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Abstract

The quest of novel reliable and fast performing logic and memory elements in classical and

quantum computing requires discoveries of new effects in novel quantum materials. Skyrmions are

such magnetic textures where electron scattering can essentially change the shape and location

of the skyrmion, which can be used as a memory element being more efficient than domain walls

as memory device in classical computing. Because the skyrmion motion is sensitive even to very

small currents, we study electron scattering by skyrmions in an ideal skyrmion gas in ferromag-

netic environment. In such systems, the direct and Hall currents become spin-dependent. For

applications it is important to consider a Hall effect in the whole range of temperatures under

the assumption of the skyrmion existence. In this study we find the nonmonotonic temperature

dependence of the direct spin-up conductivity, i. e., the conductivity for the current directed along

the applied electric field due to the electrons with the spin parallel to the ferromagnetic moment.

Such a behavior contradicts the traditional understanding where the temperature only increases

the value of the conductivity. The spin-down Hall conductivity is found to be even more dramatic

exhibiting the conductivity sign change (i.e., the change in the current direction) with temperature

for small skyrmion sizes, d = 3.7 nm. Such small skyrmions were observed in a PdFe bilayer on

the Ir(111) surface. The found effects strongly depend on Fermi energy. The most pronounced

dependencies take place if the Fermi energy is slightly below and above the bottom of the upper

(spin-down) energy band of an ideal 2D electron gas. In addition, we also find that the direct and

Hall resistivities, ρxx and ρxy, are independent of the exchange integral J for 2J > εF .
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I. INTRODUCTION

Magnetic skyrmions are topologically nontrivial spin textures with an additional invari-

ant, topological charge. This property determines an additional stability of the system, and,

therefore, can be used for high-density memory, quantum computing, and logic elements for

unconventional and neuromorphic computing1–7. For high-density memory applications, the

skyrmion manipulation can be performed by currents, which are several orders of magnitude

smaller, and, therefore, less dissipative, than in the case of traditional domain-wall memory

devices.8–11 Such small current values indicate the importance of spin-dependent Hall con-

ductivities that can take place due to the scattering of conduction electrons by skyrmion

textures.12–15

Indeed, the needs of high-speed performance electronic devices for various applications

require novel materials and new physical phenomena. As shown in Ref.15, the spin-dependent

Hall effect can be efficiently employed for filtering, switching, and separation of spin currents.

For some values of the parameters (conduction electron concentrations and skyrmion sizes)

it is possible to separate Hall currents for different electron spin projections similar to the

charge separation in a charge Hall effect. The spin-filtering, the ability to block spin-down

or spin-up currents can be efficiently modulated by changing the electron concentration in

a very narrow range.15

Electric current can take place because of an applied voltage and also temperature differ-

ence between two terminals of a device. In the latter case, the conduction electrons are scat-

tered by an ideal skyrmion gas resulting in spin-dependent Seebeck and Nernst effects.16–24

As shown in Ref.25, the spin-dependent Seebeck and Nernst coefficients exhibit substan-

tial nonlinear behaviors with respect to electron concentrations and skyrmion/vortex sizes.

Moreover, the abrupt voltage sign change takes place in the narrow range of the electron

concentrations.

In the previous research,25 the spin-dependent Seebeck/Nernst effects were studied in the

low temperature limit (kT ≪ εF ). However, the temperature dependence of the direct and

Hall conductivities can be important in some materials with certain electron concentrations

and energy band structures. In order to study the temperature dependencies, we consider

a system of 2D free electrons with the energy band structure depicted in Fig. 1. As shown

in this figure, the lower energy band represents spin-up electron energies, while the upper
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band represents spin-down ones. The bands are split by a ferromagnetic moment with the

exchange integral J .

FIG. 1. Energy band structure crossection for 2D conduction electrons. The upper curve stands

for electrons with spin-down, and the lower one denotes the energy band for electrons with spin-up.

The red line represents εF close to the bottom of the lower (spin-up) energy band. The splitting

between the bands is 2JS0 where J is the exchange integral between the localized and conduction

electrons (see Eq. (1)).

In this work we study a spin-dependent Hall effect for electrons scattered by static

skyrmions at different temperatures for specific εF values as depicted in Fig. 1. The

choice of εF is determined by the conditions where the temperature effect is pronounced

at most. The blue line denotes εF slightly lower than the minimum of the upper band. If

the temperature is turned on, the electrons with spin-down will populate the upper band

and, therefore, this effect will reflect the spin-down electron scattering in an ideal skyrmion

gas. We assume that skyrmions are not affected by electric current and temperature. The

green line stands for εF that is slightly above the minimum of the upper energy surface.

In this case, the population of the spin-down electrons increases with the temperature. As

demonstrated in this research, the spin-dependent direct and Hall components of electric

conductivity are strongly driven by temperature, energy concentrations, and skyrmion sizes.

The direct and Hall conductivities are calculated by using the numerical solutions of the

Boltzmann equation for a nonequilibrium distribution function and the Lippmann-Schwinger

equation for the transition matrix. The scattering mechanism for electrons is determined by
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the electron-skyrmion interaction (see Eq. (1)).

II. CALCULATION DETAILS

In order to describe the conduction 2D electron scattering by spin-textures (skyrmions),

noninteracting and randomly distributed in space, we consider the electron system described

by the following s-d Hamiltonian:

H =
ℏ2k2

2m
1̂− JS(r) · σ + JS01̂, (1)

where the first term represents the kinetic energy of conduction electrons, J is an exchange

integral, S(r) is a localized magnetic moment. Here σ is a vector with the three Pauli

matrix projections for the conduction electron spins. The last term JS01̂ is introduced for

convenience in order to shift all energy bands upwards by JS0. We choose the S(r) texture

in the following form:

S(r) = S0 · ez +
∑︂
i

δS(r− ri), (2)

where S0 is uniform out-of-plane background magnetization and δS(r− ri) is a deviation of

magnetic moment due to the presence of the magnetic texture (we only consider skyrmions

with the topological charge Q = 1). In this work we assume a skyrmion shape is not

affected by temperature and electric current. The analytical form of the magnetic moment

distribution is chosen as follows12,15,25,26:

nz(r) =

⎡⎢⎢⎢⎣
4
(︁
r
a

)︁2 − 2, r ≤ a/2,

−4
(︁
1− r

a

)︁2
, a/2 < r ≤ a,

0, r > a,

nx(r) =

√︂
1− (nz(r) + 1)2 cosα,

ny(r) =

√︂
1− (nz(r) + 1)2 sinα,

(3)

where a is the radius of the skyrmion, r is a radius and α is a polar angle in a polar frame

with the center of the skyrmion located at r = 0. In a more general case we should use

α + α0 instead of α to distinguish Bloch and Neel skyrmions where α0 = ±π/2 represents

Bloch and α0 = 0 stands for Neel skyrmions. However, as shown in Appendix I, W ss′

kk′ in

4



Eq. (6) are independent of α0. Therefore, the results of the calculations are insensitive to a

skyrmion type.

The spin-dependent direct and Hall components are found using the following equations:24

jsx,y = e

∫︂
vx,yf

s
1 (k)dkxdky, (4)

where vx,y is a conduction electron velocity, and f s
1 (k) is the first order correction to the

equilibrium distribution function, which can be found from the following stationary integral

matrix Boltzmann equation:24

∂f0
∂ε

eE · vs =
∑︂
s′

∑︂
k′

(︂
W ss′

kk′f s′

1 (k
′)−W s′s

k′kf
s
1 (k)

)︂
, (5)

where W ss′

kk′ is a transition probability from the state with wavevector k′ and spin s′ to

the state with wavevector k and spin s. f0 is the equilibrium Fermi distribution function.

E = Eex is an applied electric field. In case of very small skyrmions of in their absence,

Boltzmann equation (5) becomes invalid because of the lack of scatters. In this case other

scattering mechanisms should be introduced (impurities, electron-phonon, etc.). In this work

we consider only the electron-skyrmion scattering mechanism. There is another approach13,27

where the emergent magnetic and electric fields can be introduced into the dynamic (the

left-hand side) part of the Boltzmann equation. The scattering mechanism in this case is not

due to the electric scattering by the spin texture. This approach is different from what we

use in this research. The emergent field approach requires the introduction of other electron

scattering mechanisms, which are not considered in this work. The transition probability

can be calculated in terms of transition matrix T ss′

kk′ :28

W ss′

kk′ =
2π

ℏ
nsk

⃓⃓⃓
T ss′

kk′

⃓⃓⃓2
δ(ε− ε′). (6)

Here nsk is a skyrmion density. Electric currents (4) and, therefore, conductivities are

inversely proportional to nsk. The transition matrix can be found from the following

Lippmann-Schwinger equation:

T̂ = V̂ + V̂ Ĝ0T̂ , (7)

where Ĝ0 is a retarded free electron Green’s function determined in the following way:

Ĝ0(ε) = lim
δ→+0

[︃(︃
ε− ℏ2k2

2m

)︃
1̂+ JS0 · σ̂ + iδ1̂

]︃−1

, (8)
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and V is the potential energy for a single spin texture that is given by the matrix:

V̂ (r) = −J

⎛⎝ Sz Sx − iSy

Sx + iSy −Sz

⎞⎠ . (9)

To find the solutions of Lippmann-Schwinger (7) and Boltzmann equations (5), we have

developed the original codes. The interaction matrix V̂ has been considered in a k-space

where the wavefunctions have been represented in terms of ordinary plane waves:

Vss′ (k,k
′) =

⟨︂
ks

⃓⃓⃓
V̂
⃓⃓⃓
k′s′

⟩︂
=

1

(2π)2

∫︂
ei(k

′−k)·rVss′ (r) d
2r (10)

The retarded Green’s function, Eq. (8), has been numerically calculated with the δ value

chosen to be much lesser than the Fermi energy. Lippman-Schwinger equation (7) has been

solved in a k-space in all orders of V̂ using the piecewise-constant approximation of the

function Tss′ (k,k
′) =

⟨︂
ks

⃓⃓⃓
T̂
⃓⃓⃓
k′s′

⟩︂
. In order to accelerate the calculations, we have used

the H-adaptive mesh methodology. The higher density mesh has been selected in the vicinity

of the Ĝ0 singularities (see Eq. (8)). The lower density mesh has been employed for the grid

cells located far away from the singularity curve. The schematic drawing is shown in Fig.

2.

(a) (b)

FIG. 2. Schematic sketch of (a) the uniform mesh and (b) the adaptive nonuniform mesh with the

thin red circle denoting the Ĝ0 singularity curve and pale red area around it is its vicinity where

we need the function Tss′ (k,k
′) to be calculated with the higher precision. Only one step of the

adaptive algorithm is presented.

The structure of the nonequilibrium distribution function is described by the two-element

column (f ↑ (k), f ↓ (k)). As soon as the T-matrix is known and the W-rates are found from
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equation (6), the solution of Boltzmann equation (5) has been determined in the piecewise-

constant approximation using the same dense mesh in the vicinity of the Ĝ0 singularity curve.

The complexity of the solution is determined by the integral part of the collision integral in

the k-space where the integrand contains the very narrow function close to the δ-function

in Eq. (6). Such difficulty has been overcome by performing the additional integration of

both left and right parts of the equation in the k-space for each mesh cell.

III. RESULTS AND DISCUSSION

It is well-known from statistical mechanics29 that the equilibrium distribution function

for non-interacting fermions is determined from the following expression:

f0(εs, T, µ(εF , T )) =
1

exp
(︂

εs−µ(εF ,T )
kBT

)︂
+ 1

, (11)

where εs (k) is the conduction electron energy that can be determined from Eq. (12):

ε↑ =
ℏ2k2

2m
,

ε↓ =
ℏ2k2

2m
+ 2J,

(12)

and µ(εF , T ) is chemical potential found from the following expression:24

N =
1

(2π)2

∑︂
s

∫︂
dkxdkyf0(εs(kx, ky), T = 0, εF )

=
1

(2π)2

∑︂
s

∫︂
dkxdkyf0(εs(kx, ky), T, µ(εF , T )),

(13)

where N is the electron concentration and µ(εF , T = 0) = εF . The solution of equation (13)

is given by the following expression:

µ = kBT log

[︄√︃
cosh2 J

kBT
+ e

ϵ
kBT − 1− cosh

J

kBT

]︄
, (14)

where

ϵ =

⎡⎢⎢⎢⎣
0, if εF < 0,

εF + J, if 0 < εF < 2J,

2εF , if εF > 2J.

(15)
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The function µ(εF , T ) is presented in Fig. 3. As shown in Fig. 3a, µ decreased towards

negative values for the Fermi energy close to the bottom of the lower band (the red curve)..

At high temperatures the Fermi distribution function becomes the Boltzmann distribution

function.24 If εF is close to the bottom of the upper energy band (the blue and green curves),

the chemical potential is almost insensitive to temperature because of the low temperature

limit, εF ≫ kBT , under the assumption that

2JS0 ≫ kBT. (16)

For estimations, we assume that JS0 = 0.1 eV. In Fig. 3b we see that there are two dips in

the εF dependencies. One dip is located close to the bottom of the lower energy band, and

the other is close to the bottom of the upper band.

FIG. 3. Dependence of (a) chemical potential, µ(εF , T ), on temperature for three different values

of εF and (b) µ(εF , T )− εF on Fermi energy for three different temperatures.

A. Spin-dependent direct current

In Fig. 4 we study the dependence of the direct current (the conductivity) on Fermi

energy for both spin-up (Figs. 4a, b, c) and spin-down (Figs. 4d, e, f) components at the

three different temperatures kBT = 0, 0.1J, and 0.25J . The skyrmion sizes are κa = 3, 5,

and 15, where κ is defined as

κ =

√
2mJ

ℏ
. (17)
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It is important to note that J = 0.1 eV and κa = 3 corresponds to the skyrmion size

d = 3.7 nm, which is close to the experimentally found skyrmions in a PdFe bilayer on the

Ir(111) surface.30,31 In general, all spin-up and spin-down of σxx are the growing functions

with εF . However, at small skyrmion sizes, κa = 3, the spin-up component (see the insertion

at Fig. 4a) exhibits the small dip at the Fermi energy close to the bottom of the upper band

(εF ≈ 2J). At higher temperatures, the dip is smoothed out by the temperature smearing,

while the dependence is more pronounced at lower temperatures (the red curve). As shown

in Figs. 4d, e, f, the spin-down σxx vanishes below the threshold (εF < 2J), which is

equal to 2JS0 at T = 0. Because of non-zero temperature, the levels in the upper curve

become populated by electrons and, therefore, contribute to current. In Fig. 5 we present

the temperature dependencies of σxx for the spin-up (Figs. 5a, b, and c) and spin-down

projections (Figs. 5d, e, and f). The red curve represents εF close to the bottom of the

lower band, i. e., the concentration of spin-up electrons is very low and, therefore, the

value of the conductivity is close to zero. For the spin-down component it is always zero

due to inequality (16). In general, the spin-down components of electric conductivity for

different skyrmion sizes and Fermi energies close to the bottom of the upper energy band

(the blue and green curves) are the growing functions with temperature. However, the spin-

up components being slightly above the threshold (the green curves), behave differently at

the small and medium skyrmion sizes and have the minimum at kBT ≈ 0.1J . The minimum

can be explained from the analysis of Figs. 4a and b. Indeed, we see small dips at Fermi

energy slightly below the threshold, which is exactly the case for Figs. 5a, b. For the larger

skyrmion size κa = 15, the spin-up σxx is only the growing function.

B. Spin-dependent Hall current

In this subsection we present the results of the calculations of the spin-dependent Hall

component of electric current. The spin-up component exists in the whole range of εF .

We consider the three different skyrmion sizes: κa = 3, κa = 5, κa = 15. The most

dramatic behavior is observed for the small and intermediate skyrmion sizes. At κa = 3,

we find the σxy absolute value maximum close to the bottom of the upper band where the

substantial temperature effects are observed. The higher the temperature, the smaller the

Hall conductivity. The values of the σxy are negative, i. e., the Hall current is directed
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FIG. 4. Dependence of the direct conductivity, σxx, on Fermi energy. (a), (b), and (c) represent

conductivity for spin-up electrons. (d), (e), and (f) represent conductivity for spin-down electrons.

The skyrmion sizes are κa = 3, κa = 5, and κa = 15.
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FIG. 5. Dependence of the direct conductivity, σxx, on temperature. (a), (b), and (c) represent

conductivity for spin-up electrons. (d), (e), and (f) represent conductivity for spin-down electrons.

The skyrmion sizes are κa = 3, κa = 5, and κa = 15.
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to the right of the electric field. The minimum in the Hall conductivity absolute value

(the maximum in Fig. 6a) is located at εF = 3.4J . We find a similar behavior for the

skyrmion with the medium size (κa = 5), as shown in Fig. 6b. In this case, the maximum

is at εF = 3.8J , and the minimum is located at εF = 4.4J . For the skyrmion of the large

size, κa = 15, the absolute value the of spin-up Hall conductivity monotonically increases

with Fermi energy. For this skyrmion size, the spin-up component of the Hall conductivity is

negative as well. The absolute values of the spin-up Hall conductivity increase with skyrmion

size.

The spin-down component of the Hall conductivity exhibits even more dramatic behavior

than that of the spin-up conductivity. Indeed, there is the threshold value where for εF < 2J

the spin-down conductivity is zero (see Figs. 6d, e, and f). For the small skyrmion size,

κa = 3, the Hall conductivity is negative while for κa = 5 and κa = 15, it is positive. In

Fig. 6d the spin-down Hall conductivity demonstrates the small maximum only at kBT = 0

in the vicinity of the threshold value, εF = 2J . After that, the sign of the Hall conductivity

changes to negative values and reaches the absolute value maximum (the minimum in Fig.

6d) at εF = 2.9J . At the larger values of εF , we observe several smaller maxima and minima

in the Hall conductivity. In the case of the medium skyrmion size, κa = 5, the value of σxy

is always positive. At εF = 3J there is the broad maximum, and the minimum at εF = 3.6J .

The sharp maximum can be also found at εF = 4.4J . In the case of the large skyrmion size,

κa = 15, the spin-down Hall conductivity monotonically increases from the threshold value

of εF = 2J . We should mention that there is the nonvanishing values of the spin-down Hall

conductivity for εF < 2J at nonzero temperatures for all three skyrmion sizes.

As shown in Figs. 7a, b, and c, the spin-up Hall conductivity is negative for all skyrmion

sizes. The most interesting effect occurs when the absolute value has the broad maximum

for εF = 1.95J (the minimum in Fig. 7a, the blue curve) at kBT = 0.075J . From the general

point of view, one would expect the increase of the conductivity amplitude with temperature.

However, Fig. 7a demonstrates that initially the absolute value of the conductivity increases,

reaches the maximum, and then drops. For the medium and larger skyrmion sizes, the

absolute value of the conductivity monotonically decreases with the temperature.

The temperature dependences of the spin-down Hall conductivity are shown in Figs. 7d,

e, and f. For the skyrmions with sizes κa = 5 and κa = 15, the conductivities are positive

and monotonically grow with temperature from the threshold value for all εF values. We
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FIG. 6. Dependence of the Hall conductivity, σxy, on Fermi energy. (a), (b), and (c) represent

conductivity for spin-up electrons. (d), (e), and (f) represent conductivity for spin-down electrons.

The skyrmion sizes are κa = 3, κa = 5, and κa = 15.
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FIG. 7. Dependence of the Hall conductivity, σxy, on temperature. (a), (b), and (c) represent

conductivity for spin-up electrons. (d), (e), and (f) represent conductivity for spin-down electrons.

The skyrmion sizes are κa = 3, κa = 5, and κa = 15.
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find the most interesting effects for the small skyrmion sizes, κa = 3, and εF = 2.05J (the

green curve): (a) the conductivity changes the sign in the vicinity of kBT = 0.04J (see the

insertion in Fig. 7d) and (b) the absolute value initially decreases to zero at kBT = 0.04J

and then monotonically increases. The largest absolute values of the Hall conductivity for

both spin-up and spin-down Hall conductivity are observed for the Fermi energy above the

threshold value, 2J .

In order to reflect the existence of emergent magnetic fields in the case where the electron

scatters by the spin texture we present the Hall resistivity in terms of the well-known formula:

ρsyx =
Bs

T

eN sc
, (18)

whereBs
T is the effective topological ”magnetic” field13,27, N s is the concentration of electrons

with spin s, which is defined from the following expression:

N s =
1

(2π)2

∫︂
d2k

exp
(︂

εs(k)−µ(εF ,T )
kBT

)︂
+ 1

, (19)

and εs(k) can be determined from expression (12). ρsyx can be presented in terms of spin-

dependent conductivities in the following way:

ρsyx =
σs
yx

(σs
xx)

2 +
(︁
σs
yx

)︁2 . (20)

We have numerically calculated the Fermi energy dependence of B↑
T and B↓

T as shown in

Figs. 8 (a) and (b).

From Figs. 8 (a) and (b) we conclude that the sign of BT depends on spin projection.

It is remarkable that the effective topological ”magnetic”field is negative for spin-up and

positive for spin-down. The absolute value has the maxima and minima for both compo-

nents. Indeed, the absolute value of B↑
T (Fig. 8a) initially grows and then drops with some

oscillations. B↓
T is always positive and slightly drops with εF exhibiting soma maxima and

minima. In ordinary Hall effect B is a constant, which is spin-independent. Thus, the

effective topological ”magnetic” field is very far from mapping onto an ordinary magnetic

field. Moreover, the topological ”magnetic” field depends on temperature. The discrepancy

is large for small εF .

If we suggest that the Hall effect consists of the two contributions: (a) the anomalous Hall

effect and (b) the topological Hall effect, then the only contribution is due to the anomalous
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FIG. 8. Effective topological ”magnetic” field (a) B↑
T and (b) B↓

T depending on εF for two different

temperatures: the red line for kBT = 0.05J and the blue line kBT = 0.25J . The skyrmion size is

chosen κa = 15.

Hall effect in the absence of skyrmions. In this case it is necessary to introduce additional

scattering mechanisms that are not in the scope of this work. However, we study the

direct and Hall resistances with respect to JS0 representing the ferromagnetic moment. The

dependencies of the resistivity ρ on J for different spins and projections at zero temperature

are presented in Figs. 9.

As shown in Figs. 9 (a) and (c), the spin-up resistivity becomes the constant after some

threshold value of 2J = εF . The threshold value implies that the second energy band (see

Fig. 1) that is in charge of the spin-down electron scattering, is empty. For 2J > εF the

spin-down component of the resistivity is the constant independent of J. This property can

be explained by adiabatic regime of scattering and emptiness of the upper band. As far as

the spin-down components are concerned, the resistivities are the growing functions with J

when 2J < εF . For 2J > εF the spin-down resistivity is ∞. As we have discussed above the

separation of the anomalous and topological spin Hall effects are impossible.

IV. CONCLUSIONS

In this work we have studied a system of both localized and delocalized electrons where the

localized electrons provide the magnetic moments described by skyrmions in a ferromagnetic

environment (see Eq. (2)). The skyrmions are considered to be static and are not influenced
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FIG. 9. Dependencies of the resistivity on the ferromagnetic moment J : (a) direct resistivity ρ↑xx,

(b) direct resistivity ρ↓xx, (c) Hall resistivity ρ↑xy, and (d) Hall resistivity ρ↓xy for the skyrmion size

κa = 15 and εF = 0.1 eV.

by electric current and temperature. The 2D free electron gas scatters by the magnetic

textures providing spin-dependent Hall currents. When skyrmion sizes are very small or

skyrmions vanish, the electron scattering mechanism by skyrmions becomes invalid because

of the lack of scatters. In this case other scattering mechanisms such as electron-phonon

interaction, magnetic and nonmagnetic impurities have to be introduced into the Boltzmann

equation. In this work we consider only the electron-skyrmion scattering mechanism. The

band structure of 2D electrons is shown in Fig. 1. For the direct spin-up conductivities (see

Fig. 5a) we find the nonmonotonic behavior of the conductivity with temperature. Indeed,

the absolute value initially decreases to the minimum at kBT = 0.1J , and then increases at

higher temperatures. Due to the scattering of the free electrons by the skyrmions, we have
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found substantial nonlinear behaviors in the spin-up and spin-down Hall conductivities.

In general, one would expect the monotonic increase of conductivity with temperature.

However, as shown in Fig. 7a, the absolute value of the Hall conductivity initially increases

and then decreases with temperature. Such a behavior is unusual. Moreover, as shown

in Fig. 7d, the spin-down Hall conductivity changes the sign from positive to negative at

kBT = 0.04J exhibiting the minimum in the absolute value of the conductivity at this point.

A skyrmion size is essential because this effect does not exist for larger skyrmion sizes. In this

work we have chosen the skyrmion sizes of κa = 3, 5, and 15 corresponding to d = 3.7, 6.2,

and 18.5 nm, respectively. Small skyrmions with d = 3.7 nm were experimentally observed

in a PdFe bilayer on the Ir(111) surface.30,31 If we present the Hall resistivity in terms

of the well-known formula for the Hall resistivity (see Eq. (18)), we find the interesting

dependencies of the BT -components with respect of εF as shown in Figs. 8. The absolute

values of the spin-up and spin-down BT -components decrease with εF . BT for spin-up and

spin-down conductivities have different signs. The same sing difference in the emergent

magnetic field approach due to the presence of skyrmions27 was also found. As shown in

Figs. 9, the spin-up components of the resistivity are independent of the exchange integral

J when 2J > εF . However the spin-down resistivities are the growing functions when

2J < εF . For 2J > εF the spin-down resistivity is infinite. The found effects can be useful

for the applications in logic memory elements based on skyrmions in classical and quantum

computing.
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APPENDIX

HELICITY INDEPENDENCE

In this section the independence of scattering properties of a skyrmion (or for any mag-

netic texture) helicity is proved for the most general case. We present the magnetic moment
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distribution in the following way:

Sz = Sz (r) , Sx = S∥ (r) cos (φ (r) + φ0), Sy = S∥ (r) sin (φ (r) + φ0). (A-I.1)

The perturbation operator V̂ in this case is taken as follows:

V̂ = −J

⎛⎝ Sz (r) e−iφ0S− (r)

eiφ0S+ (r) −Sz (r)

⎞⎠ , (A-I.2)

where S± (r) = S∥ (r) e
±iφ(r) are functions independent of φ0. For further convenience it

can be rewritten as follows:

V̂ = Vss′ (r) e
iνss′φ0 , (A-I.3)

where ν↑↑ = ν↓↓ = 0, ν↑↓ = −1. and ν↓↑ = 1.

It can be explicitly proven that for any s1 =↑, ↓

νss1 + νs1s′ = νss′

If we rewrite the V̂ -operator in the k-space, the result is transformed in the following

way: ⟨︂
ks

⃓⃓⃓
V̂
⃓⃓⃓
k′s′

⟩︂
= Vss′ (k,k

′) eiνss′φ0 , (A-I.4)

where Vss′ (k,k
′) is independent of φ0. Substituting this expression into Lippmann-

Schwinnger equation (7), we can write this equation in the integral form:⟨︂
ks

⃓⃓⃓
T̂
⃓⃓⃓
k′s′

⟩︂
= Vss′ (k,k

′) eiνss′φ0+∑︂
s1

eiνss1φ0

∫︂
Vss′ (k,k

′)Gs1
0 (k1)

⟨︂
k1s1

⃓⃓⃓
T̂
⃓⃓⃓
k′s′

⟩︂
dnk1,

(A-I.5)

where n denotes a dimension (n = 2 stands for 2D and n = 3 for 3D materials). Using the

form of
⟨︂
ks

⃓⃓⃓
T̂
⃓⃓⃓
k′s′

⟩︂
= Tss′ (k,k

′) eiνss′φ0 , we obtain the following equation (here Tss′ (k,k
′)

is independent of φ0):

Tss′ (k,k
′) eiνss′φ0 = Vss′ (k,k

′) eiνss′φ0+∑︂
s1

ei(νss1+νs1s′)φ0

∫︂
Vss′ (k,k

′)Gs1
0 (k1)Tss′ (k,k

′) dnk1 =

Vss′ (k,k
′) eiνss′φ0 + eiνss′φ0

∑︂
s1

∫︂
Vss′ (k,k

′)Gs1
0 (k1)Tss′ (k,k

′) dnk1.

(A-I.6)
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Thus, the final form of the Lippman-Schwinger equation becomes independent of φ0:

Tss′ (k,k
′) = Vss′ (k,k

′) +
∑︂
s1

∫︂
Vss′ (k,k

′)Gs1
0 (k1)Tss′ (k,k

′) dnk1. (A-I.7)

In order to substitute T-matrix into the Boltzmann equation we have to square its absolute

value:

W ss′

kk′ =
2π

ℏ
nt

⃓⃓⃓⟨︂
ks

⃓⃓⃓
T̂
⃓⃓⃓
k′s′

⟩︂⃓⃓⃓2
δ(ε− ε′), (A-I.8)

where |eiνss′φ0| = 1. Thus, we have proved that the scattering properties are independent

of the helicity φ0. In particular, Neel, φ0 = 0, and Bloch, φ0 = π/2, skyrmions would

identically scatter electrons. For the proof it is important to use the representation where

the wave functions are the eigenfunctions of the Hamiltonian Ĥ0. The derivations presented

above are valid for any spin texture including skyrmions and any energy band shape.
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