q», and this ultimately requires our arm-directedness statement
(7.1). The second term of (7.14) can be bounded similarly to before: the probability
thaty <> x is of order 724 and the sum of probabilities P(z <> y) is small for K
large using the regularity in &;.

Having established (7.13), we note that an edge-modification argument again
gives the existence of a constant ¢; = ¢1(K) such that

P (z is counted in Y : B, N {ng’mg = N})

> cllP’(El (z, N) N &E(x,Z,2) N E3(z, z))
> en®* P (£ (2. N)),
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where Z is chosen so that (7.13) holds. Summing over z € Q1, we get

E[YE: Byn{X5"® =N} = cen® Y P(£1(z. N))
z€Q0>

d K
n* P (X, = N, By),

which is (7.12).
Having established (7.12), we move to complete the proof of (7.4). Note that
Zd
P 5 x) > P(Y, é(z > 0). We use a conditional second-moment argument to

bound the latter probability. The fact that YQK2 <1 a.s., and an argument similar to

the one used to show (2A) of Lemma 4.6, give
K\2 K- 4—d
(7.15) E[(Yg,) | Xp,* = N, By] < Cn*.
Combining (7.15) with (7.12), we find
P(YE, >0] X5 =N.B,)

E[vX \XK”g N, B,]?

E[(YK 2| X5 = N. By]
> cnt —d

uniformly in n and x € Anng (8n, 16n) with x(1) > ¢n.

Recalling that B; was the event in (7.7) and applying the probability bound there,
we see

Zd
IP’(0<—>X) >IP’(YQ > 0) > en* P (By) > cn'™4 > c||x||' 9,

completing the proof of (7.4).

We now outline the proof of the lower bound of (7.5); the proof is similar to the
above, so we describe only the major differences. Suppose y has y(1) = 0 and
y € Anng (8n,16n). As before, we set D = Rect(n) and let X, (D, 0) be as in
Lemma 7.3, and we define Y é{z exactly as before (with references to x replaced
by y).

Zd
. . : ~ &3
The events &; are defined as previously. except in £, we ask instead that Z <«— x

off €p(z). Estimates involving the probability of this connection are made using
(7.4) instead of the bound on the box-restricted two-point function; upper bounds
on the probability of appropriate portions of large-loop connections are made using
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the upper bound of (7.3). For instance, the right-hand side of (7.13) is replaced by
cn'=@P(E1(z, N)). This reflects the fact that (7.14) is replaced by

z4 z4 z4
(716)  PE<>yoffC) = P(i<—>y)— Y P({F < {}o{t<>y)).
teC
Zd

The first term of (7.16) is uniformly at least cn 1-d by (7.4). P(¢ PELN y) is at most
Cn'~4 by the upper bound of (7.3), and again the sum of probabilities P (Z <> ¢)
is small for K large.

Making similar adaptations to the remaining estimates, we find that the con-

ditional (on By) first and second moments of Yé(z are both of order n3~4. A
conditional second-moment argument as before gives

Zd
P(0<>y) = P(YE >0) = cn® P (By) = clly| ™. R

7.3 Cluster Sizes

We now prove part (c) of Theorem 1.1. For clarity, we restate the claim here as
Theorem 7.4.

THEOREM 7.4. There exist constants ¢, C > 0 such that
(7.17) et < P#HCH(0) > 1) < Ct73/4,
PROOF. We begin by proving the first inequality. We will compute cluster size

Zd
moments conditional on Hy := {0 PR (n)}. Abbreviate

Y, = #[€y (0) N Anng (n,2n)].
We can lower bound the (conditional) first moment of ¥, by considering only those
x having x(1) > n:

E[Y, | Hi=cen® > 5(0.x)

xEAnng (n,2n)

(7.18) > cn3 Z 17 (0,Xx) > Z cnt4 > cn?,
xE€Anng (n,2n), xE€Anng (n,2n),
x(1)=n x(1)>n

where we have used (7.4) and the asymptotics of wg .
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We can upper-bound Y,2 by (#[€g (0) N By (2n)])2. Writing the latter quantity
as a sum and using (7.3) gives
E((#C (0) N B (2n)))* | Hy)

d d
Z Z+

<cCn? Z P(0<—+>x,0<—>y)
x,yeEBy (2n)
Zd
(7.19) <cn® Y P(l0<>ziolz o xofz oy}
x,yEBy (2n),
zeZ‘_{_
<cn® Y el - xP Yz~ y)>7¢ < Cn.
x,yeBy (2n),
zeZi

Using the Paley-Zymund inequality with (7.18) and (7.19), we find that there is a
constant ¢ > 0 such that, uniformly in 7,

P(Yn > en* | Hy) = c.

Using the fact that P(H,) = g (n) > cn~3 gives P(Y, > cn*) > cn™3. Since
#C 1 (0) > Yy, setting n = Ct'/* for C sufficiently large completes the proof of
the first inequality of (7.17).

To prove the second inequality of (7.17), first note that a calculation similar
to that in (7.19) shows E((#Cxg(0) N By (2n)])?) < Cn>. Using this fact and
Chebyshev’s inequality, we see that for each m > 0,

P#CH (0) > 1) < g (m) + P#HCH (0) N By (m)] > 1)
<Cm™3+Cm’/t%

Setting m = /4

completes the proof. O
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