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The transversity distribution, which describes transversely polarized quarks in transversely polarized 
nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely 
constrained by global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely 
polarized p↑ + p collisions it can be accessed using transverse polarization dependent fragmentation 
functions which give rise to azimuthal correlations between the polarization of the struck parton and the 
final state scalar mesons.
This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The 
new dataset corresponds to 25 pb−1 integrated luminosity of p↑ + p collisions at 

√
s = 500 GeV, an 

increase of more than a factor of ten compared to our previous measurement at 
√
s = 200 GeV. Non-zero 

asymmetries sensitive to transversity are observed at a Q 2 of several hundred GeV and are found to be 
consistent with the former measurement and a model calculation. We expect that these data will enable 
an extraction of transversity with comparable precision to current SIDIS datasets but at much higher 
momentum transfers where subleading effects are suppressed.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The proton is the fundamental bound state of quantum chromo-
dynamics (QCD). In spite of its importance for our understanding 
of this theory, our knowledge of the proton structure remains in-
complete [1]. In particular, the proton wave function cannot be 
computed ab-initio in perturbative QCD (pQCD), but has to be con-
strained by measurements. In deep inelastic scattering (DIS) exper-
iments of electrons or muons off nuclei at high energies, the wave-
function of the proton is accessed on the lightcone. In this frame, 
the wavefunction can be expanded in the squared 4-momentum 
transfer Q 2 of the interaction. The leading coefficients in this ex-
pansion can be identified with three parton distribution functions 
(PDFs). In the parton model, PDFs have a probabilistic interpreta-
tion as the probability of finding a parton that carries a momen-
tum fraction x of the parent proton. The moderate Q 2 dependence, 
which arises from the parton splitting functions [2–4], is com-
puted using evolution equations. We assume a Q 2 dependence in 
the following discussion even when not explicitly written. Two of 
the PDFs, the parton helicity averaged PDF f1(x), and the helicity 
PDF g1(x) appear at leading twist respectively in the spin averaged 
and longitudinally polarized inclusive DIS cross-section [5]. They 
are therefore fairly well determined experimentally [6]. The third 
one, the transversity distribution h1(x), does not appear at lead-
ing twist in the inclusive DIS cross-section since it is connected 
to a chiral-odd helicity-flip amplitude. Instead, it is accessed in 
processes where it couples to the chiral-odd transverse spin de-
pendent fragmentation function (FF) [7]. The transversity PDF can 
be interpreted as the probability of finding a transversely polar-
ized quark in a transversely polarized proton, and the FF serves as 
a quark polarimeter.

The analysis presented here investigates a channel in which 
transversity couples to the spin dependent di-hadron FF H�

1 (z, M)

[8–10], which, for historical reasons, is also known as the inter-
ference fragmentation function (IFF). Here, z is the fraction of the 
parent parton energy carried by the hadron pair, and M is the in-
variant mass of the pair. Presently, transversity is only loosely con-

* Corresponding author.
E-mail address: anselm .vossen @duke .edu (A. Vossen).
strained by fits [11,12] to available SIDIS [13–17] and e+e− [18,19]
data. The e+e− data are necessary to constrain the polarization de-
pendent fragmentation functions. While measurements sensitive to 
the unpolarized single hadron fragmentation functions have a long 
history (see again [7] for an overview), only recently, a result sensi-
tive to the unpolarized di-hadron fragmentation function [20] was 
presented for the first time. Fixed target data are currently limited 
in the valence region to x < 0.2, restricting the knowledge of va-
lence quark transversity at high x. Probing transversity in p + p
collisions provides better access to the d-quark transversity than is 
possible in SIDIS, due to the fact that there is no charge weight-
ing in the hard scattering QCD 2 → 2 processes in p + p collisions. 
A precision determination of both u and d-quark transversity are 
important in particular for the determination of the zeroth mo-
ment of transversity, the tensor charge

gT =
1∫

0

dx[hq1(x) − hq̄1(x)] (1)

Recently, gT has attracted increased interest. One reason is that 
it can be calculated precisely using lattice QCD [21–25], which 
makes it one of the few observables involving transverse polar-
ization where experiments can be compared with first principles 
pQCD calculations. In fact, gT is the first nucleon matrix ele-
ment that could be extrapolated to the physical limit. Furthermore, 
gT determines the effective tensor coupling constant for beyond 
the standard model contributions to low energy scattering [26]. 
This determination is particularly important for planned electric 
dipole moment experiments where a precise knowledge of gT is 
needed to determine the contributions of possible new CP violat-
ing phases [27]. Due to its chiral-odd property, gluon polarization 
contributions to transversity in a spin- 12 target vanish [28]. This 
characteristic is one reason gT is dominated by the medium to 
high x region. Precision data from transversely polarized p + p
collisions at high 

√
s and pT are crucial to access transversity at 

high Q 2, where theoretical uncertainties are well under control. 
The kinematic region covered by the STAR experiment at these en-
ergies overlaps the reach of current SIDIS experimental data on 
transversity in the upper part of the covered x range (see Fig. 1). 
The STAR kinematics is obtained from the transverse momentum 

http://creativecommons.org/licenses/by/4.0/
mailto:anselm.vossen@duke.edu
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Fig. 1. Q 2 vs x coverage for STAR, HERMES, and COMPASS [13–17]. The kinematics 
of the STAR data points correspond to the lower panel of Fig. 3.

of the mid-rapidity jet containing the hadron pair since this is the 
relevant scale in p + p collision and approximately equal to Q 2. 
The results presented in this letter at 

√
s = 500 GeV use more 

than 10 times the integrated luminosity than our previously re-
ported result at 

√
s = 200 GeV [29], where a significant signal of 

transversity was observed in an exploratory measurement of di-
pion correlations. The calculations reported in [30] found hints of 
universality where the phase space of the 

√
s = 200 GeV p + p

and the SIDIS data overlap. Since the calculations are performed in 
a collinear framework, this was already postulated. However, since 
factorization is not proven in this process and has been explic-
itly shown to be broken in other transverse polarization dependent 
processes in p + p [31], this was a crucial finding to support the 
inclusion of the data in global analyses. In the future, a comparison 
between di-hadron asymmetries, with measurements of azimuthal 
asymmetries of pions in jets by STAR [32], will provide further 
tests of universality and factorization. The former asymmetries can 
be described in a collinear framework, while the latter include an 
explicit dependency on intrinsic transverse momenta (for more de-
tails see [33,34]). The collinear framework is well understood and 
describes the unpolarized p + p cross-section well [35], but the 
transverse momentum dependent (TMD) framework is still being 
developed, and questions remain about universality, factorization 
and evolution.

2. Experiment

The Relativistic Heavy Ion Collider (RHIC), located at Brookhaven 
National Laboratory, can collide beams of polarized protons, as 
well as heavy ions, at each of the interaction regions. The data 
used in this analysis were recorded at the STAR experiment in 
2011 representing 25 pb−1 integrated luminosity of transversely 
polarized p + p collisions at 

√
s = 500 GeV and an average beam 

polarization of 53%. Kinematic observables of charged particles are 
measured using the Time Projection Chamber (TPC) with 2π az-
imuthal coverage in the pseudorapidity range −1 � η � 1 [36]. 
The barrel and endcap electromagnetic calorimeters (BEMC/EEMC) 
and the beam-beam counters (BBC) are used in coincidence for 
the trigger. A single BEMC tower is required to have a minimum 
transverse energy (ET > 4.0 or 5.7 GeV) or a �φ × �η = 1.0 × 1.0
jet patch must have ET > 6.4, 9.0 or 13.9 GeV, respectively. Par-
ticles are identified by measuring their average specific ionization 
energy loss, 〈dE/dx〉, as they traverse the TPC and comparing this 
measured value with the associated parameterized expectation for 
each particle species as a function of η and momentum. Cuts on 
the number of standard deviations from the pion 〈dE/dx〉 peak 
(−1σ to 2σ ) and the number of hits used to determine 〈dE/dx〉
(>20) are applied to achieve an 85 ± 2.5% pion pair purity across 
Fig. 2. Diagram of the azimuthal angle, where �ph,1(2) is the momentum of the pos-
itive (negative) pion, �sa is the beam polarization, and φR is the angle between the 
scattering plane (gray) and the di-hadron plane (yellow). (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

the entire kinematic range. The pion pair purity is the probability 
that both particles in a pair are pions. The momentum, p, of each 
particle is required to be greater than 2 GeV/c.

Each proton beam in the RHIC ring consists of bunches that 
alternate between being transversely polarized up or down with 
respect to the accelerator plane. However, when the single spin 
asymmetry measurement is carried out with respect to a given 
beam, the polarization of the other beam is integrated over to ef-
fectively be unpolarized. Polarimeters, which measure the elastic 
scattering of protons on ultra thin carbon ribbon targets several 
times during a fill, were used to measure the polarization of each 
beam. These polarimeters were calibrated with a polarized hydro-
gen gas jet target [37].

3. Analysis

The azimuthal angles in the scattering system used to calculate 
the π+π− azimuthal correlation follow the definition in ref. [39]
and are shown in Fig. 2. The scattering plane is defined by the 
polarized beam direction, �pbeam , and the direction of the total mo-
mentum of the pion pair, �ph . The di-hadron plane is defined by 
the momentum vectors from each pion (�ph,1 and �ph,2) in the pair. 
The difference vector �R = �ph,1 − �ph,2 lies in the di-hadron plane. 
The pions are chosen to be in close proximity to each other in 
η−φ space with 

√
(�η)2 + (�φ)2 ≤ 0.7 and the sum of the trans-

verse momenta, pT , for each pair is required to be greater than 
3.75 GeV/c. Throughout the rest of this paper, pT is the trans-
verse momentum of the pion pair and �ph,1 corresponds to the 
positive pion and �ph,2 to the negative pion. We define the unit 
vectors p̂ = �p/|�p|. The angle between the scattering plane and the 
polarization of the incident beam, �sa , is φS . The angle between 
the scattering plane and the di-hadron plane is φR , which is used 
to define φRS = φR − φS , where φR and φS are calculated using 
Eqs. (2)–(5). The angle φRS modulates the asymmetry due to the 
product of transversity and the IFF by sin(φRS).

cos(φS) = p̂beam × �ph
|p̂beam × �ph| · p̂beam × �sa

|p̂beam × �sa| (2)

sin(φS) = (�ph × �sa) · p̂beam
|p̂beam × �ph||p̂beam × �sa| (3)

cos(φR) = p̂h × �pbeam
|p̂h × �pbeam| · p̂h × �R

|p̂h × �R| (4)

sin(φR) = (�pbeam × �R) · p̂h
|p̂h × �pbeam||p̂h × �R| . (5)

The π+π− azimuthal correlation observable, AUT , is defined in 
Eq. (6), where P is the beam polarization and N↑(↓) is the num-
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Fig. 3. AUT (top) and the kinematic variables, 〈x〉 and 〈z〉 (bottom), plotted as a 
function of η for 〈pT 〉 = 13 GeV/c for pairs that arise from quarks. Statistical un-
certainties are represented by the error bars, the open rectangles are the systematic 
uncertainties originating from the particle identification, and the solid rectangles 
represent the trigger bias systematic uncertainties.

ber of pion pairs when the polarization of the beam is pointing 
up (down). The combination of different polarization directions 
and detector hemispheres removes luminosity and efficiency de-
pendencies from the asymmetry calculation to leading order [40].

AUT is calculated for eight φRS bins of equal width in the 
range [0, π ], which are then fit with a single-parameter function, 
AUT · sin(φRS), to extract the amplitude. The mean reduced χ2 of 
all fits is 1.00 ± 0.06. This procedure is carried out as a function 
of the pseudorapidity of the pion pair, which is denoted as η for 
the remainder of this report. η > 0 is forward with respect to the 
polarized beam direction. AUT is also measured as a function of 
invariant mass, Minv , and pT .

AUT · P · sin(φRS )

=
√
N↑(φRS)N↓(φRS + π) − √

N↓(φRS)N↑(φRS + π)√
N↑(φRS)N↓(φRS + π) + √

N↓(φRS)N↑(φRS + π)
. (6)

The scale uncertainty due to the beam polarization in this anal-
ysis is 4.5%. We investigated a potential bias of the triggered events 
towards pions that come from quark jets, which could result in 
an enhancement of the measured asymmetries, since gluons are 
not expected to contribute to transversity. To investigate this bias, 
particles produced in p + p simulated events from PYTHIA 6.426 
[41] with the Perugia-0 tune [42], were processed through a detec-
tor simulator (GSTAR package based upon GEANT 3.21/08T [43]), 
and then used to estimate the quark/parton ratio of a biased sam-
ple over the quark/parton ratio in an unbiased sample. In STAR 
the trigger decision is based on the energy deposit in a defined 
segment in one of the calorimeters. We expect therefore that a 
potential trigger bias effect will be strongest for low pT parent 
jets, since at high jet pT the impact of a shape difference between 
quark or gluon initiated jets will be negligible for the trigger deci-
sion. For this reason we investigated the trigger bias as a function 
of the transverse momentum of the hadron pair. Within our statis-
tical uncertainties, we do not observe a significant trigger bias and 
thus decided not to correct for this effect. Instead, the statistical 
uncertainty with which one can determine the ratio of the frac-
tions of quark initiated jets in the triggered over the non-triggered 
sample was assigned as a systematic uncertainty, being ∼20% at 
low pT and ∼5% at high pT . Note that the trigger bias does not 
affect the statistical significance of the measurement because the 
scaling applies to the asymmetry and its uncertainty equally. Since 
the trigger efficiency is higher for larger jet energies, the selec-
tion of pion pairs might be biased towards lower z pairs. Using 
the same simulation as for the trigger bias, we estimate this effect 
to be ∼8% at low pT and ∼4% at high pT .
Fig. 4. The asymmetry AUT as a function of Minv for five pT bins. Statistical uncertainties are represented by the error bars, the open rectangles are the systematic 
uncertainties originating from the particle identification, and the solid one represent the trigger bias systematic uncertainties. The Minv bin boundaries are shown at the top 
of each panel.
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Fig. 5. The same-charge, momentum-ordered (|�ph,1| > |�ph,2|) asymmetry AUT as a function of Minv for the lowest pT bin, mid-pT bin, and the highest pT bin used in Fig. 4. 
Statistical uncertainties are represented by the error bars, the open rectangles are the systematic uncertainties originating from the particle identification, and the solid one 
represent the trigger bias systematic uncertainties. The Minv bin boundaries are shown at the top of the figure.

Fig. 6. The asymmetry AUT as a function of pT for five Minv bins for η > 0. Statistical uncertainties are represented by the error bars, the open rectangles are the systematic 
uncertainties originating from the particle identification, and the solid one represent the trigger bias systematic uncertainties. The pT bin boundaries are shown at the top 
of the figure.
Finally, the pion pair purity previously mentioned was used to 
estimate the asymmetric asymmetry dilution due to π − K and 
π − p pairs and found to be about 15% and is represented as rect-
angles above (below) positive (negative) data points in Figs. 3–6. 
This estimate assumes the π − K and π − p asymmetries are no 
larger than the π+ − π− asymmetries and have the same sign.

4. Results

The single spin asymmetry, AUT , was measured as a function of 
η for five pT bins. It is shown as a function of η in Fig. 3 for the 
largest pT bin with 〈pT 〉 = 13 GeV/c. The other four pT bins have 
smaller asymmetries compared to the 〈pT 〉 bin in Fig. 3. Using 
the particles produced in PYTHIA and processed through GEANT 
as mentioned previously, the kinematic variables x and z were es-
timated. The bottom panel of Fig. 3 shows x and z as a function of 
pion pair pseudorapidity. As shown in Fig. 3, a strong rise of the 
measured signal is observed toward higher η where we reach the 
highest values of x. This is consistent with the expectation that the 
transversity distribution is largest at high-x.

AUT as a function of Minv for η > 0 and η < 0 is shown in 
Fig. 4 for the five pT bins. For η > 0 a significant signal is seen 
in the highest pT bin, while for η < 0 the values of the asym-
metries are significantly smaller as was already shown in Fig. 3
for the highest pT bin. For the two highest pT bins and η > 0, 
an enhancement near the ρ mass at mid-Minv is observed. In 
models of the IFF, this enhancement is expected due to the in-
terference of vector meson decays in a relative p-wave with the 
non-resonant background in a relative s-wave [44]. To test this 
hypothesis, the same-charge, momentum-ordered (|�ph,1| > |�ph,2|) 
asymmetry was calculated and is shown in Fig. 5. This plot shows 
a significantly smaller asymmetry around the ρ mass compared 
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Fig. 7. The azimuthal asymmetry as a function of invariant mass in the highest pT

bin compared with predictions from fits to existing SIDIS and e+e− data provided 
by the same authors as [30]. Details on the calculation can be found in [38].

to the charge-ordered calculation. We note that this suppressed 
asymmetry can also be explained in single hadron emission mod-
els like the Nambu and Jona-Lasinio jet model [45] where the 
parton producing the lower ranked same-charge pion will carry 
less of the spin information and is more likely to have a trans-
verse momentum direction correlated (instead of anti-correlated) 
with the higher ranked pion.

AUT as a function of pT for η > 0 is shown in Fig. 6 for five 
Minv bins. A significant asymmetry is observed at high pT for 
〈Minv 〉 > 0.4 GeV/c2. Though not shown here, the asymmetry as a 
function of pT for η < 0 is small compared to the results for η > 0. 
Supplemental tables containing the numerical results shown in the 
figures discussed above are available online.

Fig. 7 shows a comparison of a theoretical calculation with the 
azimuthal asymmetry as a function of the invariant mass measured 
in p↑ + p collisions at 

√
s = 500 GeV for the highest pT bin. The 

gray band represents the range of the 68% confidence interval of 
the fit to SIDIS and e+e− data [12]. The theoretical prediction for √
s = 500 GeV has been provided by the authors of reference [30], 

which was first compared to the STAR results at 
√
s = 200 GeV

[29]. The smaller Minv range for the theory band is due to the 
fact that this specific model calculation has only been performed 
up to Minv ≈ 1.2 GeV/c. The asymmetry comparison shows close 
agreement within statistical uncertainty between the data and the 
theory band, which further hints at the universality of the mech-
anism producing azimuthal correlations in SIDIS, e+e− , and p + p
data. These high-precision 

√
s = 500 GeV results can further con-

strain global fits of transversity parton distribution functions to 
SIDIS, e+e− , and p + p data, and in particular, improve the sta-
tistical significance for x > 0.1.

5. Conclusions

STAR has measured the first π+π− transverse spin-dependent 
azimuthal asymmetries in p↑ + p collisions at 

√
s = 500 GeV for 

several pseudorapidity, invariant mass, and transverse momentum 
bins. These data show significant signals at high pT and Minv for 
η > 0. IFF models predict an enhancement around the ρ mass due 
to the interference of vector meson decays in a relative p-wave 
with the non-resonant background in a relative s-wave. This pre-
diction is consistent with the data reported in the paper. These 
data probe transversity at much higher Q 2 ≈ 400 GeV2 and sam-
ple a different mixture of quark flavors compared to the charge 
weighted coupling in SIDIS. These results can be used to test the 
universality of the mechanism producing azimuthal correlations 
in SIDIS, e+e− , and p + p. In the future, a comparison between 
di-hadron asymmetries with measurements of azimuthal asymme-
tries of pions in jets will provide further tests of universality and 
factorization. Additionally, the high-precision of these results, can 
further constrain global fits to world data, especially in the region 
x > 0.1.
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