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Extracting correlation effects from momentum-resolved electron energy loss spectroscopy:
Synergistic origin of the dispersion kink in Bi2.1Sr1.9CaCu2O8+x
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We employ momentum-resolved electron energy loss spectroscopy (M-EELS) on Bi2.1Sr1.9CaCu2O8+x to
resolve the issue of the kink feature in the electron dispersion widely observed in the cuprates. To this end,
we utilize the GW approximation to relate the density response function measured in M-EELS to the self-energy,
isolating contributions from phonons, electrons, and the momentum dependence of the effective interaction to the
decay rates. The phononic contributions, present in the M-EELS spectra due to electron-phonon coupling, lead to
kink features in the corresponding single-particle spectra at energies between 40 and 80 meV, independent of the
doping level. We find that a repulsive interaction constant in momentum space is able to yield the kink attributed
to phonons in ARPES. Hence, our analysis of the M-EELS spectra points to local repulsive interactions as a
factor that enhances the spectroscopic signatures of electron-phonon coupling in cuprates. We conclude that the
strength of the kink feature in cuprates is determined by the combined action of electron-phonon coupling and
electron-electron interactions.
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I. INTRODUCTION

In strongly correlated electron matter, the noninteracting
band dispersion fails to describe the elementary excitations.
The departure from noninteracting physics is usually captured
by the self-energy. It is in this context that the kinklike feature
measured from angle-resolved photoemission spectroscopy
(ARPES) [1–6] at 60 meV has risen to the fore as a tell-
tale signature of a possibly universal energy scale in cuprate
physics over a wide range of doping. Although phonons [6,7]
are widely cited as the origin of the kink, there is good reason
to believe that phonons alone are insufficient [8–13]. To help
resolve this puzzle, we resort to momentum-resolved electron
energy loss spectroscopy (M-EELS), which provides a mea-
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surement of the two-particle response or the density-density
response function. Applying standard many-body approaches
to the M-EELS data allows us to disentangle the many-body
excitations encoded in the electron self-energy.

An advantage M-EELS has over ARPES is that because
ARPES measures occupied states, extracting the self-energy
from ARPES data relies on additional assumptions concern-
ing the unoccupied spectral function, which may or may
not be justified. A complementary approach to determining
the self-energy from experimental data is to consider the
scattering of electrons from bosonic fluctuations. Formally,
two-particle response functions that characterize bosonic
fluctuations can be related exactly to the single-particle self-
energy via Hedin’s equations [14]. This relationship allows
one to identify features in the single-particle spectra with
particular aspects of the two-particle spectra. To do so, we
employ the GW approximation, which is based on assuming a
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bare vertex function in Hedin’s equations. The self-energy is
given in imaginary time by

�(k, τ ) =
∫

dq
(2π )2

G(k − q, τ )W (q, τ + 0+), (1)

where τ is imaginary time, G is the Green function, and

W (q, τ ) = V (q)δ(τ ) + V (q)χ (q, τ )V (q) (2)

is the screened Coulomb interaction, in terms of the bare
Coulomb interaction V (q) and the charge susceptibility
χ (q, τ ). In our calculations, the susceptibility will be taken
directly from momentum-resolved electron energy loss spec-
troscopy (M-EELS) measurements of the density-density
response function in the high-Tc cuprate Bi2.1Sr1.9CaCu2O8+x

(BSCCO). This recently developed technique [15] provides
reliable measurements of the total density response of a sys-
tem for momenta throughout the Brillouin zone with meV
resolution. Moreover, unlike other probes (like inelastic x-ray
scattering), the density response of M-EELS primarily orig-
inates from valence electrons and shields out contributions
from the core states. Equipped with experimental knowledge
of the density response of valence electrons for all frequen-
cies and momenta, we undertake the tasks of determining the
corresponding self-energy and examining to what extent the
results agree with other known probes of the self-energy.

In this paper, we showcase how M-EELS can be used
as a purely nonoptical probe of correlation effects captured
in the momentum- and frequency-dependent scattering rate
or self-energy. Using the density response measured in M-
EELS [16–18], we employ the GW method to evaluate the
self-energy for the under-, optimally, and overdoped copper
oxide superconductor Bi2.1Sr1.9CaCu2O8+x. In the process,
we isolate the contributions from phonons as a cause of the
kink in the energy dispersion in the momentum- and energy-
dependent curves as seen in ARPES. Hence, we are able to
offer new insights into the origin of the debated kink features
around ∼60 meV [1–6]. Our calculations find that, indepen-
dent of doping, kinks appear at the energies of the phonons
visible by M-EELS when considering effective electron inter-
actions that are local in real space.

II. PRELIMINARIES

The imaginary part of the density response function,
χ ′′(q, ω), in BSCCO can be measured using M-EELS as
reported in [16–18]. In this paper, we use χ ′′(q, ω) measured
in BSCCO at four doping concentrations to compute the
imaginary part of the self-energy. The four dopings include
underdoping with Tc = 50 K and Tc = 70 K, optimal doping
with Tc = 91 K, and overdoping with Tc = 50 K. In Fig. 1, we
display χ ′′(q, ω) for all four dopings at fixed q = 0.5 recipro-
cal lattice units (r.l.u.) to demonstrate the doping dependence
of features in χ ′′. As shown in Fig. 1(b), these include two
phonon peaks at energies of about 40 and 70 meV and a
broader electronic continuum with an edge at about 1 eV.
Compared to the flat background from 100 meV to 1 eV in the
optimally doped case, there is a suppression (an enhancement)
of χ ′′ at about 200–400 meV in the overdoped (underdoped)
case.

FIG. 1. (a) Plots of the imaginary part of the density-density
response function at momentum q = (0.5, 0) in r.l.u., as measured
by M-EELS for four dopings of BSCCO. (b) Separation of the
M-EELS data for UD70 into phonon peaks (orange curve) and the
electronic continuum (green curve), which add to form the smoothed
curve (blue). The phonon peaks are fitted with two antisymmetrized
Lorentzians, although they may consist of more than two phonons
that are not resolved. The smoothed curve is obtained by a smoothed
spline fit to the raw data (red dots). Inset: Same plot at low frequen-
cies. Data below 20 meV are contaminated by the tails of the strong
quasielastic peak.

We assume that χ ′′(q, ω) does not depend on the direc-
tion of q, i.e., χ ′′(q, ω) = χ ′′(q, ω). Figure S2B in Ref. [17]
showed that χ ′′(q, ω) measured along the nodal and antinodal
directions coincide for q ≡ |q| between 0.1 and 0.5 r.l.u. For
smaller values of q ≈ 0.05 r.l.u., there is a difference between
χ ′′ in the two directions at energies below 1 eV. For simplicity
of the calculations, we ignore this deviation at small q and
take χ ′′(q, ω) = χ ′′(q, ω) for all q in the Brillouin zone. A
full map of the Brillouin zone by M-EELS may be of interest
in future studies to address the validity of this approximation.

To obtain the screened interaction W from the density re-
sponse χ , a concrete form for the electron interaction,V (q), is
required. Reference [17] considered the susceptibility χ (q, ω)
in terms of the background susceptibility ε∞ (4.5 for BSCCO
[19]) and polarizability 	(q, ω),

χ (q, ω) = 	(q, ω)

ε∞ − V (q)	(q, ω)
, (3)
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and found that the imaginary part of the polarizability factors
in momentum and energy with the form (for optimal doping)

	′′(q, ω) = −	0(q) tanh
ω2

c (q)

ω2
(4)

if the effective interaction is given by

V (q) = V0
exp(−zq)

q
, (5)

where V0 = 820 eV Å3 and z = 14.3 Å. The prefactor func-
tion 	0(q) ∝ q2 and the cutoff frequency ωc(q) ≈ 1 eV. The
specific form of V (q) here is not determined directly and is
not physically motivated. chosen based on a fit of the data to
(4). Notably, even by this scheme, the value of V (q) for large
q is not strongly constrained.

We therefore consider also V (q) with a more regular mo-
mentum dependence. Specifically, we study the simplest case
in which V (q) ∝ 1, corresponding to a local real-space in-
teraction. One of our main conclusions is that while V (q)
as given in (5) leads to factorizability of 	(q, ω), it does
not produce the expected behavior of the kink in the spectral
function A(k, ω) in our calculations.

For the band structure, we include up to next-next-nearest-
neighbor hoppings, t , t ′, and t ′′:

εk = − 2t (cos(kxa) + cos(kya)) − 4t ′ cos(kxa) cos(kya)

− 2t ′′(cos(2kxa) + cos(2kya)). (6)

The hoppings we use in this paper are t = 0.42 eV, t ′ =
−0.110 eV, and t ′′ = 0.055 eV [20,21]. The lattice parameter
is a = 3.81 Å [17].

One of our goals is to separate and isolate the contributions
from phonons and from the electronic background to the self-
energy. To this end, we fit the two phonon peaks at energies of
about 40 and 70 meV with two Lorentzian functions [antisym-
metrized to obey χ ′′(q,−ω) = −χ ′′(q, ω)]. These peaks may
be subtracted from the data to obtain the electronic continuum,
as shown in Fig. 1(b). We then compute the imaginary part of
the self-energy from the density response considering only the
phonons peaks, only the electronic continuum, or the entire
spectrum. Plugging in the self-energy to Dyson’s equation
yields the Green function, from which we plot the spectral
function and visualize the dispersion by looking at the maxima
of momentum distribution curves (MDCs), as is commonly
done to analyze ARPES data.

As is evident from Eq. (2), there are two contributions to
the self-energy. The first term, which contains only the bare
interaction, is frequency independent and hence just provides
a shift to the band dispersion. This term is dropped in our
calculations to avoid double-counting, since our noninteract-
ing dispersion, (6), was determined by a fit to experimental
ARPES data, which of course include the effects of screening.
The frequency dependence of the self-energy arises entirely
from the second term that includes the density-density re-
sponse. Then, in real frequency, (1) takes the form

�′′(k, ω) =
∫

dq
(2π )2

d�V (q)2[ f (−�) + n(ω − �)]

× −1

π
G′′(k − q,�)χ ′′(q, ω − �), (7)

where f (ω) and n(ω) are the Fermi and Bose distribution
functions, respectively, and �, G, and χ are understood to
be evaluated with an infinitesimal displacement above the real
frequency axis. For numerical stability, we perform all calcu-
lations with a small finite amount γ above the real frequency
axis rather than using Eq. (7). Following the methods in [22],
�(k, ω + iγ ) can be evaluated efficiently via fast Fourier
transforms in terms of G and χ using

�(r, ω + iγ ) =
∫ ∞

0
dt�(r, t )ei(ω+iγ )t

�(r, t ) = i2πT �χ̃ (r, 0 + i0+)eγ tρ(r, t )

− i(2π )2ν(r, t )
(
A(r, t ) + A(r,−t )∗e2γ t

)
+ i(2π )2ρ(r, t )(B(r, t )∗ + B(r,−t ))e2γ t

(8)

with

ρ(r, t ) =
∫ ∞

−∞

dω

2π
e−iωt −1

π
G′′(r, ω + iγ ),

A(r, t ) = i

2π

∫ ∞

−∞

dω

2π
e−iωt f (ω + iγ )∗G(r, ω + iγ )∗,

ν(r, t ) =
∫ ∞

−∞

dω

2π
e−iωt −1

π
χ̃ ′′(r, ω + iγ ),

B(r, t ) = i

2π

∫ ∞

−∞

dω

2π
e−iωt n(ω + iγ )∗χ̃ (r,−ω + iγ ),

χ̃ (r, ω) = 1

N

∑
q

eiq·rV (q)2χ (q, ω). (9)

All momentum integrals are discretized on a grid of size
N = 200×200. Frequency integrals are discretized with steps
of 0.002 eV in the range [−12 eV, 12 eV]. We have checked
that increasing the density of the momentum and frequency
grids and extending the range of the frequency integration
do not affect our results. In the Fermi and Bose distribution
functions, we have assumed a temperature of T = 0.002 eV.
As this value is smaller than the lowest accessible energy
of the M-EELS spectra (∼20 meV due to quasielastic tails),
varying it does not affect our results. Finally, the parameter
γ must satisfy γ < πT/2 as discussed in [22]. We found
γ = πT/3 to yield numerically stable results.

The calculation of the self-energy begins by using a non-
interacting Green function, G(k, ω + iγ ) = [ω + iγ − εk]−1.
After a Fourier transform to real space, Eqs. (8) and (9) are
used to evaluate�(r, ω + iγ ), which is then transformed back
into momentum space. A new Green function is obtained via

G(k, ω + iγ ) = 1

ω + iγ − εk − �(k, ω + iγ )
(10)

and may be used as the new input to the calculation. This
procedure may be stopped after the first calculation, which we
refer to as the one-loop calculation (similarly to Ref. [16]), or
repeated until the self-energy and Green function converge,
i.e., self-consistently. Typically, self-consistency is achieved
within ∼10 iterations.
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FIG. 2. Plots of the imaginary part of the self-energy in the
nodal direction computed by the GW approximation with M-EELS
data for underdoped BSCCO (Tc = 70 K). (a), (b) Computed using
V (q) ∝ 1; (c), (d) computed using Eq. (5). Both (b) and (d) are
two-dimensional plots of the self-consistent calculation in which the
color shows the magnitude of the imaginary part of the self-energy
along a nodal cut. Darker colors correspond to a higher intensity.

III. RESULTS

We numerically calculated the real and imaginary parts
of the self-energy using Eqs. (8) and (9). Figures 2(a) and
2(c) compare the self-consistent and one-loop evaluations
of the imaginary part of the self-energy for two kinds of
interaction potentials, a constant, V (q) ≈ 1, and the form
V (q) = V0e−zq/q as discussed in Refs. [17] and [18]. The
one-loop self-energies show minor oscillations due to the
finite 200×200 momentum grid; these artifacts go away
with increasing momentum resolution and hence can be ig-
nored. While the self-consistent solution and the one-loop
calculation exhibit somewhat different slopes at high energy,
the behavior at low energies is qualitatively similar. In the
subsequent calculations, we do not find major differences
between the two schemes, and we focus on data from the
self-consistent calculations.

We see also that the two forms of potentials V (q) yield
quite similar imaginary parts of the self-energies, which is
surprising given that one is constant and the other is sharply
peaked as functions of q. However, as we see, this agreement
is misleading, as significant changes will become apparent in
our evaluation of the spectral function and dispersion curves.
Figures 2(b) and 2(d) show a two-dimensional color plot of
�′′(k, ω) as a function of both the frequency and the mo-
mentum, as obtained from the self-consistent calculation. As
expected, the momentum dependence of the self-energy is
stronger for the momentum-dependent interaction potential.
What our analysis shows thus far is that we have a numerically
self-consistent stable method to calculate the self-energy and

FIG. 3. Imaginary (a), (c) and real (b), (d) parts of the self-energy
for UD70 BSCCO at the nodal kF . (a), (b) Computed using V (q) ∝
1; (c), (d) computed using Eq. (5). Different curves correspond to
using all of the M-EELS data (blue), keeping only the phonon peaks
(orange), and keeping only the electronic continuum (green).

analyze the results for an arbitrary potential that goes beyond
the one-loop approximation used previously [16].

For BSCCO UD70, we now analyze the role the two
distinct parts of the susceptibility [Fig. 1(b)] play in the self-
energy. Figure 3 displays both the real and the imaginary parts
of the self-energy. In the orange curves, the calculation uses
only the phonon peaks, and in the green curves, the calculation
uses only the electronic continuum. The real part of the self-
energy exhibits a distinct nonmonotonic behavior. We find
that the 40- and 70-meV phonon peaks in the susceptibility
correspond to a broad maximum and minimum at ∼±60 meV
in the real part of the self-energy and a corresponding change
in slope in the imaginary part. This behavior will be linked to
the kink feature in the energy dispersion curves. When only
the electronic continuum is included, there is no particular
frequency scale visible in the range [−0.2 eV, 0.2 eV]. As
is evident in Fig. 3, the qualitative aspects of these trends
appear independent of the details of the interaction potential.
However, as we see in studying the spectral function, the
relative ratio of the contributions of the phonons and elec-
tronic continuum is affected by the choice of the interaction
potential, which has significant consequences.

We are now set to address our key problem of the necessary
ingredients to obtain the kink feature reported in previous
ARPES studies on the cuprates [6,23,24]. Figure 4 contains
plots of the spectral function A(k, ω) as two-dimensional plots
of frequency and momentum. To visualize the dispersion, we
also plot the noninteracting dispersion (dashed lines) and the
locus of maximal intensity along cuts of constant energy,
i.e., MDC maxima (solid lines). Figures 4(a)–4(c) show the
spectral functions and MDC maxima from calculations using

035121-4



EXTRACTING CORRELATION EFFECTS FROM … PHYSICAL REVIEW B 103, 035121 (2021)

FIG. 4. Spectral functions as functions of the momentum and
energy. Solid lines represent maxima of the momentum distribution
curves (MDCs). Dashed lines show the noninteracting dispersion.
Computed for a constant potential with the full self-energy (a), just
the phonons (b), and just the electronic continuum (c). The same as
(d)–(f), but for the potential as shown.

a momentum-independent potential. As is evident, the kink
feature present in Fig. 4(a) is lost completely when only the
electronic continuum feature is retained. When phonons are
present, there are clearly kinks at∼±60 meV as Figs. 4(a) and
4(b) demonstrate. This is clearly correlated with the minimum
and maximum in the real part of the self-energy as discussed
in Fig. 3. As seen experimentally [6,23,24], the kink feature
involves a renormalization of the band for |ω| ∼ 60 meV
that sharply connects back to the unrenormalized noninter-
acting band at higher energies. Such behavior is absent for
the strongly momentum-dependent potential. While there is
a renormalization of the dispersion at low frequencies in
Fig. 4(d), there is no connection back to the noninteracting
band. By analyzing the spectra when only phonons are kept
[Fig. 4(e)], we see that the phonons affect the dispersion
minimally for the given form of the momentum-dependent
interaction. Therefore, the renormalization in Fig. 4(d) derives
almost entirely from the contribution of the electronic contin-
uum [Fig. 4(f)], which has no clearly defined energy scale.

FIG. 5. Spectral functions (color) and MDC maxima (solid line)
calculated using the constant potential, V (q) ∝ 1, for different dop-
ing. Doping levels are as labeled: (a) UD50, (b) UD70, (c) optimal
doping (OP), and (d) overdoping (OD).

While there is an apparent change in the renormalization in
Fig. 4(d) around roughly 30 meV, this is not related to any
feature in χ (q, ω) but rather controlled by the magnitude
of V0. (For the momentum-dependent interaction, changing
this prefactor strongly affects the range where the dispersion
is renormalized, in contrast to the momentum-independent
interaction, where the energies of the features are set by the
energies of the phonon peaks.)

The doping dependence of the spectral function is shown
in Fig. 5. In these calculations, we have used a momentum-
independent interaction and the full density response, includ-
ing both the phonons and the electronic continuum. The same
kink behavior discussed previously persists in the dispersion
for all doping levels, though it is strongest in the underdoped
samples.

The crucial effect of doping on the imaginary part of
the density response is the supression or enhancement of
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FIG. 6. Comparison plots between the imaginary part of the
self-energy at nodal kF obtained in this work and from ARPES for
overdoped BSCCO [28]. The Tc of the overdoped sample of Bok
et al. is 82 K.

spectral weight at energies �0.5 eV. Relative to optimal dop-
ing, the intensity is suppressed around ∼0.3 eV for overdoped
samples and enhanced in underdoped samples [Fig. 1(a)].
This low-energy enhancement of the susceptibility does not
significantly affect the calculated spectra and the kink around
60 meV remains essentially intact.

Comparisons of the self-energy as obtained from ARPES
and scattering rates from optical probes such as FTIR and
ellipsometry have been made previously [1–3,25]. The con-
tribution of magnetic excitations as probed by neutron and
Raman scattering [26,27] has also been considered in calcu-
lations of the self-energy and discussions of the origin of the
kink [11]. Our results derived from M-EELS data with mo-
mentum dependence provide a new perspective by analyzing
the electronic self-energy due to charge fluctuations. Figure 6
plots a comparison between the imaginary parts of the self-
energies obtained from our M-EELS data and ARPES [28].
The imaginary part of the self-energy from M-EELS with
the constant potential has a similar magnitude and general
frequency dependence as those extracted from ARPES [28],
indicating that we have chosen an appropriate strength for
the interaction potential. Once again, we show that modeling
with just the electronic continuum fails to account for the
sharp rise from ω = 0 of the self-energy. This behavior can be
accounted for by including just the phonon part, although this
contribution is peaked at ω = 0. Hence, our work on extract-
ing the self-energy from M-EELS concurs with the ARPES
work that phonons are the origin [6,7,29] of the kink feature
at 60 meV. While we cannot rule out other mechanisms, our
work strongly suggests that phonons are sufficient to achieve
a low-energy kinklike feature. Moreover, since these features
occur above Tc, they appear not to be dependent on supercon-
ductivity, consistent with the existing literature [1].

IV. FINAL REMARKS

Since M-EELS is inherently a two-particle probe, it
provides direct information regarding the form of the electron-
electron interaction. We have found that consilience with
the kink feature in ARPES requires an interaction broad in
momentum space, implying the presence and importance of
short-range and local repulsive interactions. Because the anal-
ysis leading to (5) does not strongly constrain the form of the
interaction at large momenta, our result is not necessarily in
contradiction with the finding that the polarizability factors in
the momentum and frequency, as demonstrated in (4).

Local and short-ranged interactions are at the heart of
the theoretical challenges associated with studying cuprates.
Strong repulsion [30,31] is the origin of the Mott insulating
behavior in the parent compounds and also certainly respon-
sible for many, if not most, of the complex behavior in the
doped compounds. We have shown here that these interactions
are also crucial to the behavior of kinks in the single-particle
dispersion, even though their existence and energy scale are
tied to bosonic modes, which we identify as phonons in our
M-EELS data.

Kinks due to electron-phonon coupling are typically con-
sidered in models [29] with only electron-phonon interactions.
Such models display kinks in their spectra if the interactions
are short-ranged or local as in, for instance, the Holstein
model. (This may be contrasted, for instance, with electron-
phonon interactions with forward scattering concentrated near
q = 0, which instead lead to replica bands [32]). In the frame-
work of the calculations in our work, these models may be
understood by integrating out the phonons, leading to an effec-
tive retarded electron-electron interaction that is short-ranged
and attractive. This retarded interaction gives a frequency
dependence to the first term in (2), and since it contains poles
at the phonon frequencies, it also yields a contribution to the
self-energy that forms dispersion kinks provided the interac-
tion is sufficiently local as we have discussed.

The Mott insulating nature of parent compound cuprates
implies that the Coulombic (repulsive) electron-electron
interactions significantly overcome the effective attractive in-
teractions due to electron-phonon coupling. However, the
frequency dependence of the total effective interaction re-
mains unchanged by including repulsion, and so the first term
in (2) contributes to the self-energy in the same way as in
a model with only electron-phonon coupling. In our simple
calculations, we do not model the frequency dependence of
V (q). Yet we find that the self-energy due to the second
term in (2) alone, as in our calculations, can also lead to
a substantial kink feature in A(k, ω). In this second term,
the instantaneous repulsive electron-electron interactions in
V (q) leads to kinks because of the frequency dependence of
χ (q, ω). Here, significant electron-phonon coupling is still
necessary for the susceptibility to display phonon peaks as
seen in the M-EELS data. The importance of all of these
factors leads us to conclude that the strength of the kink
feature in cuprates reflects the combined effects of strongly
repulsive electron-electron interactions and electron-phonon
coupling. Such a synergistic effect has been discussed, in a
different context, as a feedback loop that potentially enhances
superconductivity [33].
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The strengthening effect of repulsive electron-electron in-
teractions on the dispersion kink may provide a possible
resolution of ab initio calculations that have found electron-
phonon coupling in cuprates to be too weak, on its own, to
account for the kink observed in ARPES [8]. This effect may
also be tested in simulations of microscopic lattice models
involving both electron-electron and electron-phonon inter-
actions such as the Hubbard-Holstein model. Semianalytical
diagrammatic methods similar to the GW approximation used
here and Migdal-Eliashberg calculations for electron-phonon
models are a possible approach. We have seen that these
methods are well capable of characterizing the renormaliza-
tion of the dispersion that leads to the kink feature. However,
we caution that such calculations do not do full justice to
the strongly repulsive interactions in the cuprates. This may
be seen by considering the self-energy for Mott insulators
and doped Mott insulators. The simple Hatsugai-Kohmoto
model [31] provides a clear example. In this model, a local
interaction in momentum space yields the Mott physics. The
single-particle dispersion, which can be solved for exactly, is
modified from the noninteracting εk , to εk + U/2 − �(k, ω),
to the form

�(k, ω) = (U/2)2

ω + i0+ − (εk − μ + U/2)
(11)

at half-filling [34]. As is evident, the self-energy contains a
pole at ω = 0, the key feature of Mottness [30] that leads
to the formation of upper and lower Hubbard bands. This
divergence of the self-energy cannot be captured via pertur-
bative techniques. Therefore, we believe that nonperturbative
many-body techniques and models that treat electron-electron
and electron-phonon interactions on equal footing [35,36],
while challenging, are ultimately necessary to capture the
full richness of cuprate phenomenology and, in particular, the
detailed behavior of dispersion kinks.

ACKNOWLEDGMENTS

E.W.H. was supported by the Gordon and Betty Moore
Foundation EPiQS Initiative through Grants No. GBMF 4305
and No. GBMF 8691. P.A. and P.W.P. acknowledge sup-
port from Quantum Sensing and Quantum Materials, an
Energy Frontier Research Center funded by the U.S. Depart-
ment of Energy, Office of Science, Basic Energy Sciences,
under Award No. DE-SC0021238. P.W.P. also thanks the
NSF for partial funding of this project under Grant No.
DMR-1919143. C.S. was supported by DOE Grant No. DE-
FG02-05ER46236.

[1] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys.
75, 473 (2003).

[2] A. Kaminski, J. Mesot, H. Fretwell, J. C. Campuzano, M. R.
Norman, M. Randeria, H. Ding, T. Sato, T. Takahashi, T.
Mochiku, K. Kadowaki, and H. Hoechst, Phys. Rev. Lett. 84,
1788 (2000).

[3] A. Puchkov, D. Basov, and T. Timusk, J. Phys.: Condens.
Matter 8, 10049 (1996).

[4] J. Hwang, E. J. Nicol, T. Timusk, A. Knigavko, and J. P.
Carbotte, Phys. Rev. Lett. 98, 207002 (2007).

[5] J. Hwang, T. Timusk, and G. D. Gu, Nature 427, 714 (2004).
[6] A. Lanzara, P. V. Bogdanov, X. J. Zhou, S. A. Kellar, D. L.

Feng, E. D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio,
J.-I. Shimoyama, T. Noda, S. Uchida, Z. Hussain, and Z.-X.
Shen, Nature 412, 510 (2001).

[7] W. Meevasana, N. J. C. Ingle, D. H. Lu, J. R. Shi, F.
Baumberger, K. M. Shen, W. S. Lee, T. Cuk, H. Eisaki, T. P.
Devereaux, N. Nagaosa, J. Zaanen, and Z.-X. Shen, Phys. Rev.
Lett. 96, 157003 (2006).

[8] F. Giustino, M. L. Cohen, and S. G. Louie, Nature 452, 975
(2008).

[9] A. V. Chubukov and M. R. Norman, Phys. Rev. B 70, 174505
(2004).

[10] A. A. Kordyuk, S. V. Borisenko, V. B. Zabolotnyy, J. Geck, M.
Knupfer, J. Fink, B. Büchner, C. T. Lin, B. Keimer, H. Berger,
A. V. Pan, S. Komiya, and Y. Ando, Phys. Rev. Lett. 97, 017002
(2006).

[11] T. Dahm, V. Hinkov, S. V. Borisenko, A. A. Kordyuk, V. B.
Zabolotnyy, J. Fink, B. Büchner, D. J. Scalapino, W. Hanke,
and B. Keimer, Nat. Phys. 5, 217 (2019).

[12] C. Raas, P. Grete, and G. S. Uhrig, Phys. Rev. Lett. 102, 076406
(2009).

[13] K. Matsuyama, E. Perepelitsky, and B. S. Shastry, Phys. Rev. B
95, 165435 (2017).

[14] L. Hedin, Phys. Rev. 139, A796 (1965).
[15] R. Egerton, Ultramicroscopy 107, 575 (2007).
[16] S. Vig, A. Kogar, M. Mitrano, A. A. Husain, V. Mishra, M. S.

Rak, L. Venema, P. D. Johnson, G. D. Gu, E. Fradkin, M. R.
Norman, and P. Abbamonte, SciPost Phys. 3, 026 (2017).

[17] M. Mitrano, A. A. Husain, S. Vig, A. Kogar, M. S. Rak, S. I.
Rubeck, J. Schmalian, B. Uchoa, J. Schneeloch, R. Zhong,
G. D. Gu, and P. Abbamonte, Proc. Natl. Acad. Sci. USA 115,
5392 (2018).

[18] A. A. Husain, M. Mitrano, M. S. Rak, S. Rubeck, B. Uchoa, K.
March, C. Dwyer, J. Schneeloch, R. Zhong, G. D. Gu, and P.
Abbamonte, Phys. Rev. X 9, 041062 (2019).

[19] J. Levallois, M. K. Tran, D. Pouliot, C. N. Presura, L. H. Greene,
J. N. Eckstein, J. Uccelli, E. Giannini, G. D. Gu, A. J. Leggett,
and D. van der Marel, Phys. Rev. X 6, 031027 (2016).

[20] E. Pavarini, I. Dasgupta, T. Saha-Dasgupta, O. Jepsen, and O. K.
Andersen, Phys. Rev. Lett. 87, 047003 (2001).

[21] R. S. Markiewicz, S. Sahrakorpi, M. Lindroos, H. Lin, and A.
Bansil, Phys. Rev. B 72, 054519 (2005).

[22] J. Schmalian, M. Langer, S. Grabowski, and K. Bennemann,
Comput. Phys. Commun. 93, 141 (1996).

[23] H. Anzai, M. Arita, H. Namatame, M. Taniguchi, M. Ishikado,
K. Fujita, S. Ishida, S. Uchida, and A. Ino, Sci. Rep. 7, 4830
(2017).

[24] S. A. Sreedhar, A. Rossi, J. Nayak, Z. W. Anderson, Y. Tang,
B. Gregory, M. Hashimoto, D.-H. Lu, E. Rotenberg, R. J.
Birgeneau, M. Greven, M. Yi, and I. M. Vishik, Phys. Rev. B
102, 205109 (2020).

[25] D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).
[26] T. P. Devereaux and R. Hackl, Rev. Mod. Phys. 79, 175 (2007).

035121-7

https://doi.org/10.1103/RevModPhys.75.473
https://doi.org/10.1103/PhysRevLett.84.1788
https://doi.org/10.1088/0953-8984/8/48/023
https://doi.org/10.1103/PhysRevLett.98.207002
https://doi.org/10.1038/nature02347
https://doi.org/10.1038/35087518
https://doi.org/10.1103/PhysRevLett.96.157003
https://doi.org/10.1038/nature06874
https://doi.org/10.1103/PhysRevB.70.174505
https://doi.org/10.1103/PhysRevLett.97.017002
https://doi.org/10.1038/nphys1180
https://doi.org/10.1103/PhysRevLett.102.076406
https://doi.org/10.1103/PhysRevB.95.165435
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1016/j.ultramic.2006.11.005
https://doi.org/10.21468/SciPostPhys.3.4.026
https://doi.org/10.1073/pnas.1721495115
https://doi.org/10.1103/PhysRevX.9.041062
https://doi.org/10.1103/PhysRevX.6.031027
https://doi.org/10.1103/PhysRevLett.87.047003
https://doi.org/10.1103/PhysRevB.72.054519
https://doi.org/10.1016/0010-4655(95)00134-4
https://doi.org/10.1038/s41598-017-04983-0
https://doi.org/10.1103/PhysRevB.102.205109
https://doi.org/10.1103/RevModPhys.77.721
https://doi.org/10.1103/RevModPhys.79.175


EDWIN W. HUANG et al. PHYSICAL REVIEW B 103, 035121 (2021)

[27] R. Zeyher and A. Greco, Phys. Rev. B 87, 224511 (2013).
[28] J. M. Bok, J. J. Bae, H.-Y. Choi, C. M. Varma, W. Zhang, J. He,

Y. Zhang, L. Yu, and X. J. Zhou, Sci. Adv. 2, e1501329 (2016).
[29] S. Johnston, F. Vernay, B. Moritz, Z.-X. Shen, N. Nagaosa, J.

Zaanen, and T. P. Devereaux, Phys. Rev. B 82, 064513 (2010).
[30] P. Phillips,

Rev. Mod. Phys. 82, 1719 (2010).
[31] D. Lidsky, J. Shiraishi, Y. Hatsugai, and M. Kohmoto, Phys.

Rev. B 57, 1340 (1998).
[32] J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y.-T. Cui, W.

Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P.
Devereaux, D.-H. Lee, and Z.-X. Shen, Nature 515, 245 (2014).

[33] Y. He, M. Hashimoto, D. Song, S.-D. Chen, J. He, I. M. Vishik,
B. Moritz, D.-H. Lee, N. Nagaosa, J. Zaanen, T. P. Devereaux,
Y. Yoshida, H. Eisaki, D. H. Lu, and Z.-X. Shen, Science 362,
62 (2018).

[34] P. W. Phillips, L. Yeo, and E. W. Huang, Nat. Phys. 16, 1175
(2020).

[35] S. Johnston, E. A. Nowadnick, Y. F. Kung, B. Moritz, R. T.
Scalettar, and T. P. Devereaux, Phys. Rev. B 87, 235133
(2013).

[36] C. B. Mendl, E. A. Nowadnick, E. W. Huang, S. Johnston,
B. Moritz, and T. P. Devereaux, Phys. Rev. B 96, 205141
(2017).

035121-8

https://doi.org/10.1103/PhysRevB.87.224511
https://doi.org/10.1126/sciadv.1501329
https://doi.org/10.1103/PhysRevB.82.064513
https://doi.org/10.1103/RevModPhys.82.1719
https://doi.org/10.1103/PhysRevB.57.1340
https://doi.org/10.1038/nature13894
https://doi.org/10.1126/science.aar3394
https://doi.org/10.1038/s41567-020-0988-4
https://doi.org/10.1103/PhysRevB.87.235133
https://doi.org/10.1103/PhysRevB.96.205141

