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Abstract

This article is concerned with the question of whether an energy bound implies a genus
bound for pseudo-holomorphic curves in almost complex manifolds. After reviewing
what is known in dimensions other than six, we establish a new result in this direction
in dimension six; in particular, for symplectic Calabi—Yau 3-folds. The proof relies on
compactness and regularity theorems for pseudo-holomorphic currents.

1 Introduction

In 1889, Castelnuovo [Cas89] found a sharp upper bound for the genus of an irreducible,
nondegenerate curve of a given degree in CP"; see [ACGHS5, Chapter III Section 2] for a proof
in modern language. A corollary of this result is that for every projective variety there is an
upper bound for the genus of an irreducible curve representing a given homology class. Our
starting point is the question:

Are there analogues of Castelnuovo’s bound in almost complex geometry?

For curves in CP? Castelnuovo’s bound reduces to the degree-genus formula. The latter is a
consequence of the adjunction formula, which generalizes to an inequality for almost complex
4-manifolds [MS12, Theorem 2.6.4]. The adjunction inequality directly implies the following
well-known genus bound.

Proposition 1.1. Suppose that (M, J) is an almost complex 4—manifold. If there exists a simple
J—holomorphic map u: ¥ — M representing A € Hy(M), then the genus g(X) satisfies

1
(1.2) g(2) < 2 (A-A={(c1(M,]),A)) +1.

The following is a consequence of Gromov’s h-principle for symplectic embeddings [Gro86,
Section 3.4.2 Theorem (A)]. It shows that in higher dimensions there cannot be a genus bound
which holds for all almost complex structures.

Proposition 1.3. Let (M, w) be a symplectic manifold of dimension 2n > 6. For every A € Hy(M)
with ([w], A) > 0 and every g € N there is an almost complex structure ] compatible with w and
a J—holomorphic embedding u: ¥ — M satisfying

9(2) = g.



There are, however, genus bounds for generic almost complex structures. Here is a simple
example, which follows easily from the index formula and transversality theorem for simple
J-holomorphic maps [MS12, Chapter 3].

Proposition 1.4. Let M be a manifold of dimension 2n. Denote by ¥ the space of smooth almost
complex structures on M equipped with the C> —topology. There is a comeager subset fo C ¥ such
that for every J € 4 the following holds: if there exists a simple J—holomorphic mapu: ¥ — M
representing A € Hy(M), then

(e1(M, ]),A) >0 ifn=3
o g9(2) < % +1 ifn>3.

Moreover, if M carries a symplectic form w, then the same holds with ¥ replaced by the space
J (w) of smooth almost complex structures compatible with w.

Proposition 1.3 and Proposition 1.4 are both well-known and we omit their proofs.

The preceding discussion leaves open the case of generic almost complex structures in
dimension six and homology classes satisfying (c;(M, J),A) > 0. In the present article, we
focus on the case

(e1(M, ]),A) =0,

that is: on classes for which the corresponding moduli space of J-holomorphic maps has
expected dimension zero. This includes all homology classes in symplectic Calabi—Yau 3-
folds, that is: symplectic manifolds (M, w) such that dimM = 6 and c¢;(M,J) = 0 for some
almost complex structure J compatible with w. Our motivation for considering this case comes
from our project to construct a symplectic analogue of the Pandharipande-Thomas invariants
of projective Calabi-Yau 3-folds [DW19b, Section 7]. Another motivation comes from the
Gopakumar—-Vafa conjecture. Bryan and Pandharipande [BPo1] defined the Gopakumar—Vafa
BPS invariants n’, (M, ) of a symplectic Calabi-Yau 3—fold (M, @) in terms of its Gromov—
Witten partition function. They conjectured that the BPS invariants ni (M, ) are integers and
vanish for all but finitely many g [BPo1, Conjecture 1.2]. The integrality conjecture has been
proved by Ionel and Parker [IP18]. The finiteness conjecture remains open and is closely related
to the question about the existence of genus bounds for symplectic Calabi-Yau 3-folds.

Motivated by Gromov-Witten theory, Bryan and Pandharipande [BPo1] introduced the
notion of k—rigidity for almost complex structures; see Definition 2.10. They conjectured that a
generic almost complex structure is co—rigid (or super-rigid), that is: k-rigid for every k € N.
This has recently been proved by Wendl [Wenigb]; see Theorem 2.13. A concise exposition of
Wendl’s proof using the framework of equivariant Brill-Noether theory for elliptic operators
can be found in [DW18].

The main result of this article shows that k-rigidity implies a Castelnuovo bound.

Theorem 1.6. Let k € N U {oo}. Let (M, ], g) be a compact almost Hermitian 6—manifold with
a k-rigid almost complex structure J. Suppose A € Hy(M) satisfies {c1(M, J), A) = 0 and has

1Let X be a topological space. A subset A C X is called comeager (or residual) if it contains the intersection of
countably many dense open subsets. A comeager subset of a complete metric space is dense.



divisibility at most k. Given any A > 0, there are only finitely many simple J—holomorphic maps
representing A and with energy at most A.

Remark 1.7. Theorem 1.6 immediately implies a Castelnuovo bound for every fixed k-rigid
almost complex structure J. Unlike in the n > 3 case of (1.5), however, this bound may depend
on J. &

If J is tamed by a symplectic form o, then imposing an upper bound for the energy is
superfluous since the energy of any J-holomorphic map representing A is ([w], A).

Corollary 1.8. Let (M, w) be a compact symplectic Calabi—Yau 3—fold. Suppose J is a super-rigid
almost complex structure compatible with «. Then for every A € Hy(M) there are only finitely
many simple J—holomorphic maps representing A. ]

In the situation of Theorem 1.6, Gromov’s compactness theorem [Gro8s5; PWo93; Yeg4;
Humg7] shows that there are only finitely many J-holomorphic maps representing A from
Riemann surfaces of fixed genus. It is thus of no use for proving Theorem 1.6. Instead, we use the
following compactness result for J—holomorphic cycles, that is: formal sums of J-holomorphic
curves, with respect to geometric convergence; see (1) and Definition 5.3.

Proposition 1.9. Let M be a manifold and let (J,, gn)nen be a sequence of almost Hermitian
structures converging to an almost Hermitian structure (], g) in the C}, —topology. Let K. C M be
a compact subset and let A > 0. For each n € N let Cy, be a J,,—holomorphic cycle with support
contained in K and of mass at most A. Then a subsequence of (Cp,)nen geometrically converges to
a J—holomorphic cycle C.

In dimension four, this result was proved by Taubes [Taug6a]. The proof in higher dimen-
sions relies on results in geometric measure theory; in particular, the recent work of De Lellis,
Spadaro, and Spolaor [DSS17b; DSS18; DSS172a; DSS20] on the regularity of semi-calibrated
currents. The points of this theory most relevant to the present article are discussed in Section 4.

Remark 1.10. If (M, 0) is a symplectic manifold, (J,,),en is a sequence of w—compatible almost
complex structures, and g, = w(-, J,,-) is the corresponding sequence of Riemannian metrics,
then Proposition 1.9 can be proved using earlier work of Riviére and Tian [RTo9] on the regularity
of calibrated currents. However, the proof of Theorem 1.6 leads to almost complex structures
which are tamed by but (possibly) not compatible with a symplectic structure. Therefore, the
work of De Lellis, Spadaro, and Spolaor is crucial even for Corollary 1.8. &

Remark 1.11. Since the first version of this article appeared, we used the k = 1 case of Theorem 1.6
to prove the Gopakumar—Vafa finitness conjecture for the BPS numbers ni (M, w) whenever A
is a primitive homology class [DW19a]. The cited article also contains a version of Theorem 1.6
for homology classes satistying {(c;(M, w), A) > 0. *

Convention 1.12. Throughout this article, f(x) < g(x) is an abbreviation for: f(x) < cg(x) with
a constant ¢ > 0 independent of x.
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2 k-rigidity of /J-holomorphic maps

Let us briefly recall the notion of k-rigidity as defined by Eftekhary. For a more detailed
discussion we refer the reader to [Efti6, Section 2; Wenigb, Section 2.1] as well as [DW18,
Section 2.1]. The notation and definitions in this article are consistent with those used in the
last reference.

Henceforth, let (M, J, g) be an almost Hermitian 2n—-manifold; that is: J is an almost complex
structure and g is a Riemannian metric such that g(J-, J-) = g(-,-). In particular, we do not
assume that the 2-form g(J-, -) is closed or that M even admits a symplectic structure.

Definition 2.1. A J-holomorphic map u: (X,j) — (M,]) is a pair consisting of a closed,
connected Riemann surface (2, j) and a smooth map u: ¥ — M satisfying the non-linear
Cauchy-Riemann equation

(2.2) dr(u, j) = %(du + J(u)oduo j)=0. °

Definition 2.3. Let u: (2, j) — (M, ]) be a J-holomorphic map. Let ¢ € Diff (Z) be a diffeo-
morphism. The reparametrization of u by ¢ is the J-holomorphic map u o ¢~1: (2, ¢.j) —
(M, ]). .

Definition 2.4. Let u: (3, j) — (M, ]) be a J-holomorphic map and let 7: (3, j) — (5, j) be
a holomorphic map of degree deg(xr) > 2. The composition u o 7: (%, j) — (M, J) is said to be
a multiple cover of u. A J-holomorphic map is simple if it is not constant and not a multiple
cover. °

Rigidity and k-rigidity are conditions on the infinitesimal deformation theory of J-holomorphic
curves up to reparametrization. We will have to briefly review parts of this theory. The reader
can find further details in [MS12, Chapter 3] and [Weni9a, Lectures 2 and 7], for example.
The second reference, in particular, discusses varying the complex structure on higher genus
Riemann surfaces.

The index of a J-holomorphic map u: (X, j) — (M, J) is defined as

(2.5) index(u) := 2{u"c; (M, ]), [Z]) + (2n — 6)(1 — g(2)).

This is the Fredholm index of the linearization of (2.2) with respect to the map u and complex
structure j (up to equivalence). The linearization with respect to u, with j fixed, is the operator

(2.6) £ %(V§+JO(V§)°J+(V§J)°du°j)-



Here V denotes the Levi-Civita connection of g on TM and also the induced connection on
u*TM [MS12, Proposition 3.1.1].
Let u: (3,j) — (M,]) be a non-constant J-holomorphic map. There exists a unique
complex subbundle
Tu c u"'TM

of rank one containing du(T%) [IS99, Section 1.3]. The generalized normal bundle of u is defined
as
Nu = u"TM/Tu.

If u is an immersion, then Nu is the usual normal bundle. If % = u o 7 is a multiple cover of an
immersion, then Nii = 7* Nu. The operator (2.6) maps I'(Tu) to Q%! (3, Tu). Thus, it induces
an operator

(2.7) bf:,’]: ['(Nu) — Q*(Nu)

called the normal Cauchy-Riemann operator of u [[S99, (1.5.1)]. The non-zero elements of the
kernel of Dﬁ{ 7 correspond to infinitesimal deformations of u which deform the image u(2). The
reader might find the summaries of Ivashkovich and Shevchishin’s construction of Tu, Nu, and
bi\’r 7 given in [Wenio, Section 3.3; DW18, Appendix 2A] helpful.

Definition 2.8. A non-constant J-holomorphic map u is rigid if ker bfy ;=0 °
A multiple cover & of u may fail to be rigid, even if u itself is rigid.

Definition 2.9. Let k € N U {co}. A simple J-holomorphic map u: (3, j) — (M, ]) is called
k-rigid if it is rigid and all of its multiple covers of degree at most k are rigid. °

Rigidity and k-rigidity are mostly interesting for maps of index zero, as it follows from the
index formula for the normal Cauchy-Riemann operator [[Sg9, Lemma 1.5.1] (see also [Wen1o,
Theorem 3; DW18, Proposition 2.7.1]) and standard transversality results that for a generic J
there are no rigid simple J-holomorphic maps satisfying index(u) # 0.

Definition 2.10. Suppose that dim M > 6. Let k € N U {oo}. An almost complex structure J is
called k-rigid if the following hold:

(1) Every simple J-holomorphic map of index zero is k-rigid.
(2) Every simple J-holomorphic map has non-negative index.

(3) Every simple J-holomorphic map of index zero is an embedding, and every two sim-
ple J-holomorphic maps of index zero either have disjoint images or are related by a
reparametrization. )

Remark 2.11. In dimension four, one should weaken (3) and require only that every simple J-
holomorphic map of index zero is an immersion with transverse self-intersections, and that two
such maps are either transverse to one another or are related by reparametrization. However,
we will only be concerned with dimension (at least) six. *



Definition 2.12. Denote by _# (M) the Fréchet space of smooth almost complex structures on M
equipped with the topology of C* convergence over compact subsets. If w is a symplectic form
on M, denote by # (M, w) the subspace of almost complex structures in £ (M) compatible with
. For k € NU {oo} set

K (M) ={J € F(M) : Jis k-rigid} and Rx(M,w) = B(M) N F(M,w). °

Theorem 2.13 (Wendl [Wenigb, Theorem A]). Let M be a manifold of dimension at least six. The
following hold:

(1) The subset B (M) is comeager in F (M).
(2) The subset R (M, w) is comeager in F (M, w).

This result establishes the super-rigidity conjecture of Bryan and Pandharipande [BPoz,
p- 290]. Earlier progress on this conjecture was made by Eftekhary [Eft16, Theorem 1.2] who
showed that %4(M, w) is comeager in # (M, w) if dim M = 6.

3 Real Cauchy-Riemann operators and almost complex structures

The purpose of this section is to explain that associated with every real Cauchy-Riemann
operator defined on a Hermitian vector bundle there is a natural almost complex structure on
the total space of that bundle. This construction is inspired by [Taug6b, p. 825-826]. In fact,
the results below can be found in [Zin11, Section 3.2; Wenigb, Appendix B]. Nevertheless, we
include them here for the reader’s convenience.

Definition 3.1. Let (2, j) be a Riemann surface. Let 7: E — 3 be a Hermitian vector bundle
over . A first order linear differential operator d: T'(E) — Q%!(Z, E) is called a real Cauchy-
Riemann operator if

(3-2) b(fs) = (9f)s +idj
for all f € C*(M,R). The anti-linear part of d is defined as
n=ny = %(b +JdJ) € I'(Hom(E, Hom¢ (T3, E))). ..
Every real Cauchy-Riemann operator can be written as
dD=0+m

where dy = V*! is the Dolbeault operator associated with a Hermitian connection V on E.
Denote by Hy C TE the horizontal distribution of V. It induces an isomorphism

(3.3) TE=Hy®n'E=n"TYX® n'E.

Definition 3.4. The complex structure Jy on E associated with V is defined by pulling back the
standard complex structure j @ i on 7*T% @ n*E by the isomorphism (3.3). .



It is well-known that a section s € T'(E) satisfies dys = 0 if and only if the map s: ¥ — E is
Jv—holomorphic. The following proposition extends this to real Cauchy-Riemann operators.

Definition 3.5. Let d = dy + 11 be a real Cauchy-Riemann operator. Define L,,: TE — TE by
Ly = —2n(v) jm,
at v € E. The almost complex structure J, on E associated with d is defined by

Joi=Jv+ L. .
Lemma 3.6. For every real Cauchy-Riemann operatord: T(E) — Q®!(E) the following hold:
(1) J» is an almost complex structure.
(2) The projection w: E — X is holomorphic with respect to .
(3) Foreveryx € X the fiber Ex = 17 (x) is a_J—holomorphic submanifold of E.
(4) A sections € I'(E) satisfiesds = 0 if and only if s: ¥ — E is a J,—holomorphic map.

(5) Denote by B1(E) := {e € E : |e| < 1} the disc bundle of E with respect to the given Hermitian
inner product on E. There exists a symplectic form w on the total space of By (E) which tames

b

Proof. With respect to (3.3) we have

_[ J 0
(3.7) b= (—Zn(v)j i)

at v € E. Since n(v) is anti-linear,
n(v)j% +in(v)j = 0.
Therefore,
that is, (1) holds.
Both (2) and (3) immediately follow from (3.7).
We prove (4). Let s: ¥ — E be a section. The projection of ds to the first factor of (3.3) is

7, o ds = idyy and thus j-linear. The projection of ds: TX — s*TE to the second factor is its
covariant derivative Vs: TY — s*E. It follows from (3.7) that the J,—antilinear part of ds is

1 1
E(ds+]bodsoj):E(Vs+ioVsoj)+ns
= Jys + ns = ds.

Therefore, ds: TY — TE is Jy-linear if and only if ds = 0.



The construction of a symplectic form o in (5) is standard and goes back to Thurston
[Thuy6]; see also [Gomos, Lemma 2.2; MSg8, Theorem 6.3; TMZ18, paragraph containing (2.9)].
Nevertheless, let us discuss the proof of (5). Let ws be an area form on . Let wg be any closed
2—form on B (E) which is positive when restricted to the fibers of E; that is, for all vertical
tangent vectors vg

(3-8) wp(vg, Jyug) 2 |ogl*.

Such a form can be constructed by choosing local unitary trivializations E|y, = U; X C", denoting
by A; the corresponding Liouville 1-forms on C” vanishing at zero, and setting

wE:d(Z)(ion-Ai)

for a partition of unity (y;). This form satisfies (3.8) on E. It remains to show that for r > 1
the closed 2—-form w = rws + wg tames J, on B;(E). For a tangent vector w to E at a point
(x,0) € By(E) denote by wy and wg its horizontal and vertical parts in the decomposition (3.3).
We have

(tws + wg) (W, (Jv + Ln)w)

tws(Wh, jwr) + 0p(WE, JyWg) + wg(wg, Lywg).

o(w, ow)

From |L,(v)| < |v| < 1 it follows that
lwe(we, Lawn)| < [we||lwhl.

Since
tws (wr, jwir) + 0p(wg, Jywe) 2 tlwg|? + |vg),

it follows that w tames J}, provided 7 > 1. [

The next two propositions are concerned with the following situation. Let (M, J, g) be an
almost Hermitian manifold and let u: (X, j)) — (M, J) be a J-holomorphic embedding. Denote
by Nu — ¥ its normal bundle and by D:II ; the normal Cauchy-Riemann operator introduced
in (2.7). The almost complex structure J and Riemannian metric g on M induce a Hermitian
structure on E. Write

(3-9) Ju= Ty,
for the almost complex structure on the total space of Nu associated with buN’ -
Lemma 3.10. For every A > 0 defineoy: Nu — Nu by

0, (v) = Av.

IfU c Nu is an open neighborhood of the zero section in Nu such that the exponential map
exp: U — M with respect to g is an embedding, then

oyexp'J = J, as A—0,

where the convergence is with respect to the C|;, —topology.



Proof. Denote by V the connection on Nu — 3 induced by the Levi-Civita connection of (M, g).
Throughout this proof, we identify

TU = TS ® n*Nu

as in (3.3). The two almost complex structures Jy and exp* J on U C Nu agree along the zero
section. The Taylor expansion of exp® J is of the form

(3-11) exp” J(x,0) = Jy(x,0) + Vo] (x,0) + O(Jo[).

Set
L(x,v) = V,J(x,0).

We write L as the matrix

L(x,0) = (Ln(x, v) Lpa(x, 0)) '

Loi(x,0)  Lys(x,0)

Here each L;; is linear in 0. The derivative do is given by

doy = (ld /1) .

Therefore,

. _(id Li1(x,Av) Lix(x, Av)) (id
(02)"L(x,0) = ( /1_1) (L;(x, o) L;z(x, /10)) ( )L)

_ (ALH(X,U) Alez(x,U))
“\La(xo)  ALg(x,0) |-

As A tend to zero, all but the bottom left entry tend to zero.
By construction, o Jy = Jy. As A tends to zero, the rescalings of terms of second order and
higher in (3.11) tend to zero. It remains to identify the term Ly;. By definition,

Ly1(x,0) = Ny © Vo] (x,0) o 7.

Comparing (2.6), Definition 3.1, and Definition 3.5, we see that Ly; = L,. This finishes the
proof. ]

Proposition 3.12. Ifi: (3, j) — (Nu, J,) is a simple J,~holomorphic map whose image is not
contained in the zero section, then the following hold:

(1) The map ¢: ) - (S )) given by ¢ := m o U is non-constant and holomorphic.

(2) The J—-holomorphic mapuo ¢: (2, ) = (M,]) is not rigid; in particular, the J—holomorphic
map u: (2, j) — (M, ]) is not k-rigid for k = deg(¢).



Proof. By Lemma 3.6 (2), : Nu — X is J,~holomorphic. Therefore, ¢ is holomorphic. The
map ¢ is constant if and only if the image of @ is contained in a fiber of 7. This is impossible,
because then & would be constant. This proves (1).

To prove (2), we use the fact that the normal bundle of the J-holomorphic map u o ¢ is
Nu o ¢ = ¢*Nu and the corresponding normal Cauchy-Riemann operator is

oy = (p*bij.

(3.13) uop,J —

Since u takes values in Nu, for every x € > we have
i(x) € Nuy(u(x)) = Ntgx) = (¢"Nu)y.
This gives rise to the section s € I'(¢*Nu) defined by
s(x) = a(x) € (¢"Nu)y.

This section is not the zero section, because the image of @ is not contained in the zero section.
By construction, s is holomorphic with respect to the almost complex structure on ¢*Nu induced
from J,. Lemma 3.6 (4) and (3.13) imply that
N —
) 7s=0. [

uO(p,

4 Regularity theory for 2—dimensional semicalibrated currents

The purpose of this section is to introduce a few notions of geometric measure theory and
explain Theorem 4.13 due to De Lellis, Spadaro, and Spolaor. The standard reference for the
foundations of geometric measure theory is Federer’s voluminous monograph [Fed69]. The
references [Sim83; De 16] are more accessible and easier to navigate, and are cited throughout
this section.

Definition 4.1 (cf. [Sim83, Chapter 6 Definition 26.1 and Paragraphs 26.3, 26.10, 26.11; De 16,
Definitions 2.1, 2.2]). Let M be a manifold. Let Q (M) be the space of k—forms with compact
support equipped with the strong C* topology.?

(1) A k—current in M is a continuous linear map T: Q¥(M) — R.

(2) A sequence (Tp,)nen of k—currents converges weakly to a k—curent T if

lim T,(«) =T(ax) forevery ae€ QIS(M).

2For the definition, see, for example, [GG8o, Chapter II Section 3]. A sequence (ap)peN in Q’Cc (M) converges in
this topology if and only if there is a compact subset K ¢ M such that supp a,, C K for all sufficiently large n and
(an)nen converges uniformly with all derivatives over K. If M is compact, then the strong C* topology agrees with
the standard C* topology making QK (M) into a Fréchet space. If M is non-compact, then the strong C* topology is
not metrizable.
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(3) The boundary of a k—current T is the (k — 1)—current 9T defined by
T (a) = T(da)
We say that T is closed if 9T = 0.

(4) The support of a k—current T, denoted by supp(T), is the intersection of all closed subsets
A C M with the property that T(«) = 0 for all @ € Q¥ (M) with suppa N A = @.

(5) Given an open subset U C M and a k—current T, the restriction of T to U is the k—current
Tly: QK(U) — R defined by
Tlu(a) = T(La)

with 1,.: QF(U) — QF(M) denoting the map extending a k—form with compact support
in U by zero on M\U. .

The archetypal example of a k—current is the following.
Example 4.2. Let

A=

M~

m;A;
=1

be a formal linear combination of oriented k—dimensional C' submanifolds A; C M possibly
with non-empty boundary 0A; and with coefficients my, ..., my € N. The Dirac delta associated
with A is the k—current §,4 : Q’g (M) — R defined by

I
dala) = Zmi/Aa.

We have supp §4 = UL] A;. The boundary of A is the Dirac delta associated with the formal

sum
I
0A = Z miaAi.
i=1
More generally, §4 can be defined in the same way if each A; is an oriented k—dimensional C'
submanifolds away from a subset whose k—dimensional Hausdorff measure is zero. [

Definition 4.3 (cf. [De 16, Definition 3.2]). Let T be a k—currentin M. A pointx € supp(T)\ supp(3T)
is regular if there exists an open neighborhood U of x such that T|y = 4 for an oriented
k-dimensional C' submanifold A C U and m € N. Otherwise we say that x is singular. Denote
by reg(T) and sing(T) the sets of regular and singular points in supp(T)\ supp(3T). °

A generalization of the above example is the notion of an integral current, which we now
describe. For the remainder of this section, let (M, g) be a Riemannian manifold and let %%
denote the k—dimensional Hausdorff measure induced by g.

11



Remark 4.4. While the definitions and results of geometric measure theory given below are
typically stated for M = RN equipped with the Euclidean metric, they immediately generalize
to any Riemannian manifold (M, g) by embedding it isometrically into RN for some N using
the Nash embedding theorem, and considering currents in M as currents in RV. &

Definition 4.5 (cf. [Sim83, Chapter 6 Paragraphs 25.6, 26.4; De 16, Definitions 2.3, 3.4]). For
x € M and a, € AFTM, set |ay| := sup{|a,(£)|} with the supremum taken over all simple
k-vectors £ € AKT, M with |£| = 1, with the norm induced by the Riemannian metric. The
comass of & € QF(M) is

lla|l := sup|ax|.
xeM

The mass of a k—current T in M is defined by
M(T) := sup{T(a) : @ € Q¥(M) and ||a|| < 1}. .

Definition 4.6 (cf. [Sim83, Chapter 3 Section 11]). A subset A C M is called k-rectifiable if
there are subsets Ag, A, Ay, ... C M such that Z*(Ay) = 0, each A; for i > 1is a C'-embedded
k—dimensional submanifold, and

[eS]
o

If A C M is k-rectifiable, then for #*—almost every x € A there exists an approximate
tangent space to A at x, which is a k—dimensional subspace of T, M. We denote it by (A, x).
For details, see [Sim83, Chapter 3 Section 11; De 16, Lemma 2.1.15],

Definition 4.7 (cf. [Sim83, Definition 27.1]). A k-current T in M is integer rectifiable if M(T) <
oo and there exist:

(1) a k-rectifiable subset A C M,
(2) an Z*-measurable function m: A — N U {0}, and
(3) an #*-measurable section T of AFTM la

such that:

(4) for #*-almost all x € A, the k—vector?(x) € AFT M is given by?(x) =etA...Neg
for any orthonormal frame of 7 (A, x), and

(5) T is given by
T(a) = / m(x){a(x), T (x)) dZ* for a e QF(M).
A

Here (-, -) is the pairing between k—forms and k-vectors and the integral is taken with
respect to the k—dimensional Hausdorff measure.
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We say that T is integral if both T and oT are integer rectifiable. In particular, a closed integer
rectifiable current is integral. o

Definition 4.8 (cf. [De 16, Definition 5.5; DSS17a, Definition 0.1(b)]). A k—semicalibration on
M is a k—form ¢ such that ||o|| < 1. An integral k—current T in M is semicalibrated by o if

crx(? (x)) = 1 for Z*-almost every x € supp T. °

Remark 4.9. A semicalibration o is called a calibration if do = 0. This notion was introduced
in a seminal article by Harvey and Lawson [HL82], who observed that a calibrated current is
volume-minimizing. &

Theorem 4.10 (Federer-Fleming Compactness Theorem). Let (T,)nen be a sequence of integral
k—currents in M and let K C M be a compact subset. If

sup{M(T,) + M(0T,)} < oo and supp(T,) C K forevery neN,
n

then after passing to a subsequence (T,,)nen converges weakly to an integral current T. Moreover,
if each T, is closed, then so is T. If each T, is semicalibrated by a semicalibration o, then so is T.

The proof of the first two statements can be found, for example, in [Sim8&3, Chapter 6 Section
32]. The statement about semicalibrations follows immediately: an integral current T with
supp T C K is semicalibrated by ¢ if and only if T(yo) = vol(T), for any y € C;°(M) with y =1
on K, and this condition is preserved by the weak convergence.

The upcoming discussion requires the following notation and definition.

Notation 4.11. Given k € N, set
D¥ = {(z,w) € C*: z = wF and |7| < 1}.

D¥\{0} is an oriented smooth submanifold of C? and the map (z, w) — z is an orientation-
preserving local diffeomorphism D*\{0} — D\{0} where D := {z € C: |z| < 1}. We equip
D¥\{0} with the pull-back of the flat metric on D\{0}.>

Let k € Nand & € (0,1). Let f: DX — R?*"~2 be a continuous injective map which is of
class C>* on D\ {0} and satisfies f(0) = 0 and |df(z, w)| < |2|%. Define f: DX — R?" by

flzw) = (z f(z ). o

Definition 4.12 (cf. [DSS17a, Definition 1.3]). Let U C R?" be an open neighborhood of zero and
let $: U — M be a smooth chart. Given f and ¢ as in Notation 4.11 the k—branching associated
with (f, ¢) is the integral 2—current G4 on M given by

Grg: QXM) >R

Grg(a) ::/ fi¢*a for ae QA(M). o
Dk\{0} —

_ *While Dk is homeomorphic to D and thus has the structure of a smooth manifold, the pull-back metric on
D*\{0} does not extend through the origin unless k = 1.
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We are ready to state the crucial regularity theorem for 2-dimensional semicalibrated
currents used in this paper.

Theorem 4.13 (De Lellis, Spadaro, and Spolaor [DSS17a; DSS17b]). Let o be a 2—semicalibration
on a Riemannian manifold (M, g) and let T be an integral 2—current in M semicalibrated by o.

(1) For every x € supp(T)\ supp(dT) there exist a neighborhood U of x, a finite collection
of maps fi,..., fr and charts ¢, ..., ¢r as in Notation 4.1 with ¢;(0) = x, and weights
mi,...,my; € N such that

I
(4.14) Ty = Z m;Gf, g,

i=1
(2) The set sing(T) is discrete.

Discussion of the proof. This result, for M = RN with the Euclidean metric, is contained in
[DSS17a, Theorem o.2 and Section 1] and [DSS17b, Theorem 3.1, Section 3.2]. The result for
an arbitrary M follows by the argument explained in Remark 4.4. Although only part (2) of
the theorem is explicitly stated in the article [DSS172], its authors actually prove (1) which is a
slightly stronger statement. Indeed, (1) implies (2) because x is the only singular point of any
current of the form (4.14). For the reader’s convenience, we outline how to reconstruct the proof
of (1) from the discussion in [DSS17a, Section 1, especially 1.4—1.5].

The first step in the proof, explained in [DSS17b, Step 4 in Section 3.2], is to show that
without loss of generality we may assume that T is irreducible in the sense that it cannot be
written in the form T = T + T; for two integral currents Ty, T, with supp T; N supp T; = @. For
A > 0 denote by T) the rescaled current

Ty(a) = T(A*a) for ae QRN),

where, by slight abuse of notation, A"« denotes the pull-back of a by the diffeomorphism
y — A7'y. Denote by B, ¢ RY the ball of radius r > 0 centered at zero. It is proved in
[DSS17b, Theorem 3.1, Step 4 in Section 3.2] that in the situation at hand there exists an oriented
2—dimensional linear subspace 7 € RN and m € N such that for every sequence (A,)neN
converging to zero and r > 0, the sequence (T}, |B, )nen converges weakly to the Dirac delta
Omr|B,; Omsr is called the tangent cone. Note that this tangent cone is, in particular, a multiple
of a 1-branching in the sense of Definition 4.12 for f = 0.

The crucial step in the proof is [DSS17a, Theorem 1.8] which asserts the following. Suppose
that for some r > 0 the restriction T'|g, is approximated by a k—branching: the precise definition
is rather technical and is stated in [DSS17a, Assumption 1.7]. If this is the case, then

(1) either T| B, = tGy,4 for some p > 0, £ € N, and a k-branching G4,
(2) or there are k” > k and A > 0 such that T, |, is approximated by a k’~branching.
Now the theorem can be proved by induction. It follows from [DSS17b, Theorem 3.1] that for

sufficiently small A > 0 and r > 0, T; |, is approximated by a 1-branching, namely the tangent
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cone. Thus, either T)|p, is a multiple of a 1-branching for some p > 0, or after further rescaling
is approximated by a k—branching with k > 1. If the latter is true, we can apply the theorem
again and the process continues, so that T is after rescaling approximated by a k—branching for
larger values of k. The process must, however, terminate at some point, because the sequence
of rescaling converges to the tangent cone §,,, from which it follows that k < m [DSS17a,
third paragraph of Section 2.1]. Thus, after finitely many steps, we obtain that A*T|p, = £Gy,4
for some A > 0, p > 0, £ € N and a k-branching Gry. We conclude that Tlglp = l’Gf,g; for

=19 |

5 J-holomorphic cycles and geometric convergence

In this section we introduce the notions of a J-holomorphic cycle and geometric convergence.

We then compare these with the notions of an integral currents and weak convergence. This

comparison, combined with the results discussed in Section 4, implies Proposition 1.9.
Throughout, let (M, J, g) be an almost Hermitian manifold. Denote by

o= g(]3 )

the corresponding Hermitian form. It follows from Wirtinger’s inequality that o is a semicali-
bration on (M, g) and that a 2-dimensional submanifold is semicalibrated by o if and only if it
is J-holomorphic [Fed69, Section 5.4.19; HL82, Section II.3 Example 1].

Remark 5.1. If o is closed, that is ¢ is a symplectic form and J is compatible with o, then o
is a calibration and Remark 4.9 recovers the well-known fact that J-holomorphic curves in
symplectic manifolds minimize volume. &

Definition 5.2.

(1) A J-holomorphic curve is a subset of M which is the image of a simple /-holomorphic
map to M. A J-holomorphic cycle C is a formal linear combination

of J-holomorphic curves Cy,. .., C; with coefficients m;, ..., my € N.

(2) The homology class of a J-holomorphic curve is the homology class of the corresponding
simple map and the homology class of a J-holomorphic cycle C is

(3) We say that C is smooth if Cy,. .., C; are embedded and pairwise disjoint.
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(4) For a J-holomorphic cycle C denote by §c: Q%(M) — R the associated Dirac delta
2—current defined in Example 4.2. The support supp(C) and mass M(C) of C are defined
as the support and mass of §¢ respectively. Explicitly,

I I
supp(C) = supp(dc) = U C; and M(C) =M(6) = Z m; area(C;). °
i=1 i=1

Definition 5.3 (Taubes [Taug8, Definition 3.1]). Let M be a manifold and let (J,,, gn)nen be a
sequence of almost Hermitian structures converging to an almost Hermitian structure (J, g)
in the C* topology. For every n € N let C,, be a J,—holomorphic cycle. We say that (Cp,),en
converges geometrically to a J-holomorphic cycle C if:

(1) (8¢, )nen converges weakly to ¢ and

(2) (supp(Cp))nen converges to supp(C) in the Hausdorff distance; that is:

(5.4) nh_r)r(}o dg (supp(C), supp(Cp,)) — 0.

Recall that the Hausdorff distance between two closed sets X and Y is defined by
dg(X,Y) = max{supd(x,Y),supd(y,X),
xeX yey
with d denoting the distance with respect to the Riemannian metric g. °

The following results compare J-holomorphic cycles and geometric convergence with
closed o—-semicalibrated currents and weak convergence.

Lemma 5.5. If T is a closed integer rectifiable current with compact support which is semicalibrated
by o, then there exists a J—holomorphic cycle C such that

T =dc.

For symplectic 4-manifolds this result was proved by Taubes [Taug6a, Proposition 6.1].
Taubes’ argument and the work of Riviere and Tian [RTo9] establish the result for symplectic
manifolds, that is: when o is a calibration.

Proof. Let > = reg(T) be the set of regular points of T, so that 3 is an oriented C! submanifold.
Since T is semicalibrated by o, the tangent spaces to > are J-invariant. It follows from elliptic
regularity that > is a smooth submanifold and has a canonical structure of a Riemann surface.
By Theorem 4.13, the singular locus sing(T) is discrete and so finite since supp(7T’) is compact.
Moreover, every x € sing(T) has a neighborhood U such that

>NU = D\{0}u---uD\{0} and sing(T)NU = {x}.

Here D = {z € C : |z| < 1}. Thus, 3 can be compactified to a Riemann surface X by adding
finitely many points. The compact Riemann surface ¥ comes with a continuous map u: ¥ — M.
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Its restriction to 3 is a smooth J —-holomorphic embedding. Since the image of u is the compact
set supp(T) and the energy of u is M(T) < oo, it follows from the removable singularity theorem
[MS12, Theorem 4.2.1] that u is, in fact, smooth and J-holomorphic on all of 3. Moreover, the
above discussion shows that

T(a) = /m-u*a for all @ € Q(M)
5

for some locally constant function m: ¥ — N. Denoting by Cy,...,C; the images of the
connected components of ¥ and by my, ..., m; € N the corresponding values of m yields
I
T=6c withC:=) mcC;. n

i=1

Lemma 5.6. In the situation of Definition 5.3, if condition (1) holds and there exists a compact
subset containing supp(Cp,) for every n € N, then condition (2) holds as well.

This result, which is an immediate consequence of the monotonicity formula for J-holomorphic
maps, is contained in the proof of [Taug8, Proposition 3.3] and also a well-known fact in geo-
metric measure theory, so we omit the proof.

Proof of Proposition 1.9. Since sup, M(C,) < oo and supp(C,) C K for every n € N, by The-
orem 4.10 there exists a subsequence which converges weakly to a closed integer rectifiable
current semicalibrated by o. By Lemma 5.5, this current is of the form ¢ for a J-holomorphic cy-
cle C. By Lemma 5.6, the sequence of pseudo-holomorphic cycles (C,) geometrically converges
to C. |

6 Proof of Theorem 1.6

Suppose that J is k-rigid and that A € H,(M) satisfies {(c¢;(M, J), A) = 0 and its divisibility is
at most k. If the conclusion of the theorem fails, then there are are infinitely many distinct
J-holomorphic curves C,, C M representing A and of energy at most A. By Proposition 1.9, after
passing to a subsequence, the sequence (C,) converges geometrically to a J-holomorphic cycle

Coo = ZI] m;CL,.
i=1

Proposition 6.1. C,, is connected, smooth, and its multiplicity is at most the divisibility of A.

Proof. By Definition 5.3 (1), [Ce] = [A]. Let u;: %; — M be a simple J-holomorphic map
whose image is C.,. The index formula (2.5) yields

I I
Z m; index(u;) = Z 2mi{c1 (M, ]), [CL]) = 2{ci(M, ]), [Cs]) = 0.
p) i=1
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Since ] is k-rigid, by Definition 2.10 (2), there are no J-holomorphic curves of negative index.
Thus, we have index(u;) > 0 for every i € {1,...,I} and the above computation shows that

index(u;) = - -+ = index(uy) = 0.

Therefore, by Definition 2.10 (3), the J-holomorphic curves CL,...,CL are embedded and
pairwise disjoint. This proves that Cy, is smooth.

To see that C, is connected, observe that if C,, were disconnected, then Definition 5.3 (2)
would imply that C, is disconnected for n > 1. However, C, is a J-holomorphic curve and
thus connected by definition.

Since A = m;[CL], it follows that m, is at most the divisibility of A. [

In the following, we rescale the sequence (C,) and extract a further limit C.. The properties
of Cs, will give a contradiction to J being k-rigid.

Henceforth, we denote by Cl, the J-holomorphic curve underlying the J-holomorphic
cycle Co. Since the curves C, are all distinct, we can assume that they are all distinct from CL .
We can also assume that every C, is contained in a sufficiently small tubular neighborhood of
CL,. By slight abuse of notation, we regard C, as an exp*J-holomorphic curve in the normal
bundle NC., and C., as the zero section in NCL,.

For every A > 0 let 0 be as in Lemma 3.10. Choose (4,) such that such that the sets

C~‘n = O'/{: (Cn)
satisfy
(6.2) di(Cn, CL) = 1/2.

Set
I = crjn exp” J.

By construction, the C,, are J,~holomorphic. By Lemma 3.10, the sequence (J,,) converges to
the almost complex structure J, associated with the J-holomorphic map u: CL < M. The
sequence (C,,) is contained in the compact disc bundle By;2(NCL) c NCL,. By Lemma 3.6 (5),
Ju is tamed by a symplectic form w on B;(NCL). Consequently, for n > 1 the almost complex
structure J, is tamed by w as well. Define a Riemannian metric g on B;(NCL) by

gi= 5 (=00 ) + ().

The analogously defined metrics g, are Hermitian with respect to J, and converge to g. By the
energy identity [MS12, Lemma 2.2.1],

lim M(C,) = lim 8¢ () = 6¢1 (@) < co.

n—oo

Therefore, the mass of C,, with respect to g, (and thus also g) can be bounded independent of n.

18



By Proposition 1.9, a subsequence of (Cp)nen geometrically converges to a J-holomorphic
cycle

Let d; € N be such that [CL,] = d;[CL]. Condition (6.2) guarantees that supp(Cs) # CL.
Therefore, without loss of generality, C, is not contained in the zero section. Since

1
m[CL] = A= [Co] = ) rudi[CL],

i=1

we have d; < fiyd; < my < k. Proposition 3.12 applies and the map ¢: CL, — CL defined there
has degree d;. This contradicts J being k-rigid. ]
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