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Abstract—Radio access network (RAN) in 5G is expected
to satisfy the stringent delay requirements of a variety of
applications. The packet scheduler plays an important role
by allocating spectrum resources to user equipments (UEs) at
each transmit time interval (TTI). In this paper, we show that
optimal scheduling is a challenging combinatorial optimization
problem, which is hard to solve within the channel coherence time
with conventional optimization methods. Rule-based scheduling
methods, on the other hand, are hard to adapt to the time-varying
wireless channel conditions and various data request patterns
of UEs. Recently, integrating artificial intelligence (AI) into
wireless networks has drawn great interest from both academia
and industry. In this paper, we incorporate deep reinforcement
learning (DRL) into the design of cellular packet scheduling.
A delay-aware cell traffic scheduling algorithm is developed to
map the observed system state to scheduling decision. Due to the
huge state space, a recurrent neural network (RNN) is utilized
to approximate the optimal action-policy function. Different
from conventional rule-based scheduling methods, the proposed
scheme can learn from the interactions with the environment and
adaptively choosing the best scheduling decision at each TTI.
Simulation results show that the DRL-based packet scheduling
can achieve the lowest average delay compared with several
conventional approaches. Meanwhile, the UEs’ average queue
lengths can also be significantly reduced. The developed method
also exhibits great potential in real-time scheduling in delay-
sensitive scenarios.

Index Terms—Delay; Deep reinforcement learning (DRL);
Packet scheduling; Recurrent neural network (RNN).

I. INTRODUCTION

The envisioned applications of the 5SG communication tech-
nologies, such as video streaming, virtual reality, and 360 de-
gree videos, are all imposing stringent delay requirements [1].
Radio access network (RAN) has become a key enabling
technology to address this issue. In RAN, radio resource
management (RRM) [2], [3] plays a vital role in allocating the
resources to user equipments (UEs) by jointly exploiting the
advanced MAC layer functions, such as resource sharing, link
adaptation, hybrid automatic retransmission request (HARQ),
and channel quality indicator (CQI) reporting.

In conventional RAN, a packet scheduler is deployed at
the base station (BS) and it is responsible for allocating the
wireless spectrum resources to UEs based on their quality of
service (QoS) requirements as well as their reported channel
conditions. In each Transmission Time Interval (TTI), the
packet scheduler needs to solve a decision-making problem to
decide how the resources are allocated to the UEs. Due to the
large number of UEs and the dynamic wireless environment,

it is difficult to obtain an optimal solution with the existing
optimization methods within the channel coherence time. As a
result, most of the existing approaches rely on some predefined
rules. For example, conventional packet scheduling strategies,
such as the max-CQI scheduling approach and proportional
fairness (PF) scheduling, are all rule-based scheduling policies
which simply assign the resource block (RB) to the UEs’ that
have the best channel condition or the best relative channel
condition. The problem is these methods are designed based
on human’s understanding of a network. Although simple and
useful, it is hard to guarantee they are optimal and accurate.

In todays’ highly complex wireless environment, variety of
applications have emerged, for which rule-based scheduling
methods have their limitations. For example, from a spectrum
efficiency point view, max-CQI scheduling, which allocate
radio resources to the UEs that is expected to have the
best achieved rate, would be optimal. However, this is at a
cost of sacrificing other important performance metrics, such
as fairness, energy-saving, and complexity. In some delay-
sensitive scenarios such as vehicle-to-vehicle (V2V) commu-
nications [4], ensuring timely delivery of packets is more
important than bringing an additional increase to the system
throughput. As UEs’ QoS requirements may change, develop-
ing an intelligent scheduling method that can adaptively select
the best scheduling policy is of vital importance.

Recently, deep reinforcement learning has made break-
throughs the field of networking and communications [5]-[10].
In time-varying and unpredictable networks, DRL has proved
to be effective in tackling real-time decision-making problems.
For example, the authors in [11] developed a decentral-
ized resource allocation mechanism for V2V communications
based on DRL. The vehicles can make decisions to find the
optimal sub-channel allocation as well as the power level for
transmission without global information. Vehicles can learn
to satisfy their QoS requirement while also minimizing the
interference to other vehicles. In [12], an online DRL-based
algorithm is developed to optimally adapt task offloading
decisions and wireless resource allocations to the channel
conditions. Instead of solving the large combinatorial problem
directly, the proposed agent learns the binary decisions from
past experience. This method can achieve near optimal perfor-
mance while significantly decreasing the computational time.
In [6], the joint beam forming, power control, and interference
coordination problem in a downlink multiple access OFDM
cellular network is formulated as a combinatorial problem. The
authors show that closed-form expression does not exist and
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finding the optimal solution requires an exhaustive search. The
developed method leverages the power of DRL to avoid the
exhaustive search and achieves a near-optimal performance. In
our recent works, we have applied DRL to solve the resource
allocation problem at a wireless backhaul [9] and to develop
a smart congestion control scheme [10].

In the field of cellular traffic scheduling, Ref. [13] investi-
gates how DRL can help solve scheduling problems in cellular
networks. It shows that by exploiting the expert knowledge of
existing rule-based scheduling method in the training process
of the DRL agent, the DRL’s learning ability can get improved.
In [14], a DRL-packet scheduler is developed to adapt to
the dynamic scheduling conditions. Instead of using a single
scheduling rule across the entire transmission, Ref. [14] pro-
poses a framework to dynamically select the best scheduling
rule at each TTI based on UEs’ QoS requirements. Simulations
show that the developed method outperforms a conventional
scheduling method in terms of delay and package drop rate
requirements.

It is envisioned that the application of AI/ML techniques to
the design of 6G systems will be fundamental to improve the
system performance [15]. In this paper, we incorporate DRL
to address the problem of delay-aware packet scheduling in
the downlink of a cellular network. We show that delay-aware
packet scheduling is a complex combinatorial problem, which
is challenging to solve. By modeling the packet scheduling
problem as a Markov decision process (MDP) problem, a deep
Q-learning agent that is based on a recurrent neural network
(RNN) is designed to learn a delay optimized scheduling solu-
tion through the interactions with the environment. Simulation
results show that the DRL-based packet scheduler, designed to
minimize the queueing delay of all UEs, outperforms several
existing scheduling schemes. Meanwhile, the framework in
this paper can be easily generalized to other scenarios with
various QoS requirements.

The paper is organized as follows. In Section II, the system
model is introduced and the delay-aware scheduling problem
is formulated. In Section III, a DRL-based packet scheduling
algorithm is proposed. Simulation results are presented in
Section IV to validate the superiority of the proposed method.
Finally, Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT
A. System Model

We consider the downlink transmissions of a cellular net-
work, where UEs are served by a base station (BS). As shown
in Fig. 1, multiple UEs request packets from the BS and
the BS performs traffic scheduling with UE-specific queues.
We consider an orthogonal frequency division multiplexing
(OFDM) system, where the available wireless resources in
time and frequency are divided into resource blocks (RBs).
The RB scheduling is performed at each time slot (i.e., TTI).

Let 4 = {1,2,...,U} denote the set of active UEs and
B ={1,2,..., B} the set of RBs, where U and B are the total
number of UEs and RBs, respectively. We aim to develop a
packet scheduler to allocate the set of RBs to the UEs so that
the average delay of the UEs can be minimized.

At a time slot ¢, we denote the maximum number of bits
that could be sent for an RB b € B to a UE u € U as Cyplt].

UE 1 UE2 UEU

0

UE 2

A

Packet scheduler

O

UEU

Fig. 1: Delay-aware cellular downlink traffic scheduling sys-
tem model.

According to [16], the value of C,,;[t] depends on the channel
quality indicator (CQI) reported by UE w. Based on the CQI,
a proper modulation and coding scheme (MCS) is assigned
to the allocated RB. In practice, there exists a mapping table
between C\[t] and the MCS.

B. Traffic Model

We consider the case where the UEs are characterized by
data request pattern. Suppose that at time slot 7', the requested
data size of UE w is A,[t]. The BS will assign RBs to
UEs and transmit the requested data to the corresponding
UEs. However, the wireless resources are limited. Not all the
UEs can get allocated RBs immediately. The BS maintains a
separate queue for each UE. The requested packets of the UE
will be queued in the buffer. At time slot ¢, the queue length
of UE u is denoted as @, [t]. The buffer state of a UE can be
written as

Q. [t] = max(min(Qy [t — 1] + Ay [t], Qmax) — Du[t],0), (1)

where Qmax 18 the maximum buffer size of all UEs, D,,[t] is
the scheduled, transmitted data for UE u in time slot ¢, which
can be computed as

B
D,[t] = qub[ﬂ - Cup[t], )
b=1

where z,,[t] is the RB allocation indicator: z,[t] = 1 if UE u
is assigned with RB b at time slot ¢; and 2, [t] = 0 otherwise.

C. Traffic Delay

Packets of UEs are time stamped and queued in the buffers
for transmission based on the first-in-first-out principle. For
each packet, the difference between the current time and the
arrival time, which we call the head of line (HoL) time, is used
to measure the packet delay. At time slot ¢, the HoL packet
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Fig. 2: The traffic model considered in this paper.

delay of UE w is denoted by d,[t]. During a time period T,
the average delay of UE u can be computed as

1 T
W= dult 3)
t=1

As shown in Fig. 2, at a time ¢, the HoL time d,,[t] can be
computed by definition d,[t] = to — t1, where t; is the time
when the packet first enters the queue and ¢, is the time when
the packet leaves the queue.

D. Problem Formulation

Our objective is to jointly optimize the RB allocation in the
wireless links so that UE’s average delay can be minimized.
We formulate the problem as follows.

U
1
i r elay — 77 Wu 4
ol U,; @
st xult] = {0,1}, Yu,b,t Q)
U
D wwlt] <1, W, (6)

where constraint (5) means that the RB assignment variables
are binary, and constraint (6) ensures that each RB can only
be assigned to one UE. To solve Problem (4) is to find the
best RB scheduling policy at each time slot for all UEs and
RBs. This problem is difficult for the following reasons: (i)
Constraints (5) and (6) makes the problem combinatorial; (ii)
The objective function does not have a closed-form expression
in terms of the scheduling policy x,;[t]. A direct optimization
may become hard; (iii) the number of RBs and the number of
UEs may be very large, which makes the optimization problem
more challenging. In some delay-sensitive applications such
as vehicle communications, a fast and efficient algorithm is
needed [4], [11].

III. DRL-BASED PACKET SCHEDULING

A direct optimization of problem (4) is hard. In this section,
we show that problem (4) exhibits Markov decision process
(MDP) property, based on which, a deep reinforcement learn-
ing (DRL) based packet scheduling policy is proposed.

A. MDP Problem

As in (1), the queue length of UE u at time slot ¢ depends
on the queue length at time slot ¢ — 1, the requested data A, [t],
and the scheduled traffic D, [t]. The BS observes the queue
length of each UE. Based on the requested packet size of
different UEs and their corresponding channel conditions, the
BS allocates RBs to the UEs so that their averaged delay can
be minimized. Mathematically, at time slot ¢, the decision of

Culd ruslt)
agent | D,
Al T !

1]

Fig. 3: A Markov decision process (MDP) problem.

computing the current scheduled traffic for UE w is a function
of the current channel condition (i.e., the maximum amount of
traffic carried in an RB), the previous queue status, the current
HoL delay, and the current request data size of all UEs, i.e.,

Du[ﬂ = f(Cub[t]v Qu[t - 1]a dy [t]v Au[t]) (7N

In addition, as analyzed in Section II, the current HoL
packet delay depends on the queue status as well as the history
data request rates A,[t] and data traffic D,[t], t = 1,2,.....
Therefore, the buffer state (1) can be modeled as an MDP.
MDP is a discrete time stochastic control process. It provides
a mathematical framework for modeling the decision making
where the outcomes are partly random and partly depending on
the policy that is made by the controller. As shown in Fig. 3,
the packet scheduler, which we call agent, observes the current
state {Cyup[t], Qu[t—1], du[t], Au[t]}, and then makes decision
on how each RBs are assigned to UEs. Then the traffic is
scheduled, which in turn updates the queue length as well as
the HoL packet delay for each UE. At the next time slot, the
agent makes decision again, and so forth. The ultimate goal is
to find a stable “policy” so that the averaged HoL delay can
be minimized.

B. Deep Reinforcement Learning (DRL)

Reinforcement learning (RL) is an important tool to solve
the MDP problem. In RL, the agents learns from the interac-
tions with the environment. Q-learning algorithm is the most
widely used method in RL. In Q-learning, the set of possible
states is denoted as S, and the set of discrete actions is denoted
as A. At each time instant ¢, the agent takes action at e A
when observing the state s € S and receives a reward r’.
Then the system enters the next state s'*!. The Q-learning
algorithm aims to learn an optimal policy m which maps state
st to action at, so that the reward over time can be maximized.

For example, we can define the reward function as

o0
R'=7% A7-rt, 8)
7=0

where v € (0,1] is a tradeoff scalar between the immediate
and future rewards. Under a policy 7, the Q-function of the
agent is defined as

Qr(s,a) = E;[R|s' = s,a" = a]. 9)

Q-learning aims to maximize the Q-function by maintaining
a Q-table. However, when the state and action spaces become
continuous and large, the problem becomes intractable. To
address this problem, DRL uses a deep neural network (DNN)
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to approximate the mapping table. DRL inherits the advantages
of both RL and deep learning, and is more efficient than RL.

C. DRL-based Delay-aware Packet Scheduler

We next present the DRL-based RB scheduling algorithm.
At each time step t, the agent performs a certain action a,
based on the current state s;. The agent receives a reward and
moves to the next state.

The action is defined as the choice of z,;[t]. Note that we
have U UEs and B RBs in total; so the dimension of the
action space at each time slot would be O(2V*%). We map
the choice of z,;[t] to a real integer number that is between
[0,UB — 1]. Each integer number in the interval corresponds
to a unique RB allocation to the UEs. We use the interval to
denote the action space A, i.e.,

A=1[0,U8 —1]. (10)
In practical systems, the number of RBs is huge. A direct use
of RB would bring an extremely large action space. In OFDM,
frequency selective wireless channels are transferred into mul-
tiple flat channels over different sub-bands. consecutive sub-
bands can be grouped together, which is called resource block
group (RBG) in LTE [3]. This way, the action space can be
greatly reduced and the algorithm can converge faster.

The state space include UE’s packet arrival rate, buffer state,
the transmission rate of different RBs, which is denoted by

S[t} :{Sl[tLSQ[t]vaU[t]}v (11)
where S, [t] is the observed state of UE wu, given by
Su[t] = {Au[t]qu[t_ ]-Ldu[t_ 1]7Cub[t]}’ (12)

As a result, the dimension of the state space is UB + 3U.

What makes DRL appealing is we can customize the reward
function for a specific problem. In this paper, we directly
use the negative value of the objective function (4) as the
reward function. Maximizing the reward function will be
equivalent to minimizing the average delay of all UEs. Our
developed method can be quite general and flexible, as the
reward function can be extended by jointly consider the effect
of throughput, QoS requirements, latency, and priority. We
leave this topic for our future investigation.

We propose Algorithm 1 to solve Problem (4), which is a
DRL-based approach. The algorithm perform RB scheduling
so that the UEs’ average delay can be minimized. An RNN is
incorporated, which takes state as input and outputs a Q-value
for each of the candidate actions. The main steps include

o Select an action at time slot ¢
o Reward the action based on the computed time delay
e Train the RNN based on the outcome

We call the period of time in which an interaction between
the agent and the environment takes place as an episode. In the
beginning of each episode, the environment initializes the state
and then the agent interacts with the environment for several
training steps (or TTIs) during this episode. We perform
several episodes until the accumulated reward converges.

Algorithm 1 Delay-optimal cellular traffic scheduling algo-
rithm with DRL

1: if training then

2: Start environment simulator, generating arrival traffic and the

status of the RBs ;

3 Initialize the time, states, action and replay buffer D ;

4 for each episode do

5: for each time slot ¢ do

6

7

8

Observe state S[t] as in (11) ;
€= max(e . d, Emin) 5
Sample r ~ N(0,1) ;

9: if » < € then

10: Select an action Aft] € A randomly ;

11: else

12: Select an action such that Aft] =
arg max, Q(S[t],a’; 0[t]) ;

13: end if

14: Compute reward as 7[t] = — % SV W

15: Observe the next state S ;

16: Store the experience (S[t], A[t], S’,r[t]) in D ;

17: Minibatch sample from D, e; £ (S;, A4;,75,57) ;

18: Set y;j :=7; + v maxy Qr(sj+1,a’;0[t]) ;

19: Perform gradient optimization method on (y; —
Q~(sj+1,a’;0[t])) and obtain the optimal 6" ;

20: Ht = 9* 5

21: t=t+1;

22: St =5";

23: end for

24: end for

25: Save 0, and the agent ;

26: else

27: Load the agent ;

28: Based on the observed state, output the action ;

29: end if

IV. SIMULATION RESULTS AND DISCUSSIONS
A. Parameter Setting

We consider the case where two UEs request data from the
BS. The data request pattern of UE 1 follows the Poisson
process with parameter A = 8, i.e.,

e AM\F
k!

The data request pattern of UE 2 follows the uniform distri-
bution, where

P(At] = k) = L k=0,1,2, ... (13)

P(Aslt] = k) = % Vk € {6,7,8,9,10%. (14
The maximum queue length @ .« is set as 100. We assume
that the quality of each RB can be measured at each TTI, based
on which the maximum number of bits that can be transmitted
on the RB can be computed. In this simulation, we assume that
the maximum number of bits that can be transmitted on the
RB for a specific UE can only take discrete values from a set
{2,3,4,5} uniformly. Although we use discrete values here,
it is worth noting that the proposed algorithm also applies to
continuous value settings and various distributions of the UE
data requests.

We create a DQN agent with RNN. The structure of the
critic network is shown in Fig. 4. There are three layers
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Fig. 4: The recurrent neural network used in the agent.

between the input and the output: two dense layers and one
long-short-term memory (LSTM) layer. Each layer has 50
neurons. The training parameters are listed in Table 1. The
number of episodes is 200. In each episode, the number of
steps is 300. In the offline training phase, the value of the
requested data size A, [t] and the channel capacity Cy;t] are
generated according to a known distribution in each step. In
the testing phase, we generate 1000 simulations and average
the results.

B. Benchmark Algorithms

1) Round-robin: The round robin allocation strategy simply
allocates all RBs to each user in turn. It is one of the
simplest algorithms. Regardless of the channel condition and
the traffic requirement, Round robin assumes all the UEs
have equal priority, while different UEs may have different
channel quality on the same radio resource. No optimization
is performed. It is evident that round-robin scheduling will
incur a poor performance.

2) Max-CQI: The Max-CQI scheduler only considers the
channel condition while allocating RBs to the UEs. The Max
CQI aims to maximize the system’s capacity by allocating RBs
to the UEs that have the best channel condition, i.e., at each
time slot ¢, x,~ p[t] = 1 where

u* = argmax {Cypt]}. (15)
u

The max-CQI packet scheduler can maximize the transmitted
traffic since the RBs are allocated greedily to the UEs that
can achieve the highest transmission rate. However, the UEs
with low channel quality would have little chance to get the
transmission resources. As a result, the average delay would
be bad. Extremely, a UE may never get RB allocated.

3) Proportional Fairness (PF): Proportional fairness aims
to maximize network capacity while also ensure fairness. The
idea is to balance the average past throughput and the expected
rate. In our simulations, we choose @~ 3[t] = 1 where

u* = argirtnax{céi[t]u[t 1]},

where Y, [t] is the average scheduled traffic of UE w in period
0,¢ — 1] and Y, [t] = L 3°0_, D,[i]. It is easy that if a UE
does not get RBs for a long time, the value of Y, [¢] will be
low. Therefore, there will be a high chance that the UE gets
RB allocated in the next time slot. Some prior works use a
time window to average the allocated traffic.

(16)

TABLE I: The DRL Hyperparameters

Parameter | Value
Number of episodes 200
Number of steps per episode 300
Discount factor 0.99
Experience replay length 1000,000
€ decay d 0.9999
Initial exploration rate € 1
Maximum batch-training trajectory (RNN) 20
0
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-1400 ‘ : :
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Fig. 5: Training reward vs. episode for the proposed algorithm.

C. Performance Metrics

The aim of this paper is to minimize the packet delay
for all UEs. Therefore, the performance metric will be the
averaged delay, which is calculated as in (4). Meanwhile, we
also compare the scheduled traffic (i.e., throughput) of the
UEs, which is computed as

1 U
I‘throughput - Ui Z

and the average queue length, which i

Dy[t], a7

Mq

1t

efined as

(18)

IIM% & ol

1 U
I‘Qucuchngth = Ui Z

D. Results and Discussions

1) Convergence: The convergence plot of the training pro-
cess is presented in Fig. 5. Both the average result of all the
episode as well as the instant per episode reward are plotted. It
can be seen that after around 100-episode training, the reward
value begins to converge. Furthermore, the maximum reward
is attained at around the training episode 150. The optimal
number of training episodes can be set to be around 150 to
achieve the best performance.

2) Delay: The delay performance comparison is shown
in Fig. 6(a). The proposed DRL-based scheduling algorithm
achieves the lowest delay, which is 0.4049s. Max-CQI, which
aims to maximize the traffic throughput, has the largest delay,
which is nearly 3.5 times larger than that of the proposed
algorithm. By taking fairness into consideration, PF avoids
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Fig. 6: Performance comparison of four scheduling algorithms.

the situation where UEs with bad channel condition do not
get RB allocated. Therefore, the average queue delay can be
reduced. Despite that, the proposed DRL scheduling algorithm
achieves the best performance in terms of packet delay.

3) Throughput: The achieved throughput comparison is
shown in Fig. 6(b). This performance metric is defined as
the sum of the transmitted packets over a time period and
reflects the system throughput. As analyzed before, max-CQI
achieves the highest system throughput. The performance of
PF is quite close to that of max-CQI. The proposed method
also achieves a quite high throughput. Round-robin has the
poorest throughput performance.

4) Queue Length: The average queue length is also an
essential metric when we compare the delay performance. In
addition, when the queue length is large, there is a high chance
that the packet may be dropped, which will bring a high packet
drop rate (PDR). As a result, the UE will request the packet
again and the delay performance would be even worse. The
average queue length is depicted in Fig. 6(c). Our proposed
method has the lowest average queue length. As a comparison,
the max-CQI method has the longest queue length, which
is almost 9 times longer than our proposed method. Round-
robin, which serves the UEs in turn at different time slots, can
ensure that each UE get served “equally.” However, it does
not consider the channel condition diversity for different UEs
and does not fully exploit the resources. As a result, the queue
length performance of round-robin is also poor.

V. CONCLUSIONS

In this paper, we aimed to minimize the average packet
delay of a downlink multi-access OFDM cellular network,
where the UEs have different packet request patterns and chan-
nel conditions. We developed a DRL-based packet scheduling
method. We showed that our proposed method can achieve
the lowest delay and the shortest average queue length. The
proposed method has a great potential for delay-sensitive
applications, such as vehicle-to-vehicle (V2V) communication
in the 5G era. Moreover, the reward function can be cus-
tomized by jointly considering the dynamic traffic load, QoS
parameters, and application requirements.
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