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Abstract

This article is concerned with the question of whether an energy bound implies a genus
bound for pseudo-holomorphic curves in almost complex manifolds. After reviewing
what is known in dimensions other than six, we establish a new result in this direction
in dimension six; in particular, for symplectic Calabi–Yau 3–folds. The proof relies on
compactness and regularity theorems for pseudo-holomorphic currents.

1 Introduction

In 1889, Castelnuovo [Cas89] found a sharp upper bound for the genus of an irreducible,

nondegenerate curve of a given degree in C𝑃𝑛 ; see [ACGH85, Chapter III Section 2] for a proof

in modern language. A corollary of this result is that for every projective variety there is an

upper bound for the genus of an irreducible curve representing a given homology class. Our

starting point is the question:

Are there analogues of Castelnuovo’s bound in almost complex geometry?

For curves in C𝑃2 Castelnuovo’s bound reduces to the degree-genus formula. The latter is a

consequence of the adjunction formula, which generalizes to an inequality for almost complex

4–manifolds [MS12, Theorem 2.6.4]. The adjunction inequality directly implies the following

well-known genus bound.

Proposition 1.1. Suppose that (𝑀, 𝐽 ) is an almost complex 4–manifold. If there exists a simple

𝐽–holomorphic map 𝑢 : Σ → 𝑀 representing 𝐴 ∈ 𝐻2(𝑀), then the genus 𝑔(Σ) satisfies

(1.2) 𝑔(Σ) 6
1

2
(𝐴 · 𝐴 − 〈𝑐1(𝑀, 𝐽 ), 𝐴〉) + 1.

The following is a consequence of Gromov’s h-principle for symplectic embeddings [Gro86,

Section 3.4.2 Theorem (A)]. It shows that in higher dimensions there cannot be a genus bound

which holds for all almost complex structures.

Proposition 1.3. Let (𝑀,𝜔) be a symplectic manifold of dimension 2𝑛 > 6. For every 𝐴 ∈ 𝐻2(𝑀)

with 〈[𝜔], 𝐴〉 > 0 and every 𝑔 ∈ N there is an almost complex structure 𝐽 compatible with 𝜔 and

a 𝐽–holomorphic embedding 𝑢 : Σ → 𝑀 satisfying

𝑔(Σ) > 𝑔.
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There are, however, genus bounds for generic almost complex structures. Here is a simple

example, which follows easily from the index formula and transversality theorem for simple

𝐽–holomorphic maps [MS12, Chapter 3].

Proposition 1.4. Let𝑀 be a manifold of dimension 2𝑛. Denote by J the space of smooth almost

complex structures on𝑀 equipped with the𝐶∞
loc
–topology. There is a comeager1subsetJ♣ ⊂ J such

that for every 𝐽 ∈ J♣ the following holds: if there exists a simple 𝐽–holomorphic map 𝑢 : Σ → 𝑀

representing 𝐴 ∈ 𝐻2(𝑀), then

(1.5)





〈𝑐1(𝑀, 𝐽 ), 𝐴〉 > 0 if 𝑛 = 3

𝑔(Σ) 6
〈𝑐1(𝑀, 𝐽 ), 𝐴〉

𝑛 − 3
+ 1 if 𝑛 > 3.

Moreover, if 𝑀 carries a symplectic form 𝜔 , then the same holds with J replaced by the space

J(𝜔) of smooth almost complex structures compatible with 𝜔 .

Proposition 1.3 and Proposition 1.4 are both well-known and we omit their proofs.

The preceding discussion leaves open the case of generic almost complex structures in

dimension six and homology classes satisfying 〈𝑐1(𝑀, 𝐽 ), 𝐴〉 > 0. In the present article, we

focus on the case

〈𝑐1(𝑀, 𝐽 ), 𝐴〉 = 0,

that is: on classes for which the corresponding moduli space of 𝐽–holomorphic maps has

expected dimension zero. This includes all homology classes in symplectic Calabi–Yau 3–
folds, that is: symplectic manifolds (𝑀,𝜔) such that dim𝑀 = 6 and 𝑐1(𝑀, 𝐽 ) = 0 for some

almost complex structure 𝐽 compatible with 𝜔 . Our motivation for considering this case comes

from our project to construct a symplectic analogue of the Pandharipande–Thomas invariants

of projective Calabi–Yau 3–folds [DW19b, Section 7]. Another motivation comes from the

Gopakumar–Vafa conjecture. Bryan and Pandharipande [BP01] defined the Gopakumar–Vafa

BPS invariants 𝑛
𝑔

𝐴
(𝑀,𝜔) of a symplectic Calabi–Yau 3–fold (𝑀,𝜔) in terms of its Gromov–

Witten partition function. They conjectured that the BPS invariants 𝑛
𝑔

𝐴
(𝑀,𝜔) are integers and

vanish for all but finitely many 𝑔 [BP01, Conjecture 1.2]. The integrality conjecture has been

proved by Ionel and Parker [IP18]. The finiteness conjecture remains open and is closely related

to the question about the existence of genus bounds for symplectic Calabi–Yau 3–folds.
Motivated by Gromov–Witten theory, Bryan and Pandharipande [BP01] introduced the

notion of 𝑘–rigidity for almost complex structures; see Definition 2.10. They conjectured that a

generic almost complex structure is∞–rigid (or super-rigid), that is: 𝑘–rigid for every 𝑘 ∈ N.

This has recently been proved by Wendl [Wen19b]; see Theorem 2.13. A concise exposition of

Wendl’s proof using the framework of equivariant Brill–Noether theory for elliptic operators

can be found in [DW18].

The main result of this article shows that 𝑘–rigidity implies a Castelnuovo bound.

Theorem 1.6. Let 𝑘 ∈ N ∪ {∞}. Let (𝑀, 𝐽 , 𝑔) be a compact almost Hermitian 6–manifold with

a 𝑘–rigid almost complex structure 𝐽 . Suppose 𝐴 ∈ 𝐻2(𝑀) satisfies 〈𝑐1(𝑀, 𝐽 ), 𝐴〉 = 0 and has

1Let 𝑋 be a topological space. A subset 𝐴 ⊂ 𝑋 is called comeager (or residual) if it contains the intersection of

countably many dense open subsets. A comeager subset of a complete metric space is dense.
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divisibility at most 𝑘 . Given any Λ > 0, there are only finitely many simple 𝐽–holomorphic maps

representing 𝐴 and with energy at most Λ.

Remark 1.7. Theorem 1.6 immediately implies a Castelnuovo bound for every fixed 𝑘–rigid

almost complex structure 𝐽 . Unlike in the 𝑛 > 3 case of (1.5), however, this bound may depend

on 𝐽 . ♣

If 𝐽 is tamed by a symplectic form 𝜔 , then imposing an upper bound for the energy is

superfluous since the energy of any 𝐽–holomorphic map representing 𝐴 is 〈[𝜔], 𝐴〉.

Corollary 1.8. Let (𝑀,𝜔) be a compact symplectic Calabi–Yau 3–fold. Suppose 𝐽 is a super-rigid
almost complex structure compatible with 𝜔 . Then for every 𝐴 ∈ 𝐻2(𝑀) there are only finitely

many simple 𝐽–holomorphic maps representing 𝐴. �

In the situation of Theorem 1.6, Gromov’s compactness theorem [Gro85; PW93; Ye94;

Hum97] shows that there are only finitely many 𝐽–holomorphic maps representing 𝐴 from

Riemann surfaces of fixed genus. It is thus of no use for proving Theorem 1.6. Instead, we use the

following compactness result for 𝐽–holomorphic cycles, that is: formal sums of 𝐽–holomorphic

curves, with respect to geometric convergence; see (1) and Definition 5.3.

Proposition 1.9. Let 𝑀 be a manifold and let (𝐽𝑛, 𝑔𝑛)𝑛∈N be a sequence of almost Hermitian

structures converging to an almost Hermitian structure (𝐽 , 𝑔) in the 𝐶∞
loc
–topology. Let 𝐾 ⊂ 𝑀 be

a compact subset and let Λ > 0. For each 𝑛 ∈ N let 𝐶𝑛 be a 𝐽𝑛–holomorphic cycle with support

contained in 𝐾 and of mass at most Λ. Then a subsequence of (𝐶𝑛)𝑛∈N geometrically converges to

a 𝐽–holomorphic cycle 𝐶 .

In dimension four, this result was proved by Taubes [Tau96a]. The proof in higher dimen-

sions relies on results in geometric measure theory; in particular, the recent work of De Lellis,

Spadaro, and Spolaor [DSS17b; DSS18; DSS17a; DSS20] on the regularity of semi-calibrated

currents. The points of this theory most relevant to the present article are discussed in Section 4.

Remark 1.10. If (𝑀,𝜔) is a symplectic manifold, (𝐽𝑛)𝑛∈N is a sequence of 𝜔–compatible almost

complex structures, and 𝑔𝑛 = 𝜔 (·, 𝐽𝑛 ·) is the corresponding sequence of Riemannian metrics,

then Proposition 1.9 can be proved using earlier work of Rivière and Tian [RT09] on the regularity

of calibrated currents. However, the proof of Theorem 1.6 leads to almost complex structures

which are tamed by but (possibly) not compatible with a symplectic structure. Therefore, the

work of De Lellis, Spadaro, and Spolaor is crucial even for Corollary 1.8. ♣

Remark 1.11. Since the first version of this article appeared, we used the 𝑘 = 1 case of Theorem 1.6

to prove the Gopakumar–Vafa finitness conjecture for the BPS numbers 𝑛
𝑔

𝐴
(𝑀,𝜔) whenever 𝐴

is a primitive homology class [DW19a]. The cited article also contains a version of Theorem 1.6

for homology classes satisfying 〈𝑐1(𝑀,𝜔), 𝐴〉 > 0. ♣

Convention 1.12. Throughout this article, 𝑓 (𝑥) . 𝑔(𝑥) is an abbreviation for: 𝑓 (𝑥) 6 𝑐𝑔(𝑥) with

a constant 𝑐 > 0 independent of 𝑥 .

3



Acknowledgements We thank Aleksey Zinger for insightful discussions, Tristan Riviére for

answering our questions regarding [RT09], Costante Bellettini for pointing us towards the

work of De Lellis, Spadaro, and Spolaor, and Simon Donaldson for reminding us of Gromov’s

h-principle for symplectic immersions. Finally, we thank the anonymous referee for detailed

comments.

This material is based upon work supported by an Alfred P. Sloan Fellowship, the National

Science Foundation under Grant No. 1754967, and the Simons Collaboration “Special Holonomy

in Geometry, Analysis and Physics”.

2 𝑘–rigidity of 𝐽–holomorphic maps

Let us briefly recall the notion of 𝑘–rigidity as defined by Eftekhary. For a more detailed

discussion we refer the reader to [Eft16, Section 2; Wen19b, Section 2.1] as well as [DW18,

Section 2.1]. The notation and definitions in this article are consistent with those used in the

last reference.

Henceforth, let (𝑀, 𝐽 , 𝑔) be an almost Hermitian 2𝑛–manifold; that is: 𝐽 is an almost complex

structure and 𝑔 is a Riemannian metric such that 𝑔(𝐽 ·, 𝐽 ·) = 𝑔(·, ·). In particular, we do not

assume that the 2–form 𝑔(𝐽 ·, ·) is closed or that𝑀 even admits a symplectic structure.

Definition 2.1. A 𝐽–holomorphic map 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) is a pair consisting of a closed,

connected Riemann surface (Σ, 𝑗) and a smooth map 𝑢 : Σ → 𝑀 satisfying the non-linear

Cauchy–Riemann equation

•(2.2) 𝜕𝐽 (𝑢, 𝑗) ≔
1

2
(d𝑢 + 𝐽 (𝑢) ◦ d𝑢 ◦ 𝑗) = 0.

Definition 2.3. Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a 𝐽–holomorphic map. Let 𝜙 ∈ Diff (Σ) be a diffeo-
morphism. The reparametrization of 𝑢 by 𝜙 is the 𝐽–holomorphic map 𝑢 ◦ 𝜙−1 : (Σ, 𝜙∗ 𝑗) →

(𝑀, 𝐽 ). •

Definition 2.4. Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a 𝐽–holomorphic map and let 𝜋 : (Σ̃, 𝑗) → (Σ, 𝑗) be

a holomorphic map of degree deg(𝜋) > 2. The composition 𝑢 ◦ 𝜋 : (Σ̃, 𝑗) → (𝑀, 𝐽 ) is said to be

a multiple cover of 𝑢. A 𝐽–holomorphic map is simple if it is not constant and not a multiple

cover. •

Rigidity and𝑘–rigidity are conditions on the infinitesimal deformation theory of 𝐽–holomorphic

curves up to reparametrization. We will have to briefly review parts of this theory. The reader

can find further details in [MS12, Chapter 3] and [Wen19a, Lectures 2 and 7], for example.

The second reference, in particular, discusses varying the complex structure on higher genus

Riemann surfaces.

The index of a 𝐽–holomorphic map 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) is defined as

(2.5) index(𝑢) ≔ 2〈𝑢∗𝑐1(𝑀, 𝐽 ), [Σ]〉 + (2𝑛 − 6) (1 − 𝑔(Σ)) .

This is the Fredholm index of the linearization of (2.2) with respect to the map 𝑢 and complex

structure 𝑗 (up to equivalence). The linearization with respect to 𝑢, with 𝑗 fixed, is the operator

(2.6) 𝜉 ↦→
1

2

(
∇𝜉 + 𝐽 ◦ (∇𝜉) ◦ 𝑗 + (∇𝜉 𝐽 ) ◦ d𝑢 ◦ 𝑗

)
.
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Here ∇ denotes the Levi–Civita connection of 𝑔 on 𝑇𝑀 and also the induced connection on

𝑢∗𝑇𝑀 [MS12, Proposition 3.1.1].

Let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a non-constant 𝐽–holomorphic map. There exists a unique

complex subbundle

𝑇𝑢 ⊂ 𝑢∗𝑇𝑀

of rank one containing d𝑢 (𝑇Σ) [IS99, Section 1.3]. The generalized normal bundle of 𝑢 is defined

as

𝑁𝑢 ≔ 𝑢∗𝑇𝑀/𝑇𝑢.

If 𝑢 is an immersion, then 𝑁𝑢 is the usual normal bundle. If 𝑢̃ = 𝑢 ◦ 𝜋 is a multiple cover of an

immersion, then 𝑁𝑢̃ = 𝜋∗𝑁𝑢. The operator (2.6) maps Γ(𝑇𝑢) to Ω
0,1(Σ,𝑇𝑢). Thus, it induces

an operator

(2.7) 𝔡
𝑁
𝑢,𝐽 : Γ(𝑁𝑢) → Ω

0,1(𝑁𝑢)

called the normal Cauchy–Riemann operator of 𝑢 [IS99, (1.5.1)]. The non-zero elements of the

kernel of 𝔡𝑁
𝑢,𝐽

correspond to infinitesimal deformations of 𝑢 which deform the image 𝑢 (Σ). The

reader might find the summaries of Ivashkovich and Shevchishin’s construction of 𝑇𝑢, 𝑁𝑢, and

𝔡𝑁
𝑢,𝐽

given in [Wen10, Section 3.3; DW18, Appendix 2A] helpful.

Definition 2.8. A non-constant 𝐽–holomorphic map 𝑢 is rigid if ker𝔡𝑁
𝑢,𝐽

= 0. •

A multiple cover 𝑢̃ of 𝑢 may fail to be rigid, even if 𝑢 itself is rigid.

Definition 2.9. Let 𝑘 ∈ N ∪ {∞}. A simple 𝐽–holomorphic map 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) is called

𝑘–rigid if it is rigid and all of its multiple covers of degree at most 𝑘 are rigid. •

Rigidity and 𝑘–rigidity are mostly interesting for maps of index zero, as it follows from the

index formula for the normal Cauchy–Riemann operator [IS99, Lemma 1.5.1] (see also [Wen10,

Theorem 3; DW18, Proposition 2.7.1]) and standard transversality results that for a generic 𝐽

there are no rigid simple 𝐽–holomorphic maps satisfying index(𝑢) ≠ 0.

Definition 2.10. Suppose that dim𝑀 > 6. Let 𝑘 ∈ N ∪ {∞}. An almost complex structure 𝐽 is

called 𝑘–rigid if the following hold:

(1) Every simple 𝐽–holomorphic map of index zero is 𝑘–rigid.

(2) Every simple 𝐽–holomorphic map has non-negative index.

(3) Every simple 𝐽–holomorphic map of index zero is an embedding, and every two sim-

ple 𝐽–holomorphic maps of index zero either have disjoint images or are related by a

reparametrization. •

Remark 2.11. In dimension four, one should weaken (3) and require only that every simple 𝐽–

holomorphic map of index zero is an immersion with transverse self-intersections, and that two

such maps are either transverse to one another or are related by reparametrization. However,

we will only be concerned with dimension (at least) six. ♣
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Definition 2.12. Denote by J(𝑀) the Fréchet space of smooth almost complex structures on𝑀

equipped with the topology of 𝐶∞ convergence over compact subsets. If 𝜔 is a symplectic form

on𝑀 , denote by J(𝑀,𝜔) the subspace of almost complex structures in J(𝑀) compatible with

𝜔 . For 𝑘 ∈ N ∪ {∞} set

R𝑘 (𝑀) ≔ {𝐽 ∈ J(𝑀) : 𝐽 is 𝑘–rigid} and R𝑘 (𝑀,𝜔) ≔ R𝑘 (𝑀) ∩ J(𝑀,𝜔) . •

Theorem 2.13 (Wendl [Wen19b, Theorem A]). Let𝑀 be a manifold of dimension at least six. The

following hold:

(1) The subset R∞(𝑀) is comeager in J(𝑀).

(2) The subset R∞(𝑀,𝜔) is comeager in J(𝑀,𝜔).

This result establishes the super-rigidity conjecture of Bryan and Pandharipande [BP01,

p. 290]. Earlier progress on this conjecture was made by Eftekhary [Eft16, Theorem 1.2] who

showed that R4(𝑀,𝜔) is comeager in J(𝑀,𝜔) if dim𝑀 = 6.

3 Real Cauchy–Riemann operators and almost complex structures

The purpose of this section is to explain that associated with every real Cauchy–Riemann

operator defined on a Hermitian vector bundle there is a natural almost complex structure on

the total space of that bundle. This construction is inspired by [Tau96b, p. 825–826]. In fact,

the results below can be found in [Zin11, Section 3.2; Wen19b, Appendix B]. Nevertheless, we

include them here for the reader’s convenience.

Definition 3.1. Let (Σ, 𝑗) be a Riemann surface. Let 𝜋 : 𝐸 → Σ be a Hermitian vector bundle

over Σ. A first order linear differential operator 𝔡 : Γ(𝐸) → Ω
0,1(Σ, 𝐸) is called a real Cauchy–

Riemann operator if

(3.2) 𝔡(𝑓 𝑠) = (𝜕𝑓 )𝑠 + 𝑖𝔡 𝑗

for all 𝑓 ∈ 𝐶∞(𝑀,R). The anti-linear part of 𝔡 is defined as

𝔫 = 𝔫𝔡 ≔
1

2
(𝔡 + 𝐽𝔡𝐽 ) ∈ Γ(Hom(𝐸,HomC(𝑇Σ, 𝐸))) . •.

Every real Cauchy–Riemann operator can be written as

𝔡 = 𝜕 + 𝔫

where 𝜕∇ ≔ ∇0,1 is the Dolbeault operator associated with a Hermitian connection ∇ on 𝐸.

Denote by 𝐻∇ ⊂ 𝑇𝐸 the horizontal distribution of ∇. It induces an isomorphism

(3.3) 𝑇𝐸 = 𝐻∇ ⊕ 𝜋∗𝐸 � 𝜋∗𝑇Σ ⊕ 𝜋∗𝐸.

Definition 3.4. The complex structure 𝐽∇ on 𝐸 associated with ∇ is defined by pulling back the

standard complex structure 𝑗 ⊕ 𝑖 on 𝜋∗𝑇Σ ⊕ 𝜋∗𝐸 by the isomorphism (3.3). •
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It is well-known that a section 𝑠 ∈ Γ(𝐸) satisfies 𝜕∇𝑠 = 0 if and only if the map 𝑠 : Σ → 𝐸 is

𝐽∇–holomorphic. The following proposition extends this to real Cauchy–Riemann operators.

Definition 3.5. Let 𝔡 = 𝜕∇ + 𝔫 be a real Cauchy–Riemann operator. Define 𝐿𝔫 : 𝑇𝐸 → 𝑇𝐸 by

𝐿𝔫 = −2𝔫(𝑣) 𝑗𝜋∗

at 𝑣 ∈ 𝐸. The almost complex structure 𝐽𝔡 on 𝐸 associated with 𝔡 is defined by

𝐽𝔡 ≔ 𝐽∇ + 𝐿𝔫 . •

Lemma 3.6. For every real Cauchy–Riemann operator 𝔡 : Γ(𝐸) → Ω
0,1(𝐸) the following hold:

(1) 𝐽𝔡 is an almost complex structure.

(2) The projection 𝜋 : 𝐸 → Σ is holomorphic with respect to 𝐽𝔡.

(3) For every 𝑥 ∈ Σ the fiber 𝐸𝑥 = 𝜋−1(𝑥) is a 𝐽𝔡–holomorphic submanifold of 𝐸.

(4) A section 𝑠 ∈ Γ(𝐸) satisfies 𝔡𝑠 = 0 if and only if 𝑠 : Σ → 𝐸 is a 𝐽𝔡–holomorphic map.

(5) Denote by 𝐵1(𝐸) ≔ {𝑒 ∈ 𝐸 : |𝑒 | < 1} the disc bundle of 𝐸 with respect to the given Hermitian

inner product on 𝐸. There exists a symplectic form 𝜔 on the total space of 𝐵1(𝐸) which tames

𝐽𝔡.

Proof. With respect to (3.3) we have

(3.7) 𝐽𝔡 =

(
𝑗 0

−2𝔫(𝑣) 𝑗 𝑖

)

at 𝑣 ∈ 𝐸. Since 𝔫(𝑣) is anti-linear,

𝔫(𝑣) 𝑗2 + 𝑖𝔫(𝑣) 𝑗 = 0.

Therefore,

𝐽 2
𝔡
= −id;

that is, (1) holds.

Both (2) and (3) immediately follow from (3.7).

We prove (4). Let 𝑠 : Σ → 𝐸 be a section. The projection of d𝑠 to the first factor of (3.3) is

𝜋∗ ◦ d𝑠 = id𝑇Σ and thus 𝑗–linear. The projection of d𝑠 : 𝑇Σ → 𝑠∗𝑇𝐸 to the second factor is its

covariant derivative ∇𝑠 : 𝑇Σ → 𝑠∗𝐸. It follows from (3.7) that the 𝐽𝔡–antilinear part of d𝑠 is

1

2
(d𝑠 + 𝐽𝔡 ◦ d𝑠 ◦ 𝑗) =

1

2
(∇𝑠 + 𝑖 ◦ ∇𝑠 ◦ 𝑗) + 𝔫𝑠

= 𝜕∇𝑠 + 𝔫𝑠 = 𝔡𝑠 .

Therefore, d𝑠 : 𝑇Σ → 𝑇𝐸 is 𝐽𝔡–linear if and only if 𝔡𝑠 = 0.

7



The construction of a symplectic form 𝜔 in (5) is standard and goes back to Thurston

[Thu76]; see also [Gom95, Lemma 2.2; MS98, Theorem 6.3; TMZ18, paragraph containing (2.9)].

Nevertheless, let us discuss the proof of (5). Let 𝜔Σ be an area form on Σ. Let 𝜔𝐸 be any closed

2–form on 𝐵1(𝐸) which is positive when restricted to the fibers of 𝐸; that is, for all vertical

tangent vectors 𝑣𝐸

(3.8) 𝜔𝐸 (𝑣𝐸, 𝐽∇𝑣𝐸) & |𝑣𝐸 |
2.

Such a form can be constructed by choosing local unitary trivializations 𝐸 |𝑈𝑖 � 𝑈𝑖 ×C
𝑟 , denoting

by 𝜆𝑖 the corresponding Liouville 1–forms on C
𝑟 vanishing at zero, and setting

𝜔𝐸 = d

(
∑︁

𝑖

𝜒𝑖 ◦ 𝜋 · 𝜆𝑖

)

for a partition of unity (𝜒𝑖). This form satisfies (3.8) on 𝐸. It remains to show that for 𝜏 ≫ 1
the closed 2–form 𝜔 = 𝜏𝜔Σ + 𝜔𝐸 tames 𝐽𝔡 on 𝐵1(𝐸). For a tangent vector 𝑤 to 𝐸 at a point

(𝑥, 𝑣) ∈ 𝐵1(𝐸) denote by𝑤𝐻 and𝑤𝐸 its horizontal and vertical parts in the decomposition (3.3).

We have

𝜔 (𝑤, 𝐽𝔡𝑤) = (𝜏𝜔Σ + 𝜔𝐸) (𝑤, (𝐽∇ + 𝐿𝔫)𝑤)

= 𝜏𝜔Σ (𝑤𝐻 , 𝑗𝑤𝐻 ) + 𝜔𝐸 (𝑤𝐸, 𝐽∇𝑤𝐸) + 𝜔𝐸 (𝑤𝐸, 𝐿𝔫𝑤𝐻 ) .

From |𝐿𝔫 (𝑣) | . |𝑣 | < 1 it follows that

|𝜔𝐸 (𝑤𝐸, 𝐿𝔫𝑤𝐻 ) | . |𝑤𝐸 | |𝑤𝐻 |.

Since

𝜏𝜔Σ (𝑤𝐻 , 𝑗𝑤𝐻 ) + 𝜔𝐸 (𝑤𝐸, 𝐽∇𝑤𝐸) & 𝜏 |𝑤𝐻 |
2 + |𝑣𝐸 |,

it follows that 𝜔 tames 𝐽𝔡 provided 𝜏 ≫ 1. �

The next two propositions are concerned with the following situation. Let (𝑀, 𝐽 , 𝑔) be an

almost Hermitian manifold and let 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) be a 𝐽–holomorphic embedding. Denote

by 𝑁𝑢 → Σ its normal bundle and by 𝔡𝑁
𝑢,𝐽

the normal Cauchy–Riemann operator introduced

in (2.7). The almost complex structure 𝐽 and Riemannian metric 𝑔 on 𝑀 induce a Hermitian

structure on 𝐸. Write

(3.9) 𝐽𝑢 ≔ 𝐽
𝔡𝑁
𝑢,𝐽

for the almost complex structure on the total space of 𝑁𝑢 associated with 𝔡𝑁
𝑢,𝐽

.

Lemma 3.10. For every 𝜆 > 0 define 𝜎𝜆 : 𝑁𝑢 → 𝑁𝑢 by

𝜎𝜆 (𝑣) ≔ 𝜆𝑣 .

If 𝑈 ⊂ 𝑁𝑢 is an open neighborhood of the zero section in 𝑁𝑢 such that the exponential map

exp : 𝑈 → 𝑀 with respect to 𝑔 is an embedding, then

𝜎∗𝜆 exp
∗ 𝐽 → 𝐽𝑢 as 𝜆 → 0,

where the convergence is with respect to the 𝐶∞
loc
–topology.
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Proof. Denote by ∇ the connection on 𝑁𝑢 → Σ induced by the Levi–Civita connection of (𝑀,𝑔).

Throughout this proof, we identify

𝑇𝑈 = 𝜋∗𝑇Σ ⊕ 𝜋∗𝑁𝑢

as in (3.3). The two almost complex structures 𝐽∇ and exp∗ 𝐽 on𝑈 ⊂ 𝑁𝑢 agree along the zero

section. The Taylor expansion of exp∗ 𝐽 is of the form

(3.11) exp∗ 𝐽 (𝑥, 𝑣) = 𝐽∇ (𝑥, 0) + ∇𝑣 𝐽 (𝑥, 0) +𝑂 ( |𝑣 |2) .

Set

𝐿(𝑥, 𝑣) ≔ ∇𝑛 𝐽 (𝑥, 0).

We write 𝐿 as the matrix

𝐿(𝑥, 𝑣) =

(
𝐿11(𝑥, 𝑣) 𝐿12(𝑥, 𝑣)

𝐿21(𝑥, 𝑣) 𝐿22(𝑥, 𝑣)

)
.

Here each 𝐿𝑖 𝑗 is linear in 𝑣 . The derivative d𝜎𝜆 is given by

d𝜎𝜆 =

(
id

𝜆

)
.

Therefore,

(𝜎𝜆)
∗𝐿(𝑥, 𝑣) =

(
id

𝜆−1

) (
𝐿11(𝑥, 𝜆𝑣) 𝐿12(𝑥, 𝜆𝑣)

𝐿21(𝑥, 𝜆𝑣) 𝐿22(𝑥, 𝜆𝑣)

) (
id

𝜆

)

=

(
𝜆𝐿11(𝑥, 𝑣) 𝜆2𝐿12(𝑥, 𝑣)

𝐿21(𝑥, 𝑣) 𝜆𝐿22(𝑥, 𝑣)

)
.

As 𝜆 tend to zero, all but the bottom left entry tend to zero.

By construction, 𝜎∗
𝜆
𝐽∇ = 𝐽∇. As 𝜆 tends to zero, the rescalings of terms of second order and

higher in (3.11) tend to zero. It remains to identify the term 𝐿21. By definition,

𝐿21(𝑥, 𝑣) = 𝜋𝑁𝑢 ◦ ∇𝑣 𝐽 (𝑥, 0) ◦ 𝜋∗.

Comparing (2.6), Definition 3.1, and Definition 3.5, we see that 𝐿21 = 𝐿𝑢 . This finishes the

proof. �

Proposition 3.12. If 𝑢̃ : (Σ̃, 𝑗) → (𝑁𝑢, 𝐽𝑢) is a simple 𝐽𝑢–holomorphic map whose image is not

contained in the zero section, then the following hold:

(1) The map 𝜑 : (Σ̃, 𝑗) → (Σ, 𝑗) given by 𝜑 ≔ 𝜋 ◦ 𝑢̃ is non-constant and holomorphic.

(2) The 𝐽–holomorphic map𝑢 ◦𝜑 : (Σ̃, 𝑗) → (𝑀, 𝐽 ) is not rigid; in particular, the 𝐽–holomorphic

map 𝑢 : (Σ, 𝑗) → (𝑀, 𝐽 ) is not 𝑘–rigid for 𝑘 = deg(𝜑).
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Proof. By Lemma 3.6 (2), 𝜋 : 𝑁𝑢 → Σ is 𝐽𝑢–holomorphic. Therefore, 𝜑 is holomorphic. The

map 𝜑 is constant if and only if the image of 𝑢̃ is contained in a fiber of 𝜋 . This is impossible,

because then 𝑢̃ would be constant. This proves (1).

To prove (2), we use the fact that the normal bundle of the 𝐽–holomorphic map 𝑢 ◦ 𝜑 is

𝑁𝑢 ◦ 𝜑 = 𝜑∗𝑁𝑢 and the corresponding normal Cauchy–Riemann operator is

(3.13) 𝔡
𝑁
𝑢◦𝜑,𝐽 = 𝜑

∗
𝔡
𝑁
𝑢,𝐽 .

Since 𝑢̃ takes values in 𝑁𝑢, for every 𝑥 ∈ Σ̃ we have

𝑢̃ (𝑥) ∈ 𝑁𝑢𝜋 (𝑢 (𝑥)) = 𝑁𝑢𝜑 (𝑥) = (𝜑∗𝑁𝑢)𝑥 .

This gives rise to the section 𝑠 ∈ Γ(𝜑∗𝑁𝑢) defined by

𝑠 (𝑥) ≔ 𝑢̃ (𝑥) ∈ (𝜑∗𝑁𝑢)𝑥 .

This section is not the zero section, because the image of 𝑢̃ is not contained in the zero section.

By construction, 𝑠 is holomorphic with respect to the almost complex structure on 𝜙∗𝑁𝑢 induced

from 𝐽𝑢 . Lemma 3.6 (4) and (3.13) imply that

𝔡
𝑁
𝑢◦𝜑,𝐽 𝑠 = 0. �

4 Regularity theory for 2–dimensional semicalibrated currents

The purpose of this section is to introduce a few notions of geometric measure theory and

explain Theorem 4.13 due to De Lellis, Spadaro, and Spolaor. The standard reference for the

foundations of geometric measure theory is Federer’s voluminous monograph [Fed69]. The

references [Sim83; De 16] are more accessible and easier to navigate, and are cited throughout

this section.

Definition 4.1 (cf. [Sim83, Chapter 6 Definition 26.1 and Paragraphs 26.3, 26.10, 26.11; De 16,

Definitions 2.1, 2.2]). Let𝑀 be a manifold. Let Ω𝑘
𝑐 (𝑀) be the space of 𝑘–forms with compact

support equipped with the strong 𝐶∞ topology.2

(1) A 𝑘–current in𝑀 is a continuous linear map 𝑇 : Ω
𝑘
𝑐 (𝑀) → R.

(2) A sequence (𝑇𝑛)𝑛∈N of 𝑘–currents converges weakly to a 𝑘–curent 𝑇 if

lim
𝑛→∞

𝑇𝑛 (𝛼) = 𝑇 (𝛼) for every 𝛼 ∈ Ω
𝑘
𝑐 (𝑀).

2For the definition, see, for example, [GG80, Chapter II Section 3]. A sequence (𝛼𝑛)𝑛∈N in Ω
𝑘
𝑐 (𝑀) converges in

this topology if and only if there is a compact subset 𝐾 ⊂ 𝑀 such that supp𝛼𝑛 ⊂ 𝐾 for all sufficiently large 𝑛 and

(𝛼𝑛)𝑛∈N converges uniformly with all derivatives over 𝐾 . If𝑀 is compact, then the strong𝐶∞ topology agrees with

the standard𝐶∞ topology making Ω
𝑘 (𝑀) into a Fréchet space. If𝑀 is non-compact, then the strong𝐶∞ topology is

not metrizable.
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(3) The boundary of a 𝑘–current 𝑇 is the (𝑘 − 1)–current 𝜕𝑇 defined by

𝜕𝑇 (𝛼) ≔ 𝑇 (d𝛼)

We say that 𝑇 is closed if 𝜕𝑇 = 0.

(4) The support of a 𝑘–current𝑇 , denoted by supp(𝑇 ), is the intersection of all closed subsets

𝐴 ⊂ 𝑀 with the property that 𝑇 (𝛼) = 0 for all 𝛼 ∈ Ω
𝑘
𝑐 (𝑀) with supp𝛼 ∩𝐴 = ∅.

(5) Given an open subset𝑈 ⊂ 𝑀 and a 𝑘–current𝑇 , the restriction of𝑇 to𝑈 is the 𝑘–current

𝑇 |𝑈 : Ω
𝑘
𝑐 (𝑈 ) → R defined by

𝑇 |𝑈 (𝛼) ≔ 𝑇 (𝜄∗𝛼)

with 𝜄∗ : Ω
𝑘
𝑐 (𝑈 ) → Ω

𝑘
𝑐 (𝑀) denoting the map extending a 𝑘–form with compact support

in𝑈 by zero on𝑀\𝑈 . •

The archetypal example of a 𝑘–current is the following.

Example 4.2. Let

𝐴 =

𝐼∑︁

𝑖=1

𝑚𝑖𝐴𝑖

be a formal linear combination of oriented 𝑘–dimensional 𝐶1 submanifolds 𝐴𝑖 ⊂ 𝑀 possibly

with non-empty boundary 𝜕𝐴𝑖 and with coefficients𝑚1, . . . ,𝑚𝐼 ∈ N. The Dirac delta associated

with 𝐴 is the 𝑘–current 𝛿𝐴 : Ω
𝑘
𝑐 (𝑀) → R defined by

𝛿𝐴 (𝛼) ≔

𝐼∑︁

𝑖=1

𝑚𝑖

ˆ

𝐴𝑖

𝛼.

We have supp𝛿𝐴 =
⋃𝐼

𝑖=1𝐴𝑖 . The boundary of 𝐴 is the Dirac delta associated with the formal

sum

𝜕𝐴 =

𝐼∑︁

𝑖=1

𝑚𝑖𝜕𝐴𝑖 .

More generally, 𝛿𝐴 can be defined in the same way if each 𝐴𝑖 is an oriented 𝑘–dimensional 𝐶1

submanifolds away from a subset whose 𝑘–dimensional Hausdorff measure is zero. ♠

Definition 4.3 (cf. [De 16, Definition 3.2]). Let𝑇 be a𝑘–current in𝑀 . A point𝑥 ∈ supp(𝑇 )\ supp(𝜕𝑇 )
is regular if there exists an open neighborhood 𝑈 of 𝑥 such that 𝑇 |𝑈 = 𝛿𝑚𝐴 for an oriented

𝑘–dimensional 𝐶1 submanifold 𝐴 ⊂ 𝑈 and𝑚 ∈ N. Otherwise we say that 𝑥 is singular. Denote

by reg(𝑇 ) and sing(𝑇 ) the sets of regular and singular points in supp(𝑇 )\ supp(𝜕𝑇 ). •

A generalization of the above example is the notion of an integral current, which we now

describe. For the remainder of this section, let (𝑀,𝑔) be a Riemannian manifold and let H𝑘

denote the 𝑘–dimensional Hausdorff measure induced by 𝑔.
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Remark 4.4. While the definitions and results of geometric measure theory given below are

typically stated for𝑀 = R
𝑁 equipped with the Euclidean metric, they immediately generalize

to any Riemannian manifold (𝑀,𝑔) by embedding it isometrically into R
𝑁 for some 𝑁 using

the Nash embedding theorem, and considering currents in𝑀 as currents in R
𝑁 . ♣

Definition 4.5 (cf. [Sim83, Chapter 6 Paragraphs 25.6, 26.4; De 16, Definitions 2.3, 3.4]). For

𝑥 ∈ 𝑀 and 𝛼𝑥 ∈ Λ
𝑘𝑇 ∗

𝑥𝑀 , set |𝛼𝑥 | ≔ sup{|𝛼𝑥 (𝜉) |} with the supremum taken over all simple

𝑘–vectors 𝜉 ∈ Λ
𝑘𝑇𝑥𝑀 with |𝜉 | = 1, with the norm induced by the Riemannian metric. The

comass of 𝛼 ∈ Ω
𝑘
𝑐 (𝑀) is

‖𝛼 ‖ ≔ sup
𝑥 ∈𝑀

|𝛼𝑥 |.

The mass of a 𝑘–current 𝑇 in𝑀 is defined by

M(𝑇 ) ≔ sup{𝑇 (𝛼) : 𝛼 ∈ Ω
𝑘
𝑐 (𝑀) and ‖𝛼 ‖ 6 1}. •

Definition 4.6 (cf. [Sim83, Chapter 3 Section 11]). A subset 𝐴 ⊂ 𝑀 is called 𝑘–rectifiable if

there are subsets 𝐴0, 𝐴1, 𝐴2, . . . ⊂ 𝑀 such thatH𝑘 (𝐴0) = 0, each 𝐴𝑖 for 𝑖 > 1 is a 𝐶1–embedded

𝑘–dimensional submanifold, and

𝐴 ⊂

∞⋃

𝑖=0

𝐴𝑖 .

•

If 𝐴 ⊂ 𝑀 is 𝑘–rectifiable, then for H𝑘–almost every 𝑥 ∈ 𝐴 there exists an approximate

tangent space to 𝐴 at 𝑥 , which is a 𝑘–dimensional subspace of 𝑇𝑥𝑀 . We denote it by 𝜋 (𝐴, 𝑥).

For details, see [Sim83, Chapter 3 Section 11; De 16, Lemma 2.1.15],

Definition 4.7 (cf. [Sim83, Definition 27.1]). A 𝑘–current𝑇 in𝑀 is integer rectifiable ifM(𝑇 ) <

∞ and there exist:

(1) a 𝑘–rectifiable subset 𝐴 ⊂ 𝑀 ,

(2) anH𝑘–measurable function𝑚 : 𝐴 → N ∪ {0}, and

(3) anH𝑘–measurable section
−→
𝑇 of Λ𝑘𝑇𝑀 |𝐴

such that:

(4) forH𝑘–almost all 𝑥 ∈ 𝐴, the 𝑘–vector
−→
𝑇 (𝑥) ∈ Λ

𝑘𝑇𝑥𝑀 is given by
−→
𝑇 (𝑥) = 𝑒1 ∧ . . . ∧ 𝑒𝑘

for any orthonormal frame of 𝜋 (𝐴, 𝑥), and

(5) 𝑇 is given by

𝑇 (𝛼) =

ˆ

𝐴

𝑚(𝑥)〈𝛼 (𝑥),
−→
𝑇 (𝑥)〉 dH𝑘 for 𝛼 ∈ Ω

𝑘
𝑐 (𝑀) .

Here 〈·, ·〉 is the pairing between 𝑘–forms and 𝑘–vectors and the integral is taken with

respect to the 𝑘–dimensional Hausdorff measure.
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We say that 𝑇 is integral if both 𝑇 and 𝜕𝑇 are integer rectifiable. In particular, a closed integer

rectifiable current is integral. •

Definition 4.8 (cf. [De 16, Definition 5.5; DSS17a, Definition 0.1(b)]). A 𝑘–semicalibration on

𝑀 is a 𝑘–form 𝜎 such that ‖𝜎 ‖ 6 1. An integral 𝑘–current 𝑇 in 𝑀 is semicalibrated by 𝜎 if

𝜎𝑥 (
−→
𝑇 (𝑥)) = 1 forH𝑘–almost every 𝑥 ∈ supp𝑇 . •

Remark 4.9. A semicalibration 𝜎 is called a calibration if d𝜎 = 0. This notion was introduced

in a seminal article by Harvey and Lawson [HL82], who observed that a calibrated current is

volume-minimizing. ♣

Theorem 4.10 (Federer–Fleming Compactness Theorem). Let (𝑇𝑛)𝑛∈N be a sequence of integral

𝑘–currents in𝑀 and let 𝐾 ⊂ 𝑀 be a compact subset. If

sup
𝑛
{M(𝑇𝑛) +M(𝜕𝑇𝑛)} < ∞ and supp(𝑇𝑛) ⊂ 𝐾 for every 𝑛 ∈ N,

then after passing to a subsequence (𝑇𝑛)𝑛∈N converges weakly to an integral current 𝑇 . Moreover,

if each 𝑇𝑛 is closed, then so is 𝑇 . If each 𝑇𝑛 is semicalibrated by a semicalibration 𝜎 , then so is 𝑇 .

The proof of the first two statements can be found, for example, in [Sim83, Chapter 6 Section

32]. The statement about semicalibrations follows immediately: an integral current 𝑇 with

supp𝑇 ⊂ 𝐾 is semicalibrated by 𝜎 if and only if𝑇 (𝜒𝜎) = vol(𝑇 ), for any 𝜒 ∈ 𝐶∞
𝑐 (𝑀) with 𝜒 = 1

on 𝐾 , and this condition is preserved by the weak convergence.

The upcoming discussion requires the following notation and definition.

Notation 4.11. Given 𝑘 ∈ N, set

𝐷̃𝑘
≔ {(𝑧,𝑤) ∈ C

2 : 𝑧 = 𝑤𝑘 and |𝑧 | < 1}.

𝐷̃𝑘\{0} is an oriented smooth submanifold of C2 and the map (𝑧,𝑤) ↦→ 𝑧 is an orientation-

preserving local diffeomorphism 𝐷̃𝑘\{0} → 𝐷\{0} where 𝐷 ≔ {𝑧 ∈ C : |𝑧 | < 1}. We equip

𝐷̃𝑘\{0} with the pull-back of the flat metric on 𝐷\{0}.3
Let 𝑘 ∈ N and 𝛼 ∈ (0, 1). Let 𝑓 : 𝐷̃𝑘 → R

2𝑛−2 be a continuous injective map which is of

class 𝐶3,𝛼 on 𝐷̃𝑘\{0} and satisfies 𝑓 (0) = 0 and |d𝑓 (𝑧,𝑤) | . |𝑧 |𝛼 . Define 𝑓 : 𝐷̃𝑘 → R
2𝑛 by

𝑓 (𝑧,𝑤) ≔ (𝑧, 𝑓 (𝑧,𝑤)) . ◦

Definition 4.12 (cf. [DSS17a, Definition 1.3]). Let𝑈 ⊂ R
2𝑛 be an open neighborhood of zero and

let 𝜙 : 𝑈 → 𝑀 be a smooth chart. Given 𝑓 and 𝜙 as in Notation 4.11 the 𝑘–branching associated

with (𝑓 , 𝜙) is the integral 2–current 𝐺 𝑓 ,𝜙 on𝑀 given by

𝐺 𝑓 ,𝜙 : Ω
2
𝑐 (𝑀) → R

𝐺 𝑓 ,𝜙 (𝛼) ≔

ˆ

𝐷̃𝑘\{0}
𝑓 ∗𝜙∗𝛼 for 𝛼 ∈ Ω

2
𝑐 (𝑀) . •

3While 𝐷̃𝑘 is homeomorphic to 𝐷 and thus has the structure of a smooth manifold, the pull-back metric on

𝐷̃𝑘\{0} does not extend through the origin unless 𝑘 = 1.
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We are ready to state the crucial regularity theorem for 2–dimensional semicalibrated

currents used in this paper.

Theorem 4.13 (De Lellis, Spadaro, and Spolaor [DSS17a; DSS17b]). Let 𝜎 be a 2–semicalibration

on a Riemannian manifold (𝑀,𝑔) and let 𝑇 be an integral 2–current in𝑀 semicalibrated by 𝜎 .

(1) For every 𝑥 ∈ supp(𝑇 )\ supp(𝜕𝑇 ) there exist a neighborhood 𝑈 of 𝑥 , a finite collection

of maps 𝑓1, . . . , 𝑓𝐼 and charts 𝜙1, . . . , 𝜙𝐼 as in Notation 4.11 with 𝜙𝑖 (0) = 𝑥 , and weights

𝑚1, . . . ,𝑚𝐼 ∈ N such that

(4.14) 𝑇 |𝑈 =

𝐼∑︁

𝑖=1

𝑚𝑖𝐺 𝑓𝑖 ,𝜙𝑖
.

(2) The set sing(𝑇 ) is discrete.

Discussion of the proof. This result, for 𝑀 = R
𝑁 with the Euclidean metric, is contained in

[DSS17a, Theorem 0.2 and Section 1] and [DSS17b, Theorem 3.1, Section 3.2]. The result for

an arbitrary 𝑀 follows by the argument explained in Remark 4.4. Although only part (2) of

the theorem is explicitly stated in the article [DSS17a], its authors actually prove (1) which is a

slightly stronger statement. Indeed, (1) implies (2) because 𝑥 is the only singular point of any

current of the form (4.14). For the reader’s convenience, we outline how to reconstruct the proof

of (1) from the discussion in [DSS17a, Section 1, especially 1.4—1.5].

The first step in the proof, explained in [DSS17b, Step 4 in Section 3.2], is to show that

without loss of generality we may assume that 𝑇 is irreducible in the sense that it cannot be

written in the form 𝑇 = 𝑇1 +𝑇2 for two integral currents 𝑇1, 𝑇2 with supp𝑇1 ∩ supp𝑇2 = ∅. For

𝜆 > 0 denote by 𝑇𝜆 the rescaled current

𝑇𝜆 (𝛼) ≔ 𝑇 (𝜆∗𝛼) for 𝛼 ∈ Ω
2
𝑐 (R

𝑁 ),

where, by slight abuse of notation, 𝜆∗𝛼 denotes the pull-back of 𝛼 by the diffeomorphism

𝑦 ↦→ 𝜆−1𝑦. Denote by 𝐵𝑟 ⊂ R
𝑁 the ball of radius 𝑟 > 0 centered at zero. It is proved in

[DSS17b, Theorem 3.1, Step 4 in Section 3.2] that in the situation at hand there exists an oriented

2–dimensional linear subspace 𝜋 ⊂ R
𝑁 and 𝑚 ∈ N such that for every sequence (𝜆𝑛)𝑛∈N

converging to zero and 𝑟 > 0, the sequence (𝑇𝜆𝑛 |𝐵𝑟 )𝑛∈N converges weakly to the Dirac delta

𝛿𝑚𝜋 |𝐵𝑟 ; 𝛿𝑚𝜋 is called the tangent cone. Note that this tangent cone is, in particular, a multiple

of a 1–branching in the sense of Definition 4.12 for 𝑓 = 0.
The crucial step in the proof is [DSS17a, Theorem 1.8] which asserts the following. Suppose

that for some 𝑟 > 0 the restriction𝑇 |𝐵𝑟 is approximated by a 𝑘–branching: the precise definition

is rather technical and is stated in [DSS17a, Assumption 1.7]. If this is the case, then

(1) either 𝑇 |𝐵𝜌 = ℓ𝐺 𝑓 ,𝜙 for some 𝜌 > 0, ℓ ∈ N, and a 𝑘–branching 𝐺 𝑓 ,𝜙 ,

(2) or there are 𝑘 ′ > 𝑘 and 𝜆 > 0 such that 𝑇𝜆 |𝐵𝑟 is approximated by a 𝑘 ′–branching.

Now the theorem can be proved by induction. It follows from [DSS17b, Theorem 3.1] that for

sufficiently small 𝜆 > 0 and 𝑟 > 0, 𝑇𝜆 |𝐵𝑟 is approximated by a 1–branching, namely the tangent
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cone. Thus, either𝑇𝜆 |𝐵𝜌 is a multiple of a 1–branching for some 𝜌 > 0, or after further rescaling
is approximated by a 𝑘–branching with 𝑘 > 1. If the latter is true, we can apply the theorem

again and the process continues, so that 𝑇 is after rescaling approximated by a 𝑘–branching for

larger values of 𝑘 . The process must, however, terminate at some point, because the sequence

of rescaling converges to the tangent cone 𝛿𝑚𝜋 from which it follows that 𝑘 6 𝑚 [DSS17a,

third paragraph of Section 2.1]. Thus, after finitely many steps, we obtain that 𝜆∗𝑇 |𝐵𝜌 = ℓ𝐺 𝑓 ,𝜙

for some 𝜆 > 0, 𝜌 > 0, ℓ ∈ N and a 𝑘–branching 𝐺 𝑓 ,𝜙 . We conclude that 𝑇 |𝐵𝜆𝜌
= ℓ𝐺

𝑓 ,𝜙
for

𝜙 ≔ 𝜆 · 𝜙 . �

5 𝐽–holomorphic cycles and geometric convergence

In this section we introduce the notions of a 𝐽–holomorphic cycle and geometric convergence.

We then compare these with the notions of an integral currents and weak convergence. This

comparison, combined with the results discussed in Section 4, implies Proposition 1.9.

Throughout, let (𝑀, 𝐽 , 𝑔) be an almost Hermitian manifold. Denote by

𝜎 ≔ 𝑔(𝐽 ·, ·)

the corresponding Hermitian form. It follows from Wirtinger’s inequality that 𝜎 is a semicali-

bration on (𝑀,𝑔) and that a 2–dimensional submanifold is semicalibrated by 𝜎 if and only if it

is 𝐽–holomorphic [Fed69, Section 5.4.19; HL82, Section II.3 Example 1].

Remark 5.1. If 𝜎 is closed, that is 𝜎 is a symplectic form and 𝐽 is compatible with 𝜎 , then 𝜎

is a calibration and Remark 4.9 recovers the well-known fact that 𝐽–holomorphic curves in

symplectic manifolds minimize volume. ♣

Definition 5.2.

(1) A 𝐽–holomorphic curve is a subset of𝑀 which is the image of a simple 𝐽–holomorphic

map to𝑀 . A 𝐽–holomorphic cycle 𝐶 is a formal linear combination

𝐶 =

𝐼∑︁

𝑖=1

𝑚𝑖𝐶𝑖

of 𝐽–holomorphic curves 𝐶1, . . . ,𝐶𝐼 with coefficients𝑚1, . . . ,𝑚𝐼 ∈ N.

(2) The homology class of a 𝐽–holomorphic curve is the homology class of the corresponding

simple map and the homology class of a 𝐽–holomorphic cycle 𝐶 is

[𝐶] ≔

𝐼∑︁

𝑖=1

𝑚𝑖 [𝐶𝑖] .

(3) We say that 𝐶 is smooth if 𝐶1, . . . ,𝐶𝐼 are embedded and pairwise disjoint.
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(4) For a 𝐽–holomorphic cycle 𝐶 denote by 𝛿𝐶 : Ω
2
𝑐 (𝑀) → R the associated Dirac delta

2–current defined in Example 4.2. The support supp(𝐶) and mass M(𝐶) of 𝐶 are defined

as the support and mass of 𝛿𝐶 respectively. Explicitly,

supp(𝐶) ≔ supp(𝛿𝐶 ) =
𝐼⋃

𝑖=1

𝐶𝑖 and M(𝐶) ≔ M(𝛿𝑐) =

𝐼∑︁

𝑖=1

𝑚𝑖 area(𝐶𝑖). •

Definition 5.3 (Taubes [Tau98, Definition 3.1]). Let 𝑀 be a manifold and let (𝐽𝑛, 𝑔𝑛)𝑛∈N be a

sequence of almost Hermitian structures converging to an almost Hermitian structure (𝐽 , 𝑔)

in the 𝐶∞ topology. For every 𝑛 ∈ N let 𝐶𝑛 be a 𝐽𝑛–holomorphic cycle. We say that (𝐶𝑛)𝑛∈N
converges geometrically to a 𝐽–holomorphic cycle 𝐶 if:

(1) (𝛿𝐶𝑛 )𝑛∈N converges weakly to 𝛿𝐶 and

(2) (supp(𝐶𝑛))𝑛∈N converges to supp(𝐶) in the Hausdorff distance; that is:

(5.4) lim
𝑛→∞

𝑑𝐻 (supp(𝐶), supp(𝐶𝑛)) → 0.

Recall that the Hausdorff distance between two closed sets 𝑋 and 𝑌 is defined by

𝑑𝐻 (𝑋,𝑌 ) ≔ max

{

sup
𝑥 ∈𝑋

𝑑 (𝑥,𝑌 ), sup
𝑦∈𝑌

𝑑 (𝑦,𝑋 )

}

,

with 𝑑 denoting the distance with respect to the Riemannian metric 𝑔. •

The following results compare 𝐽–holomorphic cycles and geometric convergence with

closed 𝜎–semicalibrated currents and weak convergence.

Lemma 5.5. If 𝑇 is a closed integer rectifiable current with compact support which is semicalibrated

by 𝜎 , then there exists a 𝐽–holomorphic cycle 𝐶 such that

𝑇 = 𝛿𝐶 .

For symplectic 4–manifolds this result was proved by Taubes [Tau96a, Proposition 6.1].

Taubes’ argument and the work of Rivière and Tian [RT09] establish the result for symplectic

manifolds, that is: when 𝜎 is a calibration.

Proof. Let Σ̊ = reg(𝑇 ) be the set of regular points of 𝑇 , so that Σ̊ is an oriented 𝐶1 submanifold.

Since 𝑇 is semicalibrated by 𝜎 , the tangent spaces to Σ̊ are 𝐽–invariant. It follows from elliptic

regularity that Σ̊ is a smooth submanifold and has a canonical structure of a Riemann surface.

By Theorem 4.13, the singular locus sing(𝑇 ) is discrete and so finite since supp(𝑇 ) is compact.

Moreover, every 𝑥 ∈ sing(𝑇 ) has a neighborhood𝑈 such that

Σ̊ ∩𝑈 � 𝐷\{0} ⊔ · · · ⊔ 𝐷\{0} and sing(𝑇 ) ∩𝑈 = {𝑥}.

Here 𝐷 = {𝑧 ∈ C : |𝑧 | < 1}. Thus, Σ̊ can be compactified to a Riemann surface Σ by adding

finitely many points. The compact Riemann surface Σ comes with a continuous map 𝑢 : Σ → 𝑀 .
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Its restriction to Σ̊ is a smooth 𝐽–holomorphic embedding. Since the image of 𝑢 is the compact

set supp(𝑇 ) and the energy of𝑢 isM(𝑇 ) < ∞, it follows from the removable singularity theorem

[MS12, Theorem 4.2.1] that 𝑢 is, in fact, smooth and 𝐽–holomorphic on all of Σ. Moreover, the

above discussion shows that

𝑇 (𝛼) =

ˆ

Σ

𝑚 · 𝑢∗𝛼 for all 𝛼 ∈ Ω
2
𝑐 (𝑀)

for some locally constant function 𝑚 : Σ → N. Denoting by 𝐶1, . . . ,𝐶𝐼 the images of the

connected components of Σ and by𝑚1, . . . ,𝑚𝐼 ∈ N the corresponding values of𝑚 yields

𝑇 = 𝛿𝐶 with 𝐶 ≔

𝐼∑︁

𝑖=1

𝑚𝑖𝐶𝑖 . �

Lemma 5.6. In the situation of Definition 5.3, if condition (1) holds and there exists a compact

subset containing supp(𝐶𝑛) for every 𝑛 ∈ N, then condition (2) holds as well.

This result, which is an immediate consequence of themonotonicity formula for 𝐽–holomorphic

maps, is contained in the proof of [Tau98, Proposition 3.3] and also a well-known fact in geo-

metric measure theory, so we omit the proof.

Proof of Proposition 1.9. Since sup𝑛 M(𝐶𝑛) < ∞ and supp(𝐶𝑛) ⊂ 𝐾 for every 𝑛 ∈ N, by The-

orem 4.10 there exists a subsequence which converges weakly to a closed integer rectifiable

current semicalibrated by 𝜎 . By Lemma 5.5, this current is of the form 𝛿𝐶 for a 𝐽–holomorphic cy-

cle 𝐶 . By Lemma 5.6, the sequence of pseudo-holomorphic cycles (𝐶𝑛) geometrically converges

to 𝐶 . �

6 Proof of Theorem 1.6

Suppose that 𝐽 is 𝑘–rigid and that 𝐴 ∈ 𝐻2(𝑀) satisfies 〈𝑐1(𝑀, 𝐽 ), 𝐴〉 = 0 and its divisibility is

at most 𝑘 . If the conclusion of the theorem fails, then there are are infinitely many distinct

𝐽–holomorphic curves𝐶𝑛 ⊂ 𝑀 representing𝐴 and of energy at most Λ. By Proposition 1.9, after

passing to a subsequence, the sequence (𝐶𝑛) converges geometrically to a 𝐽–holomorphic cycle

𝐶∞ =

𝐼∑︁

𝑖=1

𝑚𝑖𝐶
𝑖
∞.

Proposition 6.1. 𝐶∞ is connected, smooth, and its multiplicity is at most the divisibility of 𝐴.

Proof. By Definition 5.3 (1), [𝐶∞] = [𝐴]. Let 𝑢𝑖 : Σ𝑖 → 𝑀 be a simple 𝐽–holomorphic map

whose image is 𝐶𝑖
∞. The index formula (2.5) yields

𝐼∑︁

𝑖=1

𝑚𝑖 index(𝑢𝑖) =
𝐼∑︁

𝑖=1

2𝑚𝑖 〈𝑐1(𝑀, 𝐽 ), [𝐶
𝑖
∞]〉 = 2〈𝑐1(𝑀, 𝐽 ), [𝐶∞]〉 = 0.
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Since 𝐽 is 𝑘-rigid, by Definition 2.10 (2), there are no 𝐽–holomorphic curves of negative index.

Thus, we have index(𝑢𝑖) > 0 for every 𝑖 ∈ {1, . . . , 𝐼 } and the above computation shows that

index(𝑢1) = · · · = index(𝑢𝐼 ) = 0.

Therefore, by Definition 2.10 (3), the 𝐽–holomorphic curves 𝐶1
∞, . . . ,𝐶

𝐼
∞ are embedded and

pairwise disjoint. This proves that 𝐶∞ is smooth.

To see that 𝐶∞ is connected, observe that if 𝐶∞ were disconnected, then Definition 5.3 (2)

would imply that 𝐶𝑛 is disconnected for 𝑛 ≫ 1. However, 𝐶𝑛 is a 𝐽–holomorphic curve and

thus connected by definition.

Since 𝐴 =𝑚1 [𝐶
1
∞], it follows that𝑚1 is at most the divisibility of 𝐴. �

In the following, we rescale the sequence (𝐶𝑛) and extract a further limit𝐶∞. The properties

of 𝐶∞ will give a contradiction to 𝐽 being 𝑘–rigid.

Henceforth, we denote by 𝐶1
∞ the 𝐽–holomorphic curve underlying the 𝐽–holomorphic

cycle 𝐶∞. Since the curves 𝐶𝑛 are all distinct, we can assume that they are all distinct from 𝐶1
∞.

We can also assume that every 𝐶𝑛 is contained in a sufficiently small tubular neighborhood of

𝐶1
∞. By slight abuse of notation, we regard 𝐶𝑛 as an exp∗ 𝐽–holomorphic curve in the normal

bundle 𝑁𝐶1
∞ and 𝐶1

∞ as the zero section in 𝑁𝐶1
∞.

For every 𝜆 > 0 let 𝜎𝜆 be as in Lemma 3.10. Choose (𝜆𝑛) such that such that the sets

𝐶𝑛 ≔ 𝜎−1𝜆𝑛 (𝐶𝑛)

satisfy

(6.2) 𝑑𝐻 (𝐶𝑛,𝐶
1
∞) = 1/2.

Set

𝐽𝑛 ≔ 𝜎∗𝜆𝑛 exp
∗ 𝐽 .

By construction, the 𝐶𝑛 are 𝐽𝑛–holomorphic. By Lemma 3.10, the sequence (𝐽𝑛) converges to

the almost complex structure 𝐽𝑢 associated with the 𝐽–holomorphic map 𝑢 : 𝐶1
∞ ↩→ 𝑀 . The

sequence (𝐶𝑛) is contained in the compact disc bundle 𝐵1/2(𝑁𝐶
1
∞) ⊂ 𝑁𝐶1

∞. By Lemma 3.6 (5),

𝐽𝑢 is tamed by a symplectic form 𝜔 on 𝐵1(𝑁𝐶
1
∞). Consequently, for 𝑛 ≫ 1 the almost complex

structure 𝐽𝑛 is tamed by 𝜔 as well. Define a Riemannian metric 𝑔 on 𝐵1(𝑁𝐶
1
∞) by

𝑔 ≔
1

2
(−𝜔 (𝐽𝑢 ·, ·) + 𝜔 (·, 𝐽𝑢 ·)) .

The analogously defined metrics 𝑔𝑛 are Hermitian with respect to 𝐽𝑛 and converge to 𝑔. By the

energy identity [MS12, Lemma 2.2.1],

lim
𝑛→∞

M(𝐶𝑛) = lim
𝑛→∞

𝛿𝐶̃𝑛
(𝜔) = 𝛿𝐶1

∞
(𝜔) < ∞.

Therefore, the mass of 𝐶𝑛 with respect to 𝑔𝑛 (and thus also 𝑔) can be bounded independent of 𝑛.
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By Proposition 1.9, a subsequence of (𝐶𝑛)𝑛∈N geometrically converges to a 𝐽–holomorphic

cycle

𝐶∞ =

𝐼∑︁

𝑖=1

𝑚̃𝑖𝐶
𝑖
∞.

Let 𝑑𝑖 ∈ N be such that [𝐶𝑖
∞] = 𝑑𝑖 [𝐶

1
∞]. Condition (6.2) guarantees that supp(𝐶∞) ≠ 𝐶1

∞.

Therefore, without loss of generality, 𝐶1
∞ is not contained in the zero section. Since

𝑚1 [𝐶
1
∞] = 𝐴 = [𝐶∞] =

𝐼∑︁

𝑖=1

𝑚̃𝑖𝑑𝑖 [𝐶
1
∞],

we have 𝑑1 6 𝑚̃1𝑑1 6 𝑚1 6 𝑘 . Proposition 3.12 applies and the map 𝜑 : 𝐶1
∞ → 𝐶1

∞ defined there

has degree 𝑑1. This contradicts 𝐽 being 𝑘–rigid. �
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