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Abstract

The Hall effect depending on conduction electron spin projection becomes very

different for anisotropic 2D crystals. In this case the spin-dependent electron current

strongly determined by the orientation angle, θ, of the sample with respect to an

applied electric field. The spin-up and -down components of the direct and Hall charge

currents oscillate with the angle 2θ. The direct and Hall components of the current

have the structure where there are the angle-independent part, oscillation amplitude,

and phase shift. All three quantitates strongly depend on the electron spin projection,

electron mass ratio, and skyrmion size. We find that there are ”magic” orientation

angles where the spin-up, spin-down, and total Hall currents vanish. There is a great

interest in computations based on 2D materials with skyrmions. Such properties can

be useful for computer logic operations based on skyrmions.
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Introduction

Today studying the foundations of quantum mechanics has turned into a dynamic field ini-

tially linked to the explosive rise of quantum information theory. There is a fundamental

minimum quantity of energy dissipated by a logic gate, in which information-carrying signals

are continuously created and destroyed.1 Reversible computing aims to circumvent this limi-

tation by conserving information - and therefore energy - as signals propagate through a logic

circuit.2 In this scheme, conservative logical operations are executed through dissipation-free

elastic interactions among these information carriers that conserve momentum and energy.2

In a reversible skyrmion logic system skyrmions are conserved as they flow through nanowire

tracks. Logical operations are performed by thoroughly leveraging the rich physics of mag-

netic skyrmions – the spin Hall effect3 and the skyrmion Hall effect.4–10 The interaction of

skyrmions with free electrons can be one of the mechanisms that provide a device stability

to the dissipation because of the topological integral of motion. Thus, within this paradigm

it is important to study the dynamic properties of conduction electrons interacting with spin

textures, skyrmions, where the topological state is conserved. In particular, we study an

anomalous spin Hall effect of conduction electrons scattered by skyrmions in anisotropic 2D

materials.

The mechanism of a spin-driven Hall effect is different than that of a charge Hall effect

where a free electron deviates from its straight line trajectory due to the presence of a

magnetic field or non-zero magnetic moments. The spin-driven Hall effect (SDHE) appears

due to interaction of the conduction electrons with localized magnetic moment textures,

skyrmions.13–27 The schematic pictures for a skyrmion and electronic device is shown in Fig.

1. The skyrmions are very specific spin arrangements with distinct topological properties

characterized by topological charges.13,22,28–32

In the previous investigations the mechanism of the conduction electrons scattering in

an ideal skyrmion gas resulted in the dramatic charge currents dependencies on the concen-

tration and spin projection of the conduction electrons and also on the skyrmion sizes. In
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(a) (b)

Figure 1: Schematic representations of (a) a skyrmion with the topological charge Q = 1 and (b)
the electronic device made of an anisotropic 2D material. The green spots represent the skyrmions.

particular, spin-filtering and spin separation in the direction perpendicular to the electric

field were found.27 In addition, thermoelectric devices can exhibit the abrupt voltage switch-

ing in the spin Seebeck and Nernst effects.33 For the calculations of spin currents in the x-

and y-directions, we considered an isotropic material where the conduction electrons were

presented as an ideal electron gas with an isotropic effective mass. The calculations were

performed by using the Boltzmann equation where the electron scattering mechanism is due

to the interaction of the electron spins with skyrmions’ magnetic moments. The semiclas-

sical approach based on the nonequilibrium Boltzmann equation13,34–44 allowed us to find

the spin currents in the whole range of the adiabaticity parameter. The polar symmetry

for both skyrmions and the electron gas significantly simplified both numerical solutions of

the Lippmann-Schwinger equation for the transition matrix and the Boltzmann equation for

the nonequilibrium distribution function. In that case, the direction of the electric field was

irrelevant.27

However, the orientation of a 2D anisotropic crystal can significantly change conduction

electron scattering properties revealing new unusual effects depending on the orientation

angle. In this work we assume that the skyrmions still have the polar symmetry, while the

electron gas is anisotropic, i.e., the effective masses in x- and y-directions are different, as

schematically shown in Fig. 2.
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Figure 2: Orientation of the energy ellipse, ε = εs(kx, ky) for conduction electrons, with respect to
the applied electric field. The x- and y-axis coincide with the kx and ky directions, respectively.
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Methods

To describe the conduction electron scattering by the skyrmions, we use the following s− d

Hamiltonian:45

H =
ℏ2k2

x

2mx

+
ℏ2k2

y

2my

− JS(r) · σ, (1)

where the first and second terms represent the kinetic energy of conduction electrons, J is an

exchange integral, S(r) is a localized magnetic moment texture. Here σ is a vector with the

three Pauli matrix projections for the conduction electron spins. The crystal anisotropy has

been introduced by the different effective masses mx, my, where it is assumed that my > mx.

We also choose the S(r)-texture as follows:

S(r) = S0 · ez +
∑︂
i

δS(r− ri). (2)

Here, S0 is uniform out-of-plane background magnetization and δS(r− ri) is a deviation

of magnetic moment due to the presence of the skyrmions. The skyrmions (the topological

charge Q = 1) are described by the following analytic equation δS(r) = S0n(r), where

nz(r) =

⎡⎢⎢⎢⎢⎣
4
(︁
2r
d

)︁2 − 2, r ≤ d/4,

−4
(︁
1− 2r

d

)︁2
, d/4 < r ≤ d/2,

0, r > d/2,

nx(r) =

√︂
1− (nz(r) + 1)2 cosα,

ny(r) =

√︂
1− (nz(r) + 1)2 sinα.

(3)

In Eq. (3) d is the diameter of the skyrmion, r and α are polar coordinates with the

center of the skyrmion located at r = 0.

To determine spin-dependent current densities parallel and perpendicular to the electric

field E, we employ the Boltzmann equation to find the nonequilibrium distribution func-

tions:46
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∂f0
∂ε

F · vs =
∑︂
s′

∑︂
k′

(︂
W ss′

kk′f s′

1 (k
′)−W s′s

k′kf
s
1 (k)

)︂
, (4)

where W ss′

kk′ is a transition probability from the state with wavevector k′ and spin s′ to the

state with wavevector k and spin s. f0 is the equilibrium Fermi distribution function and f1

is the first order correction to the distribution function. F is a force acting on the electron,

and v stands for an electron velocity. The transition probability can be calculated in terms

of transition matrix T ss′

kk′ :47

W ss′

kk′ =
2π

ℏ
nt

⃓⃓⃓
T ss′

kk′

⃓⃓⃓2
δ(ε− ε′), (5)

where nt is the density of scatterers. The transition matrix can be found from the following

Lippmann-Schwinger equation:47

T̂ = V̂ + V̂ Ĝ0T̂ , (6)

where Ĝ0 is a retarded free electron Green’s function determined in the following way:

Ĝ0(ε) = lim
δ→+0

[︃
ε− k2

x

2mx

−
k2
y

2my

+ JS0 · σ̂ + iδ

]︃−1

, (7)

and V is the potential energy for a single spin texture, which is given by the matrix:

V̂ (r) = −J

⎛⎜⎝ Sz Sx − iSy

Sx + iSy −Sz

⎞⎟⎠ . (8)

To solve Lippmann-Schwinger (6) and Boltzmann equations (4), we have written the

original code. V̂ -operator has been considered in a k-space, where the wavefunctions have

been chosen to be the ordinary plane waves. The retarded Green’s function has been cal-

culated numerically. Lippman-Schwinger equation (6) has been solved in all orders of the

interaction (see Eq. (8)) using the piecewise-constant approximation. In order to accelerate

the calculations, we have used the H-adaptive mesh approach. The higher density mesh
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has been selected in the vicinity of the Ĝ0 singularities (see Eq. (7)). The lower density

mesh has been employed for the grid cells located far away from the singularity curve. The

nonequilibrium distribution function is a 2-element column, which dimension has been de-

termined by the spin projections. As soon as the T-matrix is known and W rates are found,

the solution of the Boltzmann equation (4) includes the inversion of the Boltzmann equation

matrix. The complexity of the solution is due to the integral part of the collision integral in

the k-space where the integrand contains the very narrow function close to the δ-function.

This difficulty has been overcome by performing the additional integration of both left and

right parts of the equation in the k-space in the vicinity of the curve determined by the delta

function.

The current in the x- and y-directions has been calculated using the following equation:46

jsα =
e

(2π)2

∫︂
vαf

s
1 (k)dkxdky, (9)

where α = x, y.

Contrary to isotropic 2D materials, the orientation of an anisotropic crystal with respect

to an applied electric field becomes important. The schematic picture of the orientation

geometry is shown in Fig. 2. We have found that the angle dependences for the electric

current can be described by the following equation (see Appendix):

js∥(θ) = js0∥ + js2 cos (2θ + φs)

js⊥(θ) = js0⊥ − js2 sin (2θ + φs)

(10)

In this equation, js∥ is the current component along with the direction of the applied electric

field, js⊥ is the Hall component of the electric current (the projection perpendicular to the

electric field). The electric current has the angle-independent parts: js0∥, j
s
0⊥, and the ampli-

tudes in front of the cos and sin functions denoted as js2. Eq. (10) contains the phase shift,

φs, as well. Because of the time inversion symmetry, ε(k) = ε(−k), the angular dependence
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is 2θ instead of θ.

Eq. (10) has several remarkable properties: (a) the amplitudes for the parallel and the

perpendicular components of the current are the same; (b) the parallel projection is described

by the cos-function, while the perpendicular component is determined by the −sin-function;

and (c) the phases for the perpendicular and parallel components are also the same. The

proof of these properties is given in Appendix. In addition, there are two other important

properties: (d) the Eq. (10) is valid for any εs(k) (not only an ellipse) and (e) s can denote

spin projections, energy band index, and valley index (see the proof in Appendix). Eq. (10)

is valid for any scattering mechanism.

Results and discussion

The computations reveal some very interesting features in the electric current for parallel and

perpendicular to the electric field components with spin-up and spin-down for the skyrmion

size of 3.1 nm (such small skyrmions were predicted and observed in Pd/Fe/Ir materials)11,12

and the different mass ratios as shown in Fig. 3. The curves in Fig. 3 completely satisfy

to Eq. (10) for both direct and Hall components of the current. In all figures we observe

the increase of the oscillation amplitudes with respect to the mass ratio. However, there are

significant differences in the angle-independent part of the current, j0 and the phase shifts.

For example, for the parallel current the amplitude of the oscillation never exceeds the value

of j0∥. For the Hall current we find the zero value of the current for spin-down for some

”magic” orientation angles. This property is useful in suppression of the Hall effect. This

property can be used for logic devices in quantum computers.

The angular-independent parts of spin-up, spin-down current components are presented

if Fig. 4. The skyrmion size is 3.1 nm. The parallel components of electric current for

spin-up and spin-down exhibit the similar growing behavior with a slight difference (see Fig.

4a). j↑0∥.j
↓
0∥ for all values of mass ratio. However, the Hall component of j0 (Fig. 4b) is
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Figure 3: Orientation angle dependent currents for the skyrmion size d = 3.1 nm,11 and the
various mass ratios my/mx = 1, my/mx = 2, my/mx = 5, my/mx = 10: (a) j↑∥ is the current along

with the electric field with spin-up carriers. (b) j↓∥ is the current along with the electric field but

with spin-down carriers, (c) j↑⊥ is the Hall current (perpendicular to the electric field) with spin-up

carriers, and (d) j↓⊥ is the Hall current (perpendicular to the electric field) with spin-down carriers.
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different: the absolute values of these components are the growing functions, but the signs

of the amplitudes are different, j↑0⊥ < 0 and j↓0⊥ > 0.

Figure 4: Zeroth order harmonics for the various mass ratios my/mx with the skyrmion size of
3.1 nm, (a) component parallel to the electric field, and (b) perpendicular to the electric field (the
Hall component of the current)

As follows from Eq. (10), the amplitude for the parallel and perpendicular components

of the current are equal to each other. However, the spin-dependence still takes place. As

shown if Fig. (5), j↓2 > j↑2 . j↑,↓2 are growing functions with the mass ratio. The skyrmion

size is the same as in Fig. 4.

According to Eq. (10), the phases of the direct and Hall currents are the same. However,

the spin dependence still takes place as shown in Fig. 6. For both spin-up and spin-down

charge currents, the mass dependence are the nonlinear functions. In the spin-up case there

is the strong peak at my/mx = 2, and for spin-down there is the minimum at my/mx = 2.

For the higher mass ratios (my/mx > 4), the phase converges to zero.

At some orientation angles and for some specific values of mass ratio it is possible to

supress the Hall current for the spin-down, j↓⊥ and total Hall currents j↑⊥ + j↓⊥. Such angles

are defined as the ”magic” angles, θ↓M and θ↑+↓
M , respectively. The mass ratio dependencies

of ”magic” angles are shown in Fig. 7. Interestingly, the ”magic” angles do not exist in
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Figure 5: Second harmonics amplitude for both parallel and perpendicular components of the
charge currents for the various mass ratios my/mx with the skyrmion size of 3.1 nm.

Figure 6: Phase shift for both direct and Hall components of the electric current for the various
mass ratios my/mx with the skyrmion size of 3.1 nm.
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the whole range of the mass ratios. The threshold values for θ↓M is my/mx = 5.0, and for

θ↑+↓
M is my/mx = 6.0. The ”magic” angle does not exist for j↑⊥ but it still take place for the

sum because of opposite signs of j↓0⊥ and j↓0⊥ in this region. The orientation angle can be

easily realized experimentally by changing the angle between an electric field and a sample.

The orientation angles where the Hall current vanishes are very important for quantum

computing.7–10

Figure 7: ”Magic angles” for spin-down and for the sum of spin-up + spin-down components of the
Hall currents for the various mass ratios my/mx where the skyrmion size is chosen to be 3.1 nm.

Our next investigation is focused on the dependence of the electric current on skyrmion

sizes with the fixed mass ratio, in our case my/mx = 3.0. The angular-independent parts

of the spin-up, spin-down current components significantly drop to the small values for the

larger skyrmion sizes (see Fig. 8). The spin-down Hall current is always lower than that of

the spin-up. For the larger skyrmion sizes, the more efficient scattering takes place because

more localized spins from the skyrmion are involved into the scattering process.

As shown in Fig. 8b, the Hall current, however, exhibits the more dramatic behavior for

the smaller skyrmions (d ≃ 2 nm). Both j↑0⊥ and j↓0⊥ are the negative growing functions.
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For the larger skyrmions, the spin-up component drops again and further exhibits some

oscillations remaining negative. The spin-down Hall current keeps growing and then becomes

positive demonstrating some oscillations. For the very large sermon sizes, both components

reach the plateaus as shown in Fig. 8b.

Figure 8: Zeroth order harmonic amplitudes for the different skyrmion sizes with the mass ratio

of my/mx = 3.0. (a) the current component parallel to the electric field and (b) the current

component perpendicular to the electric field (the Hall current).

The amplitudes of the second harmonics for the spin-up and spin-down direct and Hall

currents are shown in Fig. 9. The skyrmion size dependencies for both currents are very

close to each other. They exhibit the minima and maxima at d ≈ 1 nm and d = 1.5 nm,

respectively.

The phases, ϕ, of the spin-up and spin-down currents for the various skyrmion sizes are

presented in Fig. 10. The dependences exhibit highly nonlinear with some oscillations. The

sharp minima at d ≈ 3.5 nm and d ≈ 5.4 nm with the broader maxima in the 3 nm < d <

5 nm region take place. For the large skyrmions (d > 7 nm) both phases drop to zero.

Furthermore, we study the ”magic” angles where the spin-up, spin-down, and total Hall

currents vanish. The spin-up Hall electric current is zero only at the singe skyrmion size,

d = 0.6 nm and the orientation angle, θ↑M ≈ 0.2π. The ”magic” angles for the spin-down
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Figure 9: Second harmonics amplitude dependencies for both up- and down-spin projections with
the skyrmion sizes. The mass ratio of my/mx = 3.0.

Figure 10: Phase shifts for both spin-up and spin-down electric current components with respect
to the skyrmion sizes with the mass ratio of my/mx = 3.0.
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Hall current are presented by the whole curve with the two threshold values, d = 1.4 nm and

d = 2.8 nm as shown in Fig. 11. For the sizes beyond this region there is no current. The

”magic” angles for the total Hall current are depicted by the green crosses in Fig. 11. From

the calculations we see that these dots do not make a continuous curve. We have found that

the ”magic” angles are always negative for the total Hall current.

The ”magic” angles are very important for quantum computing in skyrmions because

they can stabilize the skyrmion motion.7–10

Figure 11: ”Magic angles” for the spin-up, spin-down, and for the sum of spin-up and spin-down
Hall currents for the various skyrmion sizes with the mass ratio of my/mx = 3.0.

For all numerical calculations, we have assumed that mx = me, while my is subjected to

the change. The exchange integral ,J , in Eq. (1) is equal to J = 0.4 eV . The Fermi energy

is chosen to be εF = 1 eV .
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Conclusions

In this research we have studied the spin-dependent direct and Hall electric currents where the

electrons are scattered by the spin textures (skyrmions) in anisotropic 2D crystals. Because

the effective masses of the electrons in x- and y-directions are not equal to each other, the

direct and Hall components strongly depend on the orientation angle of the crystal (see

Fig. 2). We have found that the direct and Hall spin-up and spin-down electric currents

are determined by the orientation angle θ in accordance with Eq. (10). This equation is

valid for any ε(k) (not only an ellipse), and the index s can denote spin projections, energy

band, and valley number indexes (see Appendix.). In Eq. (10) a scattering mechanism is

not specified. Thus, this equation is true for nay scattering process.

To find a spin-dependent electric current we have solved Boltzmann equation (4) where

the transition matrices have been determined from Lippmann-Schwinger equation (6). The

original code has been written for the solution of both Boltzmann and Lippmann-Schwinger

equations. The Lippmann-Schwinger equation has been numerically solved in all orders with

respect to the interaction between the conduction electrons and skyrmions ( see Eq. (8)).

We have found that the Hall component of the electric current exhibits more dramatic

behavior than the direct electric current. We have determined the dependencies of j↑,↓∥ and

j↑,↓⊥ on the mass ratios and skyrmion sizes. These dependencies are very nonlinear.

For the stability of computers based on skyrmions, it is important to have vanishing Hall

currents. Such currents can be achieved for some specific orientation angles, the ”magic”

angles. As shown in Fig. 7 and Fig. 11, the ”magic” angles for the spin-down and the total

Hall currents exist in certain regions with the threshold values of the parameters for the

lower and upper limits.
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Appendix

The skyrmion-driven Hall effect in anisotropic 2D materials exhibits the remarkable property

– the dependence of the direct and Hall currents on the orientation angle as presented by Eq.

(10). As described by Eq. (10), the direct and Hall currents have the angle- dependencies

as θ have the form of cos (2θ + φ) and − sin (2θ + φ) with the same amplitude but different

angle-independent components. In this Appendix we prove Eq. (10).

In order to find the orientation angle dependence of the electric current, we introduce the

two auxiliary nonequilibrium distribution functions f s
1x and f s

1y, which obey the following

auxiliary Boltzmann equations:

∂f0 (ε
s (k))

∂ε
eEvsx (k) =

∑︂
s′

∑︂
k′

(︂
W ss′

kk′f s′

1x(k
′)−W s′s

k′kf
s
1x(k)

)︂
,

∂f0 (ε
s (k))

∂ε
eEvsy (k) =

∑︂
s′

∑︂
k′

(︂
W ss′

kk′f s′

1y(k
′)−W s′s

k′kf
s
1y(k)

)︂
,

(A1)

where x, y are arbitrary chosen axes which are tied to the crystal structure (i. e., the crystal

doesn’t move with respect to them). It is important to stress that f s
1x and f s

1y are not the

components of a vector, but a more convenient representation of f s
1 .

Then we can present the in-plane electric field in the following form:

E = E

⎛⎜⎝cos θ

sin θ

⎞⎟⎠ , (A2)

where θ is the angle between E and x-axis, as shown in Fig. 2. For small electric field

in the linear approximation, the nonequilibrium part of the distribution function can be
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represented in terms of the two auxiliary distribution functions as follows:

f s
1 (k) = f s

1x (k) cos θ + f s
1y (k) sin θ. (A3)

Using this form of the distribution function, we can find currents in x- and y-directions:

jsx = 2asxx cos θ + 2asxy sin θ, jsy = 2asyx cos θ + 2asyy sin θ, (A4)

where the coefficients axx, axy, ayx, ayy are defined in the following way:

asxx =
1

2
e

∫︂
vsx (k) f

s
1x (k) dkxdky, asxy =

1

2
e

∫︂
vsx (k) f

s
1y (k) dkxdky,

asyx =
1

2
e

∫︂
vsy (k) f

s
1x (k) dkxdky, asyy =

1

2
e

∫︂
vsy (k) f

s
1y (k) dkxdky.

(A5)

The coefficients axx, axy, ayx, ayy are θ-independent. As soon as the coefficients are known,

we find the direct and Hall currents, which are the projections of the total electric current

js on the axis parallel and perpendicular to the electric field.

js∥ = jsx cos θ + jsy sin θ =
(︁
asxx + asyy

)︁
+
(︁
asxx − asyy

)︁
cos 2θ +

(︁
asxy + asyx

)︁
sin 2θ,

js⊥ = −jsx sin θ + jsy cos θ =
(︁
asyx − asxy

)︁
−

(︁
asxx − asyy

)︁
sin 2θ +

(︁
asxy + asyx

)︁
cos 2θ.

(A6)

Performing some trigonometrical transformations and introducing the following definitions,

we obtain

js0∥ = asxx + asyy, js0⊥ = asyx − asxy, js2 =

√︂(︁
asxx − asyy

)︁2
+
(︁
asxy + asyx

)︁2
,

sinφs = −
asxy + asyx

js2
, cosφs =

asxx − asyy
js2

,
(A7)

where Eq. (A6) transforms to the following form:

js∥ = js0∥ + js2 cos (2θ + φs),

js⊥ = js0⊥ − js2 sin (2θ + φs).

(A8)

18



The derivations presented above are rather general and valid for any energy band form.

In addition, we have not specified the mechanism of scattering. Therefore, the formulas

derived are valid for any material and any scattering mechanisms. Index s is very general

and can identified a spin projection, band number or valley number.
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