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Abstract

Despite great progress in the study of critical percolation on Z
d for d large,

properties of critical clusters in high-dimensional fractional spaces and boxes re-

main poorly understood, unlike the situation in two dimensions. Closely related

models such as critical branching random walk give natural conjectures for the

value of the relevant high-dimensional critical exponents; see in particular the

conjecture by Kozma-Nachmias that the probability that 0 and .n; n; n; : : : / are

connected within Œ�n; n�d scales as n�2�2d .

In this paper, we study the properties of critical clusters in high-dimensional

half-spaces and boxes. In half-spaces, we show that the probability of an open

connection (“arm”) from 0 to the boundary of a sidelength n box scales as n�3.

We also find the scaling of the half-space two-point function (the probability of

an open connection between two vertices) and the tail of the cluster size distribu-

tion. In boxes, we obtain the scaling of the two-point function between vertices

which are any macroscopic distance away from the boundary. Our argument

involves a new application of the “mass transport" principle which we expect

will be useful to obtain quantitative estimates for a range of other problems.

© 2020 Wiley Periodicals LLC

1 Introduction

In this paper, we primarily consider the (bond) percolation model on the canon-

ical d -dimensional hypercubic lattice Z
d and its subgraphs, the half-space with

normal direction e1 and boxes or `1 balls. When d D 2 or d is large, it is known

that critical percolation on Z
d does not admit infinite open clusters. A great deal

of research has been devoted to studying the finer properties of critical open clus-

ters on Z
d for these values of d (and on the triangular lattice, where the model is

closely related to the model on Z
2).

There is also a fairly well-developed theory of critical percolation on half-planes

and other sectors of Z
2 and the triangular lattice. For instance, on the triangular

lattice, the asymptotic behavior of the probability the open cluster of the right half
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plane containing 0 touches the line fz W z � e1 D ng (the “one-arm probability”)

obeys a power law, behaving as n�1=3Co.1/. Importantly, this power law is re-

lated to several others via scaling relations similar to those proved in the entire

triangular lattice. The proofs of these scaling relations are quite robust, even ap-

plying to subgraphs of Z
2 (where exact computations of power laws are generally

unavailable).

For Z
d with d large, by contrast, there has been little work on the behavior of

critical percolation in half-spaces (or general sectors). In this paper, we build a

foundation for such a study. We compute the asymptotic behavior of the one-arm

probability in high-dimensional half-spaces along with several other power laws

of interest; in this introduction, we also describe how these results imply certain

scaling relations one would expect in high dimensions; see, for instance, (1.5). As

part of our work, we build tools (e.g., Theorem 1.2) that may be of interest in a

study of percolation in general high-dimensional sectors.

1.1 Definition of Model and Main Results

We will consider two graphs having vertex set Z
d , as well as subgraphs of either

of these. In the hypercubic lattice, we take as our edge set ffx; ygW kx � yk1 D 1g.

In the other, the spread-out lattice, we take as our edge set ffx; ygW kx�yk1 � ƒg,

where ƒ is a fixed positive integer. All definitions in this subsection apply equally

well to either of these graphs.

The usual standard basis coordinates of a vertex x 2 Z
d will be denoted x.i/ D

x � ei , so x D .x.1/; x.2/; : : : ; x.d//. The origin 0 D .0; 0; : : : ; 0/. The half-

space is the subgraph of either the hypercubic lattice or the spread-out lattice that

is induced by the set of vertices Z
d
C that have a nonnegative first coordinate: Z

d
C D

fx 2 Z
d W x.1/ � 0g (note that “half-space” for us always means one of these

particular graphs or a translate thereof—we do not use the term in its more general

sense). The boxes or `1 balls in these graphs are the following vertex sets:

B.n/ D Œ�n; n�d and BH .n/ D B.n/ \ Z
d
C; respectively.

With some abuse of notation, we sometimes identify Z
d
C, B.n/, and other vertex

sets with the subgraphs of the hypercubic or spread-out lattice that they induce. In

particular, when there is no ambiguity or when the choice of edge set is irrelevant,

we write Z
d for either the hypercubic lattice or the spread-out lattice.

The main object of study will be the Bernoulli bond percolation model—perco-

lation for brevity—on the above and other subgraphs of Z
d . To define the model,

fix p 2 Œ0; 1� and let ! D .!e/e be a collection of i.i.d. Bernoulli(p) random

variables indexed by the edges e of the hypercubic or spread-out lattice. An edge

e such that !e D 1 (resp. !e D 0) will be referred to as open (resp. closed). The

model of percolation on Z
d consists of the study of the open graph, the random

subgraph of the hypercubic or spread-out lattice whose vertex set is Z
d and whose

edge set consists of the edges e that are open in !.
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The preceding definition induces a percolation model on subgraphs of the am-

bient hypercubic or spread-out lattice in the natural way. Given a set G � Z
d of

vertices, consider the subgraph (which we, via abuse of notation, identify with G)

of the ambient hypercubic or spread-out lattice which it induces. Using the same

random variables .!e/e to define the open/closed status of edges of G, one arrives

at the definition of percolation on G: the open graph now has vertex set G and

edge set consisting of those e of the ambient lattice having both endpoints in G

and having !e D 1. For an introduction to percolation on Z
d and its subgraphs,

and for an expository treatment of fundamental results, we recommend [8]. See

also [24, chap. 7] for the treatment of percolation on general graphs, including

homogeneous trees.

For a particular realization of !, the open clusters of G are the components of

the open graph on G. For fixed ! and vertex x but different choices of G, the open

cluster containing x may be different. To track this dependence on G, we write

CG.x/ for the open cluster containing x when considering percolation on G; we

abbreviate C.x/ D CZd .x/ and CH .x/ D C
Z
d
C
.x/. The symbol

˚

x
G
 ! y

	

denotes

the event that CG.x/ D CG.y/, and we again abbreviate

˚

x
Zd

 ! y
	

to fx$ yg:

This notation extends naturally, replacing x and y by sets A;B of vertices: we

write A
G
 !B if there exist x 2 A and y 2 B such that x

G
 ! y (and omit the G

superscript whenG D Z
d ). We use the symbol 6$ in the obvious way; for instance,

x 6$ y means that C.x/ ¤ C.y/. When discussing a cluster CG or properties

thereof in the case G ¤ Z
d , we sometimes use the term restricted; for instance,

C
Z
d
C
.x/ D CH .x/ is the cluster of x restricted to the half-space Z

d
C.

The distribution of ! will be denoted by Pp to indicate its dependence on the

parameter p (we soon will fix a particular value of p). We define the critical prob-

ability (of our ambient lattice, that is either the hypercubic or spread-out lattice)

by

(1.1) pc WD inf
˚

p W Pp.#CZd .0/ D1/ > 0
	

(here and later # denotes cardinality). When p < pc (resp. p D pc , p > pc),

the model is said to be subcritical (resp. critical, supercritical). This paper is

exclusively concerned with critical percolation, and so in what follows we will

always take p D pc . In particular, we will often write P for Ppc , except when we

wish to emphasize the fact that we are talking about the critical model. We stress

that the value of pc depends on the particular hypercubic or spread-out lattice being

considered. We also note that pc is taken relative to the ambient hypercubic or

spread-out lattice, even when we are discussing percolation on a subgraph of this

ambient lattice.
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On the hypercubic or spread-out lattices with d � 2, it is widely conjectured

that Ppc -almost surely there exists no infinite open cluster. Among others (see

Section 1.2 below for background and references), this conjecture is proved in

“high dimensions,” which we define as follows.

DEFINITION 1. The phrases high dimensions and high-dimensional refer to both

of the following settings:

� the hypercubic lattice, with d � 11;

� the spread-out lattice with d > 6 andƒ larger than some large d -dependent

constant ƒ0.d/.

All new results of this paper are proved in the setting of high dimensions; after

the introduction (see the “standing assumption” at the very end of the introduction)

we will exclusively consider this setting. In fact, our arguments would apply to

the hypercubic lattice for all d > 6, as well as other possible edge sets for Z
d ,

if certain past work could be extended to this setting. We return to this issue in

Section 1.2 after discussing more background, and we state this extension as a

conditional theorem (see Theorem 1.3 below).

The main results of the paper, Theorems 1.1 and 1.2 in this section, relate to the

behavior of the open clusters C
Z
d
C
.x/ and CB.n/.x/ in high dimensions. To state

them precisely, we now define several events and quantities (to allow us to discuss

past results outside of the high-dimensional setting, we state them for general d ).

DEFINITION 2. Consider critical percolation on either the hypercubic or spread-

out lattice.

� The two-point function �.x; y/ denotes the connectivity probability

P .x$ y/ D P
�

x
Zd

 ! y
�

:

More generally, when G � Z
d , the two-point function restricted to G

is �G.x; y/ D P .x
G
 ! y/. The particular case of the preceding when

G D Z
d
C is the half-space two-point function and will be abbreviated to

�H .x; y/ D �Z
d
C
.x; y/.

� The site x has an arm to distance n inG if supfky�xk1W y 2 CG.x/g � n.

In the case G D Z
d , we often simply say that x has an arm to distance n

without referring to G. Similarly, in the case that G D Z
d
C, we say that x

has a half-space arm to distance n—in other words, x has a half-space arm

to distance n if supfky � xk1 W y 2 C
Z
d
C
.x/g � n. The corresponding

events are called arm events or one-arm events. The probability that the

origin 0 has an arm (resp. half-space arm, arm in G 3 0) to distance n will

be denoted �.n/ (resp. �H .n/, �G.n/).
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Note that there is another natural definition of �H .n/, wherein we demand that

the open cluster of 0 contain a vertex with e1-coordinate at least n (rather than any

coordinate at least n). It will turn out that this probability has the same asymptotic

behavior as the above-mentioned �H ; see Section 2.2 and (7.1) below.

We now state the first main theorem of this paper. In it, we use the usual as-

ymptotic notation: given two functions f; g W f1; 2; : : : g ! Œ0;1/, we write

f .n/ � g.n/ to mean that lim supn!1 f .n/=g.n/ and lim supn!1 g.n/=f .n/

are both finite. If f and g instead have domain Z
d �Z

d and if A � Z
d �Z

d , we

say that f .x; y/ � g.x; y/ in A if both

sup
.x;y/2A

g.x; y/

f .x; y/
<1 and sup

.x;y/2A

f .x; y/

g.x; y/
<1:

THEOREM 1.1. In the setting of critical percolation in high dimensions, the fol-

lowing asymptotic power laws hold.

(a) �H .n/ � n
�3:

(b) Fix a constant K > 0. Then

�H .x; y/ �

8

ˆ

<

ˆ

:

kx � yk2�d
1 in f.x; y/W 0 < kx � yk1 < K minfx.1/; y.1/gg;

kx � yk1�d
1 in f.x; y/W x.1/ D 0 and 0 < kx � yk1 < Ky.1/g;

kx � yk�d
1 in f.x; y/W x ¤ y; x.1/ D 0 and y.1/ D 0g:

(c) Ppc .#CH .0/ > n/ � n
�3=4:

In the high-dimensional settings of Definition 1, it is known that the “unre-

stricted” two-point function �.x; y/ D �Zd .x; y/ is asymptotic to kx � yk2�d
1 (see

(1.7) below). In fact, this is a main input our proofs will require; we give an ac-

count of this and related high-dimensional results in Section 1.2. In this light, the

first asymptotic of part (b) of Theorem 1.1 informally says that �H .x; y/ behaves

like �.x; y/ when both x and y are far from the boundary of Z
d
C.

Our second main result, Theorem 1.2, is an analogous statement for the two-

point function in boxes B.n/ � Z
d : roughly, �B.n/.x; y/ scales as �.x; y/ for x and

y far from the boundary of B.n/. This result is proved before Theorem 1.1 and is

necessary for making key estimates in the proof of Theorem 1.1. We also believe

it is interesting in its own right and is a potential tool for studying other properties

of open clusters.

THEOREM 1.2. Consider percolation in high dimensions, and fix any constant

M > 1. There are constants C > c > 0 (depending on M and d only) such that

for all n and for all x ¤ y 2 B.n/,

ckx � yk2�d
1 � Ppc

�

x
B.Mn/
 ! y

�

� Ckx � yk2�d
1 :

As alluded to above (and stated formally at (1.7)), the two-point function �.x; y/

is known to scale as kx � yk2�d
1 in both settings of Definition 1. Given that

�B.Mn/.x; y/ � �.x; y/, the upper bound on �B.Mn/ in Theorem 1.2 is trivial; Changed “Since” to

“Given that” to avoid a

bad line break.

the new result of the theorem is contained in the lower bound.
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1.2 Background and Conditional Version of Results

Percolation has been the focus of a great deal of research in recent decades,

with much of this effort dedicated to the case of percolation on the hypercubic

lattice. The model has received attention on half-spaces, sectors, and other proper

subgraphs of Z
d in part for the illuminating comparisons these settings provide

with the full lattice. A key example relates to the well-known conjecture (“absence

of percolation at criticality”) that, at p D pc , there is almost surely no infinite

cluster on the hypercubic lattice for d � 2. While this conjecture is still open in

general, the corresponding result is established for percolation on half-spaces [4].

Among hypercubic and spread-out lattices, absence of percolation at criticality

has so far been proved on the d D 2 hypercubic lattice (by Kesten [18]) and in

the high-dimensional setting of Definition 1. The latter result is due originally to

Hara and Slade [10], though their work applied on the hypercubic lattice only for

d � 19; this was improved by Fitzner and van der Hofstad [7] to the d � 11

setting considered in this paper. In such settings where absence of percolation is

proved, one is led to ask for more quantitative results on just “how large” critical

clusters may be.

Critical percolation on Z
d and in many other settings is believed to be charac-

terized by the validity of power laws for various measures of open clusters. For

instance, the upper tail of the cluster size is expected to obey Ppc .#C.0/ > n/ D

n�1=ıCo.1/, where ı is some critical exponent. According to a widely held uni-

versality conjecture, critical exponents should depend only on the “large scale”

structure of the lattice, but not on the “microscopic details” thereof; for instance,

the value of ı above should be the same on the d -dimensional hypercubic lattice

and the d -dimensional spread-out lattice, but could change when d is changed.

In two dimensions and in high dimensions, many critical exponents are known,

and others are explicitly conjectured. This leads naturally to the question of how

or if these power laws change when the lattice is replaced by a half-space (or other

sector). This question is the main focus of this paper. For definiteness, we restrict

the discussion to the power laws studied in the above theorems—that is, on the

behavior of the two-point function, the arm probability, and the upper tail of the

cluster size #C.0/. On the full lattice Z
d , recall the traditional symbols for the

relevant critical exponents (assuming they exist):

(1.2)
�.n/ D n�1=�Co.1/; �.0; x/ D kxk2�dC�Co.1/

1 ;

and P .#C.0/ > n/ D n�1=ıCo.1/:

While such power laws should hold for half-spaces, different exponents � should

govern the behavior of �
Z
d
C
.0; x/ for x on and far away from the boundary of Z

d
C,

as in Theorem 1.1.

A comparison of critical exponents between the full lattice and half-spaces is

most developed in two dimensions. Indeed, a main goal of the present paper is
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to begin to develop the comparison in high dimensions. We thus begin the dis-

cussion by recalling past work for percolation on the two-dimensional hypercubic

(“square”) lattice and site percolation on the two-dimensional triangular lattice,

where sites are open or closed instead of bonds. In two dimensions, the precise

power laws obeyed by the two-point function and other quantities considered in

this paper are known only for critical site percolation on the triangular lattice,

though the widely conjectured universality of these exponents suggests that the

same behavior should hold on the square lattice.

Past Work in Two Dimensions

For the purpose of studying �, �, ı, there exist two broad families of techniques

in two dimensions. One family, based on the Russo-Seymour-Welsh (RSW) tech-

nology and “gluing,” is applicable in the settings of both the square and triangular

lattice. The other family, based on conformal invariance and SLE methods, so far

applies only in the setting of the triangular lattice. We begin by discussing what

can be established using only gluing methods, or in other words what is known on

Z
2.

Gluing, RSW, and the square lattice. Gluing and RSW are not enough to estab-

lish the existence of the exponents in (1.2), let alone their values. However, it is

relatively easy to establish inequalities for these exponents, in the sense that the

relevant quantities are upper- and lower-bounded by constant multiples of particu-

lar power functions. See, for instance, [31] for a short and elegant argument, valid

on both the square and triangular lattice, that �.n/ � cn�1=2. The values of certain

critical exponents (though apparently not those of (1.2)) do follow from RSW-type

arguments, including the exponent governing the “polychromatic five-arm event”;

see the first exercise sheet of Werner’s lecture notes on two-dimensional critical

percolation [33].

Although gluing methods seem unable to establish the values of most critical

exponents, they suffice to prove strong relationships between many of these expo-

nents. Kesten [19] proved that if one of the exponents of (1.2) exists on the square

or triangular lattice, so must the other two. Moreover, in this case, the values of the

other two exponents are completely determined by the relationships

� D 2=�; ı D 2� � 1 D 4=� � 1:(1.3)

Remarkably (and in contrast with the situation in high dimensions—see the discus-

sion immediately following (1.7)), this result was proved long before the existence

of any of these exponents was known on any two-dimensional lattice.

A straightforward application of the arguments leading to (1.3) gives the two-

dimensional analogue of our Theorem 1.2 in two dimensions: if M > 1 is fixed,

there is a constant c D c.M/ > 0 such that

�B.Mn/.x; y/ � c�.x; y/ uniformly in n and x; y 2 B.n/:

Moreover, such arguments would allow the proof of scaling relations for the quan-

tities appearing in (1.2) in the two-dimensional half-plane (and other sectors). For
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instance, given the critical exponents governing � in Z
2 and Z

2
C, the critical expo-

nent for �
Z
2
C
.0; ne1/ follows via the relationship

(1.4) c�Z2.n/�Z
2
C
.n/ � �

Z
2
C
.0; ne1/ � C�Z2.n/�Z

2
C
.n/:

As we will discuss further below, such scaling relations have taken longer to

establish in high dimensions, and their half-space versions have been completely

unexplored before now. A main goal of the present paper is to fill such gaps in

high dimensions. One can consider our Theorem 1.1 as establishing an appropriate

high-dimensional version of such scaling relations in the half-space. For instance,

it implies the following analogue of (1.4):

(1.5) cn6�d�Zd .n/�Z
d
C
.n/ � �

Z
d
C
.0; ne1/ � Cn

6�d�Zd .n/�Z
d
C
.n/:

The factor of n6�d reflects the fact that in high-dimensional cubes having diameter

of order n, there are order nd�6 distinct open clusters having diameter of order n,

in contrast to the two-dimensional setting (where the number of such clusters is

stochastically bounded).

Beyond the above, the RSW technology also suffices to prove a monotonicity

property of the arm exponent � within sectors. Considering the sector G' WD

f.r cos �; r sin �/ 2 Z
2 W r � 0; 0 � � � 'g; Kesten and Zhang [20] showed

a version of the statement that the one-arm exponent � is strictly monotone in '.

Formally, given ' <  � 2� , there exist constants C; " > 0 such that �G' .n/ �

Cn�"�G .n/ uniformly in n.

The triangular lattice and exact critical exponents. With the advent of SLE [28]

and the proof of Cardy’s formula [29], the existence of a critical exponent for �

was shown for site percolation on the triangular lattice T ; in fact, � D 48=5 [23].

From this and Kesten’s result (1.3), the values of ı and � follow. See Table 1.1 for

a summary and comparison of exponents with the high-dimensional lattices and

corresponding half-planes/spaces. The values of �, ı, and � should be the same on

the triangular and square lattices, but this remains a challenging open problem.

SLE methods also give the value of the one-arm exponent � in the half-plane

TC WD T \
�

Œ0;1/ � .�1;1/
�

. Indeed, it has been shown (see [30, sec. 3])

that �TC
.n/ D n�1=3Co.1/. Using gluing methods, one can derive from this the

scaling of the two-point function and the tail of the cluster size. See Table 1.1

for a summary. Using the value of � in TC and the conformal invariance of the

percolation scaling limit, one can also compute the value of � in the sectors G' ,

0 � ' < 2� .

Past Work and Conjectures in High Dimensions

In 1990, Hara and Slade [10] used the lace expansion to prove the absence of

percolation at criticality on the square lattice for d � 19 and in the spread-out

lattice setting of Definition 1. In fact, they proved the stronger triangle condition

of Aizenman and Newman [2]. Combined with contemporaneous work of Barsky
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and Aizenman [3], this showed that the exponent ı of (1.2) exists and has the value

2 in these settings. In fact, the stronger bounded ratio asymptotic is known:

(1.6) Ppc .#C.0/ > t/ � t
�1=2:

(Indeed, a more precise asymptotic has been shown for sufficiently high d—see

[11]).

The fact that ı takes the same value for all large d (and differs from its two-

dimensional value) is emblematic of the so-called mean-field behavior of high-

dimensional percolation. Roughly speaking, when d is above the upper critical

dimension—conjecturally, when d > 6—large critical clusters should exhibit a

certain degree of independence. (See [16] for an extensive review of research on

mean-field behavior in high-dimensional percolation, along with related results.)

Many quantities of interest related to the critical model should exhibit the same

behavior for all hypercubic and spread-out lattices with d > 6. As we will discuss

below in Section 1.2, our results could be extended to any hypercubic or spread-

out lattice with d > 6 if a few fundamental results—among them, (1.6)—were

established in this generality.

The values of numerous other critical exponents have been rigorously estab-

lished in high dimensions, through methods very different from those available in

two dimensions. Over a decade after the establishment of the triangle condition, the

stronger result � D 0 was shown in the spread-out [13] and d � 19 square lattice

[9] settings. Here again an asymptotic result is known: there are lattice-dependent

constants 0 < a1 < A1 <1 such that

(1.7) a1kx � yk2�d � �.x; y/ � A1kx � yk2�d for all x ¤ y 2 Z
d :

We note that [9,13] in fact show much more than (1.7) (namely, the precise leading-

order behavior of � , with error estimates); we direct the interested reader to the

original articles for more information.

The time elapsed between determination of ı and � is in sharp contrast to the

situation on the square lattice, where the early result (1.3) allows determination of

one exponent from the other. This is one way in which two-dimensional techniques

are more developed and robust than high-dimensional ones. Similarly, existing

high-dimensional techniques seem less able to deal with settings (like half-spaces)

lacking all the symmetries of Z
d . It is hoped that the methods in this paper will

provide a starting point for attacking other such problems in the future.

By developing an improvement of the lace expansion known as the non-back-

tracking lace expansion, Fitzner and van der Hofstad [7] established (more than)

that (1.7) holds on the hypercubic lattice for all d � 11, i.e., the setting of Defini-

tion 1. By establishing the triangle condition, this work also allowed the extension

of (1.6) to the d � 11 hypercubic lattice.

Obtaining the value of � required still more work over several years. A first

attempt was due to Sakai [26], who gave an elegant scaling argument for � D 1=2

under unproven assumptions. In addition to assuming a form of existence of �,
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Sakai also assumed that

(1.8) EŒ#ŒC.0/ \ B.n/� j 0 6$ @B.2n/� � EŒ#ŒC.0/ \ B.n/��:

In two dimensions, the above would again follow easily from the gluing methodol-

ogy used to prove (1.3)—another instance where two-dimensional methods seem

more robust in certain settings than high-dimensional ones. We note that Sakai’s

assumption (1.8) follows from Theorem 1.2 of this paper, whose proof is very dif-

ferent than its two-dimensional analogue. We direct the reader also to the work

[6], where a statement of a similar flavor to Sakai’s assumption (1.8) is shown for

the incipient infinite cluster (IIC), an object which could be thought of as a critical

percolation cluster conditioned to be infinite.

The asymptotic

(1.9) a2n
�2 � �.n/ � A2n

�2 for n � 1 and constants 0 < a2 < A2 <1

was shown in the setting of Definition 1, without any unproven assumptions, by

Kozma and Nachmias [22]. The iterative method we use to upper-bound �H as in

Theorem 1.1 is related to that used for upper-bounding � in [22], though we must

overcome several complications related to the fact that we work on Z
d
C; see the

discussion at the beginning of Section 6.

A conjecture made at [22, p. 378] was a major impetus for the present work.

This conjecture suggested the correct asymptotic behavior of the two-point func-

tion �B.n/ within a cube for vertices at the corner of the cube:

(1.10) Ppc

�

0
B.n/
 ! .n; n; : : : ; n/

�

� n2�2d :

One could hope to conjecture the correct asymptotic behavior of the two-point

function in other subgraphs of Z
d —for instance, quarter-spaces—based on a hy-

pothesized connection between critical branching random walk (BRW) and critical

percolation. It has been argued (see [16, sec. 2.2]) that BRW “can be viewed as the

mean-field model for percolation,” which would suggest that the probability ap-

pearing in (1.10) scales as the two-point function of a critical BRW started at 0 and

killed at the boundary of B.n/, evaluated at .n; n; : : : ; n/. This entry of this critical

BRW two-point function indeed has the asymptotic n2�2d . Establishing the scal-

ing (1.10) appears difficult due to the comparative lack of symmetry of B.n/. We

however believe the techniques developed in the present work will be useful for

the study of critical exponents on general subgraphs of Z
d , including the critical

exponent appearing in (1.10).

There have been a number of other works studying properties of high-dimen-

sional critical clusters, indeed far more than could be surveyed here; we will discuss

several that are particularly relevant to our results. In [1], Aizenman showed that

for d > 6, assuming (1.7), there are typically at least of order nd�6 spanning clus-

ters of B.n/—that is, open clusters touching opposite sites of B.n/—and that the

largest of these contains at most n4Co.1/ vertices. A number of other authors have

studied properties of large spanning clusters and the IIC, including the behavior of
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�G.0; ne1/ �G.0; ne2/ �G.n/ P .#CG.0/ > t/

G D T D n�5=24Co.1/ D n�5=24Co.1/ D n�5=48Co.1/ D t�5=91Co.1/

G D TC D n�7=16Co.1/ D n�2=3Co.1/ D n�1=3Co.1/ D t�16=91Co.1/

G D Z
d , high dimensions D .c C o.1//n2�d D .c C o.1//n2�d � n�2 � t�1=2

G D Z
d
C, high dimensions � n1�d � n�d � n�3 � t�3=4

TABLE 1.1. This table expresses the values of the exponents �, �, and ı

described in (1.2) on the two-dimensional triangular lattice T , the half-

plane TC, the high-dimensional settings of Definition 1: both the case

of the full lattice Z
d and the half-space subgraph Z

d
C of these high-

dimensional graphs. The constant c, as well as the constants implied by

“�”, depend on the particular lattice considered.

random walks on these clusters and closely related questions about resistances and

intrinsic balls, and scaling limits of large open clusters [11, 12, 17, 21, 27].

Finally, we mention several papers that investigate the behavior of high-dimen-

sional percolation not on subgraphs of Z
d , but rather on large tori [14, 15, 32].

These works find, among other things, that percolation on a high-dimensional torus

mimics the critical Erdős-Rényi random graph in several ways.

Conditional Version of Our Results

The results of Theorems 1.1 and 1.2 were stated unconditionally, under the

“high-dimensional” assumption of Definition 1. As alluded to above, however,

physicists believe that many critical exponents should take their mean-field values

above the upper critical dimension d D 6 on a wide range of graphs. We will give

a restatement of Theorems 1.1 and 1.2 here in a conditional form that makes clear

that our proofs are valid on any hypercubic or spread-out lattice above the upper

critical dimension. The missing ingredient, or in other words the reason why this

version of the theorem is conditional, is the two-point function asymptotic provided

by the lace expansion.

THEOREM 1.3. Consider either the hypercubic or spread-out lattice (in the latter

case,ƒ � 1 is not required to be large) for d > 6. Suppose that the two-point func-

tion asymptotic of (1.7) holds. Under this assumption, all the results of Theorems

1.1 and 1.2 hold.

The proofs of Theorems 1.1 and 1.2, verbatim, give the result of Theorem 1.3.

In these proofs, the bounds (1.7) are used both directly and indirectly. The indi-

rect usage of (1.7) occurs in three ways: through (1.6), through (1.9), and via the

application of open cluster cardinality estimates appearing in Section 2.4. The ar-

guments given in the original papers [3] and [22] to establish (1.6) and (1.9) are in
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fact valid under the assumptions of Theorem 1.3. The tail asymptotics appearing

in Section 2.4 are either direct consequences of (1.7) (in the case of Lemma 2.2) or

ultimately follow from (1.7) via the “tree graph inequalities” [2] of Aizenman and

Newman.

Our arguments do not extend in their present form to d � 6. Here they break

down both on their own terms (various error terms are only small when d > 6) and

because existing of proofs results on which they rely (e.g., (1.9)) explicitly require

d > 6. It is easy to see that at least one of the asymptotics in Theorem 1.1 must

be false for d � 5. Indeed, for the vertices 0 and ne2 to be connected by an open

path in Z
d
C, each of these vertices must have an open arm to distance bn=2c in Z

d
C.

If Theorem 1.1 held for Z
d , d � 5, the probability of two such arms would be

of order n�6, but this would contradict the two-point function asymptotic of part

(b) of that theorem. See [16, sec. 11.4] for more discussion of the upper critical

dimension d D 6.

1.3 Summary of Some Main Arguments

We use this space to attempt to clarify the structure of certain parts of the proofs

of Theorems 1.1 and 1.2. The most complicated and technically involved argu-

ments are those used to establish Theorem 1.2 and the asymptotics on �H from

Theorem 1.1. In the interest of space, we give a detailed outline of the proof of

these claims only (and in fact, only for the lower bound on �H .n/).

Proof of �H .n/ � cn
�3. We first argue for the lower bound on �H from Theo-

rem 1.1; this argument does not depend on Theorem 1.2 or on any other new results

of this paper. The main step of the proof involves establishing the result

P
�

there are at least cn4�d vertices x 2 @B.2n/ satisfying x
B.2n/
 ! @B.n/

�

� c > 0:
(1.11)

To establish (1.11), we define a set S of open clusters C that touch both @B.3n/

and @B.n/ and that satisfy

(1.12) #
˚

x 2 CW x
B.2n/
 ! @B.n/

	

� cn2:

The clusters in S also must contain order n4 vertices of B.3n/, the “typical”

number of vertices for a cluster of this diameter; see (3.2) for a precise definition

of S .

We argue that

(1.13) EŒ#S � � cnd�6 and EŒ.#S /2� � Cn2d�12:

To show the bound on EŒ#S �, we note that

(1.14) EŒ#fy 2 B.n/W y$ @B.3n/g� � cnd�.n/ � cnd�2:

The cluster C.y/ of the typical y as in (1.14) should satisfy (1.12), with C.y/ playing

the role of C. Indeed, we show that, conditional on CB.2n/.y/, the probability that

C.y/ reaches @B.3n/ is at most �.n/ � #ŒCB.2n/.y/ \ @B.2n/� (see Lemma 3.2).
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Since �.2n/ � c�.n/, we must have #ŒCB.2n/.y/ \ @B.2n/� typically at least cn2

on fy $ @B.2n/g, so (1.14) holds. Since each cluster of S contains at most

Cn4 vertices of B.n/, (1.14) implies the bound on EŒ#S � from (1.13); this bound

appears at (3.8) below.

The second moment bound of (1.13) follows by an argument of a similar flavor,

but with additional complications; this argument may be found beginning at (3.9).

Given (1.13), by the Paley-Zygmund inequality we see

P .#S � cnd�6/ � c > 0;

so by (1.12), we have (1.11).

On the other hand, each vertex x 2 @B.2n/ having an open connection to @B.n/

as in (1.11) has an arm of length order n in an appropriate half-space, namely,

a half-space whose boundary hyperplane contains a side of @B.2n/ in which x

lies. The expected number of x 2 @B.2n/ having such half-space arms is at most

Cnd�1�H .n/; comparing to (1.11), we find

nd�1�H .n/ � cn
4�d so �H .n/ � cn

�3:

Proof of Theorem 1.2 The core of the proof of Theorem 1.2 is an iterative or

inductive argument, where the induction is on a parameter M . The inductive hy-

pothesis is that there exists a constant c D c.M/ such that

(1.15) for all n � 1 and all x 2 B.n/ P
�

0
B.Mn/
 ! x

�

� cjxj2�d :

The base case—i.e., the existence of someM <1 such that (1.15) holds—follows

directly from existing results; see Proposition 4.1. In the inductive step, we show

that (1.15) for a givenM > 1 implies the existence of an ˛.M/ < M such that the

analogue of (1.15), with ˛.M/ replacing M and a reduced value of the constant c,

holds. (In fact, ˛.M/ is essentially .M C 1/=2—see Claim 4.4—so the induction

will eventually show (1.15) holds for any M > 1.)

For simplicity, let us describe the anatomy of the inductive step in a particular

case: suppose we have shown (1.15) for M D 3, and we wish to show

(1.16) P
�

0
B.2n/
 ! ne1

�

� c0n2�d

for some constant c0 > 0. Define the random set

X D
˚

x 2 @Œne1 C B.2n=3/�W x
ne1CB.2n=3/
 ! ne1

	

I

see Lemma 4.6, where the analogous variable is calledXD . By an argument similar

to the one used to show (1.14) we establish

P
�

ne1 $ @Œne1 C B.2n=3/�; cn
2 < #ŒX \ B.2n=3/� � #X < Cn2

�

� cn�2
(1.17)

for small enough c > 0. This is (4.4), where XQ plays the role of X \ B.2n=3/.

The crucial point here is that the vertices inX are close enough to 0 to apply (1.15)
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to. We will show that, conditional on the event in (1.17), we can often find further

open paths connecting some vertex of X to 0.

Let B be the event in (1.17) (compare B� of (4.4)) and for each x 2 @Œne1 C

B.2n=3/�, choose some neighbor x0 � x with x0 … Œne1 C B.2n=3/�. Let

Y D
˚

edges e D fx; x0g for some x 2 X :

x0 B.2n/
 ! ne1 and e is open and pivotal for 0

B.2n/
 ! ne1

	

:

Clearly #Y � 1, and if #Y D 1, then we have 0
B.2n/
 ! ne1. We devote the remainder

of the argument to showing

(1.18) P .#Y D 1 j B/ � cn4�d :

The result (1.18) establishes (1.16); the argument for (1.16) appears just below the

statement of Lemma 4.6.

To show (1.18), we perform a second-moment argument conditional on B . To

upper bound EŒ.#Y /2 j B�, we note that the conditional probability a particular x0

has a connection to 0 (necessarily avoiding Cne1CB.n=2/.ne1/) is at most Cn2�d .

See (4.5) and the argument immediately following. Since the number of edges e

as in the definition of Y is at most Cn2 on B , and since Y � 1 almost surely, the

upper bound EŒ.#Y /2 j B� � Cn4�d follows.

We show EŒ#Y j B� � cn4�d by a similar but more delicate version of the

above reasoning. Suppose x 2 X \ B.n=4/ and x0 2 B.2n=3/ is a neighbor of x

outside of ne1 C B.2n=3/ as above (note many such x exist on the event B). By

the induction hypothesis, x0 would have (unconditional) probability at least cn2�d

of being connected to 0 in B.2n/. To remove the effect of the conditioning and to

guarantee the pivotality of the edge e D fx; x0g, we use cluster regularity estimates

(see Theorem 2.3), which, combined with the two-point function asymptotic, allow

us to establish “enough independence” between the cluster of x0 and the cluster

of ne1. See the proof of part (2B) of Lemma 4.6, where this entire argument is

accomplished. This shows the conditional first moment of #Y is at least order

.n2/.n2�d / D n4�d , so

P .#Y D 1/ � cP .B/
EŒ#Y j B�2

EŒ.#Y /2 j B�
� cn2�d ;

completing the proof.

1.4 Organization of the Paper, Constants, and a Standing Assumption

In Section 2, we provide further notation for graphs and subsets of Z
d , along

with some further notation related to percolation. We then (in Section 2.3) define

the mass-transport method and prove an abstract mass-transport result, Lemma 2.1.

Finally, we present useful results on the tail behavior of open cluster cardinalities.

In Section 3, we show the lower bound on the one-arm probability from (a)

of Theorem 1.1: �H .n/ � cn�3: In Section 4, we prove Theorem 1.2. Section
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5 is devoted to results on cluster “extensibility” that will be crucial for proving

the upper bound on the one-arm probability in Theorem 1.1. The proof of these

extensibility results relies on Theorem 1.2.

In Section 6, we use the extensibility results of Section 5 to show �H .n/ �

Cn�3, completing the proof of (a) from Theorem 1.1. This section breaks up

into two parts: the choice and analysis of a particular mass-transport rule, and an

iterative bound on �H relying on our mass-transport results. Finally, in Section 7,

we bound �H and the tail of the half-space cluster size distribution, proving (b) and

(c) of Theorem 1.1.

A note about constants. The symbols C; c generally represent positive constants

whose values may change from line to line (and even within lines); we sometimes

number them to refer to them locally. Other symbols such as " will sometimes

refer to constants depending on context. When we wish to make clear the possible

dependence of a constant on a parameter, we do it on a case-by-case basis, for

instance, by writing C D C.K/. Numbered constants designed to be retained

on a long-term or global basis will be denoted ai ; Ai ; certain specially labeled

constants, such as c� from Theorem 5.1, will also be referred to several times

throughout the paper.

Standing assumption. For the remainder of the paper, we consider critical per-

colation in one of the high-dimensional settings of Definition 1.

2 Further Definitions and Preliminary Results

In this section, we give some further definitions that will be useful in the course

of our proofs (in Sections 2.1 and 2.2). We also state a version of the mass-transport

principle (in Section 2.3) and several auxiliary results describing the tail behavior

of percolation cluster sizes (in Section 2.4).

2.1 Graph Notation

Recall that we often abuse notation and write Z
d for the vertex set of the hy-

percubic or spread-out lattice, as well as for the lattice itself (with similar abuses

common for subgraphs of Z
d ). We will write x � y if x and y are neighbors in

Z
d —that is, if there is an edge e in the edge set of Z

d with e D fx; yg. The norm

notation kxk refers to the `1 norm kxk1 unless an alternate subscript is given.

The symbol #A denotes the cardinality of a set A.

Define the shifted half-spaces

Z
d
C.n/ D fx 2 Z

d W x.1/ � ngI

in this notation, we have Z
d
C D Z

d
C.0/. The corresponding boundary “hyperplane”

is

S.n/ WD
˚

x 2 Z
d
C.n/W x � y for some y … Z

d
C

	

:

Note that S.n/ is a (discretized) hyperplane in the usual sense if the ambient graph

is the hypercubic lattice; in the case of the spread-out lattice, it is a union of finitely
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2.2 Correlation inequalities and More about Percolation

Recall that a generic percolation configuration is written ! D .!e/e, where the

random variables !e are i.i.d. Bernoulli.pc/, and the edge e is open (resp. closed)

if !e D 1 (resp. !e D 0). The open graph is the random subgraph of Z
d whose

vertex set is Z
d and whose edge set is fe D fx; ygW x � y; !e D 1g. Recall that

open clusters are subgraphs of this open graph; we sometimes identify an open

cluster with its vertex set.

In many places where the two-point function asymptotics of (1.7) appear, we use

the convention k0k2�d D 1; this minor abuse allows us to avoid some cumbersome

expressions when summing products of � .

An edge e is said to be pivotal for an event A in a configuration ! if changing

the status of !e while leaving the rest of ! fixed changes whether or not A occurs.

In other words, letting !.e;C/ (resp. !.e;�/) denote the configuration agreeing with

! except possibly at !e, where it takes the value !
.e;C/
e D 1 (resp. 0), then e is

pivotal for A in ! if 1A.!
.e;C// ¤ 1A.!

.e;�//. OK to change 1 to 1?

Above, we defined the half-space one-arm probability by

�H .n/ WD P
�

0
Z
d
C

 !S 0.n/
�

:

There is a possible alternate definition of �H : namely, P .0
Z
d
C

 !S.n//, the prob-

ability that there is a half-space arm to distance n in the e1-direction. We note

that the arguments in this paper in fact show that both of these probabilities are

asymptotic to n�3; see (7.1) and the surrounding discussion below.

Another minor issue arises when discussing �H .n/ in the setting of the spread-

out lattice. Since edges extend `1 distanceƒ here, each vertex x with 0 � x.1/ �

ƒ�1 is on the “hyperplane” forming the boundary of Z
d
C. But the probability that

C
Z
d
C
.x/ has diameter at least n is not exactly �H .n/. This issue is remedied by the

following observation, whose proof is immediate:

(2.2) for each fixed x such that kxk1 � ƒ,

P .9y 2 C
Z
d
C
.x/W kyk1 � n/ � �H .n/:

We will make use of (2.2) sometimes without explicit reference.

We will make reference to the Harris-FKG (or “FKG”) and BK-Reimer (or

“BK”) correlation inequalities. We direct the reader to [5, chap. 2] for statements

of, and references to the literature on, these and related inequalities.

2.3 Mass Transport

Our proof of the upper bound �H .n/ � Cn�3 of Theorem 1.1 involves con-

sidering the point of view of a boundary vertex of a spanning cluster of a large

box—that is, the configuration seen from a typical x 2 @B.n/ lying in such a span-

ning cluster. This is made precise by the following lemma, which is an application



18 S. CHATTERJEE AND J. HANSON

of the general mass-transport technique. See [24, chap. 8] for more information

about mass transport.

LEMMA 2.1. Let h.x; y/ be a function from Z
d �Z

d to Œ0;1� that is translation-

invariant in the following sense: h.x C z; y C z/ D h.x; y/ for all x; y; z 2 Z
d .

Then, for any x 2 Z
d ,

X

z

h.0; z/ D
X

z

h.x; z/ D
X

z

h.z; x/ D
X

z

h.z; 0/:

PROOF. Note that h.0; z/ D h.0 � z; z � z/ D h.�z; 0/, so
X

z

h.0; z/ D
X

z

h.�z; 0/ D
X

z

h.z; 0/:

The fact that the value is unchanged when replacing 0 by x follows similarly, again

using the translation invariance of h. �

Lemma 2.1 will be applied to particular mass-transport rules. A mass-transport

rule is a function m. � ; �/ on Z
d � Z

d assigning to each pair x; y a nonnegative

random variable m.x; y/ D mŒ!�.x; y/ for each percolation configuration in a

translation-covariant way. In other words, for almost every realization ! D .!e/e
of the percolation process, we have

mŒ!�.xC z; yC z/ D mŒ‚z!�.x; y/;

where .‚z!/e D !eCz (and addition of a vertex and an edge is defined by fa;bgC

z D faC z;bC zg).

Such an m.x; y/ is referred to as the “mass sent from x to y.” For a given choice

of m, we apply Lemma 2.1 to h.x; y/ D Em.x; y/ (translation invariance of h fol-

lows from the translation covariance of m). In this case, letting send D
P

z m.0; z/

and get D
P

z m.z; 0/, the lemma states

Esend D Eget:

2.4 Open Cluster Cardinality Estimates

In this subsection, we provide several estimates on the cardinality of open clus-

ters within boxes. We begin with a pair of well-known moment estimates in the

following lemma. These will be useful for controlling the probability of events that

imply that the cluster of a particular site is “large.”

LEMMA 2.2. We have

EŒ#C.0/ \ B.n/� � n2; E
�

.#C.0/ \ B.n//2
�

� Cn6:

PROOF. The first moment is just
P

x2B.n/ �.0; x/, and the asymptotic follows

by summing (1.7). The second moment bound follows using the “tree graph”

method of Aizenman and Newman [2], decomposing P .x $ 0; y $ 0/ based

on the meeting point of the open paths from x to 0 and from y to 0. See, for

instance, lemma 2.1 from [22]. �
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The remainder of this subsection is devoted to the presentation of specialized

cluster regularity results. Roughly speaking, these will allow us to argue that, even

when the cluster of a particular site has large diameter, its intersection with a meso-

scopic cube of sidelength s is very unlikely to contain more than s4C" vertices. The

fact that open clusters are so sparse will allow us to show that, when we explore

the open cluster of a particular site, different stages of the exploration proceed

approximately independently.

The statement of these regularity results requires further terminology. Consider

a vertex z within some connected vertex set D � Z
d and some subset Q � @D of

its boundary. D is generally a box or annulus. We introduce the notationXQ.D; z/

for the number of “boundary vertices” of CD.z/ on Q:

(2.3)
For z 2 D � Z

d and Q � @D, let

#fx 2 QW x
D
 ! zg D #ŒCD.z/ \Q.

Our regularity result says roughly that, if XQ is large, the clusters of most of the

vertices contributing to XQ are not larger than their typical size. For s > 0 and

x 2 Z
d arbitrary, define the event

Ts.x/ WD
˚

#.C.x/ \ .xC B.s/// < s4 log7 s
	

:

DEFINITION 3. Let D � Z
d and x 2 @D. For s > 0, we say that x is s-bad with

respect to D if

P .Ts.x/ j CD.x// � 1 � exp.� log2 s/:

We say that x is K-irregular with respect to D if x 2 @D and there is some s � K

such that x is s-bad with respect to D. Otherwise, x is said to be K-regular with

respect to D. We denote the set of K-regular vertices of D by REGD.K/.

We define the “irregular version” of XQ.D; z/, which counts the number of

boundary vertices whose clusters are abnormally large (recall that D � Z
d and

Q � @D):

(2.4) XK-irr
Q .D; z/ WD #fx 2 CD.´/ \QW x is K-irregular with respect to Dg:

The following lemma provides a tail bound for XK�irr
Q when XQ is large for a

growing sequence of annuli or boxes D. Suppose that for each n, the set D is a

dilation of the same box or annulus—that is, D is a translate of
Qd

iD1Œ˛in; ˇin�,

or the annuli Ann.cn; n/, Ann0.cn; n/, or AnnH .cn; n/, where the ˛i ’s, ˇi ’s, or c

are fixed. We say Q is a dilated subrectangle of @D for each n if Q is a .d � 1/-

dimensional rectangle in @D with nondegenerate sides and if, for each n, Q is

dilated and translated as D is—i.e., as n increases, Q changes by the same dila-

tions/translations as D.

LEMMA 2.3 (Cluster regularity). Consider a sequence of growing (in n) domainsD

that are dilations/translations of the same box or annulus having sidelength order

n as in the above paragraph. Suppose that Q is a dilated subrectangle of @D, also
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as above. There exist constants C > c > 0 and K0 > 0 such that for any n;M

and any K � K0, the following holds: Uniformly in z 2 D, we have

P

�

XQ.D; z/ �M and XK-irr
Q .D; z/ �

1

2
XQ.D; z/

�

� Cnd exp.�c log2M/;

where XQ and XK-irr
Q are defined at (2.3) and (2.4) respectively.

A version of Lemma 2.3 in the case that D is a cube B.n/ and Q D @B.n/

was proved as theorem 4 of [22]. Lemma 2.3 follows by an argument similar to

the proof of that result; we omit the details. The main use of Lemma 2.3 will be

in “extensibility” arguments allowing the enlargement of the cluster of a site x,

conditional on the value of CD.x/.

3 Lower Bound on �H .n/

Our main goal in this section is to prove the lower bound of part (a) of Theorem

1.1:

PROPOSITION 3.1. There is a constant c D c.d/ such that �H .n/ � cn
�3 for all

n � 1.

Recall that Ann.m; n/ D B.n/ n B.m/ is the annulus of in-radius m and out-

radius n.

DEFINITION 4. For r; s 2 N with r < s, let JAnn.r; s/K be the set of all open

clusters of Z
d that intersect both B.r/ and @B.s/.

The clusters belonging to JAnn.r; s/K will be called Ann.r; s/-spanning clusters.

Note that connectivity in the above definition is determined relative to Z
d and

not the annulus; in particular, if C 2 JAnn.r; s/K; then C \ Ann.r; s/ may be a

disconnected set. We will mostly work with the annulus Ann.n; 3n/. For C 2

JAnn.n; 3n/K, let XC denote the number of vertices of @B.2n/ \ C that can access

@B.n/ via open paths within B.2n/. More precisely,

(3.1) XC WD #
˚

x 2 @B.2n/ \ C W x
B.2n/
 ! B.n/

	

:

Next we define a collection S of “regular” annulus spanning clusters with certain

regularity properties. Roughly speaking, C 2 S if:

(1) XC is large enough so that C is likely to extend to the boundary of a larger

ball of radius ‚.n/, say, B.5n/. That is, XC & n2.

(2) C contains� n4 vertices in boxes of sidelength� n.

To be more precise, let � > 0 and

(3.2)
S� WD

˚

C 2 JAnn.n; 3n/KW XC � �n
2; #ŒC \ Ann.3n; 5n/� � �n4;

#ŒC \ B.5n/� � ��1n4
	

:

Note that S� depends on n.
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The following lemma will be useful for showing that XC is typically large (and

thereby proving the existence of many points with half-space arms). We state it in

a general form so that later in the paper it can also be applied to the case of, for

instance, nested half-space boxes.

LEMMA 3.2. Let A0 � A1 � Z
d be arbitrary finite vertex sets with z 2 A0. Let

B � @A1 be a distinguished portion of the boundary of A1, and suppose that the

`1 distance from A0 to B is �. Recall the definition of @A1A0 from (2.1). Let C be

a set of vertices of A0 that is admissible in the sense that P .CA0.z/ D C/ > 0, and

suppose further that #ŒC \ @A1A0� DM . We then have

P
�

z
A1
 ! B j CA0.z/ D C

�

�M�.�/:

PROOF. For a vertex set C ofA0, note that the event fCA0.z/ D Cg depends only

on the status of edges having either both endpoints in C or one endpoint in C and

one endpoint in A0 n C. Conditional on fCA0.z/ D Cg, if fz
A1
 !Bg occurs, then

there must be some y 2 C \ @A1A0 (see Figure 3.1 for a sketch) such that y$ B

off C. That is, y has an open path (in Z
d ) to B which touches C only at y. We thus

have the inclusion

˚

z
A1
 !B; CA0.z/ D C

	

� fCA0.z/ D Cg

\ f9y 2 C \ @A1A0 with y$ B off Cg:
(3.3)

For any fixed C, the events on the right-hand side of (3.3) are independent, and the

probability that any y 2 C\@A1A0 has such a connection is clearly bounded above

by �.�/. Thus, for any set C � A0 that is admissible as in the statement of the

lemma, we have

P
�

z
A1
 ! B;CA0.z/ D C

�

D P
�

z
A1
 ! B j CA0.z/ D C

�

P
�

CA0.z/ D C
�

[

y2ŒC\@A1A0�

� P
�

CA0.z/ D C
�

P

�

[

y2ŒC\@A1A0�

fy $ B off Cg
�

� P
�

CA0.z/ D C
�

X

y2ŒC\@A1A0�

P .y $ B off C/

�M�.�/P .CA0.z/ D C/: �

Our main technical work in the remainder of this section is to show the follow-

ing.
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Using (2.2), we obtain an upper bound for the expectation appearing in the last

display:

(3.6) E#
˚

x 2 @B.2n/ W x
B.2n/
 ! B.n/

	

� C�H .n/Œ#@B.2n/� � C1n
d�1�H .n/

for some constant C1 D C1.d/. Comparing (3.4), (3.5), and (3.6) gives �H .n/ �

.c1c2�
2=C1/n

�3, which completes the proof of the proposition. �

To complete the proof of Proposition 3.1, it suffices to prove Lemma 3.3. The

key fact that we need to prove Lemma 3.3 is the following. Recall that for x 2 Z
d ,

C.x/ is the open cluster containing x.

LEMMA 3.4. There exists �0 > 0 and c D c.�0; d / > 0 such that for all � � �0

and x 2 B.n=2/, P .C.x/ 2 S�/ � cn
�2.

First, we show how to use Lemma 3.4 to prove Lemma 3.3; we then prove

Lemma 3.4.

PROOF OF LEMMA 3.3. We apply Lemma 3.4 to obtain �0; c.�0; d / such that

(3.7) P .C.x/ 2 S�/ � cn
�2 uniformly in n; � � �0 and x 2 B.n=2/:

Now we will use a second-moment argument for #S�. First note that

X

x2B.n=2/

1fC.x/2S�g D
X

C2S�

#ŒC \ B.n=2/� � ��1n4#S�:

The last inequality follows from the fact that #ŒC\B.5n/� � ��1n4 for all C 2 S�.

From the last display and (3.7),

(3.8) E#S� �
�

n4

X

x2B.n=2/

P .C.x/ 2 S�/ �
�

n4
C2n

dcn�2 D C2c�n
d�6

for some constant C2 D C2.d/. Now we estimate the second moment of #S�.

Note that
X

x2Ann.3n;5n/

1fC.x/2S�g D
X

C2S�

#ŒC \ Ann.3n; 5n/� � �n4#S�:

The last inequality follows from the fact that #ŒC \ Ann.3n; 5n/� � �n4 for all

C 2 S�. Thus,

(3.9) #S� �
1

�n4

X

x2Ann.3n;5n/

1fC.x/2S�g

and so .#S�/
2 �

1

�2n8

X

x;y2Ann.3n;5n/

1fC.x/;C.y/2S�g:
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For each of the above summands there are two possibilities based on whether C.x/

and C.y/ intersect or not. If C.x/;C.y/ 2 S� and C.x/ \ C.y/ D ¿, then x and y

are connected to B.n/ using disjoint paths, so using the BK inequality

P .C.x/;C.y/ 2 S�; C.x/ \ C.y/ D ¿/ � P .fx$ B.n/g ı fy$ B.n/g/

� P .x$ B.n//P .y$ B.n//:

On the other hand, note that for any x 2 Ann.3n; 5n/,
X

y2Ann.3n;5n/

1fC.x/;C.y/2S�;C.x/\C.y/¤¿g

�
X

y2C.x/\B.5n/

1fC.x/2S�g D #.C.x/ \ B.5n//1fC.x/2S�g � �
�1n4

1fC.x/2S�g

by the definition of S�. Combining the last three displays,

E
�

.#S�/
2
�

�
1

�2n8

h

X

x2Ann.3n;5n/

��1n4
P .C.x/ 2 S�/

C
X

x;y2Ann.3n;5n/

P .x$ B.n//P .y$ B.n//
i

:

Using (1.9), we have P .x $ B.n// � A2n
�2 uniformly in x 2 Ann.3n; 5n/.

Since #B.5n/ D .5n C 1/d , the two terms in the right-hand side of the above

display are at most C��3nd�6 and C��2n2d�12 respectively. Therefore, there is

a constant C3 > 0 such that

E
�

.#S�/
2
�

� C3�
�3n2d�12:

Using the estimates in the above display and (3.8), and applying the Paley-Zyg-

mund inequality,

P

�

#S� �
1

2
C2�cn

d�6

�

� P

�

#S� �
1

2
E#S�

�

�
1

4

.E#S�/
2

EŒ.#S�/2�

�
1

4

C 2
2 �

2c2n2d�12

C3��3n2d�12
D
C 2

2 c
2

4C3
�5:

While the above bound depends on �, we can replace it by a constant for � � �0

since the probability appearing in the statement of Lemma 3.3 is decreasing in �.

This completes the proof of the lemma. �

Lastly, we need to show Lemma 3.4. The lemma follows from moment estimates

and Lemma 3.2, which says that clusters of boxes with a small number of boundary

vertices are likely to die out.
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PROOF OF LEMMA 3.4. Since #S� is monotone in �, it suffices to show that

there is a �0 > 0 and c D c.�0; d / > 0 such that P .C.x/ 2 S�0/ � cn
�2 for all

x 2 B.n=2/. The proof consists of the following steps:

Step 1. There are positive constants C1; C2 depending on d such that for any

x 2 B.n=2/,

(3.10) P
�

#ŒC.x/ \ Ann.3n; 5n/� > �n4
�

� .C1 � C2�
2/n�2:

Step 2. There are positive constants C1; C2; C3 depending on d such that for

any x 2 B.n=2/,

(3.11)
P

�

#ŒC.x/ \ Ann.3n; 5n/� > �n4; #C.x/ \ B.5n/ � ��1n4
�

�
�

C1 � C2�
2 � C3�

�

n�2:

Step 3. There are positive constants C1; C2; C4 depending on d such that for

any x 2 B.n=2/,

(3.12) P .C.x/ 2 S�/ � .C1 � C2�
2 � C4�/n

�2:

The proof of the lemma follows from Step 3 by taking c.�; d/ WD C1 �C2�
2 �

C4� and choosing �0 > 0 small enough so that c.�0; d / > 0. Now we give the

proof of the three steps.

STEP 1. We will use a second moment argument for the distribution of #ŒC.x/ \

Ann.3n; 5n/� given fx$ @B.3n/g. First note that

E.#ŒC.x/ \ Ann.3n; 5n/�jx$ @B.3n//

D
X

y2Ann.3n;5n/

P .x$ yjx$ @B.3n//

D
X

y2Ann.3n;5n/

P .x$ y/

P .x$ @B.3n//
;

as x $ y implies x $ @B.3n/ for all y 2 Ann.3n; 5n/. Equation (1.9) and the

symmetries of the lattice give that P .x$ @B.3n// � n�2. This, together with the

two-point function estimate (1.7), gives

E.#ŒC.x/ \ Ann.3n; 5n/�jx$ @B.3n//

� c1n
2

X

y2Ann.3n;5n/

jjx � yjj2�d � c2n
4(3.13)
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for some constants c1; c2 that depend only on d . Next note that

E
�

.#ŒC.x/ \ Ann.3n; 5n/�/2 j x$ @B.3n/
�

D
X

y;z2Ann.3n;5n/

P .x$ y; x$ zjx$ @B.3n//

D
X

y;z2Ann.3n;5n/

P .x$ y; x$ z/

P .x$ @B.3n//
;

as x$ y; z implies x$ @B.3n/ for all y; z 2 Ann.3n; 5n/. Now,

X

y;z2Ann.3n;5n/

P .x$ y; z/

is upper-bounded by EŒ.#ŒC.x/\ ŒxCB.6n/��/2�, which is at most c4n
6 for some

constant c4 > 0 by Lemma 2.2.

Combining this estimate with the fact that P .x$ @B.3n// � n�2, we obtain

(3.14) E
�

.#ŒC.x/ \ Ann.3n; 5n/�/2
ˇ

ˇ x$ @B.3n/
�

� c5n
8

for a constant c5 that depends only on d . Using the inequalities in (3.13) and

(3.14), and applying the Paley-Zygmund inequality, we find

P
�

#ŒC.x/ \ Ann.3n; 5n/� > �n4
ˇ

ˇx$ @B.3n/
�

� P
�

#ŒC.x/ \ Ann.3n; 5n/� > .�=c2/E#ŒC.x/ \ Ann.3n; 5n/�
ˇ

ˇ x$ @B.3n/
�

� .1 � �2=c2
2/

�

EŒ#ŒC.x/ \ Ann.3n; 5n/�jx$ @B.3n/�
�2

E.#ŒC.x/ \ Ann.3n; 5n/jx$ @B.3n/�2/

� .1 � �2=c2
2/c

2
2=c5:

The above estimate together with the fact that P .x$ @B.3n// � n�2 gives (3.10).

STEP 2. Combining the first moment bound of Lemma 2.2 with the Markov in-

equality gives

(3.15) P .#ŒC.x/ \ B.5n/� > ��1n4/ � c9�n
�2:

Using this with the estimate in (3.10), we get (3.11).
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STEP 3. We now argue that the condition XC.x/ > �n2 can be further imposed on

the event in (3.15) without substantial probability cost. Write

P .XC.x/ < �n
2; x$ @B.3n//

D P .0 < XC.x/ < �n
2; x$ @B.3n//

D
X

M <�n2

X

C�B.2n/;
#ŒC\@B.2n/�DM

P
�

CB.2n/.x/ D C; x$ @B.3n/
�

�
X

M <�n2

X

C�B.2n/;
#ŒC\@B.2n/�DM

M�.n/P
�

CB.2n/.x/ D C
�

;

where in the final inequality we applied Lemma 3.2. Upper-boundingM � �n2 in

the last display, using the asymptotics (1.9) for �.n/, and performing the sum over

M and C, we find

P .XC.x/ < �n
2x$ @B.3n// � C�P .0 < XC.x/ < �n

2/

� C�P .x$ @B.2n// � C5�n
�2;

where C5 > 0 is a constant, uniformly for x 2 B.n=2/.

Combining the above estimate with (3.11), we see

P .C.x/ 2 S�/

D P
�

#ŒC.x/ \ Ann.3n; 5n/� > �n4; #ŒC.x/ \ B.5n/� � ��1n4
�

� P
�

#ŒC.x/ \ Ann.3n; 5n/� > �n4;

#ŒC.x/ \ B.5n/� � ��1n4; XC.x/ < �n
2
�

� P
�

#ŒC.x/ \ Ann.3n; 5n/� > �n4; #ŒC.x/ \ B.5n/� � ��1n4
�

� P .XC.x/ < �n
2; x$ @B.3n//

� .C1 � C2�
2 � C3� � C5�/n

�2 DW c.�/n�2:

This shows (3.12). �

4 Proof of Theorem 1.2

This section is entirely devoted to the proof of Theorem 1.2. Theorem 1.2 will

be used in an essential way in the proofs of the remaining results of Theorem 1.1.

Note that the upper bound claimed in Theorem 1.2 follows from the unrestricted

two-point function: �D.0; x/ � �.0; x/ � A1kxk
2�d for any D � Z

d . We will

first give the matching lower bound in a more restrictive setting than claimed in the

theorem. The restriction will be removed via an inductive argument that bootstraps
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a lower bound on the two-point function �B.n/ far from the box boundary to one

slightly closer to the box boundary.

We now state the “restrictive setting” version of Theorem 1.2 alluded to above.

PROPOSITION 4.1. There exist constantsM0 > 1 and c1 > 0 such that the follow-

ing holds uniformly in n:

�B.Mn/.0; x/ � c1kxk
2�d for all x 2 B.n/ n f0g and all M > M0:

PROOF. We say x$ y through D if x$ y but every open path from x to y uses

a vertex of D. Suppose x 2 B.n/. Note that for any M > 1, the event f0$ xg is

a disjoint union of f0
B.Mn/
 ! xg and f0$ x through B.Mn/cg. Thus,

�B.Mn/.0; x/ D P .0$ x/ � P .0$ x through B.Mn/c/:

The latter term of the right-hand side is bounded above by C.Mn/2�d , uniformly

in x 2 B.n/, by [32, (1.12)]. Using (1.7), the first term of the above is at least

a1kxk
2�d . Choosing M large completes the proof. �

The result of Proposition 4.1 will serve as the base case for an induction argu-

ment, which will prove Theorem 1.2. In fact, our argument shows that the nested

cubes of that theorem can be replaced by possibly oblong rectangles of arbitrary

fixed aspect ratio. We state this strengthened version of the theorem for future

reference:

THEOREM 4.2. Fix ˛i ; ˇi > 0 for 1 � i � d ; fix also M > 1. For each n, let the

rectangle

Rn WD Œ�˛1n; ˇ1n� � � � � � Œ�˛dn; ˇdn�:

There is some c D c.M; .˛i /; .ˇi // such that, uniformly in n and in x 2 Rn,

�RMn
.0; x/ � ckxk2�d :

For use in the proof, we introduce some shorthand for the boundary vertices of

cubes reachable from 0 within the cube. Recalling the definition of XQ.D; z/ at

(2.3), set

Xbox.n/ WD X@B.n/.B.n/; 0/ D #
˚

x 2 @B.n/ W 0
B.n/
 ! x

	

;

where in the first equality we use the notation of Section 5 with D D B.n/ and

Q D @B.n/. We need a lemma bounding EXbox.n/ for our proof of Theorem 1.2.

LEMMA 4.3 (Theorem 1.5(a) of [32]). There is a constant C1 > 0 such that

EXbox.n/ � C1 uniformly in n � 1.

PROOFS OF THEOREM 1.2 AND THEOREM 4.2. We prove the notationally sim-

pler case of a cube—that is, we prove Theorem 1.2—in detail, then describe the

modifications necessary for other rectangular regions. Let

FR.�/ WD k � kd�2�B.R/.0; �/:
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For M > 1, say that � is M -good if there are constants c.M/; n0.M/ so that

FM njB.n/ � c for all n � n0. The proof of Theorem 1.2 is inductive, and

Proposition 4.1 initializes the induction. The inductive step is accomplished by

the following claim. �

CLAIM 4.4. If � is M -good and ˛.M/ WD minf4=3; .M C 1/=2g, then � is

.M=˛.M//-good.

It is not hard to see that if � is M0-good for some M0 > 1 (which is guaranteed

by Proposition 4.1), then one can show that � must be M -good for any M 2

.1;M0/ by applying Claim 4.4 finitely many times. This proves Theorem 1.2.

To prove Claim 4.4 it is enough to show that if FM njB.n/ is bounded away from

0, then so is FM njB.˛.M/n/. So, if Bj .n/ WD fx 2 Z
d W jx.1/j; : : : ; jx.j /j �

˛.M/nI jx.j C 1/j; : : : ; jx.d/j � ng obey “obey” what? And what

“obeys”? Please rewrite

this and clarify.
CLAIM 4.5. If FM njBj .n/ (where 0 � j < d ) is bounded away from 0 for all n

large enough, then so is FM njBjC1.n/.

then Claim 4.4 follows from Claim 4.5 by using induction on j . Note that the Please rework and

clarify.hypothesis of Claim 4.4 initializes the induction argument for Claim 4.5 at j D 0.

To show Claim 4.5 suppose FM njBj .n/ is bounded away from 0 for some 0 �

j < d , so for some constant cM > 0,

(4.1) �B.Mn/.0; x/ � cM jjxjj
2�d for all n � 1 and x 2 Bj .n/:

Fix an arbitrary x 2 Bj C1.n/ n Bj .n/. We will bound �B.Mn/.0; x/ from below.

Without loss of generality we can assume that x.i/ � 0 for all i , as other cases are

similar. Let

(4.2) D D xC B..˛.M/ � 1/n/; so D � B.Mn/ n B.n=3/

by our choice of ˛.�/. Also, @D contains the .d � 1/-dimensional “quadrant”

Q WD
˚

y 2 D W y.i/ � x.i/ for all i ¤ j C 1, and y � y0 for some

y0 … D with y0.j C 1/ < x.j C 1/ � b.˛.M/ � 1/nc
	

:

Each vertex ofQ has a lattice neighbor in Bj .n/ (as long as n is sufficiently large).

If x is on the i th axis for some i , then all the vertices in an entire “side” of D

(perpendicular to the i th axis) containing Q are adjacent to vertices of Bj .n/. At

the other extreme, when x is at the corner of Bj C1.n/ belonging to fy 2 Z
d W

y.i/ � 0g, then no (or almost no) vertices of @D n Q are adjacent to vertices of

Bj .n/. See Figure 4.1 for possible locations of D. Now note that if

Fz WD
˚

z
D
 ! x; z

B.Mn/
 ! 0

	

;

then Claim 4.5 will follow if we show that there is a constant c > 0 (independent

of x and n) such that

(4.3) P

�

[

z2Q

Fz

�

� cn2�d for all n large enough,
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which implies

P
�

Y K
Q > 0

�

�
X

�n2<N <��1n2

P
�

Y K
Q > 0

ˇ

ˇ X
K-reg

Q D N;B�

�

P
�

X
K-reg

Q D N;B�

�

�
c2

2

C2
n4�d

P .B�/ �
c1c

2
2

C2
n2�d using (4.4):

This proves (4.3), as fY K
Q > 0g implies

S

z2Q Fz, and thus completes the proof of

Claim 4.5. �

We end the section by proving Lemma 4.6.

PROOF OF LEMMA 4.6. From the definition of Q and the symmetries of the

lattice it is not hard to see that #ŒCD.x/ \ @D� is bounded above by a sum of d2d

copies of XQ that are identically distributed (but not independent). So, using a

union bound and Lemma 3.4, there are constants �0.d/ > 0 and c.�0; d / > 0 such

that

P .XQ > 2�n2/ �
1

d2d
P .#ŒCD.x/ \ @D� > d2

dC1�n2/

�
c

d2d
n�2 for all � � �0:

Also, Lemma 2.3 implies

P
�

XQ > 2�n2; X
K-reg

Q � �n2
�

� Cnd exp.�c log2.2�n2//

for some constants C; c > 0. Finally, using Lemma 4.3 and the Markov inequality,

P .X@D � �
�1n2/ � C1�n

�2. Combining this with the last two displays,

P .B�/ �
c

d2d
n�2 � Cnd exp.�c log2.2�n2// � C1�n

�2 for all � � �0:

So we get the desired result if we choose � > 0 small enough and n large enough.

(2A). First we argue that Y K
Q � 1 a.s. via the method of contradiction. Sup-

pose, if possible, z1 and z2 are two vertices counted in Y K
Q . Then x $ 0,

so we can choose a self-avoiding open path 
 joining x to 0. By pivotality, 


must contain the edges fzi ; z
0
ig for i D 1; 2. Suppose (without loss of gener-

ality) that 
 passes through z2 first when traversed from 0 to x. Then we can

find a path 
 0 � 
 joining 0 and z2 such that the edge fz1; z
0
1g 62 


0. On the

other hand, since z2 2 CD.x/, we also have a path 
 00 that stays entirely within

D and joins x and z2. This contradicts the fact that the edge fz1; z
0
1g is pivotal

for fx $ 0g, as 
 0 [ 
 00 avoids the edge fz1; z
0
1g and connects x and 0. Thus

Y K
Q � 1. In particular, .Y K

Q /2D
P

z 1fz counted in YQg. Conditioning on the cluster
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N will also always be a value between �n2 and ��1n2. Define

E1.z; N / WD B� \
˚

x
D
$ z; z 2 REGD.K/; and X

K-reg

Q D N
	

E2.z;zz/ WD
˚

zz
B.Mn/
 ! 0 off CD.z/

	

;

E3.z;zz/ WD fC.z/ \ C.zz/ D ¿g:

We successively bound probabilities of the intersections of the Ei ’s via a series of

claims.

CLAIM 4.7. Let cM be the constant from (4.1). There is a constant K0� 2 (de-

pending on cM ) such that P .E1.z; N / \ E2.z;zz// � .cM=2/n
2�d

P .E1.z; N // for

all x, K > K0; n � 10K; z 2 Q; zz 2 zDz and N � 1.

Note that for any realization C of CD.z/ satisfying E1.z; N /,

P .E2.z;zz/ j CD.z/ D C/

equals

(4.6) P
�

zz
B.Mn/
 ! 0 off C

�

�P
�

zz
B.Mn/
 ! 0

�

� P

�

[

y2C

fzz$ yg ı fy$ 0g
�

:

See Figure 4.2 for a sketch. Using (4.1) and recalling that zz 2 Bj .n/, the first term

in the RHS of (4.6) is � cMn
2�d . Using a union bound and the BK inequality,

(1.7), and the fact that C � .B.n=3//c (see (4.2)), the second term in the RHS of

(4.6) is � A1.n=3/
2�d

P

y2C P .zz$ y/. From (4.6) and the last two observations,

P .E2.z;zz/ j CD.z/ D C/ is

� cMn
2�d � A1

�

n

3

�2�d
X

y2C

P .zz$ y/:(4.7)

In order to estimate the sum in (4.7), let Ur WD zzC Ann.2r ; 2rC1/ for r � 0. So

P .zz$ y/ � A12
r.2�d/ for all y 2 Ur , which gives

X

y2C

P .zz$ y/ �
X

r�log2.K=2/

A12
r.2�d/.#C \ Ur/:

Since kz � zzk � K, we have Ur � z C B.2rC2/ for all r � log2.K=2/. Hence,

whenever C satisfies E1.z; N /, we have

#C \ Ur � EŒ#C.z/ \ .zC B.2rC2// j CD.z/ D C�

� 24.rC2/ log7.2rC2/C 2.rC4/d
P .T2rC2.z/c j CD.z/ D C/

� C24r log7.2r/
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for all r � log2.K=2/, where C is independent of r and K (as long as K is large).

In the above, we have used the definition of K-regularity and Lemma 2.3. This

implies
X

y2C

P .zz$ y/ � c1

X

r�log2.K=2/

.r72r.6�d// � c2K
6�d log7K

for some constants c1; c2 (independent of K and n). Using this bound and (4.7),

we see that if K is large enough then

P .E2.z;zz/ j CD.z/ D C/ � .cM=2/n
2�d

1fC2E1.z;N /g:

Taking an expectation over CD.z/ completes the proof of Claim 4.7.

Having proved Claim 4.7, we move on to the next subsidiary claim, which deals

with E3.

CLAIM 4.8. Let cM be the constant from (4.1). There is a constant K1 > K0

(depending on cM ) such that for all x, K � K1; n � 10K and z 2 Q, we can find

a zz 2 zDz satisfying

P .E1.z; N / \ E2.z;zz/ \ E3.z;zz// � .cM=4/n
2�d

P .E1.z; N //:

Claim 4.8 will follow if we show that there is a constantK1 > K0 such that, for

any ´ 2 Q, if � denotes a uniformly chosen random vertex in zDz and if E� denotes

expectation over �, then

(4.8) E�P .E1.z; N / \ E2.z; �/ \ E3.z; �// � .cM=4/n
2�d

P .E1.z; N //

for all N and K � K1.

Fix z 2 Q and � 2 zD´. Consider the event .E1.z; N / \ E2.z; �// n E3.z; �/. On

this event, we can find a self-avoiding open path 
1 joining � and 0 and avoiding

CD.z/, then subsequently find a path 
2 starting at z and terminating at its first and

only intersection point with 
1. So if v 2 
1 \ 
2 is the unique such intersection

point of 
1 and 
2, then the event fx$ vI E1.z; N /g ı f� $ vg ı fv$ 0g occurs

(see Figure 4.3 for a sketch). So, using the union bound, the BK inequality, (1.7),

and the convention 02�d D 1,

(4.9)

P ..E1.z; N / \ E2.z; �// n E3.z; �//

� A2
1

X

v2B.n=100/

P .x$ vI E1.z; N //k� � vk2�dkvk2�d

C A2
1

X

v…B.n=100/

P .x$ vI E1.z; N // k� � vk2�d kvk2�d DW I1 C I2:

We bound E�I1 and E�I2 uniformly in K large, and in n large relative to K.

First consider I1. If n � 10K, then using the triangle inequality k� � vk �

kzk � kz � �k � kvk � n=2 for each v 2 B.n=100/. Also,

P .x$ vI E1.z; N // D
X

C2E1.z;N /

P .CD.x/ D C/P .x$ v j CD.x/ D C/:
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If fx $ vg occurs, then there must be some w 2 CD.x/ \ @D such that fw $

v off CD.x/g occurs. In particular, using (1.7) and the fact that kv � wk � n=2 for

all w 2 @D,

P .x$ v j CD.x/ D C/ �
X

w2C\@D

P .w$ v/ � A1.n=2/
2�dX@D

� A1�
�1n2.n=2/2�d

for all C satisfying E1.z; N /. Pulling the above bounds together and summing over

C and v,

(4.10) I1 � c1P .E1.z; N //n
6�2d

X

v2B.n=100/

kvk2�d � c2P .E1.z; N //n
8�2d

uniformly in �, for some constants c1; c2 (independent of K and n).

To control I2, we bound kvk2�d uniformly by .n=100/2�d . Define C�;t WD

C.x/ \ Œ� C Ann.2t�1; 2t /� for t � 0 and tK WD log2.4K/. Since k� � vk � 2t�1

when v 2 C�;t ,

(4.11)

I2 � C.n=100/
2�d

1
X

tD0

X

v2�CAnn.2t�1;2t /

P .x$ vI E1.z; N //k� � vk2�d

� C
�

X

t�tK

22t�dt
EŒ#C�;t I E1.z; N /�

C
X

t<tK
v2�CAnn.2t�1;2t /

P .x$ vI E1.z; N //k� � vk2�d
�

n2�d

DW I21 C I22

for some constant C > 0. To bound I21 note that C�;t � zCB.2tC1/ for all t � tK

and � 2 zDz, so using Lemma 2.3 and discarding a negligible contribution from the

event T2tC1.z/
c as before, there is a constant C independent of n and (sufficiently

large) K such that

EŒ#C�;t I E1.z; N /�

D
X

C2E1.z;N /

EŒ#ŒC.z/ \ .zC B.2tC1//� j CD.z/ D C�P .CD.z/ D C/

� CP .E1.z; N //2
4t log7.2t /;

which implies

I21 � C3P .E1.z; N //n
2�d

X

t�tK

t72t.6�d/

� C4P .E1.z; N //n
2�dK6�d log7K
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where the Ci ’s are constants independent of x, of K sufficiently large, of z and �,

and of n large relative to K.

We turn now to estimating E� .I22/. Consider the expectation E� of the inner

sum for a typical value of t � tK .

E�

X

v2�CAnn.2t�1;2t /

P .x$ vI E1.z; N //k� � vk2�d

D
�

# zDz

��1
X

�2 zDz

X

v2�CAnn.2t�1;2t /

P .x$ vI E1.z; N //k� � vk2�d

� CK�d
X

v2
S

� �CAnn.2t�1;2t /

P .x$ vI E1.z; N //

�

�

X

�2 zDzWj��vj>K

K2�d C

K
X

lD1

X

�2 zDzWk��vk1Dl

l2�d

�

� CK�d
X

v2
S

� �CAnn.2t�1;2t /

P .x$ vI E1.z; N //

�

"

.K=2/dK2�d C

K
X

lD1

2dld�1l2�d

#

� C5K
2�d

E

h

#
�

[

�2 zDz

C�;t

�

I E1.z; N /
i

for some constant C5:

Note that C�;t � zCB.5K/ for all t � tK and � 2 zDz, as k��zk � K. Therefore,

the above is

(4.12)

� C5K
2�d

EŒ#ŒC.z/ \ .zC B.5K//�I E1.z; N /�

D C5K
2�d

X

C2E1.z;N /

P .CD.z/ D C/EŒ#ŒC.z/ \ .zC B.5K//� j CD.z/ D C�

� C5K
2�d .5K/4 log7.5K/P .E1.z; N //C C6K

2�dKde�t2KP .E1.z; N //;

again using K-regularity.

The second term of (4.12) is negligible, which implies

E� .I22/ � C7K
6�d log8.5K/n2�d

P .E1.z; N //

for some constant C7. Inserting our estimates for I1, I21, and E� .I22/ in (4.9), we

bound E�P .ŒE1.z; N / \ E2.z; �/� n E3.z; �//. Using this bound, the LHS of (4.8)

is at least

(4.13) E� ŒP .E1.z; N / \ E2.z; �//� � C8n
2�dK6�d log8.5K/P .E1.z; N //

for some constant C8. Choosing K large enough and applying Claim 4.7, (4.8) is

established. This finishes the proof of Claim 4.8.
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the function is at most eCKd

-to-one, the probability of the image ‡.E1 \ E2 \ E3/

is at least c.K/P .E1 \ E2 \ E3/.

Given (4.14), the conclusion of the proof is immediate. Summing (4.14) over z,

we find

E
�

Y K
Q IX

K-reg

Q D N IB�

�

� c
X

z

P

�

E1.z; N / \

3
\

iD2

Ei .z;zz/

�

:

Using Claim 4.8, the probability appearing on the right-hand side is at least

cn2�d
P .E1.z; N //

when zz is chosen appropriately. Now, on B� \fX
K-reg

Q D N g, there areN vertices

z such that E1.z; N / occurs; since N > �n2, this completes the proof. �

5 Extending Large Clusters

We now give a collection of results that could be said to relate to “extensibility”;

these are collected in Theorem 5.1. We use this term in the sense of the two-

dimensional percolation literature [25, prop. 12] to mean, roughly, that when CG.0/

is conditioned to be large in some sense, it has nontrivial probability to be “still

larger.” Such extensibility arguments were also a key part of the argument showing

(1.9) appearing in [22].

The setup we will use differs from previous high-dimensional extensibility re-

sults in a major way: namely, we typically want to extend clusters restricted to lie

in the subgraph G D Z
d
C. This poses a couple of serious obstacles. The first prob-

lem is that we cannot use the usual two-point function �.x; y/ for lower bounds on

the probability that long open connections exist, since �.x; y/ includes contribu-

tions from the event where such connections leave Z
d
C. More precisely, we need to

compare �H .x; y/ to �.x; y/. A main aim of Theorem 1.2 is to provide a compari-

son between these two connectivity probabilities when x and y are a macroscopic

distance from S.0/.

The second problem relates to our inability to effectively localize the half-space

arm from 0 on the event
˚

0
Z
d
C

 ! S 0.n/
	

:

Ideally, we would prove �H .2n/ � c�H .n/ by conditioning on the existence of an

arm to distance n and showing it is likely to be extended. This would require one to

show that the distance-n arm does not typically terminate close to S.0/, since the

two-point function in Z
d
C behaves very differently near S.0/ than far from S.0/.

Proving that half-space arms can be localized away from the boundary appears to

be difficult a priori; to solve this problem we work in an annulus Ann0 and compare

to the case of the half-space. As mentioned above, such a localization result does

ultimately follow as a consequence of �H .n/ � Cn�3 (see (7.1)); this will be

important for our work on the two-point function in (b) of Theorem 1.1.





40 S. CHATTERJEE AND J. HANSON

The remainder of this section is devoted to the proof of Theorem 5.1 (Section

5.1).

5.1 Proof of Theorem 5.1

We will prove only (5.2), since (5.3) has a very similar proof, and since both

(5.2) and (5.3) are harder than (5.4) (involving, in particular, the restricted cluster

appearing in Aout). For the purpose of abbreviation, for XS 0.m/.BH .m/; 0/ we

write X.m/ throughout this section only, and similarly set

XK-irr.m/ D XK-irr
S 0.m/.BH .m/; 0/ and REG.K;m/ D REGBH .m/.K/

(recall Definition 3).

Although some parts of the arguments here are similar to that of Section 4, there

are many differences in the details. We will need to build extensions of spanning

clusters of large boxes, involving a number of parameters. The statements that

follow will provide various bounds that are uniform in n sufficiently large with

n � k � 2n, n1=10 � L � 3n � k, and M � L2=2. The main restriction on n

will come from it having to be very large relative to the regularity parameter K,

which will be fixed relative to all other parameters but larger than some constant

depending on d and the particular edge set of Z
d chosen.

We say a pair of vertices .z; y/ is .k; L;K/-admissible if

(1) z 2 S 0.k/ and y 2 .zC BH .L// n BH .k/,

(2) z 2 REG.K; k/,

(3) 0
BH .k/
 ! z,

(4) z
Ann0.n=2;4n/
 ! y,

(5) The status of the edge fz; z0g is pivotal for the event 0 $ y, where z0 is a

deterministically chosen neighbor of z in ŒzC BH .K/� n BH .k/.

Define the random number of admissible pairs

Y.k;L;K/ D #f.z; y/W .z; y/ is .k; L;K/-admissibleg:

Let XK-reg.k/ D X.k/ � XK-irr.k/ D #REG.K; k/. The argument will follow

from the second-moment method, using the bounds in the following pair of lem-

mas, followed by a local modification argument similar to that in the proof of

Lemma 4.6.

LEMMA 5.2. Let K be fixed larger than some dimension- and edge-set-dependent

constant. There exists a constant c D c.K/ > 0 such that

EY.k;L;K/1XK-reg.k/DM � cML
2
P .XK-reg.k/ DM/;(5.5)

uniformly in n large (relative to K), for n � k � 2n, n1=10 � L � 3n � k, and

M � L2=2.
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LEMMA 5.3. Let K be fixed larger than some dimension- and edge-set-dependent

constant. There exists a constant C D C.K/ such that the following holds for all

n large, for n � k � 2n, n1=10 � L � 3n � k, and M � L2=2:

(5.6) EY.k;L;K/21XK-reg.k/DM � CM
2L4

P .XK-reg.k/ DM/:

PROOF OF LEMMA 5.2. As in the proof of (2B) from Lemma 4.6, we introduce

three events that can be used to build connections from z to y. In these definitions,

we generally have z 2 S 0.k/, y 2 ŒzCBH .L/� nBH .k/; and zz 2 .zCBH .2K// n

BH .k CK/. Let

E1.z; K;M/ WD
˚

z
BH .k/
 ! 0; z 2 REG.K; k/; and XK-reg.k/ DM

	

;

E2.z;zz; y/ WD
˚

zz
Ann0.n=2;4n/
 ! y off CBH .k/.z/

	

;

E3.z;zz/ WD fC.z/ \ C.zz/ D ¿g:

We continue by proving a pair of claims about the probabilities of these events.

CLAIM 5.4. There exists a c > 0 depending only on d such that the following

holds. Let K be larger than some fixed dimension- and edge-set-dependent con-

stant, and n be large relative to K; let n1=10 � L � 3n � k and M � L2=2. For

any z 2 S 0.k/ and zz 2 .zC BH .2K// n BH .k CK/, we have
X

y2ŒzCBH .L/�nBH .k/

P .E1.z; K;M/ \ E2.z;zz; y// � cL
2
P .E1.z; K;M//:

PROOF. Note that the status of E1 can be determined by examining CBH .k/.z/.

We can thus condition on CBH .k/.z/ and bound the conditional probability of E2,

similarly to the beginning of the proof of Claim 4.7:
X

y2ŒzCBH .L/�nBH .k/

P .E1.z; K;M/ \ E2.z;zz; y//

�
X

C2E1

P .CBH .k/.z/ D C/

�
X

y2ŒzCBH .L/�nBH .k/

P .zz
Ann0.n=2;4n/
 ! y off C j CBH .k/.z/ D C/

D
X

C2E1

P .CBH .k/.z/ D C/
X

y2ŒzCBH .L/�nBH .k/

P .zz
Ann0.n=2;4n/
 ! y off C/;

where we have used the fact that the events in the last sum depend on disjoint sets

of edges. We estimate the terms of the second sum using a union bound on vertices

of C:

P
�

zz
Ann0.n=2;4n/
 ! y off C

�

� P
�

zz
Ann0.n=2;4n

�

 ! y/ �
X

�2C

P .f� $ zzg ı f� $ yg/;
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where we have used the fact that fzz $ �g � fzz
Ann0.n=2;4n/
 ! �g and similarly with

f� $ yg. Applying the BK inequality gives the bound

P
�

zz
Ann0.n=2;4n/
 ! y

�

�
X

�2C

P .f� $ zzg ı f� $ yg/

� P
�

zz
Ann0.n=2;4n/
 ! y

�

�
X

�2C

P .� $ zz/P .� $ y/ �

� P
�

zz
Ann0.n=2;4n/
 ! y

�

�

1
X

tDblog2.K/c

X

�2C;

�2ŒzzCAnn.2t ;2tC1/�

P .� $ zz/P .� $ y/:

Note we began the sum above not from t D 0 because zz is at least distanceK away

from C.

We sum the above over y and use Theorem 1.2 on the first term on the right-hand

side, finding a lower bound of cL2 for a c uniform for parameter values as in the

statement of Claim 5.4. (Our restrictions on the value of n and L force L to be

large relative to K so that the distance between zz and the “typical” y is order L.)

For the other term, we use (1.7) for an upper bound on the two-point function; the

result is
X

y2ŒzCBH .L/�nBH .k/

P
�

zz
Ann0.n=2;4n/
 ! y off C

�

� cL2 � CL2
1

X

tDblog2.K/c

X

�2C;

�2ŒzzCAnn.2t ;2tC1�/

P .� $ zz/:

Furthermore, we have zzCB.2s/ � zCB.2sC1/ for s � log2.2K/, and note that

for any C satisfying the requirements of E1 and any m � K, we necessarily have

#.C \ zC B.m// � m4 log7.m/. Using these in the above gives a lower bound of

� cL2 � CL2
1

X

tDlog2.K/

.#.C \ ŒzC B.2tC2/�//2t.2�d/

� cL2 � C 0L2
1

X

tDlog2.K/

t724t2t.2�d/

� cL2 � C 00L2K6�d log7.K/:

Again, the constant C 00 is uniform for parameter values in the appropriate range.

Therefore, whenever K is sufficiently large and fixed relative to the other parame-

ters, the second term is negligible relative to the first. �

Our next claim gives the ability to add on E3 to the intersection in the last claim.
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CLAIM 5.5. For each K > 0 sufficiently large, there exists a c D c.K/ > 0 such

that the following holds uniformly in n, k,L, andM as in the statement of Theorem

5.2. For any z 2 S 0.k/, there exists a zz 2 ŒzC BH .2K/� n BH .k CK/ such that
X

y2ŒzCBH .L/�nBH .k/

P .E1.z; K;M/\E2.z;zz; y/\E3.z;zz// � cL
2
P .E1.z; K;M//:

PROOF. Let � be a uniformly chosen (independently of the percolation process)

random vertex of ŒzCBH .2K/� nBH .kCK/, and let E� denote expectation with

respect to this random choice. We will prove that for K large,

(5.7) E�

X

y2ŒzCBH .L/�nBH .k/

P .E1 \ E2 \ E3/ � cL
2
P .E1/;

where E2 D E2.z; �; y/ and E3 D E3.z; �/. This will suffice to show the claim.

Indeed, for (5.7) to hold, there must be some zz such that, when � D zz, the quantity

inside the expectation E� is at least cL2
P .E1/.

For any possible value of �, if E1 \ E2 \ Ec
3 occurs, then there exists a vertex v

such that

E1 \ f0$ vg ı f� $ vg ı fv$ yg

occurs. (Compare to the reasoning above (4.9), where a similar vertex v is found.)

In particular, by the BK inequality, for this value of � we have

P
�

E1 \ E2 \ E
c
3

�

�
X

v2Zd

P .E1 \ f0$ vg/P .� $ v/P .v$ y/:

Summing the above over y 2 Œz C BH .L/� n BH .k/ and using (1.7), we get a

factor of at most a constant multiple of L2, uniform in the value of �. Applying

(1.7) again:

(5.8)

X

y2ŒzCBH .L/�nBH .k/

P
�

E1 \ E2 \ E
c
3

�

� CL2
X

v2Zd

P .E1 \ f0$ vg/P .� $ v/

� C 0L2
X

v2Zd

P .E1 \ f0$ vg/k� � vk2�d :

The right-hand side of (5.8) is nearly identical to that of (4.11). The differences

are that now 0 plays the role of x, there is a different prefactor (C 0L2 instead of

Cn2�d ), and the definition of E1 is somewhat modified. A proof very similar to

the one used to treat (4.11) gives that (compare to the negative term in (4.13))

E�

X

v2Zd

P .E1 \ f0$ vg/k� � vk2�d � C 00K6�d log8.K/P .E1/;

uniformly over K sufficiently large and over n, k, L, M , and z as in the statement

of Claim 5.5.
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We can thus uniformly lower-bound E�P .E1 \ E2 \ E3/:

(5.9)

E�

X

y2ŒzCBH .L/�nBH .k/

P .E1 \ E2 \ E3/

D E�

X

y2ŒzCBH .L/�nBH .k/

ŒP .E1 \ E2/ � P .E1 \ E2 \ E
c
3 /�

� cL2
P .E1/ � CL

2K6�d log8K P .E1/;

where we have used Claim 5.4 for the inequality. Taking K sufficiently large and

using the uniformity of the constants c, C 0 establishes (5.7). �

We will now complete the proof of the first moment bound (5.5) from Theorem

5.2 using Claim 5.5. We claim that for any pair .z; y/ with z 2 S 0.k/ and y 2

ŒzC BH .L/� n BH .k/,

(5.10)
P

�

.z; y/ is .k; L;K/-admissible and XK-reg.k/ DM
�

� c.K/P .E1 \ E2 \ E3/

for a constant c D c.K/ > 0, for all K larger than some constant (depending only

on the dimension d and the edge set of Z
d being considered). The bound of (5.10)

is uniform in n, k, L, andM as in the statement of Theorem 5.2, where zz is chosen

for z according to Claim 5.5 (note z;zz appear as arguments in the Ei events on the

right-hand side). The proof of (5.10) is via an edge modification argument similar

to the one used to prove (4.14), so we do not detail it here. Roughly speaking, one

must open edges to connect z to zz in a way that guarantees the pivotality of fz; z0g

without, for instance, changing the condition z 2 REG.K; k/ guaranteed by E1.

Given (5.10), the conclusion of the proof is immediate. Summing the bound

over y 2 ŒzC BH .L/� n BH .k/ and using Claim 5.5 gives
X

y2ŒzCBH .L/�nBH .k/

P
�

.z; y/ is .k; L;K/-admissible and X reg.k/ DM
�

� cL2
P .E1/:

Summing now over z in the above gives a lower bound cML2
P .XK-reg.k/ DM/,

since on E1 we have XK-reg.k/ DM definitionally. �

PROOF OF LEMMA 5.3. We abbreviate 1M for 1XK-reg.k/DM and Y D Y.k;L;

K/ and write

E
�

Y 2
1M

�

D
X

z1;y1I
z2;y2

P ..z1; y1/ and .z2; y2/ are .k; L;K/-admissible/:(5.11)

A typical term of the above sum can be written as (using the abbreviation “z0
i

pivotal” instead of “fzi ; z
0
ig pivotal”)

(5.12)

P .CBH .k/.0/ D C/

� P
�

yi

Ann0.n=2;4n/
 ! zi ; z

0
i pivotal for f0$ yig; i D 1; 2 j CBH .k/.0/ D C

�
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where C is such that conditions 1, 2, and 3 of the definition of admissibility hold

for the given z1 and z2 (note that these depend only on CBH .k/.0/). We consider

first the case that z1 ¤ z2 and y1 ¤ y2.

On the event

˚

yi

Ann0.n=2;4n/
 ! zi ; z0

i pivotal for f0$ yi

	

; i D 1; 2g \ fCBH .k/.0/ D Cg

we claim there exist disjoint open paths 
1 (resp. 
2) connecting y1 to z0
1 (resp.

y2 to z0
2) and avoiding C. To choose 
1, consider any path � from 0 to y1. Since

fz1; z
0
1g is pivotal for the connection, this path passes through z0

1; the path must

subsequently never intersect C (otherwise fz1; z
0
1g could be bypassed, contradicting

pivotality), and so the terminal segment of � starting from z0
1 may be used as 
1.

If one chooses 
2 similarly, we see that necessarily 
1 \ 
2 D ¿. Indeed, if 
1

and 
2 intersected at some v, then following 
2 from y2 to v and then following 
1

from v to z0
1 (or following 
1 from y1 to v and then following 
2), one sees that

one of the edges fzi ; z
0
ig is not pivotal, a contradiction.

Having found such 
1 and 
2, one sees that when z1 ¤ z2 and y1 ¤ y2, the

conditional probability in (5.12) is at most

P
�

y1 $ z0
1 off C

�

P
�

y2 $ z0
2 off C

�

� A2
1





z0
1 � y1







2�d 



z0
1 � y1







2�d
:

Summing the above over y1 ¤ y2 gives a uniform upper bound of CL4. Putting

this in (5.12) and performing the sum over C, then doing an additional sum over

z1 ¤ z2 gives

(5.13)

X

z1¤z2;
y1¤y2

P ..z1; y1/ and .z2; y2/ are .k; L;K/-admissible/

� CM 2L4
P .XK-reg.k/ DM/:

When summing over terms in (5.11) where z1 D z2, one is essentially comput-

ing an upper bound of the second moment of the cluster size of z1; the resulting

bound is CML6
P .XK-reg.k/ D M/. Since M � L2=2, this sum has an upper

bound identical to that in (5.13), completing the proof. �

Given (5.5) and (5.6), Theorem 5.1 now follows by a second moment argument

similar to the one immediately following Lemma 4.6 above. �

6 Upper Bound on �H .n/

This section is devoted to the proof of the upper bound �H .n/ � Cn�3 from

part (a) of Theorem 1.1, using the results of Theorem 5.1. This proof has two

main ideas. The first main idea is an upper bound on the cardinality of CH .0/ \

AnnH .n; 2n/, which gives some information about scaling in large clusters and

plays the role that knowledge of the cluster size exponent ı would otherwise play

(recall we have not yet proved part (c) of Theorem 1.1). A key ingredient is a mass-

transport inequality, which controls the number of large half-space clusters. The
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second main idea is an inductive argument that allows us to “bootstrap” control of

�H .2n/ from �H .n/. This argument is based on a lemma that is similar in spirit

to lemma 2.3 of [22], with some major differences. These reflect the different

geometry of Z
d
C and the fact that we cannot use the two-point function or size

exponents—which were used in [22]—having not yet proved parts (b) or (c) of

Theorem 1.1.

Recall the definition of a mass-transport rule from Section 2.3. In proving the

upper bound for �H .n/, we fix a particular m once and for all for each fixed value

of n:

m.0; x/ D

(

1 if x 2 Aout
0 .n; n; 2n/;

0 otherwise.

The set Aout
0 was defined at (5.1).

The bound we will need for proving our main theorem comes from a comparison

of asymptotics for Esend and Eget. Let � > 0 be arbitrary (in practice, typically

small). We define the event

(6.1) A.�/ WD fsend � �n4g:

By the definition (6.1),

(6.2) Esend � �n4
P .A.�//:

An upper bound on Esend follows via Theorem 5.1; Lemma 2.1 and (6.2) then

show a corresponding upper bound for P .A.�//. This is encapsulated in the fol-

lowing lemma.

LEMMA 6.1. There exists a C such that, uniformly in n,

Eget � Cn:(6.3)

In particular, we have the following bound uniformly in � and n:

(6.4) P .A.�// �
C

�n3
:

PROOF. Note that 0 receives mass from x if and only if both

(i) 0 2 xC AnnH .n; 3n/ and (ii)
˚

0
xCAnn0.n=2;4n/

 ���! x
	

(recall AnnH .`1; `2/ D BH .`2/ n BH .`1/). The set o fx which satisfies the non-

random condition (i) is exactly �AnnH .n; 3n/. We break get into a sum of contri-

butions over “slices” depending on e1-distance, setting T .j / D Œ�AnnH .n; 3n/ \

S.�j /� and

(6.5) Y.j / D
˚

x 2 T .j /; x
xCAnn0.n=2;4n/

 ���! 0
	

0 � j � 3n:

See Figure 6.1 for a sketch. In particular, get D
P

j #Y.j /. We will use (5.4)

of Theorem 5.1 to argue that if Y.j / is too large, then C.0/ \ Œz C B�.n=2/� is

abnormally large for some choice of z 2 T .j /.
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Theorem 5.1 to the second term in the case when M � n2 and rearranging, we see

(6.8)
P .XQ.D; 0/ �M/

� c�1
� P

�

#ŒC.0/ \ ŒxC B.5n/�� � c�n
2M

�

for all M � n2:

Thus, beginning with (6.7), we see

(6.9)

EXx.j /

� EŒXQ.D; 0/I 0 < XQ.D; 0/ � n
2�C EŒXQ.D; 0/I XQ.D; 0/ > n

2�

� n2
P .XQ.D; 0/ > 0/C

1
X

M Dn2

P .XQ.D; 0/ �M/

� n2
P .XQ.D; 0/ > 0/C c

�1
�

1
X

MDn2

P
�

#ŒC.0/ \ ŒxC B.5n/�� � c�n
2M

�

� n2�.n/C c�2
� n�2

E
�

#ŒC.0/ \ ŒxC B.5n/��I #ŒC.0/ \ ŒxC B.5n/�� � c�n
4
�

;

where in the second-to-last line we used (6.8). Using (1.9), the first term of (6.9)

is uniformly bounded by a constant. Using Lemma 2.2, the second term of (6.9)

is also bounded by a constant, giving EXx.j / � C and completing the proof of

Lemma 6.1. �

We continue with the proof of the upper bound from part (a) of Theorem 1.1,

namely

(6.10) �H .n/ � Cn
�3:

The main remaining ingredient is the following lemma, which relates �H .n.1C�//

to �H .n/, where � > 0 is small but fixed relative to n.

LEMMA 6.2. There exist positive constantsC1; C2; c1 such that the following hold:

For each � 2 .0; 1�, there exists a constant "0 D "0.�/ 2 .0; 1/ such that, for all

0 < " � "0,

(6.11) �H .n.1C �// �
C1

"n3
C C2"

3=5��2�H .n/C .1 � c1/�H .n/

uniformly in n large relative to �.

We first prove (6.10) assuming the veracity of Lemma 6.2 and then establish the

lemma.

PROOF OF (6.10). We begin by choosing � small enough to make the third term

of (6.11) negligible. Namely, fix 0 < � < 1=2 such that

(6.12) .1C �/3.1 � c1/ � .1 � c1=2/:

We will bootstrap a bound for �H .n/ assuming it holds for �H .m/; m < n. To

this end, set n0 WD d8�
�1 C c�1

� e and let K > 0 be a large constant such that

�H .m/ � K=m
3 for all 1 � m � n0:



RESTRICTED PERCOLATION EXPONENTS 49

We will also enlarge K if necessary so that

(6.13) max

(

C1.36C2/
5=3

c
5=3
1 �10=3

;
C1

"0

)

� c1K=64:

We show inductively that, for each m � 0,

(6.14)
�H .n0.1C �/

mC1/ � K=.n0.1C �/
mC1/3

assuming �H .n0.1C �/
m/ � K=.n0.1C �/

m/3:

Setting n D n0.1C �/
m, we apply (6.11) with the choice

" D min

(

"0;
c

5=3
1 �10=3

.36C2/
5=3

)

:

Note that .1C �/3 � 8 , so by the bound (6.13) we have

First term of (6.11) �
c1K

8Œ.1C �/n�3
:

A direct calculation similarly gives

Second term of (6.11) �
2c1K

9Œ.1C �/n�3
;

Third term of (6.11) �
K

Œ.1C �/n�3
Œ1 � c1=2�:

Pulling the three bounds above together completes the proof of (6.14).

To finish the argument for (6.10), let n > n0 be arbitrary and fix m to be the

largest integer such that N WD .1C �/mn0 � n. Note that, since .1C �/ � 2, we

have N � n=2. Using (6.14), (6.13), and the monotonicity of �H , we see

�H .n/ � �H .N / � KN
�3 � 8Kn�3;

establishing (6.10) with C D 8K. �

We now prove Lemma 6.2.

PROOF OF LEMMA 6.2. Fix � as in the statement of the lemma. If " � n�1,

then the above bound is simple using the one-arm exponent. Indeed, using (1.9)

we see

�H ..1C �/n/ � �H .n/ � �.n/ �
A2

n2
�
A2

"n3
;

and we are done. Otherwise, we will prove the bound by breaking up the connec-

tion event to S 0..1C �/n/, depending on the structure of the cluster of 0.

Recall the definition of the event A.�/ in (6.1) and the definition of the mass-

transport rule m above it. We write X.k/ for XQ.D; 0/ with D D BH .k/ and

Q D S 0.k/, where k is an integer satisfying .1C �=4/n � k � .1C �=2/n. The

reason for emphasizing the k-dependence is that we will wish, in our definition of

D1 below, to consider the first such integer value of k for whichX.k/ is small. The
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idea here is similar to that of the proof of Lemma 6.1, but from the perspective of

vertices receiving mass instead of sending it.

Given a value of " 2 .n�1; 1/, we define L D "3=10n and the events

D1."/ WD
˚

9k 2 ŒnC �n=4; nC �n=2�W X.k/ � L2 and 0
Z
d
C

 !S 0..1C �/n/
	

I

D2."/ WD
˚

8k 2 ŒnC �n=4; nC �n=2�W X.k/ � L2 and send < "n4
	

:

The union bound and (6.4) give

�H ..1C �/n/ � P .A."//C P .D1."//C P .D2."//

�
C

"n3
C P .D1."//C P .D2."//:

It suffices to show that the two P .Di / terms above have upper bounds of the form

of the second and third terms of (6.11).

To bound the second term, let I denote the (random) smallest integer value of k

as in the definition of D1 such that 0 < X.k/ � L2. Note that on D1 we never have

X.k/ D 0, so we set I D 0 whenever some X.k/ is equal to 0. We explore the

cluster of the origin in successive half-space boxes BH .k/ until reaching k D I .

At this point, the probability of further connection to S 0.n.1C �// is, by Lemma

3.2:

P .D1."//

D
X

k2Œn.1C�=4/;n.1C�=2/�

X

C2fIDkg

P
�

0
Z
d
C

 ! S 0.n.1C �//; CBH .k/.0/ D C
�

� L2�.�n=4/
X

k�n.1C�=4/

P .I D k/ �
C"3=5

�2
�H .n/;

where the second sum is over C giving I D k and where we have used (1.9) to

bound � .

The bound on D2 is where we use Theorem 5.1, namely (5.2). Since " > n�1,

we have L � n7=10, and so our choice of L from above is a valid choice of L in

the statement of the theorem.

To set up our application of Theorem 5.1, we consider a sequence of values of k

and corresponding annular regions in which extensions can be made. For each

integer i 2 Œ0; �
4
"�3=10� set ki D .1 C �=4/n C iL and note that .1 C �=4/n �

ki � .1C �=2/n. Recall that c� is the constant from Theorem 5.1 and set

I D
˚

i W X.ki / > L
2; #Aout

0 .n; ki ; L/ < c�L
4
	

:

Here we recall the notation

Aout
0 .n; k; L/ WD CAnn0.n=2;4n/.0/ \ AnnH .k; k C L/:
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Note that (by disjointedness of the annuli AnnH .ki ; ki C L/)

c�L
4#

˚

i W #Aout
0 .n; ki ; L/ � c�L

4
	

� send;

and so on D2."/ we have

(6.15) #
˚

i W #Aout
0 .n; ki ; L/ � c�L

4
	

�
1

c�"1=5
:

In particular, on D2, the cardinality of I must be large; namely,

(6.16) on D2."/; #I � b.�=4/"�3=10c � c�1
� "�1=5:

On the other hand, using Theorem 5.1 on each value of i and summing, we have

(6.17) E#I � .1 � c�/�H .n/Œ.�=4/"
�3=10 C 1�:

z We may now apply Markov’s inequality with the bound (6.17) and compare to

the lower bound for E#I in terms of D2 which follows from (6.16). This yields

�

.�=4/"�3=10 � c�1
� "�1=5 � 1

�

P .D2."//

� .1 � c�/�H .n/Œ.�=4/"
�3=10 C 1�:

(6.18)

If " is sufficiently small (relative only to � and c�), the left-hand side of (6.18) is

at least
1 � c�

1 � c�=2
Œ.�=4/"�3=10 C 1�P .D2."//:

Comparing the above to (6.18) gives P .D2."// � .1� c�=2/�H .n/ and completes

the proof. �

7 Half-Space Two-Point Function and Cluster Sizes

In this section, we prove the remaining parts of Theorem 1.1 involving the two-

point function and the tail of #C
Z
d
C
.0/. The arguments use the asymptotics for

�H .n/ that have already been proved (in Sections 3 and 6). As a first step, we

prove the promised alternate formulation of the half-space one-arm probability.

7.1 Alternate Version of �H .n/

In this section, we show that the probability that 0 has an arm in Z
d
C to S.n/ is

of order n�3; in other words, it has the same asymptotic behavior as the probability

that 0 has an arm in Z
d
C to S 0.n/. Recall that Rect.n/ D Œ0; n� � Œ�4n; 4n�d�1.

PROPOSITION 7.1. There exists a uniform c > 0 such that

(7.1)
z�H .n; c/ WD if P

�

0
Rect.n/
 ! S.n/; #ŒCRect.n/.0/ \ S.n/� > cn

2
�

;

then z�H .n; c/ � cn
�3:
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Proposition 7.1 shows that the probability of 0 having a half-space arm directed

in the e1-direction has the same order as the probability of an undirected half-

space arm. We will make use of the strengthened result (7.1) later in this section

(see (7.9)).

PROOF OF PROPOSITION 7.1. The proof is very similar to that of Proposition

3.1 in Section 3, and we will need to use results from that section in the argument.

The main new input in the present argument is the upper bound �H .n/ � Cn
�3

proved at (6.10) above.

Suppose x 2 @B.2n/ is such that

x
B.2n/
 ! B.n/

as in (3.6); let us for simplicity consider the case that x � y for some y with

y.1/ < �2n. Note that any open path from x to B.n=2/ in B.2n/ must first

reach S.n/ without exiting x C Rect.n/, then continue to B.n=2/ without exiting

xCB.4n/. Thus, applying Lemma 3.2 with B D B.n=2/, A0 D xCRect.n/, and

A1 D x C B.4n/, we see that

(7.2)
P

�

x
xCB.4n/
 ! B.n=2/

ˇ

ˇ #ŒCxCRect.n/.x/ \ S.n/� DM
�

�M�.n=2/ � CMn�2:

If instead x � y for y having y.1/ > 2n, or jy.i/j > 2n for some i ¤ 1,

the situation is similar, with a shifted and rotated version of Rect.n/ used instead.

Applying (3.5) with these observations and using (2.2) along with a variant for

the event f#
�

CxCRect.n/.x/ \ S.n/
�

� �n2g, we see that there are some uniform

C; c > 0 such that, for each � > 0,

cnd�4 � E#
˚

x 2 @B.2n/W x
B.2n/
 ! B.n=2/

	

� Cnd�1
�

P
�

#ŒCRect.n/.0/ \ S.n/� � �n
2
�

C ��H .n/
�

D C�nd�4 C Cnd�1
P .#ŒCRect.n/.0/ \ S.n/� � �n

2/:

In the last line of the above, we applied (6.10) to upper-bound the �H .n/ term.

Choosing � > 0 small and fixed relative to n, we see that the left side of the above

is at least twice the first term on the right for all large n. In particular,

c0nd�4 � Cnd�1
P

�

#ŒCxCRect.n/.x/ \ S.n/� � �n
2
�

;

uniformly in n. Dividing both sides of the above by nd�1 completes the proof. �

7.2 Two-Point Function

To better separate the proofs of the individual pieces, we restate the contents of

part (b) of Theorem 1.1, consisting of bounds on the two-point function in Z
d
C.

THEOREM 7.2. There exists a constant C1 > 0 such that

(7.3) �H .0; x/ � C1kxk
1�d uniformly in x 2 Z

d
C n f0g:
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Fix " > 0. Then there exists a constant c1 D c1."/ such that a matching lower

bound holds for all points macroscopically far from S.0/, relative to ":

(7.4) �H .0; x/ � c1kxk
1�d uniformly in x 2 Z

d
C with x.1/ � "kxk:

There exist constants c2; C2 > 0 such that the following holds uniformly in y 2

Z
d
C n f0g with y.1/ D 0:

(7.5) c2kyk
�d � P

�

0
Z
d
C

 ! y
�

� C2kyk
�d :

Our proof of Theorem 7.2 relies crucially on the result of Theorem 1.2 as input.

We first prove a lemma that is in some respects a half-space analogue of Lemma

3.4 and Lemma 4.3. For the statement, recall the definition Rect.n/ D Œ0; n� �

Œ�4n; 4n�d�1.

LEMMA 7.3. Let D D Rect.n/, and let Q1 D @
Z
d
C

Rect.n/ and Q2 D S.n/ \

Rect.n/ (the “top” of Rect.n/). DefineXQ.D; 0/ as usual forQ D Q1;Q2. There

exists C2 > 0 such that, uniformly in n,

(7.6) EXQ1
.D; 0/ � C2n

�1:

Recall the definition ofK0: the constant from Theorem 2.3, chosen for the growing

sequence .Rect.n//n. There exist �; c2 > 0 and such that the following holds

uniformly in n and in K > K0:

(7.7) P
�

�n2 < X
K-reg

Q2
.D; 0/ � XQ1

.D; 0/ < ��1n2
�

� c2n
�3:

PROOF. We first show the bound on the expectation. By Lemma 6.1 (recall the

notation of Aout defined before Theorem 5.1), we have

(7.8) EAout
0 .4n; 4n; 8n/ � Cn:

By (5.3) from Theorem 5.1, we have

EŒAout
0 .4n; 4n; 8n/ j XQ1

.D; 0/� � c2
�XQ1

.D; 0/n2 on fXQ1
.D; 0/ � n2=2g:

Combined with (7.8), the above gives

EŒXQ1
.D; 0/IXQ1

.D; 0/ � n2=2� � Cn�1:

On the other hand,

EŒXQ1
.D; 0/IXQ1

< n2=2� � .n2=2/�H .n/ � Cn
�1;

where we have used part (a) of Theorem 1.1. This completes the proof of (7.6).

To show (7.7), we note that by Theorem 2.3 it suffices to show

(7.9) P
�

�n2 < XQ2
.D; 0/ < XQ1

.D; 0/ < ��1n2
�

� cn�3 for all n

for some c; � > 0. By (7.1), we have P .XQ2
> �n2/ � cn�3 for some fixed

small c (independent of � and n) for � sufficiently small. By (7.6) and the Markov

inequality, P .XQ1
.D; 0/ > ��1n2/ is at most C�n�3.

Bounding the probability in (7.9) by P .XQ2
.D; 0/ > �n2/ � P .XQ1

.D; 0/ >

��1n2/ and taking � sufficiently small completes the proof. �
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PROOF OF (7.3) AND THE UPPER BOUND OF (7.5). To prove (7.3). Let 8n D

kxk. Note that if 0
Z
d
C

 ! x, there exists a z 2 @
Z
d
C

Rect.n/ such that f0
Rect.n/
 ! zg ı

fz$ xg occurs. Taking a union bound and using the BK inequality gives

P
�

0
Z
d
C

 ! x
�

�
X

z2@
Z
d
C

Rect.n/

P
�

0
Rect.n/
 ! z

�

P .z$ x/(7.10)

� Cn2�d
X

z2@
Z
d
C

Rect.n/

P
�

0
Rect.n/
 ! z

�

D Cn2�d
EXQ1

.D; 0/(7.11)

with D D Rect.n/ and Q1 D @Z
d
C

Rect.n/, and where we have used (1.7). Apply-

ing (7.6) completes the proof.

The upper bound of (7.5) follows from a decoupling argument similar to the one

used for (7.3), this time using (7.3) as input. As before, letting 8n D kyk, for

0
Z
d
C

 ! y to hold, there must be a z 2 @
Z
d
C

Rect.n/ such that f0
Rect.n/
 ! zgı fz

Z
d
C

 ! yg

holds. This gives (7.10) with x replaced by y and the connection from z to y

restricted to Z
d
C. Now the same reasoning used to produce (7.11), but now using

the upper bound from (7.3) to estimate P .z
Z
d
C

 ! y/, gives the analogue of (7.11),

with Cn2�d replaced by Cn1�d . Using (7.6) as before completes the proof. �

PROOF OF (7.4) AND THE LOWER BOUND OF (7.5). We first prove (7.4). The

argument is a modification of the proof of Theorem 1.2: roughly, we condition

on 0 having an arm to distance of order n � kxk, and then show an open con-

nection from x to this arm can be made. There are three major modifications.

First, if the arm from 0 terminated too close to S.0/ (more carefully speaking: if

CBH .n/.0/ \ S
0.n/ had too few vertices at macroscopic distance from S.0/), this

connection would not be possible; because of the lack of symmetry in the half-

space, we must resort to the second part of Lemma 7.3 to direct this arm. Second,

there is no inductive improvement needed in the argument. Third, we must rely

on the result of Theorem 1.2 as input to insure the further connection to x does

not cross the half-space boundary (the earlier argument required only information

about the unrestricted � as input in the base case).

Fix " > 0 and suppose x 2 AnnH .8n; 16n/ with x.1/ � "n. Let D D Rect.n/,

and let XQ2
D XQ2

.D; 0/ be as in the statement of Lemma 7.3. Let K > K0 be

fixed, to be chosen. Define Y K
Q2
D Y K

Q2
.x/ to be the number of z 2 Q2 such that

(a) z
D
 ! 0, (b) z 2 REGD.K/ (recall Definition 3), and (c) the edge fz; z C e1g



RESTRICTED PERCOLATION EXPONENTS 55

is pivotal for f0
Z
d
C

 ! xg. As in the proof of Lemma 4.6, we have Y K
Q2
� 1 a.s.,

since no pair of vertices z1 ¤ z2 can simultaneously satisfy parts (a) and (c) of the

definition.

Defining B� to be the event in (7.7), we argue that forK > K0 fixed sufficiently

large,

(7.12) E
�

Y K
Q2
IX

K-reg

Q2
D N;B�

�

� cn4�d
P

�

X
K-reg

Q2
D N IB�

�

for c D c.K/;

uniformly in x 2 AnnH .8n; 16n/ with x.1/ � "n and in �n2 � N � ��1n2.

Set zDz WD z C ŒK=2;K�d and let zz range over vertices of zDz; define Rn D

BH .0; 20n/: We show (7.12) by defining events

E1.z; N / D B� \
˚

0
D
 ! z; z 2 REGD.K/ and X

K-reg

Q2
D N

	

;

E2.x;zz; z/ D
˚

zz
Rn
 ! x off CD.z/g; E3.z;zz/ D fC.z/ \ C.zz/ D ¿g:

Similar arguments to those of Claim 4.8 show that we can choose K > K0

and find a constant c > 0 such that the following holds: for each n, each x 2

AnnH .8n; 16n/ with x.1/ � "n, and each z 2 Q2, there is a zz 2 zDz such that

(7.13) P .E1.z; N / \ E2.x;zz; z/ \ E3.z;zz// � cn
2�d

P .E1.z; N //:

A main complication in proving (7.13), compared with the proof of Claim 4.8,

comes in the bound on P .E1 n E2/. Namely: for the analogue of (4.6), we bound,

on the event CD.0/ D C,

P
�

zz
Rn
 ! x off C

�

� P
�

zz
Rn
 ! x

�

�
X

y2C

P .fzz$ yg ı fy$ xg/:(7.14)

To show the first term of the above is at least c."/n2�d using Theorem 1.2, we

use crucially the fact that z is macroscopically distant from S.0/. This necessitates

the condition z 2 Q2, and this ultimately requires our arm-directedness statement

(7.1). The second term of (7.14) can be bounded similarly to before: the probability

that y$ x is of order n2�d , and the sum of probabilities P .zz$ y/ is small for K

large using the regularity in E1.

Having established (7.13), we note that an edge-modification argument again

gives the existence of a constant c1 D c1.K/ such that

P
�

z is counted in Y K
Q2
IB� \

˚

X
K-reg

Q2
D N

	�

� c1P
�

E1.z; N / \ E2.x;zz; z/ \ E3.zz; z/
�

� cn2�d
P .E1.z; N //;
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where zz is chosen so that (7.13) holds. Summing over z 2 Q1, we get

E
�

Y K
Q2
I B� \

˚

X
K-reg

Q2
D N

	�

� cn2�d
X

z2Q2

P .E1.z; N //

� cn4�d
P

�

X
K-reg

Q2
D N;B�

�

;

which is (7.12).

Having established (7.12), we move to complete the proof of (7.4). Note that

P .0
Z
d
C

 ! x/ � P .Y K
Q2

> 0/. We use a conditional second-moment argument to

bound the latter probability. The fact that Y K
Q2
� 1 a.s., and an argument similar to

the one used to show (2A) of Lemma 4.6, give

(7.15) E
��

Y K
Q2

�2 ˇ

ˇ X
K-reg

Q2
D N;B�

�

� Cn4�d :

Combining (7.15) with (7.12), we find

P
�

Y K
Q2

> 0
ˇ

ˇ X
K-reg

Q2
D N;B�

�

�
E

�

Y K
Q2

ˇ

ˇ X
K-reg

Q2
D N;B�

�2

E
��

Y K
Q2

�2 ˇ

ˇ X
K-reg

Q2
D N;B�

�

� cn4�d uniformly in n and x 2 AnnH .8n; 16n/ with x.1/ � "n.

Recalling that B� was the event in (7.7) and applying the probability bound there,

we see

P
�

0
Z
d
C

 ! x
�

� P
�

Y K
Q2

> 0
�

� cn4�d
P .B�/ � cn

1�d � ckxk1�d ;

completing the proof of (7.4).

We now outline the proof of the lower bound of (7.5); the proof is similar to the

above, so we describe only the major differences. Suppose y has y.1/ D 0 and

y 2 AnnH .8n; 16n/. As before, we set D D Rect.n/ and let XQ2
.D; 0/ be as in

Lemma 7.3, and we define Y K
Q2

exactly as before (with references to x replaced

by y).

The events Ei are defined as previously. except in E2 we ask instead that zz
Z
d
C

 ! x

off CD.z/. Estimates involving the probability of this connection are made using

(7.4) instead of the bound on the box-restricted two-point function; upper bounds

on the probability of appropriate portions of large-loop connections are made using
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the upper bound of (7.3). For instance, the right-hand side of (7.13) is replaced by

cn1�d
P .E1.z; N //. This reflects the fact that (7.14) is replaced by

(7.16) P
�

zz
Z
d
C

 ! y off C
�

� P
�

zz
Z
d
C

 ! y
�

�
X

�2C

P
�

fzz$ �g ı f�
Z
d
C

 ! yg
�

:

The first term of (7.16) is uniformly at least cn1�d by (7.4). P .�
Z
d
C

 ! y/ is at most

Cn1�d by the upper bound of (7.3), and again the sum of probabilities P .zz$ �/

is small for K large.

Making similar adaptations to the remaining estimates, we find that the con-

ditional (on B�) first and second moments of Y K
Q2

are both of order n3�d . A

conditional second-moment argument as before gives

P
�

0
Z
d
C

 ! y
�

� P
�

Y K
Q2

> 0
�

� cn3�d
P .B�/ � ckyk

�d : �

7.3 Cluster Sizes

We now prove part (c) of Theorem 1.1. For clarity, we restate the claim here as

Theorem 7.4.

THEOREM 7.4. There exist constants c; C > 0 such that

(7.17) ct�3=4 � P .#CH .0/ > t/ � Ct
�3=4:

PROOF. We begin by proving the first inequality. We will compute cluster size

moments conditional on Hn WD f0
Z
d
C

 !S 0.n/g. Abbreviate

Yn D #ŒCH .0/ \ AnnH .n; 2n/�:

We can lower bound the (conditional) first moment of Yn by considering only those

x having x.1/ � n:

(7.18)

EŒYn j Hn� � cn
3

X

x2AnnH .n;2n/

�H .0; x/

� cn3
X

x2AnnH .n;2n/;
x.1/�n

�H .0; x/ �
X

x2AnnH .n;2n/;
x.1/�n

cn4�d � cn4;

where we have used (7.4) and the asymptotics of �H .
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We can upper-bound Y 2
n by .#ŒCH .0/ \ BH .2n/�/

2. Writing the latter quantity

as a sum and using (7.3) gives

(7.19)

E..#ŒCH .0/ \ BH .2n/�/
2 j Hn/

� Cn3
X

x;y2BH .2n/

P
�

0
Z
d
C

 ! x; 0
Z
d
C

 ! y
�

� Cn3
X

x;y2BH .2n/;

z2Z
d
C

P
�

f0
Z
d
C

 ! zg ı fz$ xg ı fz$ yg
�

� Cn3
X

x;y2BH .2n/;

z2Z
d
C

kzk1�dkz � xk2�dkz � yk2�d � Cn8:

Using the Paley-Zymund inequality with (7.18) and (7.19), we find that there is a

constant c > 0 such that, uniformly in n,

P
�

Yn > cn
4

ˇ

ˇ Hn

�

� c:

Using the fact that P .Hn/ D �H .n/ � cn
�3 gives P .Yn � cn

4/ � cn�3. Since

#CH .0/ � Yn, setting n D Ct1=4 for C sufficiently large completes the proof of

the first inequality of (7.17).

To prove the second inequality of (7.17), first note that a calculation similar

to that in (7.19) shows E..#ŒCH .0/ \ BH .2n/�/
2/ � Cn5: Using this fact and

Chebyshev’s inequality, we see that for each m > 0,

P .#CH .0/ > t/ � �H .m/C P .#ŒCH .0/ \ BH .m/� > t/

� Cm�3 C Cm5=t2:

Setting m D t1=4 completes the proof. �
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