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In the context of the coloured stochastic vertex model in a quadrant, we identify a family of observables
whose averages are given by explicit contour integrals. The observables are certain linear combinations
of g-moments of the coloured height functions of the model. In a polymer limit, this yields integral
representations for moments of partition functions of strict-weak, semidiscrete Brownian, and continuum
Brownian polymers with varying beginning and ending points of the polymers.
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1. Introduction

At least since the work of Kardar [1987], moments of polymer partition functions and related quantities
have been an indispensable tool in analyzing models from the so-called Kardar—Parisi—Zhang (KPZ)
universality class in (14-1) dimensions [Kardar et al. 1986], such as various (integrable) models of directed
polymers in a random environment, exclusion and zero-range processes, and random growth models.
An advanced (although nonrigorous) replica analysis of moments allowed Calabrese, Le Doussal and
Rosso [2010] and Dotsenko [2010] to derive the long-time asymptotics of the so-called narrow wedge
solution to the KPZ equation. An alternative approach to the asymptotics of this solution based on the
pioneering work of Tracy and Widom [2008a; 2008b; 2009] was developed rigorously by Amir, Corwin
and Quastel [2011] and in the physics literature by Sasamoto and Spohn [2010]. (These two approaches
were mostly reconciled by Borodin, Corwin and Sasamoto [2014].) The moment method became
rigorous with the appearance of explicit integral representations for g-moments of suitable ¢g-deformed
models together with the asymptotic analysis of their generating functions in [Borodin and Corwin
2014]. (A simpler approach to the asymptotics through moments was later suggested in [Borodin 2018]
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and [Borodin and Olshanski 2017].) Many papers with analysis of g-moments of various integrable
probabilistic systems have been written since then. The stochastic six vertex model, first introduced by Gwa
and Spohn [1992], was also found to be accessible via such a route in work of Borodin, Corwin and Gorin
[2016b]; see also works by Borodin, Corwin, Petrov and Sasamoto [2015a; 2015b], Corwin and Petrov
[2016] and Borodin and Petrov [2017; 2018a] for various approaches to the g-moments of this model.

Kuniba, Mangazeev, Maruyama and Okado [2016] introduced Yang—Baxter integrable coloured
stochastic vertex models; see also works by Bosnjak and Mangazeev [2016] and Aggarwal, Borodin
and Bufetov [2019]. Colours correspond to the simple roots in the underlying quantum affine algebra
U, (57,,: ), with n = 1 corresponding to the colourless or rank-1 case considered previously.

Our recent paper [Borodin and Wheeler 2018] offered an extensive algebraic analysis of these coloured
models and uncovered certain distributional correspondences between coloured and (much more studied)
colourless ones. Such correspondences were further extended by Borodin and Bufetov [2019] and Borodin,
Gorin and Wheeler [2019], and they gave access to various unknown marginals of the coloured models.
However, so far no explicit formulas for observables of the coloured models have been found, apart from
those that arise through matching with colourless models. The primary goal of this paper is to remedy
this fact.

We obtain explicit integral representations for certain linear combinations of g-moments of coloured
height functions for the coloured stochastic vertex model in a quadrant. Further, following a path worked
out in [Borodin et al. 2019], we degenerate the (fully fused) coloured vertex model to directed polymers,
thus obtaining formulas for joint moments of polymer partition functions with different starting points in
the same noise field. The limiting objects include the KPZ equation (equivalently, the continuum Brownian
polymer), the O’ Connell-Yor semi-discrete Brownian polymer [2001], the strict-weak or Gamma polymer
of Corwin, Seppildinen and Shen [2015] and O’Connell and Ortmann [2015], and the Beta polymer of
Barraquand and Corwin [2017].

Let us describe our results in more detail.

The coloured stochastic vertex model in a quadrant can be viewed as a Markovian recipe of constructing
random coloured up-right paths in Z>; x Z>; with the colours labelled by natural numbers. Let us also
initially assume that no horizontal edge of the lattice can be occupied by more than a single path; this
restriction will eventually be removed. The model depends on a quantization parameter g € C, a spin
parameter s € C, and row rapidities denoted by xy, x5, ... € C.

Along the boundary of the quadrant, we demand that no paths enter the quadrant from the bottom. On
the other hand, a single coloured path enters the quadrant from the left in each row. We assume that the
colours of the paths entering on the left are weakly increasing in the upward direction, and denote by A; >0
the number of paths of colour 1, by A, > 0 the number of paths of colour 2, etc. Let us also denote by

the partial sums of this sequence and also set £y = 0.
Once the paths are specified along the boundary, they progress in the up-right direction within the
quadrant using certain interaction probabilities, also known as vertex weights. For each vertex of the
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Table 1. The vertex weights.

lattice, once we know the colours of the entering paths along the bottom and left adjacent edges, we
decide on the colours of the exiting paths along the top and right edges according to those probabilities.'
They are given by Table 1, where it is assumed that x is the rapidity of the row to which the vertex
belongs, 1 <i < j, I = (I}, I, ...) denotes a vector whose coordinates [; are equal to the number
of paths of colour k that enter the vertex from the bottom, and I;* = I +e; with ¢; being the standard
basis vector with 1 as its i-th coordinate and all other coordinates equal to 0. We also use the notation
I;Z’ =I+e,—epand I>, = 1,4+ 1,41+ - --. The weight of any vertex that does not fall into one of the
six categories in Table 1 is set to zero. See Section 2 for the origin of these weights.

The stochasticity of the weights encodes the fact that these weights add up to 1 when summed over all
possible states of the outgoing edges with the states of incoming edges being fixed. When the parameters
of the model are such that all the weights are nonnegative, we obtain bona fide transition probabilities.
However, if we agree to deal with complex-valued discrete distributions, we will not actually need the
positivity assumption for our main algebraic result.

Let us now fix n > 1 and focus on the state of the model between row n and row n + 1. That is, let us
record the locations where the paths of colours 1, 2, ... exit the n-th row upwards as an n-dimensional
coloured vector (equivalently, a coloured composition) v with coordinates in Z>;. By colour conservation
that our weights observe, the counts of different colours in such a vector are provided by a (finite) sequence
A = (A1, A2, ...) corresponding to the colours that enter via the left edges of the first n rows; we call A
the labelling composition.> We will write the coordinates of v as

V=1 > >0 [ V1 = =0, [ Vg1 = >0 | ), (1-2)

where the groups separated by vertical bars list the coordinates of the paths between rows n and n + 1 of
colour 1, colour 2, etc. See Figure 1 for an example.
ISuch decisions at different vertices are independent.

ZFor convenience of notation, we assume that the left-incoming colours in rows n and n + 1 are different, so that we do not
need to split the last coordinate in this sequence.
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Figure 1. A possible configuration of the coloured vertex model.

Our observables on random v’s are also indexed by coloured compositions. Let us fix a composition
k = (k1, k2, . .. ) satisfying k < XA coordinate-wise (otherwise the observable vanishes identically), and a
coloured composition p with coordinates in Z-; whose colour counts are given by «. It is also convenient
to parametrize j differently by writing = 12 ... where the vectors m) = (m'’, m\”, .. .) are
such that their coordinates m(] ) count the number of parts of u of colour i equal to j; see Figure 1.
Yet another way to describe coloured compositions is through their coloured height functions defined

as follows; see Figure 1:
HY (x) =#{j : colour(p;) =i, p; > x};
HY,(x)=> H{(x), HL(x)=) Hf(x); H"=H—H!"
k>i k>i
Here colour(p;) refers to the number of the block in the splitting of the form (1-2) for the coloured
composition p that p; belongs to.

For «-coloured p as above, let us now define an observable O,,, whose values on A-coloured v’s are
given by

v/, .
G vl H77(j+1)
0. = [ """ <J+1>< oy

m.

i,j>1 l q
v/u v/p 1 v/u D—1 v/u U//L 1 ) 1
_ l_[ (q H_; (]+l)_q S U+ ))(q G+D_ CI (j+) ). (6] o (j+1)_q S G+D—m "+ )
] (q,q)my>
In the rainbow case A = (1,1, ..., 1) of all colours being different, O,, simplifies to
lJ/u V/M
GU+D _ GU+D
rainbow _ l{“(ﬁrl) q o q i
O, ()= l—[ Lo (in=14 [ ] ’

(J) -1 ) -1

i,j:m;
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and in the colour-blind case . = (n) it is given by

(1 — g m+Dy (1 — gH atD=1y (] — g B (et D=mt1y

O;olour—blind ( U) —

9

HJ'Z](q? q)mult; ()

where H" = HZ, is the colour-blind height function, mult; () = #{i : u; = j}, and m = £(u) is the
number of parts_in .

In order to write down an integral representation for the average of O, we need to introduce certain
rational functions f, («; z1, ..., z,,) with the number of variables m = £(u) equal to the number of parts
of w. In the rainbow case of pairwise distinct colours, coloured compositions are the same as uncoloured
ones, and for anti-dominant compositions § = (§; < §, < ... < §,,) these functions are completely

f (z ) = njzo(sz; Q)multj(é) ﬁ( Zi— S )Si
) 1see-9<m) — l—[:n=1(1_SZl) l—SZl .

Note that we dropped « from the notation for f; as it plays no role in the rainbow situation. For non-anti-

factorized:

i=1

dominant u’s, one way to define f), is by the following recursion that allows us to move step by step
from anti-dominant compositions toward the dominant ones: If p; < ;4 for some 1 <i <m — 1, then

T fuzis ooy zm) = Founopion i) @15 - o s Zm)s
where
Zi —qZi+1 .
T=qg- "L g, 1<i<m—1,
Zi —Zi+1

with elementary transpositions s; acting by
Si-h(zi, oo zm) =R T T s Zm),s

are the Demazure—Lusztig operators of the polynomial representation of the Hecke algebra of type A,,—;.
The rainbow functions f,, were thoroughly studied in [Borodin and Wheeler 2018] under the name of
spin nonsymmetric Hall-Littlewood functions; they also play a central role in the present work.

For generic, not necessarily rainbow « and «-coloured p, f, is defined as a suitable sum of rainbow

functions. Concretely, let@: {1, ..., m}— {1, 2, ...} be the unique monotone map such that |0~ (j)| =« f
for all j > 1. Then for any composition » with m parts, we can define a x-coloured composition 6, (x¢)
by colouring the coordinate »; by colour j if and only if (i) = j, foralli =1, ..., m. With this, we set
f//.(KaZl’---»Zm)= Z f}l(Zlvvzm)
%0, 00)=p
Finally, denote by ¢| < - - - < ¢, the colours of parts of w, and denote by my, ..., my > 1 the number
of parts of p of colours ci, ..., ¢y, respectively (m;’s are simply renumbered nonzero coordinates of «).

Set m[a, b] =m, +my41 + - - - +my and recall that

Ek:)\,1+"'+)\.k fOI'kzl,EO:O.

We can now state the main result of this paper.
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Theorem 1.1. With the above notation, we have

Fo qZuzl i m,(")'"i-u) (=)t % %‘ Yi— Vi
/JL =
szl(sz; Q)|m(j)| (27[«/ —1)'" around{x l<1<]<m Yji—4)Yi
my my— /) jHAm[lLk—1] n m[1,k] n

5 H(Z (—1)7q (™

= (@95 Dy

I 1—[ 1—qxayp I 11 l—qxbyr)

1—x
p>m[lk—1]a>le, 1 —Xap r>j+mlk—1]b>Le, b

1 d 1
xfﬂ<x;y11,...,ym1>1_[(yyﬂ, (1-3)

1

where (positively oriented) integration contours are chosen to encircle all points {xj_l}?:1 and no
other singularities of the integrand, or as q-nested closed simple curves with y;-contour containing

L (y; j-contour) for all i < j, and all of the contours encircling {x The contours can also be

I
chosen to either encircle or not encircle the point 0. J

Our proof of Theorem 1.1 is deeply rooted in the formalism of spin nonsymmetric Hall-Littlewood
functions f, developed in [Borodin and Wheeler 2018]. The key new ingredient is the idea to treat
skew-Cauchy identities for these functions as averages of certain observables over the measure given by
terms of the nonskew Cauchy identity. The latter can then be identified, under a certain specialization,
with the sum over states of the stochastic vertex model along a horizontal line. Accessing observables via
deformed Cauchy identities was previously used in [Borodin and Petrov 2017; 2018a] in the colour-blind
case, but the mechanism of deformation was different, and the path to integral representations was more
complex. It should be noted, however, that [Borodin and Petrov 2018a] was able to reach an integral
representation for fully inhomogeneous vertex models (which was later exploited analytically in [Borodin
and Petrov 2018b]). So far we have not been able to reach the same level of inhomogeneity in the coloured
case, although some inhomogeneity can be added, and it is actually necessary for the limit to polymers.

Let us briefly mention some algebraic corollaries of Theorem 1.1.

First, in the colour-blind case A = (n), (1-3) readily leads to a formula for g-moments of the height
function with a completely factorized integrand that could be viewed as a source of all the major asymptotic
advances in the area. This colour-blind reduction is discussed in Section 6B.

Next, as the dependence on the values of the coordinates of w is concentrated in the f,-factor and f},’s
are eigenfunctions of a transfer-matrix of our vertex model, the expectations O,, satisfy certain difference
equations. Those can be seen as evidence that O, (v) is actually a duality functional for our model; see
Section 6C for details. Duality has served as a major tool for analyzing (g-)moments since [Kardar 1987].
It would be very interesting to see if our prospective duality functionals can be related to those obtained
by Kuan [2018].

In the rainbow case A = (1,1, ..., 1), together with simplification of observables O, to ij‘inbow
mentioned above, the integrand also simplifies due to the lack of j-summations. This case carries
additional colour-position symmetry both in the left-hand side of (1-3) and in the right-hand side; see
Section 6D. When applied to O,,, this yields another set of potential duality functionals. Let us also note
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that for anti-dominant p, when f,, completely factorizes, the result can alternatively be obtained from the
colour-blind case by applying a (highly nontrivial) shift-invariance property of [Borodin et al. 2019].

Finally, Theorem 1.1 allows for stochastic fusion: A cluster of neighbouring rows with same left-
entering colours and rapidities forming a geometric progression can be collapsed to a single “fat” row
whose edges are allowed to carry multiple paths. One can further analytically continue in the parameters
gPumber of rows inacluster ohaining a corresponding result in the fully fused model.> Details of this procedure
can be found in [Borodin and Wheeler 2018; Borodin et al. 2019], and the resulting version of Theorem 1.1
is Corollary 6.9 in Section 6E.

The source of analytic corollaries of Theorem 1.1 is the fact that the coloured stochastic vertex model
and its fully fused version degenerate, in various limits, to a variety of other probabilistic systems; see
[Borodin and Wheeler 2018, Chapter 12] and [Borodin et al. 2019] for some of those degenerations, and
the chart in the introduction to [Borodin et al. 2019] for a “big picture”. In this text we only consider, in
Section 7, the limit into directed random polymers that was worked out in [Borodin et al. 2019]. We obtain
versions of Theorem 1.1 for random Beta-polymers (first considered in [Barraquand and Corwin 2017]),
strict-weak or Gamma-polymers (first considered in [Corwin et al. 2015; O’Connell and Ortmann 2015]),
O’Connell-Yor semidiscrete Brownian polymers [O’Connell and Yor 2001], and fully continuous (also
known as continuum) Brownian polymers (equivalently, the stochastic heat equation with multiplicative
noise or the KPZ equation).

Two simplifications happen in these limits. First, the presence of colours in our vertex models translates
into varying starting points of the polymers, while the general definitions of the polymer models remain
the same as in the colourless situation. Second, the observables simplify to pure moments of partition
functions (no linear combinations necessary) in three of the four polymer models we consider. Let us
illustrate what happens on the example of the continuum Brownian polymer; see Section 7E.

Let Z0)(¢, x) be the unique solution of the following stochastic partial differential equation with the
initial condition

zM =120 00,029, 150, xeR ZV0,x) =8k —y),

where n = n(t, x) is the two-dimensional white noise. See, e.g., [Quastel 2012] and references therein for
an extensive literature on this equation and its close relation to continuum Brownian path integrals and
the Kardar—Parisi—-Zhang equation.

We are interested in evaluating the average of the product of several Z) (¢, x) with varying x’s and y’s.
We will use the notation x; for different values of x, and we will group those according to which of them
correspond to the same value of y. In order to do that, we will talk about a coloured real-valued vector
x = (1, ..., %y,), with coordinates of the same colour corresponding to the same y’s. Further, we will
simply use the term “colour” for those y’s and denote them as s; < - - - < §4; they are also real-valued.
Denote

mgx)z#{j:xj=x and has colour s;}, m,-=Zm§x), 1<i<a, xeR.
X

30ur original setup can be viewed as a partially fused model because vertical edges are allowed to carry multiple paths; it
could have been obtained from the fundamental model with no more than one path on any edge by clustering columns.
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Then the limiting version of the fused version of Theorem 1.1 reads (see Proposition 7.9)

(x)
(ZED(t, x))™
[E l_[ mgx)'
)

(271«/_)’"/ /1<,1<_,[<m -—w,—1
gl

m[1,k]
eXP<_Sk Zr>m[1 k—1] w,)
!
where the integration is over upwardly oriented lines w; = a; ++/—1-R with ia; > Na; + 1 for j > i.
The functions ¢, in the integrand are the limiting versions of the functions f, in (1-3), and they are

(i,x) :mfx)>0

m
e (wi, ..., W) Hetwfz/zdwi, (1-4)

W i=1

defined as follows. In the rainbow case, in the dominant sector x; > k2 > ... > k;,, one has
e(Wr, ..., Wy) = eXP(%lwl + W),

and for »; > x;4; for some 1 <i <m — 1 one uses the exchange relations

w; — Wit +1 :
Si'e}{=e(}f| ,,,,, }f[+1,}{,',...,}fm)a Sl = 1_—(1_51)’ 1 Sl Sm_lv

W; — Wi41
to extend the definition to all rainbow vectors x. For a more general colouring, we use the (unique) colour-

identifying monotone map 6 from {1, ..., m} to the set of colours {s;}, and define e, =) . v - 0, "y =s &

The moment formula (1-4) has a certain shift-invariance, see Remark 7.10 below, that is partially
explained by the KPZ-level degeneration of the results of [Borodin et al. 2019]. This shift-invariance is,
furthermore, a corollary of the conjecture in the introduction to [Borodin et al. 2019]. It does not imply
that conjecture though, because the moments are well-known to not determine the distributions of Z’s

uniquely.*

2. Preliminaries

The goal of this section is to summarize previously proved results that we will need later on. The notation
and exposition largely follow [Borodin and Wheeler 2018].

2A. The weights. The vertex models that we consider assign weights to finite collections of finite paths
drawn on a square grid. Each vertex for which there exists a path that enters and exits it produces a
weight that depends on the configuration of all the paths that go through this vertex. The total weight for
a collection of paths is the product of weights of the vertices that the paths traverse. We tacitly assume
the normalization in which the weight of an empty vertex is always equal to 1.

Our paths are going to be coloured, i.e., each path carries a colour that will typically be a (positive)
natural number, with colour 0 reserved for the absence of a path. Our vertex weights will actually depend
on the ordering of the (nonzero) paths’ colours, rather than on their exact values. The paths will always

4That conjecture was very recently proved, by two different methods, in [Dauvergne 2020] and [Galashin 2020].
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travel upward in the vertical direction, and in the horizontal direction a path can travel rightward or
leftward, depending on the region of the grid it is in; this choice will always be explicitly specified.
A basic family of vertex weights that we will use is denoted as

C
C
(x,L) > B D = WL,M(EQ q; B D) =Wim(x/y:q: A, B,C, D), (2-1)
A
?
(y, M)

where x, y are inhomogeneity parameters (or rapidities) associated to the row and column, horizontal
edges carry no more than L paths, vertical edges carry no more than M paths, all paths are of colours
1,...,n for some n > 1, and the specific sets of colours on the edges are encoded by compositions (or,
equivalently, vectors with nonnegative entries) A = (A, ..., A,), B=(By,...,B,), C=(Cy,...,Cy,),
D = (D, ..., D,) subject to the constraints

|A[, [C] =M, |B|, |D| <L, (2-2)

where we use the notation | - | to denote the sum of all parts of a composition.

These remarkable weights come from a family of stochastic R-matrices constructed in [Kuniba et al.
2016] via symmetric tensor representations of the quantized affine algebra U, (5/[,,1 ); see also [Kuan
2018; Bosnjak and Mangazeev 2016; Aggarwal et al. 2019; Borodin and Wheeler 2018]. Let us list some
of their properties.

The Yang—Baxter equation for these weights can be written graphically as

B3 B3
Ay C, C B
(x,L) — B, Z (x,L) > 4
(e - G (2-3)
A (y, M) — 4 C B oG (y, M) —> 4, % B
As A3
) )
(z,N) (z,N)

See also [Borodin and Wheeler 2018, (C.1.2)] for the corresponding formula.
These weights enjoy a transpositional symmetry

Wiml x;q; B> =WmL i —; A—>c . (2-4)
A X q B

They are stochastic in the following sense:

C
ZWL,M(x;q; s n) =1, (2-5)
Cc.D A

where the sum is over all compositions C = (Cy, ..., Cy) and D = (Dy, ..., D,) with |C| <M, |D| <L.




214 ALEXEI BORODIN AND MICHAEL WHEELER

They can also be given by the following explicit formula originating from [Bosnjak and Mangazeev
2016]; see also [Borodin and Wheeler 2018, Theorem C.1.1]:

c
WL,M<x;q; B D) = (Latp=c+p)x P17 1ElgHAIL=IDIV
A
XY ®(C—P.C+D—-P;q"Mx.g"0)®(P. B:g " /x.q7"), (2-6)
P
where the sum is over compositions P = (Py, ..., P,) such that 0 < P; <min(B;, C;) forall 1 <i <n;

and for any two compositions A, u € N" such that A; < u; for all 1 <i <n, we used the notation

DA, pu;x,y) = x; q)w('y/x, D=2 (y/x) M gRi<ii=2A; 1_[ ('U“’) .
(¥ @iul o \Ai/g

The substitution of L = M =1 into W|_ returns the (stochastic version of) the fundamental R-matrix for
U q (5 [n+l ) :

X ¢ Ry/x(A*y B*,C*,D*), |A|7|B|7|C|1|D|§1a
Wiil —sq; B> = _ (2-7)
y A 0, otherwise,
where we have defined
It — 0, 1=0,
i I = e; (i-th standard basis vector),
for any composition I = (I, ..., I,) such that [I| < 1, and where Ry, denotes the fundamental R-matrix
depicted as (with z = y/x)
k
R.(i,jik, )= j ¢, 1,j,k,e{0,1,...,n}, (2-8)

1
and with matrix elements summarized in Table 2, in which we assume that 0 <i < j < n. Observe that
these weights are manifestly stochastic.
The general weights W can be reconstructed from the fundamental ones in Table 2 via the procedure
of stochastic fusion. To state how it works we need a bit of notation.
Let N > 1, and consider a vector of nonnegative integers (i1, ...,in) € {0, 1, ..., n}™. From this we
define another vector,

Clr, ..., in) =1, ..., In), Iy =#k:ix=a}, 1=<a=n, (2-9)
which keeps track of the multiplicity of each colour 1 < a < n within (i, ..., iy). Set

nv(iy,...,in)=#1<a<b<N:i, >ip}, ifr;/(il,...,iN)z#{lfa<b§N:ia<ib},
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i J i
i i i i 1 J
i j ]
1 q(1=2) 1—¢
1—qgz 1—gz
i J
J J J i
i i
-z (1-9)z
1—gz 1—gz

Table 2. The matrix elements of the fundamental R-matrix.
and, denoting Ip:=N—Y"_, I,,

inv iy V1 (g5 On
Zq(N, I) — Z qu(l1 ..... lN) — Z qu(jl ..... jN) — : : : .
it =1 =T @ D1 D1, --- (@i,

Then (see [Borodin et al. 2019, Appendix]),

x C
Wim| —:q; B—>p ki ... kwm
Y A
g 'x i L
1 VGt jO) nV(i1eeeing) : :
= g > g . L (210
Z,(M; A)Z,(L; B Z
(M ) Zq (L )cm ..... jL)=B Ci1nniv)=A X ji 2
C(ly,..., L)=D C(ky,..., knm)=C
l'] .« .. l'M
quly y

where the figure on the right denotes the corresponding partition function with R-weights given by (2-8)
and Table 2 (thus, summation over all possible states of interior edges is assumed), and the colours on the
boundary edges, as well as row and column rapidities, are explicitly indicated.’

A key feature of the fused R-vertices that allows stacking them together is their g-exchangeability:
In equation (2-10), the sum over (ki, ..., kpm) can be omitted at the expense of adding the factor of
q_inv(k‘ """ kM)Zq (M; C) to the summands, gnd, independently, the sum over ({1, ..., £;) can be removed
at the expense of adding the factor of g V(i ""’KL)Zq (L; D); see [Borodin and Wheeler 2018, Proposi-
tion B.2.2] for a proof.

5As in (2-8), the spectral parameter of an R-vertex is assumed to be equal to the ratio of the column rapidity and the row
rapidity.
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In what follows we will also need partially fused weights defined as (see (2-4))

c
L3N, b; C, d) = Wl,M(f; g e w) : 21D
S A qM*)S—Z
1 C
M;tooh(A, b: C, d) = Wl,M i; — e eq R (2—12)
X q A qM—>S72

where the substitution of a generic complex parameter s> for g™ is based on the fact that the right-hand
sides are rational in gM. The weights L;“’Ch are tabulated in Table 1.
In addition, we will use gauge transformed (nonstochastic) versions

K

(=) 1= LN, j K, ) = L, j K, 0) = x — j ¢, (2-13)
1
K

(=) MY, i K, ) = Mo, i K, 0) = y < ¢ js (2-14)
1

that, as a consequence of (2-3), satisfy the following version of the Yang—Baxter equation; see [Borodin
and Wheeler 2018, (2.3.5)]:

J J
. ky )1 3 ki .
Yy< y < Ji
> X K = > ) K (2-15)
O<kiks<n KeN' x — i O<kiks<n KeN' x —» i
ki i3 i k3
1 1

with the spectral parameter of the R-vertex equal to (gxy)~!.

The explicit values of the weights (2-13) are summarized in Table 3 where we assume that 1 <i < j <n,
and the notation I} , stands for Y " _, I,. For n = 1, these weights correspond to the image of the
universal R-matrix for the quantum affine group U, (g[;) in the tensor product of its vector representation
(horizontal edges) and a Verma module (vertical edges), with parameter s encoding its highest weight;
we call s the spin parameter.

2B. The q-Hahn specialization and a limit relation. The complicated expression (2-6) can simplify at
special values of parameters; we have already seen this in the case of L*°" and M*°" Another such spe-
cialization that allows L and M to remain generic is the following (see [Kuniba et al. 2016, Proposition 7]
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1 1 I”
0 0 i i 0 ;
1 1 I
1 —sxqtn (x—sq")glir1n x(1—g")qliim
1—sx 1—sx 1—sx
+ +— +—
g I Ij;
! 0 ! J J i
1 1 1
l_squ[l,n] x(l_qu)ql[j+l,n] S(l_qll-)ql[,-ﬂ,n]
1—sx 1—sx 1—sx

Table 3. The explicit values of the weights (2-13).

and also [Bosnjak and Mangazeev 2016, (7.13)]): Assuming that L < M, we have

L—M. —L. n )
Wewl1:q: s g _ gD (¢ Dia-1p1(q” 5 @)p| qZ,-<,-Di<Aj—Dj)l_[< A, )
A (™M q)\4 - \Ai-D;/,

=®(D,A;q " q™). (2-16)

The proof follows from the fact that setting x = 1 restricts the sum in (2-6) to a single term with
P = B. This specialization is often referred to as the g-Hahn point because for n = 1 it reproduces the
orthogonality weights for the classical g-Hahn orthogonal polynomials.

Note that replacing ¢ ™ by a generic complex parameter s>
be performed for W\ for L > 1 either in (2-6) or in (2-16), because those are weights are still manifestly

rational in ¢gM. Alternatively, the result of such a replacement could be seen as a stochastic fusion of the

as was done for Wi y in (2-11) can also

weights L*°" in the spirit of (2-10), where only the outer sum over j,’s and £,’s is present.

We will also need the following limiting relation for the weights (2-6); see [Borodin et al. 2019,
Lemma 6.8]:

Assume that B =(0,...,0,L). Then

lim WL,M
q—M:SZ_)O

={ @D (@;9)a (2-17)

L. -L.
( M : ) = ’q)d<qu>d it D=(0,...,0,d), d >0,
Zq ,q, B D
0 otherwise.

A

2C. Row operators and rational functions. Let V be an infinite-dimensional vector space obtained by
taking the linear span of all n-tuples of nonnegative integers:

V = Span{|I)} = Span{l|iy, ..., in)}i...i,eN- (2-18)
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It is convenient to consider an infinite tensor product of such spaces,
V=WeaVigV,®---,

where each V; denotes a copy of V. Let Q- | Ix)x be a finite state in V, i.e., assume that there exists
N € N such that I; =0 for all £ > N; in what follows only such states are considered. We define two
families of linear operators acting on the finite states:

o o
G : @I~ Y. | x> o | lIw. 0<i<n, (219
k=0 Jo,Ji,...eNn k=0
P
Iy I, I, ... ... ...
o (o9}
Bx): @ Y. | x o Q1. 0<i<n (220
k=0 Jo, J1,...eN" k=0
A )

where the vertex weights are those from (2-13) and (2-14), respectively. Note that the sums above are
always finite due to path conservation, and the infinite number of empty vertices far to the right all have
weight 1.

A direct corollary of the Yang—Baxter equation (2-15) is the fact that the row operators B; and C;
satisfy certain explicit quadratic commutation relations; see [Borodin and Wheeler 2018, Section 3.2].
The simplest ones state that for a fixed i, 0 <i < n, the operators B; (x) commute between themselves
for different values of x, and, similarly, C; (x) also commute for different values of x. Slightly more
complicated are the following relations between B- and C-operators; see [Borodin and Wheeler 2018,
Theorem 3.2.3]:

Fix two nonnegative integers i, j such that 0 <i, j < n, and complex parameters x, y such that

xX—s y—s

<1 (2-21)

l—sx'l—sy

Then the row operators (2-19) and (2-20) obey the following commutation relations (0 <i, j <n):

1 —gxy . l—qgxy .
GBI =T =Bi0IG, i<j aG@B0) = 7= Bi0GE). 0>,
1—q”" (1—q)xy (2-22)
GBI =T~ D Bi(y)Ci(x) + Bi(3)Ci (x) — e Y B (x).

k<i k>i

Note that matrix elements of the left-hand sides in (2-22) are given by infinite sums, and (2-21)
ensures that those sums converge. It is thanks to the infinite range of the lattice in (2-19) and (2-20) that
relations (2-22) are simpler than the usual commutation relations in the Yang—Baxter algebra.

We are now in position to introduce certain rational functions that will play a central role in what
follows; they were called nonsymmetric spin Hall-Littlewood functions in [Borodin and Wheeler 2018].
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For a composition v and n complex parameters xi, ..., X,, define a rational function f,(x1, ..., x,)
as a partition function depicted below (vertex weights (2-13) are being used):

A0) A(1) AQ2) ...

Xn—> n 0
Juxi, oo x) = 1 : (2-23)
2= 2 0
1= 1 0
0 o0 o0

with A (k) = Z’}Zl 1,,,=re;. These are certain matrix elements of the operator Cy(x1) - - - C,(x,) that can
be symbolically written in the form (J|Cy(xy) - - - C,(x,)|t). A more general definition of the f,,’s, as
described in [Borodin and Wheeler 2018, Section 3.4], involves some of the operators C; being repeated
with different arguments (equivalently, some of the paths entering the partition function (2-23) from the
left being of the same colour); we will meet such functions in Section 2H.

Similarly to the f,’s, one defines dual functions

0o 0 0
Xp <= n 0
Zulxi, ..., x)) = : (2-24)
X2 < 2 0
X1 <1 0

A(0) A1) A@2) -

as matrix elements (u|By(xy) - - - B, (x,)|D) of Bi(x1) - - - B, (x,). One proves (see [Borodin and Wheeler
2018, Proposition 5.6.1]) that these two families of functions are closely related:

n
gaey s oxr g s = o [ e xs g ), =G ), (2°25)

i=1
where the multiplicative constant ¢, (g, s) is given by
szo(sz; Q)m_,-(//,)

It will be convenient for us to use a slightly different normalization of the dual functions:

culq,s)= , mi(u):=#Hl<k<n:u=j}, j=0. (2-26)

nn+1)/2

g (X1, ..., X)) i=¢ (g—D7" gu(x1,..., xp).
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Finally, let us introduce a third family of symmetric rational functions parametrized by a pair of
compositions p, v, or rather by a skew composition i /v, by

B(0) B(1) B(2) ...

xp < 0 0

Gupxy, ..., xp) = - : 2-27)
xg <« 0 0
x1 < 0 0

A0) A(1) A2)

(where p =1, 2, ... is arbitrary) with A(k) = Z’}.:l 1,,-re;, B(k)= Z;zl 1,,—xe;, for all k € 7.
These are matrix elements (u|By(x1) - - - Bo(xp)|v) of the operator By(x1) - - - Bo(x,), and their symmetry
with respect to the x;’s is a direct consequence of the commutativity of By(x;)’s noted after (2-20).

2D. Colour-blindness. For any integer k € {0, 1, ..., n} define its colour-blind projection
0, k=0,
0(k) := lkzlz{l, k=1,

Also, denote the set of compositions of a fixed length (number of entries) with a given weight (sum of
entries) k as

W(k) :={K € 7%, : |K| =k}.
Then one proves (see [Borodin and Wheeler 2018, Proposition 2.4.2]) that

> L, K,00=LOAIL00): 5,0, Y Y L, ji K, 0) =L, 005k, 1),
Kew(k) KeWw(k) 1<t<n
(2-28)

where L) refers to the weights (2-13) with n = 1. Similarly, one has

Yo ML j K0 =MO(I,00):k,0), Y Y Mo, j; K, &) =MD (11,60 k, D).
KeWw(k) KeW(k) 1<t<n
This has been observed in a number of earlier publications [Foda and Wheeler 2013; Garbali et al.
2017; Kuan 2018], and used to different effects within those works. This property allows certain linear
combinations of higher-rank partition functions to be computable as rank-1, or colour-blind partition
functions.

As an example, one derives the symmetrization identities (see [Borodin and Wheeler 2018, Proposi-
tions 3.4.4 and 4.4.3])

Do b x) =F LX) Y Gupen e xp) =Gyt (x1 L X)), (2-29)
wiput=v wipt =«

with the sums taken over all compositions with a given dominant reordering denoted by the superscript “+”,
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and where the symmetric rational functions F¢ and G are colour-blind objects that were considered at
length in [Borodin 2017; Borodin and Petrov 2017; 2018a].

2E. Recursive relations. While explicit formulas representing the functions f,, as sums of monomials
are rather involved (see Chapters 6 and 7 of [Borodin and Wheeler 2018] for two different versions) there
exist concise recursive relations for them.

First, for anti-dominant compositions § = (§; < --- < §,), the functions fs are completely factorized
(see [Borodin and Wheeler 2018, Proposition 5.1.1]):

ﬁm.“xm=np“&QMMWﬁ(m_s

3i
[T/— (1= sxi) 1sx>’ mj@)=#{1<k<n:8=j}, j=0. (2-30)
i=1 - i — i

i=1
This happens because the partition function (2-23) has only one configuration of paths that contributes
nontrivially.

Second, the following recursion allows one to move step by step from antidominant compositions to
the dominant ones; see [Borodin and Wheeler 2018, Theorem 5.3.1]:

Let = (u1, ..., 1y) be a composition with p; < ;4 for some 1 <i <n —1. Then
Ti'flzb(xla~~-axn):f(ul,...,upr],pci ,,,,, ;,Ln)(xla---,xn)s (2_31)
where
X; —gXx;
T=g———T (1 _g), 1<i<n—1, (2-32)
Xi — Xi+1
with elementary transpositions s; -h(xy, ..., x,) :==h(xy, ..., Xi4+1, Xi, . . . , Xp), are the Demazure-Lusztig

operators of the polynomial representation of the Hecke algebra of type A, —;.

2F. Summation identities. The functions f,,, g,, and G, satisfy several summation identities that can
be found in [Borodin and Wheeler 2018, Section 4]; in what follows we will need a couple of them.
The first one bears a certain similarity to a summation identity proved by Sahi [1996] and Mimachi and
Noumi [1998] for nonsymmetric Macdonald polynomials [Mimachi and Noumi 1998]; it was proved as
[Borodin and Wheeler 2018, Theorem 4.3.1].

Let (x1,...,x,) and (y1, ..., y,) be two sets of complex parameters such that (see (2-21))
Xi—S§ Yyj—S§ .
. <1 forall 1 <i, j <n. (2-33)
I—sx; 1—sy;
Then
‘ 1 1 —gxiy;
PN G (TR W E | [T ——2. (2-34)
i l—xy st =Xy
" i=1 n>i>j>1 J

where the summation is over all compositions p (with nonnegative coordinates).

This identity is proved by evaluating the matrix element (&|C;(x1) - - - C, (x,) B1(y1) - - - B, (y)|9) in
two different ways, by inserting the partition of unity »_ . 1) (| between the groups of 5- and C-operators,
and by using the commutation relations (2-22).
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A

Figure 2. Admissible contours {Cy, ..., C,} with respect to (g, s).

A similar argument applied to the matrix element (|C;(x1) ...C,(x,)Bo(y1) ... Bo(yp)|v) leads to
the following summation identity that is reminiscent of the skew-Cauchy identities known in the theory
of symmetric functions (see [Borodin and Wheeler 2018, Proposition 4.5.1] for a detailed proof):

Let (x1,...,x,) and (y1, ..., y,) be two sets of complex parameters satisfying the constraints (2-33),
and fix a composition v = (vy, ..., v,). Then one has the identity

qxiy
§fu(x1,...,xn)Gu/v(y1,...,yp) H]‘[q(l_xl’ foxn LX), (2-35)

where the summation is taken over all length-n compositions u = (i1, ..., Un).

2G. Orthogonality and integral representations. Let {Cy, ..., C,} be a collection of contours in the
complex plane. We say that the set {C}, ..., C,} is admissible with respect to a pair of complex parameters
(g, s) if the following conditions are met:

 The contours {C1, ..., C,} are closed, positively oriented and pairwise nonintersecting.

e The contours C; and g - C; are both contained within contour C; for all 1 <i <n —1, where g - C;
denotes the image of C; under multiplication by q.

 All contours surround the point s.

An illustration of such admissible contours is given in Figure 2.

Often when we integrate rational functions over {Cy, ..., C,}, the integrals can also be computed
as sums of residues of the integrand inside the contours. Such sums also make sense for values of
parameters that prevent admissible contours from existing, and thus the integrals could also be defined
via the residue sums. Therefore, we will tacitly assume that we perform such a replacement should the
admissible contours not exist, and we will also use a similar convention for other contour integrals below;
see Remark 5.3.

Let u=(u1, ..., up)andv=(vy, ..., v,) be two compositions. We have the following orthonormality
of nonsymmetric spin Hall-Littlewood functions (see [Borodin and Wheeler 2018, Theorem 8.2.1]):

1 dx1 f dx,, Xj—x,‘ 1 1N %
—_ N X{ ..., X X1,...,x)=1,—,. (2-36
o b o I1 o A e W) =Tlumy.  (2-36)

1<i<j<n
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Coupled with (2-34) (which is easily shown to converge uniformly provided that the left-hand sides
of (2-33) are bounded by a uniform constant < 1), this leads to the integral formula

1 dyl dyn Yi— i —1 —1
fulxt, ..o X)) = ———— —7§ || Rl 7710 JI P U
g YT V= Jo, L yi—qy " "

1<i<j<n
n

1 1 —qxiy;
x]‘[l_mi ]_[ — 1 (2-37)

1—x;yj
i=1 n>i>j>1 i)

A similar integral representation for G, originating from (2-35) can be found in [Borodin and
Wheeler 2018, Section 9.5].

2H. Coloured compositions. This section closely follows [Borodin and Wheeler 2018, Sections 3.3-3.4],
where a more detailed exposition can be found.

Let A = (A1, ..., A,;) be a composition of length n and weight m: |A| = Z?:] Ai = m. Denote the
partial sums of A by Zle Ai = €. We introduce the set S, of A-coloured compositions as follows:

Sp={u=(u1 == pe e 41> = pol o ey 41 >+ = g, }- (2-38)

That is, the elements of S, are length-m compositions u, which have been subdivided into blocks of
length Az, 1 <k < n. These blocks demarcate the colouring of p. Within any given block, the parts of
have the same colouring and are weakly decreasing.

Two special cases of A-coloured compositions play special roles. The first is when A = (n, 0, ..., 0),
when compositions p € S, consist of a single block whose parts are weakly decreasing; i.e., one simply
recovers partitions. As was noted in (2-29), reducing to this case recovers the symmetric rational functions
F., G, from [Borodin 2017; Borodin and Petrov 2017; Borodin and Petrov 2018a].

The second one is when A = (1, 1, ..., 1) = (1"*). Then compositions u € S, consist of n blocks, each
of a different colour. Thus, the parts of u are not bound by any inequalities; accordingly, one recovers the
set of all length-n compositions. We will refer to these as rainbow compositions, or as composition in the
rainbow sector. The functions f,, g, and G, introduced above were all defined under the assumption
that the participating compositions were in the rainbow sector.

Let u € S, be a A-coloured composition, with £; denoting the partial sums of A, as above. We associate
to each such u a vector |u); €V, defined as

e =Q AW, AK) =) Ajke;, Ajl)=#i:p=k €;+1<i<t}, (239
k=0 j=1

where by agreement £y = 0. In other words, the component A (k) enumerates the number of parts in the

Jj-th block of w (these are the parts of colour j) which are equal to k. Further, we define vector subspaces
V(A) of V which provide a natural grading of V:

V=@ P v, VO :=Spanc{li)i) ues, (2-40)

m=0 |A|=m

The grading (2-40) splits V into subspaces with fixed particle content: V(A) is the linear span of all states



224 ALEXEI BORODIN AND MICHAEL WHEELER

consisting of A; particles of colour i, for all i > 1. We refer to these subspaces as sectors of V, thus
generalizing the “rainbow sector” terminology.
The definitions of the rational functions f,, g,, and G/, naturally lift to coloured composition labels.

Concretely, let A = (Aq, ..., A,) be a composition of weight m with partial sums ¢; as above, and fix a
A-coloured composition p = (i1, ..., ) € Si. In analogy with (2-23), set
£ t
fuOsxi, . x) o= (2] (H C (x») ( I1 cz(x») ( H Co (i) )m (2-41)
i=1 i=0+1 —1+1

where |u), € V(1) is given by (2-39), and (| € V* denotes the (dual) vacuum state (J| = ®k —0{0lx,
which is completely devoid of particles, and C;’s are the row-operators (2-19). Graphically, this is the
partition function of the form (2-23), with the incoming paths in the bottom ¢; rows having colour 1,
having colour 2 in the £, rows right above those, etc.

One similarly defines, in analogy with (2-24) and using the row operators (2-20),

4y 2 Ly
guhs X1, ..., xy) = w(]‘[&(x,-))( I Bz(xi)) ( H By (xi) )w (2-42)
i=1

i=01+1 —1+1

where (u|; € V*(1) is the dual of the vector (2-39), and |@) € V denotes the vacuum state | &) = Qe 10)x
Again, here the exiting paths in the bottom £; rows have colour 1, in the next £, rows they have colour 2, etc.
Finally, in analogy with (2-27), for i, v € S, we define

Gupsx1, ..., xp) = (uhBo(x1) - - Bo(xp) V), (2-43)
with
(uh =QA0k, AT =) Ajke;, v :=QBEk Bk =) B;jke;,
k=0 j=1 k=0 j=1

Aj(k):#{i i =k, ﬂj_l—{-l <i fgj}, Bj(k):#{i:vi:k, Ej_1+1§i Sﬂj},

and the graphical depiction (2-27) does not require any modifications. Since the labelling composition A
only participates in this definition as a record of the colours in the boundary states p and v, we will often
omit it from the notation of G, ,.

3. Extensions

In this section we provide a few straightforward extensions of the results from Section 2, most of which
have very similar proofs.

3A. Column inhomogeneities. In (2-23) we defined the functions f}, by utilizing the weights L of (2-13)
with x = x; and a fixed spin parameter s for all the vertices in the i-th row, 1 <i < n. It is meaningful,
however, to extend the definition when we take x = x;&; and s = s; for the vertex in the i-th row and j-th
column, where 1 <i <n, 0 < j <400, and {§;},;>0 and {s;} ;>0 are two infinite sequences of complex
parameters. Correspondingly, in the definitions (2-24) and (2-27) of g, and G/, one needs to use the
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weights M, of (2-14) with x = x,-éj_l and s = s; for the vertex in the i-th row and j-th column, with the
same sequences {§;} ;>0 and {s;};>0.

Many of the results cited in Section 2 and their proofs extend to such an inhomogeneous setup almost
verbatim. In the colour-blind case of n = 1 this can be seen by comparing [Borodin and Petrov 2018a]
and [Borodin and Petrov 2017].

The basic reason for such an easy extension lies in the fact that the Yang—Baxter equation (2-15) has a

suitable extension. More exactly, the needed deformed equation has the form

D0 D Ll it; K k)R gy (ia, ki ka, jOMg-1 (K k33 T, j3)
0<ki,k3<n KeN"

= Y > Mg is: K. k3) Ry (k3. i: ja, k) Leg (K ky: J. j1). - (3-1)
0<ky,k3<n KeNr
where the important thing to notice is that the parameters of the R-weights in the middle remain independent
of £, and they are also independent of s by their definition (see Table 2).°
Let us quickly go through inhomogeneous analogues of the results from Section 2 that we will need.
The commutation relations (2-22) remain unchanged, as they are related to the R-matrix in (3-1), but
the convergence condition (2-21) needs to be modified to

L
§ix—sj y—si§| _

1 —s;§jx & —sjy

lim
L—o0
Jj=0

see [Borodin and Petrov 2018a, Proposition 4.8] for an explanation in the n = 1 case. In what follows, we
will only need the situation of finitely many (in fact, exactly one) &;’s different from 1 and s;’s different
from a certain fixed s, in which case, we can clearly continue using (2-21).

Correspondingly, the summation identities (2-34) and (2-35) also remain unchanged, modulo a similar
comment about the convergence condition (2-33).

The relation (2-25) between f’s and g’s remains valid with the following modifications — the inversion
of s for the g in the left-hand side needs to be applied to all the s;’s, and the multiplicative constant c,,
needs to be read as

szo sj-(q — 1)rgti<imi=mj}
12007 @mjw '

The proof remains the same.

The colour-blindness results (2-29) remain in place with identical proofs and inhomogeneous F and G
understood as in [Borodin and Petrov 2018a].

The factorization (2-30) for the antidominant compositions looks very similar (and the same argument

works):
8i—1
FCeroeex) =[5 q>mj<a>-1£[< S, TR R ) (3-2)
j=0 i1 1 — 55,85, % i=0 1 —s;&x;

This version of the Yang—Baxter equation is also a consequence of the “master” Yang—Baxter equation (2-3).
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The recurrence relation (2-31) remains unchanged, with the action of 7;’s given by the same Demazure—
Lusztig operators (2-32). Its proof was based on the commutation relations between C;’s given in [Borodin
and Wheeler 2018, Theorem 3.2.1] and on [Borodin and Wheeler 2018, Proposition 5.3.3], both of which
remain intact in the inhomogeneous setup.

Finally, the orthogonality relation (2-36) remains literally the same, with the contours surrounding
all the points {&;s;} ;>0 instead of just s in the homogeneous case. It is a bit more difficult to convince
oneself that this is so because this proof relies on many ingredients. In addition to the facts already
mentioned above, one needs monomial expansions of [Borodin and Wheeler 2018, Chapter 6] and a
certain explicit contour integral computation. The latter in the inhomogeneous setup is exactly [Borodin
and Petrov 2018a, Lemma 7.1], while the proof of the former carries over to the inhomogeneous case in
the same spirit as all the other above-mentioned facts.

The principal reason for our carrying the column inhomogeneity of the model throughout Sections 3-6
is to be able to perform a limit transition in column 1 in Section 6, which will then give us access to
averages of observables in the fused models and, as a consequence discussed in Section 7, in integrable
models of directed random polymers.

3B. A simplifying specialization of G,;,. Our next goal is to prove the following statement.

Proposition 3.1. Fix generic complex parameters q and s, a composition A, and two A-coloured composi-
tions ., v of length n > 1. Then for L € N and generic e € C, G,/ (A; €, g€, .. ., q"_le), with G defined
as in (2-43), is a rational function in q", and there exists a limit

Gujp i= ehi%(an Gopu(hs €, g€, ... " N gim o1, (3-3)

where in the right-hand side we substituted a particular value into a rational function. Explicitly, G/,
has the form

(—s)H
(=s)IVl Grin =
/1
_ ©, @ 0 v H'™ (x+1)
g—2n H;OZO((SZ; 61)|m<x>|61 Yisjmim; 1—[;_1:] qu )H>f“(x+l)< i . )), ifall v; #0,
m® ) (3-4)
0, otherwise,

(x)

where we defined, for each x > 0, an n-component vector m) whose i-th componentm;’, 1 <i <n,is

equal to the number of parts of i of colour i that are equal to x (symbolically n = om” mom® ),

and also coloured height functions
H{(x) =#{j : colour(x;) =i, x; > x}, HL:ZH,E‘(X), H:/“EH;’—HE. (3-5)
k>i

The same conclusion holds in the inhomogeneous setting of Section 3A under the condition that for each
column x > 0 such that there exists a part of i equal to x (i.e., |m™| > 0), the column rapidity and spin
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parameter in that column are still equal to 1 and s, respectively, as in the homogeneous case, and the
factor (—s) "=Vl in the left-hand side of (3-4) is replaced by T]"_, ]_[;’:_;[ (—=s;)~L

Remark 3.2. We tacitly follow the convention that the g-binomial coefficients vanish unless their
arguments are nonnegative, and the top one is at least as large as the bottom one. Thus, the top line
of (3-4) can also produce a zero outcome.

Proof. Let us first switch from using the weights M, of (2-14) in the partition function of the form (2-27)
to using the weights M;tOCh of (2-12) instead. The product of the correcting factors (—s)liz! in (2-14)
over all vertices gives (—s)VI= 11 (the exponent counts the number of horizontal steps of all the paths,
which is exactly |v| — ||). Note that this matches the inverse of (—s)!“/="l in the left-hand side of (3-4),
and in the inhomogeneous setup, the product of these correcting factors gives

n vi—1
[TITGs»
i=1 j=u;
instead.

With the weights MM it is a bit more convenient to reflect the partition function with respect
to a vertical axis so that paths move to the right horizontally. Then, noticing that the left and right
boundary conditions of (2-27) consist of having no entering or exiting paths, we recognize that using
the geometric progression (e, ge, ..., g"~'€) for horizontal rapidities is equivalent to performing the
stochastic fusion in the vertical direction (corresponding to the outer sum in (2-10)). Hence, we obtain
that (—s)'“‘_""G,,/M (A; €, g€, ..., q " '€) is a one-row partition function with the incoming paths from
the bottom parametrizing v, outgoing paths on the top parametrizing u, no paths entering or exiting on
either side, and the vertex weights given by

1 C
Wim| = —; B—>p
q A

Here s and € need to be replaced by s; and éj_le, if the vertex is in a column j that carries inhomo-

O

(3-6)

gM—>s5—2

geneities (s, &;). Pictorially,

......... 12) 1) 1(0)
(—s)MG, (e ge, ..., g5 o) = 0 0 (3-7)

......... J2)J(1) J(©0)

with (k) =" 1,,—«ei, J(k)= Z?:l 1,,—xe;, for all k € Z. This partition function is a rational
function in ¢" because every vertex weight (3-6) is; see (2-6).
Assume we are in the homogeneous setting first. Observe that if in the right-hand side of (2-6) we

have ¢g-—M

x = 1, then the only nontrivially contributing term comes from P = C, for which the first
®-factor turns into 1. In terms of our weights (3-6) this corresponds to gM~ts /e = 1, which is realized

by setting g- = (se€)~! (recall that gM = 572).
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Writing out the term with P = C we obtain

|D|—|B|
N A| .—2|D
1A+B:C+D‘(E> (S€)| 21D

x(s_z;q_l)'c'(se_l;q_l)l’_'a<§>C|qZ;<_/<chf)cfﬁ(3i) . (3-8)
((se)~1 g7 1) € 1 \Ci/

There is an additional factor of ¢"* = (s€) ™" in (3-3). Since our compositions have n parts, there is a total
of n paths exiting (3-7) from the top, and we can distribute (se)™" as (se)"c| over all vertices in (3-7)
(with C corresponding to the paths exiting the vertex at the top). Hence, we need to take the limit as
€ — 0 of (3-8) multiplied by (se€)~'€!. This is a straightforward calculation which yields

n
_CAC, B;
Lasp=c+p s 6% @) - g =1 CJ>C11'[<C{> : (3-9)
i=1 ~ 14

For the inhomogeneous setting, our hypothesis implies that for any vertex in a column with inhomo-
geneity parameters (5, £) we must have C = 0. This turns the sum in (2-6) into a single term with P =0,
which leads to the replacement of (3-8) by

Lusnecin (6715)7 " (54520 (G ia D ¢ se hig Dim (3-10)

157257 g7 Db (5797 Dip)
This expression has the exact same € — 0 asymptotics as (3-8) with C = 0, thus confirming (3-9) for the
inhomogeneous setup as well.

It remains to interpret B and C in (3-9) in terms of the height functions. Assume that our vertex is
located in the column with coordinate x > 0 (which means, in particular, that A = J(x), C = I(x) in
the notation of (3-7)). Then B; is the number of paths of colour i in (3-7) that enter from the bottom
at a location strictly to the left of x minus the number of paths of colour i that exit through the top at
a location strictly to the left of x, and this equals Hl.v/ H(x 4+ 1) as defined in (3-5). Furthermore, C; is
exactly m Ex). Hence, the part of (3-9) past the indicator function takes the form

— (x)
s 2|m'™| (S2

X) pyV, x X n H~U/M X 1
Yo m W H x4 D)= m )mﬁ)l |< i ((x)+ )) , (3-11)
A m.
i=1 l q

S Dim) -4

and the product of these expressions over x > 0 gives the first line of the right-hand side of (3-4).

On the other hand, the role of the indicator function 144 p_c+p in (3-9) is in providing a recipe for
uniquely assigning the paths along the horizontal edges of (3-7) inductively: D is assigned the value of
A+ B — C, starting from the far left where no paths are present. This works smoothly until column 0, in
which D must be equal to 0, enforcing A + B = C. Since the g-binomial coefficients require B; > C; for
a nonzero outcome, we conclude that A must be 0 in the O-th column, giving us the second line of the
right-hand side of (3-4). O

An important special case of G/, is when u has only zero parts. A direct inspection of (3-4) leads to
the following:
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Corollary 3.3. For u=0"= (0,0, ...,0), with notation G, := G, on, the limit (3-3) takes the form

—2n.2. . .
(—s) Mg, = s @), ifallv; £0, (3-12)

0, otherwise.

In the inhomogeneous setting, assuming that (so, &) = (s, 1), a similar formula holds, where one needs to

replace (—s)~""! in the left-hand side by []_, ]_[;i:_ol(—sj)_l.

The second symmetrization relation of (2-29) implies that G, has to equal
lim Gy (e, g, ..., q" ) (e

with vt denoting the dominant reordering of v, and G as in [Borodin and Petrov 2018a]. This limit was
evaluated in [Borodin and Petrov 2018a, Proposition 6.7], and was shown to be equivalent to (3-12).7

Let us also record for the future what happens to (3-4) when u and v are rainbow compositions
(equivalently, A = (1, 1, ..., 1)).

Corollary 3.4. Under the assumption that i and v are rainbow compositions, (3-4) takes the form

_ _(Im™)] v/p )
(_s)|l/«| = g—2n l_[;)o:o <(S2; Q)|m(x>|q ™" Hlfl'sn;mlgx)zl lHiv/“(x+1)=1 qH>i (X—H))’ ifall v; #0,
—g)lv| TR
(=) 0, otherwise.
(3-13)

The same formula holds in the inhomogeneous setting of Section 3A under the condition that for each

column x > 0 such that there exists a part of . equal to x (i.e., |m™| > 0), the column rapidity and spin

parameter in that column are still equal to 1 and s, respectively, and the factor (—s)" =" in the left-hand
. . i—1 —1

side is replaced by [];_, szui (—sj)~.

Proof. Direct inspection of (3-4). Note that in the rainbow sector, for any given i, 1 <i < n, the i-th
colour height function H* defined as in (3-5), can only take values O or 1. g

3C. Colour merging. Different versions of colour merging properties of vertex weights have been
previously observed and studied in several works including [Foda and Wheeler 2013; Garbali et al. 2017;
Kuan 2018; Borodin and Wheeler 2018; Borodin et al. 2019]. We use this section to formulate the
statements we need in suitable notation.

Let ny, ny be two positive integers, and let 6 : {1,...,n1} — {1,..., n,} be an arbitrary monotone
map. It induces a map 6, that turns a n;-dimensional vector into an n,-dimensional one as follows:

Ou:I=(I,.... L) > J=(1, ... Jn) ifTj= Y I (3-14)
i€0=1(j)
In other words, we sum the coordinates of I that have the same 6-image and turn the result into a

coordinate of J whose index is that image. Empty sums are interpreted as having value 0.

In fact, [Borodin and Petrov 2018a] provided two different evaluations for this limit, neither of which coincides with the
color-blind version of the proof of Proposition 3.1.
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Proposition 3.5. Denote the weights W\ given by (2-6) with n-dimensional vector arguments as W,f",g,l
Then for any ny, no > 1 and a map 6 as above, we have the following colour merging relation: For any
A, Be Z'go and C, D € Z’;O with |A|, |C| <M, |B|, |D| <L,

(1) g (n2) €

Z Wil x g s n | =W x5 w55 ). (3-15)
n ~ A 04 (A

Cez}):6.(C)=C (4)

De7") :0,(D)=D

>0

Proof. For L =M = 1, when the W-weights turn into matrix elements of the R-matrix (see (2-7)) the
statement coincides with [Borodin et al. 2019, Proposition 4.3] (and it is also easy to check directly from
the formulas given in Table 2 for the weights). For general L, M > 1, (3-15) readily follows from the
L =M =1 case and the stochastic fusion (2-10). Il

Corollary 3.6. Colour merging statements similar to Proposition 3.5 hold for the vertex weights L, M,
L;“’Ch, M;“’Ch and q-Hahn weights (2-16), as well as for the vertex weights defined by (3-9).

Proof. This follows from the fact that all these weights are obtained from W\ wm by specializations, analytic
continuation, multiplication by factors that give the same contribution to the two sides of the merging
relation (3-15), and a limit transition € — 0 in (3-6) in the case of (3-9). O

The colour-blindness statements of Section 2D correspond, in the notation of Proposition 3.5, to
ny = 1. In particular, applying the colour-blindness relation to either the g-Hahn weights (2-16) or to the
weights (3-9) and removing common factors on the two sides, one obtains the g-identity (3-16).

Corollary 3.7. Forany Q € C, («1,...,0,) € Z’éo, and a fixed |B| € Z>o, |B] < |a|, one has

Zl§i<j§n/3i(aj_:8j) - i ) :( |O{| ) . 3-16
2, 0 E(ai—ﬁi o Nal=181), G40

0<gi<a;, 1<i<n,

Bi+-+Bu=|BI

Since compositions are vectors, the map 6, from (3-14) sends any composition of length n; to a
composition of length n,. This can be naturally extended to coloured compositions as follows.

Let A be a composition with £(1) =ny, weight |A| =m, and partial sums ¢; = Zle Ai. Then p:=6,(A)
is a composition with £(p) = n;, same weight |p| = m, and partial sums that we denote as ry = Zle Di.
Further, let i be a A-coloured composition of length m; see Section 2H for a definition. As in (2-39), we
can encode p by a sequence of n1-dimensional vectors {A (k)}x>0:

n
AR =Y Aj0e;, Al =#iw=k G+1<i<).
j=1

It is not difficult to see that the sequence of n,-dimensional vectors B (k) := 0,(A(k)), k > 0, corre-

sponds, via

0:(A(k)) = B(k) = ZBj(k)ej, Bj(k)y=#{i:vi=k, ri1+1=i=<r;},
j=1
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to a p-coloured composition v of length m that we will define to be the image of w under 6,:
0* () =v. (3-17)

In less formal terms, if we view a coloured composition p as positions of finitely many paths coloured by
{1,...,n1}, then v = 6,(u) represents positions of the same paths that have been recoloured according
to the map 6. Note that we required 6 to be monotone, which means that the order of colours is being
preserved.

Proposition 3.8. Let A be a composition with £(A) = ny of weight |A\| = m, p be a composition with
L(p) = ny and same weight |p| = m such that 6,(A) = p, V' by a A-coloured composition, and v" be
a p-coloured composition (both of length m). Then for any p > 1 and complex parameters xi, X3, . . .,

we have
Z fﬂ()";x17~~~’-xm)=fl)//(10;xla~~-,xm)s (3_18)
i ()=v"
Y GuuGsxis . xp) = G (03 X1, -, Xp). (3-19)
il (u)=v"
Remark 3.9. When A = (1, 1, ..., 1) and np = 1, one recovers the symmetrization formulas (2-29).

Proof. In complete analogy with proofs of (2-29) in [Borodin and Wheeler 2018, Propositions 3.4.4
and 4.4.3], the argument consists in multiple applications of Proposition 3.5, or rather its version for the
weights L, and M, (Corollary 3.6) used in the definitions of f’s and G’s. In the case of (3-18), one
starts with the top-right nontrivial vertex of the partition function (2-23) (with appropriate, not necessarily
rainbow colours of entering paths on the left), while in the case of (3-19) one starts with the top-left
nontrivial vertex of the partition function (2-27), and then moves step by step into the bulk of the partition
function. Once the colour-merging summation has been performed for all nontrivial vertices, one recovers
the right-hand sides of (3-18) and (3-19). Il

4. Cauchy identities

The goal of this section is to show how the skew-Cauchy identity (2-35) leads to formulas for averages of
certain observables for stochastic vertex models.

For this section let us assume that we are either in the column-homogeneous situation, or, slightly
more generally, the number of columns in which inhomogeneity parameters (s;, £;) of Section 3A are
different from (s, 1) is finite. We start by extending the skew-Cauchy identity (2-35) to limiting versions
of the G-functions from Section 3B.

Proposition 4.1. Let u be a rainbow composition of length n > 1, and x1, . . ., x, be complex parameters
satisfying
s(xi — ) ,
— | <1, 1<i<n. 4-1)
1—sx;
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Then we have

va(-xlv --~’xn) gl)/;,L =1—[(1 - %) 'fu,(-xla "'v-xn)v (4_2)

i=1
where G, is as in Corollary 3.4, and f,’s are as in (2-23).
Proof. We start with the summation identity (2-35), multiply both sides by ¢"”, and substitute p =L,

V1, --s ¥p) = (€,qg¢€, ..., q"'e) with e = s !¢~ to eventually match with (3-3). The identity takes
the form
D A ) g G ge, q"_le):ﬁﬂ-f X1y Xn) (4-3)
- Y e o 1= xi/(sqY) A

where the convergence conditions (2-33) read

Xi—s yj—Ss Xi—S§ s_lqj_"_l—s Xi—S§ l—szq"_jJrl |
1—sx; 1—sy; l—sx; 1—g/—t-1 I—sx; s(g-—7t1—1)
for1 <i<mand1<j<L. They will hold forallL=1, 2, ... as long as the x;’s range over a sufficiently
small neighbourhood of s (we assume |g| < 1).
As in the proof of Proposition 3.1, q”LGU/M(e, qe, ..., qL_le) can be represented as a one-row

partition function of the form (3-7) with fused weights (3-6) multiplied by (s€)~!¢!. Denoting [ := g*, we
can rewrite those vertex weights as follows (see (3-8) and recalling that € = (s[)™!),

— — — n
s 2UBI=ICl (2.

-1 27 ,—1 |C| .
9 D™ g Dim-iel (szl) q—z,-<,-<Bi—cf>C./1—[(B’> )
(g it \Ci/ 4=

144B—c+D-

Using the fact that |B|, |C| < n, one readily sees that this expression remains uniformly bounded as [
varies in the extended complex plane while staying uniformly bounded away from the potential poles at
{1,q,..., q”_l}. Hence, we obtain an estimate of the form |q”LGV/M(e, qe, ..., q'—_le)l < const! for
such [. On the other hand, we also have

o |
X;i—S

4-5
1 —sx; (4-5)

n
|fl)(x1’ e 7xn)| < Constl_[‘
i=1

which follows from the fact that in the partition function (2-23) only vertices of the form
0

0

have the number of appearances that is not a priori bounded, and the weight of such a vertex in the j-th
row, according to (2-13), is (x; —s)/(1 —sx;) (at least sufficiently far to the right, even if there are finitely
many column inhomogeneities). We conclude that for the x;’s in a sufficiently small neighbourhood of s
and [ staying away from {1, g, ..., g""'}, the series in the left-hand side of (4-3) converges uniformly,
yielding an analytic function of I. Clearly, the right-hand side of (4-3) is also analytic in [, which implies
that (4-3) holds under the same conditions on the x;’s and [. Substituting [ = oo (equivalently, ¢ = 0)
into (4-3) leads to (4-2).
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Once (4-2) is proved for x;’s sufficiently close to s and |g| < 1, we can relax the assumptions by further
analytic continuation in these parameters (although we will not need |g| > 1 below). In particular, since
the explicit formula (3-4) for G,/,, shows const - |s|"l'behaviour of G, /u for large v, using (4-5) we can
extend the equality to x;’s satisfying (4-1). U

Taking 1 = (0, 0, ..., 0) in Proposition 4.1, we obtain the following:

Corollary 4.2. For xy, ..., x, € C satisfying (4-1), we have

Hﬂ. Yo MA@ ) =1, (0

i=1 S(S o X,‘) v:all v;>0

where the summation is over all compositions v of length n with no zero parts. In the inhomogeneous
setting of Section 3A, assuming that (so, &0) = (s, 1), a similar formula holds, where one needs to replace
(—s)"Vin the left-hand side by []}_, ]_[j’z_ol (—s;).

Proof. This is given by straightforward substitution of u = (0, ..., 0) and (3-12) into (4-2), with the

evaluation
n 1

fo...0 i o 4-7)
(0 ..... 0) XlseoesXpn) = ) -
Pl 1 —sx;

which follows from the fact that the corresponding partition function (2-23) is the product of L-
weights (2-13) for the unique path configuration that gives a nonzero contribution. U

It is not difficult to extend Proposition 4.1 and Corollary 4.2 to partially merged colours.

Proposition 4.3. Let A be a composition with |A\| =n, wu be a ,h-coloured composition, and x1, ..., x, € C
satisfy (4-1). Then

Z fv()\;xlv---axn)gv/uzl_[<1_)%)’f;t()”;xlv---,xn)s (4-8)
i=1

v is A-coloured

which in the case of  having only zero parts, can be rewritten as

n

1_ .
I S S =M AR, =1 (4-9)
i=1 S(S - xi) v is A-coloured,

all v;>0

In the inhomogeneous setting of Section 3A, relation (4-9) also holds under assumption that (sg, &) = (s, 1)
and with (—s)"" in the left-hand side replaced by [}, ]_[;":_O1 (—s;).

Proof. Let O : {1,...,n} — {1,...,£(X)} be the unique colour merging monotone map such that
0.((1,...,1)) = A; see Section 3C. Then we can sum (4-2) over rainbow p with a given image 6, ().
The right-hand side is immediately computed via (3-18), and in the left-hand side we use (3-19) and
subsequently perform, using (3-18), a partial summation over v’s with the same image 6, (v). The result
is (4-8), with 6, () and 6, (v) replaced back by p and v. The second relation (4-9) follows from (4-8) in
the same way as in the rainbow case of Corollary 4.2. O
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Definition 4.4. For any n > 1, composition A with |A\| =n, and ¢, s, x1, .. ., x, € C satisfying (4-1), we
define a (generally speaking, complex valued) probability measure on the subset of S, (defined in (2-38))
consisting of A-coloured compositions v with no zero parts by

n
PoD =[]~ P fohsxr, ). (4-10)
Pl s(s —x;)
Graphically, the weight of this measure could be seen as partition functions of the form (2-23) with
incoming colours on the left partially identified according to A, with vertex weights L3°" given by (2-13),
and conditioned to have no exiting paths in the 0-th column (i.e., A(0) = 0 in terms of (2-23)).
In what follows we will also use the notation

soch o x, L x) = (=) A X, x). (4-11)

v

In the inhomogeneous setting of Section 3A, we will assume that (sg, &) = (s, 1), and in the right-hand
sides of (4-10) and (4-11) replace (—s)"! by [T/_, r[ji;()l(—s -

The graphical interpretation is based on the observation that the prefactor of the sums in (4-6) and (4-9)
is exactly the inverse of the product of L*°"-weights of vertices

0

0

in the O-th column of a partition function of the form (2-23) with no turns in the 0-th column, and (4-11)
is the result of computing the partition function for f, with L-weights replaced by the Ls°M-weights.
Together with the stochasticity of the L3°"-weights, this also implies (4-6) and (4-9).

Definition 4.5. In the context of Definition 4.4, for any A-coloured composition © = gm® mom® .
introduce an observable O,,, whose values on A-coloured compositions v with no zero parts are given by

0, (v) = 1—[ qu,?‘)Hﬁf“(xH)(

x>1i>1

H M x +1
(e + )) , (4-12)

m®
L q

where we use the coloured height functions (3-5). Note that only nonzero parts of u play a role in this

definition.
For rainbow compositions, i.e., when A = (1,..., 1), the observables take a simpler form; see
Corollary 3.4:
rainbow _ H iéﬂ (x+1)
O, ()= 1_[ lHl.”/“(x-i-]):lq
x>1,i>1

mfx)zl

1_[ qﬂgi,(m) _ qHﬁf“(xH)

x>1,i>1 q-1
mfx):l

(4-13)
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Example 4.6. In the colour-blind case A = (n), thinking of the coordinates of u as being ordered:
U1 > U2 > ... > Uy, we can rewrite (4-12) as a shifted g-moment of the colourless height function:

Ocolour-blind(v) _ (1- qHV(m_H))(l - qHU(u’z—H)_]) (1= qHU(l/-k+1)—k+l)
" =

, (4-14)
szl (q; Q)Inultj(u)

where mult; () =#{i : u; = j} and k = max{j : u; > 0}.
We are now in position to formulate the main result of this section.

Theorem 4.7. With notation of Definitions 4.4 and 4.5 above, we have

(x) (x)
quZb,m; m;" 1

1—[ (52-q) o H(l—sxi).flitoch(k;xl, ...,xn), (4—15)
x>0 ’ [m™]

EO,=E,[0,(v)] =

where the expectation is taken with respect to the weights (4-10), and the observables are given by (4-12)
in the general case, or by (4-13) in the rainbow case.

The formula (4-15) also holds in the inhomogeneous setting of Section 3A under the assumption that
(sy, £¢) = (s, 1) for any x such that |m™®| > 0, and for x = 0.
Proof. Let us take the ratio of two skew-Cauchy identities (4-8) with u and with © = (0, ..., 0). This

yields
vav()\;xla---vxn)gv/u_ fy,()\';xlv---’xn)
vau()ﬁxlv---,xn)gv f(o ..... 0)()";x15"'7-xl’l)

which can be rewritten, via (4-11) and (4-7) (stated in the rainbow case, but also holding in the non-rainbow

’

one for the same reasons), as
ZV So@s x, oo x0) Gy (Goyu/Gv) _ Hyzl(l_sxi) fStOCh()C X1 ) (4-16)
Yoy fo@ixt o x) Gy (=)l ) 7 T
The summations are taken over A-coloured compositions v with no zero parts.

Observe that the left-hand side of (4-16) is exactly £, (Gy/,./Gy); see Definition 4.4. The expression (3-4)
for G,,,, (which is also the source of our assumption in the inhomogeneous setting) implies

G _ % D15, (n 5,10 ?) I (Hiw(”>
o (_S)WI(SZ; n i>1 mz(O) q
X l_[(sz; q)|m(x)|q_zi>f m;m -0, ().
x>1

The only v-dependent part of this expression is O, (v), and it stays under the expectation; the other
factors can be moved to the right-hand side of (4-16). It only remains to notice that for G,,, not to
vanish, we must have Hl.v/ By = mgo) for all colours i > 1. To see that, it might be easiest to return to
the expression (3-9) for the vertex weights in the one-row representation (3-7) of G,,,, and note that
in the 0-th column we have D = 0, which together with A + B = C + D and B > C (enforced by the
g-binomial coefficients) implies B = C, which is exactly the statement we are making, as B; = HI.U/ (1)
and C; = mgo). Taking these equalities into account and cancelling out common factors gives (4-15). [J
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5. Integral representations for f,

The result of averaging the observable O,, in Theorem 4.7 is the function f,,, up to simple prefactors. The
coloured composition p here has the same dimension (i.e., number of parts) as the coloured compositions v
over which we are averaging (see Definition 4.4), and thus does not offer much reduction in complexity.
The goal of this section is to show that f,, has an integral representation of the dimension equal to the
number of nonzero parts of ;. Hence, by choosing u consisting of mostly zeros, we will be able to obtain
tangible formulas for averages over v’s of a growing dimension.

Definition 5.1. For a coloured composition . (defined as in Section 2H), we will denote by u=! the
coloured composition obtained from p by removing all of its zero parts. The colouring of £=! will be the
one naturally inherited from p, and we will denote it by A=! if i is A-coloured, or by colour(;=!) if A is
not explicit.

Our first goal is to prove the following integral representation of f,, for rainbow compositions.

Proposition 5.2. Let u = om”1mV2m® . be a rainbow composition of length n > 1 not consisting
entirely of zeros, let u=' be as in Definition 5.1 with m :=n — |m©| > 1 being the length of u="', and let
c1 < -+ < cm be the colours of the (necessarily nonzero) parts of u='. Then

sy ) = s D) =b" ?g yg Vi
" T (1 —=sx1)--- (1 —sxp) (27'[«/—_1)’" around{x Yji—q)i

1<z<j<m

n
_ v X¢; Il —qxiy;
xfﬂ>1(y11,...,ym1)l_[( - ~— 11 ’ ’dyj), (5-1)
A\ Lt =iy

1—x,
j=1 nyj i>cj

where (positively oriented) integration contours are chosen to encircle all points {xj_l}'}:1 and no
other singularities of the integrand, or as q-nested closed simple curves with y;-contour containing

Lo (y; j-contour) for all i < j, and all of the contours encircling {x J I
The formula also holds in the column inhomogeneous setting under the assumption that in the 0-th

column (s, &) = (s, 1).

Remark 5.3. Contour integration around a specific set of singularities can be viewed formally as the
sum of residues at those singularities, and such a sum would make sense if the parameters are such that
required contours are not possible to construct. This gives a slightly different way of interpreting (5-1),
as well as all the other integral representations below.

Remark 5.4. According to Definition 5.1, #=! is a coloured composition, and thus Suz (yl_l, U )
should really be written as szl Ay, ! veos Ym 1), where A is the colouring composition for ,uzl. However,
since all parts of £=! have different colours, and our vertex weights always depend on the colours only
through their ordering, we could replace the colours ¢; < - - - < ¢, represented in w=! by 1,2,...,m,
and denoting the resulting rainbow composition by i=!, we Would have f,=1(%, y;° L yml) =
Sz (yl_l, e yml) It is this function that we denoted as f=1 (y1 Yy yml) thus slightly abusing the
notation.
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Remark 5.5. In the case so = 0, there exists a fairly straightforward argument leading to a formula
similar to (5-1). Namely, in that case vertices of the form J-1>i with j > i have weight zero (in the
0-th column) due to vanishing of the bottom right entry in (2-13). This means that the paths of colours
c1, ..., cy are not allowed make any vertical steps in column 0, as otherwise they would have no way
of exiting this column to the right (because of the ordering of entering colours along the left boundary).
This completely determines the configuration of paths in column 0, and the contribution of the remaining
columns can be encoded as the matrix element

(D1Co(x1) - - Co(xe,—1)C¢ (xc)C0 (X, 41) - - - Co(Xe, —1)Ce,, (X, )C0 (X, 1) - Co(xn) | 2¢),

with » = pu=! — 1" and C-row operators from Section 2C. The summation over x of such expressions
multiplied by g} (y1, ..., ym) is evaluated as an explicit product similar to (2-34) via the commutation
relations (2-22), and then the coefficients of g} are extracted by the orthogonality (2-36).

It is not clear, however, how to extend this argument to sg # 0, and we need to employ a different idea
in the proof below.

Proof of Proposition 5.2. Our argument consists of two steps: We will first prove the formula for
(c1,...,cm)=m—m+1,...,n), and then show that the formula continues to hold when we reduce one
of the ¢;’s by 1. Iterations of such reductions will cover all possible choices of 1 <c¢; <--- < ¢y <n.

Both steps work identically in the column homogeneous and inhomogeneous settings, and we will
give the argument in the homogeneous case. The inhomogeneous analogs of several statements from
Section 2 used below can be found in Section 3A.

Assume that (¢, ...,cn) =m—m+1,...,n). This means that paths that enter the partition function
of the form (2-23) from the left in rows 1, ..., n —m must immediately turn up and exit on top, while
paths that enter in rows n —m + 1, ..., n must move to the right across the 0-th column (recall that no

horizontal edge can carry more than one path). Hence, the configuration of paths in the 0-th column is
completely determined, and the product of the L-weights (2-13) in this column gives

n

(Sz;q)\m(m‘ 1—[ Xj—sS
[T2" (1 —sx)

On the other hand, the contribution of the remaining columns can be written as

1 —sx;
Jj=n—m+1 J

n

1—sx;
| | ‘fuil(xnferlv e Xn)s
. Xi— S
Jj=n—m+1

where the prefactor is responsible for the fact that the partition function for f,=1 (xy—m+1, ..., X,) starts
with column 0, and we only had weights of vertices in columns > 1 remaining. We now need to show that
the product of the last two expressions agrees with the right-hand side of (5-1). With our choice of ¢;’s,
the integrand is independent of x1, ..., x,_,, and its only poles are at y; = x;l withn—m+1<j <n.
The number of integration variables thus coincides with the number of potential pole locations, and no two
variables can have nonvanishing residues at the same location because of [ [;_ ;i — ;) in the integrand.

- ., x, ! exactly once, and [T7=1(vj = $)xc; in the

Hence, the residue locations cover all points x, _ |, ..
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integrand necessarily evaluates to H?:n_m 4+1(I —sx;) in every set of nontrivial residues taken. Moving
this factor out of the integral, we are led to the following desired equality:

Sfuzt n—m+1 Xp) = =D 7§ 7§ 1_[ fpm
> n—m 9 ey ) — e
’ Qa/—1)m around {x7'} Yji—4q)i

J T 1<i<j<m
‘ 1 ~1—gxiy; dy;
x feitOr oy h ( L —J) (5-2)

Comparing to (2-37), we see that the difference is in (—1)™ and the choice of contours, which both
come from the same origin. Namely, let us take the right-hand side of (2-37) (with n replaced by m
and (xi, ..., x,) replaced by (x,—m+1, - - -, X)), and deform the outermost y,,-contour in the outside
direction, moving it through oo and closing around {xj_l}. The recursive construction of (rainbow) f,’s
from Section 2E readily shows that (y; - - - y,,) ! Sz (yl_], ces ynjl) is a ratio of two polynomials in y’s
with the denominator consisting only of factors of the form (y; — ), and f,,=1(y; L Vi 1) viewed
as such a ratio has the numerator degree 1 less than the denominator degree in each of the variables y;,
1 <i < m. Hence, our deformation of the y,, collects no residues along the way and yields the factor
(—1) for changing the contour direction.

Next, we do the same deformation with the y,,_;-contour. Following the same reasoning, there is
only one possible pole along the way: y,,_1 = ¢~ y,. If we leave this potential singularity inside the
Ym—1-contour, and proceed similarly for subsequent deformations, then we end up with two g-nested
contours surrounding {xj_1 }. It turns out that the g-nestedness is not necessary. Indeed, a direct inspection
of the integrand shows that the only possible pole of y,, inside its current contour is x,, !, and then the
factor (1 — gx,, y,,—1) makes the residue at y,,—; = qr_1 v vanish. Hence, we can close the y,,_-contour
around {xj_1 }, orient it positively, and acquire another (—1).

Continuing with this procedure for y,,_2, y,—3, . . ., y1-contours (in this order), we turn (2-37) into (5-2),
thus completing the first step of the proof.

Let us now see why lowering of the ¢;’s in (5-1) keeps the formula intact. From the point of view of
the (rainbow) composition u, replacing c¢; — c¢; — 1 (assuming there is no i # j such that ¢; =c; — 1)
is equivalent to swapping uc;—1 = 0 and p.; > 0. This can be done with the help of the exchange
relations (2-31) by acting on the right-hand side of (5-1) by

Xej—1

— X,
Tepmr =g = ~——L(1 —5¢,0);

ij—l _ij

see (2-32). The only part of the right-hand side of (5-1) that is not symmetric in (x.;—1, X¢;) is the factor
xc; /(1 —x¢;y;) (note that the contours are symmetric too), and applying 7¢;—; to it we read

—Xc;Yj 1_xcj71yj

quj xcj—l _quj < ij ij—l ) ij—l 1 _qujyj
1 L—xe,o1yj 1=—xey;

1—xc,-)7j Xej—1 — X¢;

This recovers the integrand of (5-1) with ¢; — ¢; — 1 and completes the proof. O
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Remark 5.6. While the integral representation (2-37) allowed for moving the contours through oo, this
is no longer true for (5-1), as the added factors (y; — s) create poles at oo.

The main result of this section is a generalization of Proposition 5.2 to coloured nonrainbow composi-
tions.

Theorem 5.7. Let A be a composition of weight |\| = n with partial sums Zle A =Ly, k>1;49:=0.

Further, let © = O’”(O) 1m(1)2m<2) -

- be a A-coloured composition of length £(j1) = |A| = n not consisting
entirely of zeros, let u=' be as in Definition 5.1 with inherited colouring A=' and m = n — |m¥|
being the length of u=', and let ¢, < - - - < cq be the colours of the (necessarily nonzero) parts of u=".
Finally, let my, ..., mg > 1 be the number of parts of u=' of colours ci, . .., cq, respectively, and denote

mla, bl =m, +my1 +---+my. Then
fll()\';xl"'~7-xn)=
(s 2'61)|m<0>| 1
(I—=sx1)---(1—5x,) (27-[./ 1)m

f f y — i
around{x —4q)i

} 1<l<j<m

5 H(Z (—1)ig"™

o1 Nimo (46 D45 D

mg— J) jH+m[l,k—1] n m[1,k] n

I I 1—gxayp I I l—qxwr)

1—x 1—x
pemilk—1]a>Ee i @YP s jrmll k=11 b>L, by

. i1y O = 9)dy
xfm(x—l;yl1,...,ym1>1_[T, (5-3)
i=1

i

where (positively oriented) integration contours are chosen to encircle all points {x hy { and no

other singularities of the integrand, or as q-nested closed simple curves with y;-contour containing
In

"_1- The contours can also be

R (yj-contour) for all i < j, and all of the contours encircling {xj_
chosen to either encircle or not encircle the point 0.
The formula also holds in the column inhomogeneous setting under the assumption that in the 0-th

column (s, &) = (s, 1).

Remark 5.8. For A =(1,..., 1) and i a rainbow composition, we have £, =k, a =m, m;=---my =1,
m[1, k] = &, and the middle line of (5-3) evaluates to

1 11— - 1—
(_1)( B qukyk)l—[ 9XbVk _ XeVk I AL

l—q 1-=g 1=xq¥ L=xpye D=xeye o 1= xp)k

b>cy

thus reproducing (5-1).
Proof. The central role in the argument is played by the following:

Lemma 5.9. For any positive integers €, | and m which satisfy €+ m < [, and any symmetric function
O (z1, ..., zm) that is holomorphic in a neighbourhood of the domain encircled by the integration contours,
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one has

ip

P
qzp —¥j
X 4t ot zm( %)
around{;j q i —Li,+1 =1 Ip Y

[—1>i>>in>t
?g ?g L T
around{;l —4q3i

= (—l)fq(2 qzp —¥a S an -\ oy dzp
(% HH EIE2) 122 69

(45 9)(q; @m-— iy rejb=1 r T8

where (positively oriented) integration contours are chosen (independently in the two sides of (5-4)) to
encircle all points {x; }5.:1 C C and no other singularities of the integrand, or as q-nested closed simple
curves with z;-contour containing g~ -(zj-contour) for alli < j, and all of the contours encircling {gj}g.zl
The contours can also be chosen to either encircle or not encircle the point 0.

Let us postpone the proof of Lemma 5.9 and use it for the proof of Theorem 5.7 first.
Let6:{1,...,n}— {1,..., €(A)} be the unique monotone map such that

0 k) ={i_14+1,....4) forall 1<k<~L(). (5-5)

We can then use the colour merging relation (3-18) to obtain a formula for A-coloured u’s from the
formula (5-1) of Proposition 5.2 for the rainbow ones. This means that we need to sum the right-hand
sides of (5-1), written for a rainbow composition fi, over all i with 6, (i) =

Such a summation can be performed in two steps. At the first step we choose, for each colour cx
represented in u=!, 1 <k < a, the my colours in ! () that are represented in i=!. At the second step
we choose, for each k, 1 <k < «, different assignments of the chosen my colours in 8~ (c;) to the my
parts of 4= that have colour c. The summation of the second step is exactly the colour merging applied
to f;=1 (no other factors of the integrand of (5-1) depend on the choices in the second step), and (3-18)
shows that the second step summation results in replacing f;=1 in the integrand by f-1.

Returning to the first step summation, we see that f,-1 in the integrand is now independent of the
choices involved, and we can focus on the rest of the integrand. For each colour ¢, 1 <k < a, we are
choosing c( )<< c,im") in 0~ (cp), or, according to (5-5), €., —1 < c,(( ) < c,((m") <{.. Now the
sum over such mk—tuple of indices can be computed, for each 1 < k < «, using Lemma 5.9, where one
needs to make substitutions

m = my, t— (n_eck)a [~ (n_eckfl)’ (Zl,---,zm)'_) ()’m[l,klels ---sym[lk)

-1 -1 -1 -1 -1
(?19?25?[)'_) (xn 7xn_17---7x(ck71+1)9 (;1’ ?2,}38)*_) (xn ’xl’l—l"' g +1)

((>i1>>im>0) > n—Ly—1 >n— C1(<)> >n—c,(€mk)zn—£ck),

and collect the factors that do not correspond to the ones in the left-hand side of (5-4) into a ®(zy, ..., Zm).
The holomorphicity of ®(zy, ..., Zm) in a neighbourhood of {¢ J'}B':l is readily visible; and the fact that it
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is symmetric in zj, ..., Zy follows from the fact that f) - (yl_l, e ynjl), which enters ®(zy, ..., Zm)
as the only factor that is not manifestly symmetric, is symmetric in

Vm[1,k=11+15 - - > Ym[1,k])

thanks to the commutativity of the C; (x) operators (for a fixed i and varying x) in the definition (2-41) of
f-functions for coloured compositions.

Comparing the right-hand sides of (5-3) and (5-4), we see that this completes the proof of Theorem 5.7
modulo the proof of Lemma 5.9. O

Proof of Lemma 5.9. While a direct book-keeping of residues of the two sides of (5-4) might be possible,
we will use the theory of Hall-Littlewood processes as a shortcut, with the work [Borodin et al. 2016a,
Section 2] as our main reference; a more detailed description can be found in [Borodin and Corwin 2014,
Section 2]. See also Remark 5.10 on the origin of the argument given below.

Consider an ascending Hall-Littlewood process with weights on sequences of partitions A(D ... 1™
proportional to

Py (1) Pr2)/n1) (22) Prany /3.n—1) (8n) @y (0) LAk) <k, 1=<k=<n, (5-6)

with, generally speaking, complex parameters {r;}"_;, o being the specialization of the algebra of
symmetric functions into a sequence of variables (b1, by, - - -), and P, and Q. being the Hall-Littlewood
symmetric functions.

Our argument is based on [Borodin et al. 2016a, Proposition 2.2], see also [Borodin and Corwin 2014,
Proposition 2.2.14], which says that for any n >m > ... >m, > 1, one has

mi—L(A(my)) | | mn—ﬂ(k(mn)))

Enr(q -q

) n 1—zb; = qzi—1i dz
_ a9 f fl_[ Zi (l—[ 1b; qz 2&_1) 5-7)
Q=D —qzi l—qub; .t u—x u)

where (positively oriented) z;-contours are such that they surround {r j}';.l , and 0, and they are also

g-nested in the sense that z;-contour contains ¢ - (zj-contour) for all i < j; no other poles are taken into
account.
Letus fix 1 <€ < [ <n, and consider the sum

m qi,,—é(k(ip)) _qi,,+1—€()»(i,,+1))
OIS | i

E<im<im-1<--<ii<lp=1
— [— £O.(D) — E+ LOL(E)
— (D gmet m(@))( (D) (A( )) . 5.8)
q

m

The equality between the two sides of (5-8) is a (nonobvious) special case of Corollary 3.7. More exactly,
choosing O = ¢, o; =1, |B| =m, and reversing the order of indices of ¢;’s and g;’s, turns (3-16) into

g®. 3 ﬁqﬁf'(i1)=(:1). (5-9)
q

ﬂls'”?ﬂlle{o,l} i=l1
B =
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Let1 <ky <km—1 <--- <k <n be the set of index values k for which 8; = 1 in (5-9). Observe that

g/t _ giHI=tGG+D) g/t = gt tR®) G JERU=EHLC®) - g () =LA + 1)),

1—g¢g 0, otherwise,

where “otherwise” refers to the only possible alternative £(A(j)) + 1 = €(A(j + 1)).

Setn=[—£L(A())—t+L(A(¥)),and let £ < j; < jo <--- < j, <[be all the values of j € [, [) such that
L(A(j)) =L(A(j+1)); equivalently (j+1—£€(A(j+1))) —(j —€(A(j)) equals 1 rather than 0. These are
all possible values that summation indices i; > - - - > iy, in the left-hand side of (5-8) can take to produce a
nonzero term; let j;, > ---> jj be the corresponding choices. Then matching (ky, ..., kn) =1, ..., In)
establishes the equivalence of (5-8) and (5-9), thus proving (5-8).

Our next step is to compute the averages, with respect to the ascending Hall-Littlewood process, of
both sides of (5-8) using (5-7).

The left-hand side of (5-8) is a simple linear combination of those from (5-7). Moving that linear
combination inside the integrand and observing that

ip+1 i

(ﬁqu i 1—[ qip — i): ip l—p[qu_li
Ip— Ui Zp —Li,+1 iz Ip — L ’

iz Cp Tl i=1

we obtain

ip—L(Ai ) _qi,,+1—e(x(ip+1)))

o X I

E<im<im-1<--<ii<l p=1

(m .
— g
B ESim<l’m¥<--~<i1<[ (Zn\/_)m % fl_[ —qz;
! - — L
x 1_[(1_[ l_qub — 1% dz,,), (5-10)

Lipg+1; | Zp— L

with the same integration contours as in (5-7).

Note that O is no longer a potential singularity of the integrand; thus, the contour may or may not
contain it. Let us also explain why the presence or absence of the potential poles at z; = ¢~ 'z ;j does not
affect the value of the integral. Generally speaking, the integral with g-nested contours is equal to the sum
of residues at z,, = gk t,, 1 < p <m,for certain values of k, > 0 and /,, > 1, that arises by sequential
evaluation of residues inside the zy, Zm—1, - - . , Z1-contours in that order. Let p* be the maximal index
such that k,+ > 0. Since the zy-contour encircles only the poles at ¢;’s, we must have p* <m — 1. Also,
since this pole must have come from a denominator factor zj+ —gz,+ with j* > p*, due to the maximality
of p*, the pole must be at 7« = ¢~ 'g;» with 1 </* <i«. But the integrand contains the factor (gz,+ —1}),
which will turn the residue into O (note that we need the fact that i ,» > i+ to guarantee the presence of
this factor). We conclude that the g-nestedness is irrelevant for the value of the integral.

Let us proceed to computing the Hall-Littlewood expectation of the right-hand side of (5-8).
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Using the g-binomial theorem

Z(a;q)jzj:(aZQQ)oo:<1_£)...<1_i> fora=q",
(q:q); (Z3 ¢)oo q a"

j=0
we obtain
(A) _ (l—qA)(l—qA—l)..-(l—qA—m—H) _ m @™ q); (At :2‘“: (_1)jq(A+1)j7mj+(é)
™ (@ D =0 @9); (@5 Dm = @D Dn

Hence, the right-hand side of (5-8) can be written as

m m—j
m(E—L(A(®) | <[_ tG.(D) _E"'K(ME))) _ ‘1( 2) qj([—[(A(I)))+(m—j)(€—€(é))
m ¢ 2o @9 Dmj

0@ g

where for powers of ¢ we used (3) —mj +j + (3) = (", ). Employing (5-7), we now obtain
En (qc;) sy (l— £O(D) ~ ¢ +m<a>) )

m
m q(mz_j) q(m) % ‘% ZJ -z
JX(:) (@:9);(q; Dm—j r/—D™ E —qzi
Xl_[l_[qz" Ml—ll_[qzr zCbl_[l—ll_qzz”b D
p>0a=1 r>j b=l p=1j>1 pbj Zp

where the integration contours are as for (5-7).
Since the two of sides of (5-8) are equal, the right-hand sides of (5-10) and (5-11) are also equal. This
is literally the desired statement of Lemma 5.9, equation (5-4), with a speciﬁc choice of

—zb;
D(z1, .. s2m) =P (21) - P (2m), qb(z)—constl_[ =gz, (5-12)
and a specific choice of contours for the right-hand side. The equality (of the right-hand sides of (5-10)
and (5-11)) has been thus proven for generic {r;} and {b;}, although certain inequalities on them are
needed to make sure that the weights (5-6) are summable (see [Borodin et al. 2016a, Section 2] for details).
However, the equality itself is an identity of finite sums (of residues), and the restrictions on {x;} and {b;}
can thus be removed by analytic continuation.

The two sides of (5-4) computed as (finite) sums of residues are linear combinations of values of the
function ®(zy, ..., zm) at m-tuples of distinct (because of [ [, _ j(z j — zi) in the integrand) points from
the list of possible singularities, consisting of {g;}, their g-multiples, and 0. Values of ®(z1, ..., Zm)
with permuted z;’s are equal (due to the symmetry of ®) and can be grouped together; their coefficients
are certain explicit rational functions of {r;} and ¢g. Fix an m-tuple of distinct possible poles. Using the
freedom in the choice of {b;} and the constant prefactor in (5-12), we can make ¢ (z) to be arbitrarily close
to 1 at the points of the chosen m-tuple, and arbitrarily close to 0 at all the other potential singularities (we
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are assuming that {x;} are generic, we only need to prove an identity between rational functions in them).®
This will lead to ® being close to 1 at the chosen m-tuple and its permutations, and close to O at all
other possible m-tuples. Since we already proved the equality of the two sides of (5-4) for all ®’s of the
form (5-12), this implies the equality of the coefficients of ® evaluated at the chosen m-tuple (together its
permutations) in residue expansions of the two sides of (5-4). This proves (5-4) for arbitrary @, but still
with the particular choice of integration contours in the right-hand side, which are g-nested and include O.

However, we already know that the declared freedom for the choice of contours is valid for the left-hand
side; see the argument after (5-10). This implies that the values of ® at m-tuples that include either O or
a nontrivial g-multiple of a r; do not contribute to the left-hand side. Since we already know that such
coefficients are the same on both sides, these values must not contribute to the right-hand side either,
which means that we can use the same freedom of contours in the right-hand side without changing the
value of the integral. U

Remark 5.10. Let us comment on the origin of our proof of Lemma 5.9 that might have looked somewhat
cryptic. If, in the setting of Theorem 5.7, u has no zero parts and only one colour, then f}, is colour-blind,
according to (2-29). Theorem 4.7 then implies that it is given by an average of a g-moment type observable
(4-14) over a colour-blind stochastic vertex model. The height function of the colour-blind stochastic
vertex models can be interpreted, along any down-right path in a quadrant (which includes horizontal
lines), as lengths of partitions distributed according to Hall-Littlewood processes; this was the main
result of [Borodin et al. 2016a]. Thus, we get an expression for f, in the form of an average over a
Hall-Littlewood process.

On the other hand, the symmetrization of colours in (2-29) can also be taken after the computation
of the expectation, with respect to a rainbow coloured model, in the left-hand side of (4-15). As was
shown in [Borodin and Wheeler 2018, Chapter 10], the distribution of coloured height functions at a
single observation point can also be described via lengths of partitions in a Hall-Littlewood process, and
this is where the computation of that expectation can take place. Once the corresponding average over the
Hall-Littlewood process is computed, one can perform its colour symmetrization.

The two resulting expressions must be the same - the operations of averaging over our measure and
symmetrizing over colours commute. Understanding the reason for that in the language of the Hall-
Littlewood processes is not too difficult, this is essentially (5-8). Rewriting what it means in terms of
integral representations for averages of Hall-Littlewood observables results in a general identity for
symmetric functions, which is exactly our Lemma 5.9.

6. Observables of stochastic lattice models

The purpose of this section is to combine the results of Sections 4-5 in order to obtain integral repre-
sentations for averages of the observables introduced in Definition 4.5, as well as to explore corollaries
thereof.

81ndeed, ¢ (z) = const -y (x) /¥ (qz) with ¢ being an arbitrary polynomial that can be chosen to approximate any values at
any finite set of points; the constant in front is needed to control ¢ (0).
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6A. The main result. Recalling graphical interpretation of Definition 4.4, we consider a stochastic lattice
model in the quadrant Z>; x Z>;, with vertex weights given by L;ti"c}‘ in (2-11) (see also (2-13) and
Table 3) for the vertices in row i from the bottom. The boundary conditions are as follows: No paths
(equivalently, only paths of colour 0) enter the quadrant through its bottom boundary; and along the left
boundary we have a single path entering at every row, with the bottom A; paths having colour 1, next A,
paths having colour 2, and so on. We focus on the state of the model between row n and row n + 1; that
is, we record the locations where the paths of colour 1, 2, ... exit the n-th row upwards as a A-coloured
composition v, where A is the composition with parts A1, A2, ..., and we truncate this sequence so that
|A| =n.? The partial sums of A are denoted as Zle Ai=4Li, k>1;¢p:=0.

The model is also allowed to have column inhomogeneities {s;, ;};>1, which replace the (s, x;)
parameters in the L*°"-weight of the vertex in row i and column j by (s j»&jxi); see Section 3A. For
convenience, we assume that the number of column inhomogeneities is finite. (For our results this
assumption is not restrictive as the state of the model far enough to the right will not play any role, and
thus, due to stochasticity, the column inhomogeneities there can be chosen freely.)

Also recall the observables O, of Definition 4.5, defined for any A-coloured composition u =
o m D om® . -, that take values

/1
(x) U/[,L H-U (X+1)
O (v)_l || | m; H_ (XH)( i (x) )

x>1i>1 j q
=TT U k) g Gy (@ Y o) g HEP D=ty B o) g B Gt =m0
: (6-1)
x>1i>1 (QvQ)mlﬁﬂ

given in terms of the coloured height functions (3-5).

For any A-coloured j, we make a new coloured composition =! that consists of its nonzero parts
coloured in the same way with the labelling composition of 1z=! denoted by A=!; see Definition 5.1. Clearly,
given the colouring A of w, w is uniquely reconstructed from p=!'. We use the notation m :=n — |m©|
for the length of =1, denote by ¢ < - - - < cq the colours of parts of ©=!, and denote by my, ..., mg > 1
the number of parts of u— of colours cy, ..., ¢y, respectively. Set m[a, b] =m, +my41 + - - - +my.

We can now state the main result of this paper.

Theorem 6.1. With the above notation, we have

OB O]
[EO =qZuZlZz>/ i J 1 %% 1_[ yj_yl
H T 2162 @) Qu/—Tym around(x7'} | ;i Vi —4Vi

1<i<j<m

o my

A e e

k=1 \j=0 (43 9)j (45 Dy~ p>milk—1]a>te T-xay, @D s jrmlLk—11b>g, P

o (i = 8)dyi
fotOCh()x>l, e h 1_[ T C(6-2)
i=1 i

9Without loss of generality, for convenience of notation, we assume incoming paths in rows n and n + 1 have different colours.
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where (positively oriented) integration contours are chosen to encircle all points {xj_l}721 and no
other singularities of the integrand, or as q-nested closed simple curves with y;-contour containing

L (y; j-contour) for all i < j, and all of the contours encircling {x The contours can also be

j 1
chosen to either encircle or not encircle the point 0.
The formula also holds in the column inhomogeneous setting under the assumption that (s, ;) = (s, 1)

for any x > 1 such that |m™| > 0.

Proof. 1f the parameters satisfy the inequalities (4-1), then the statement is a substitution of Theorem 5.7
into Theorem 4.7. Observe that O, is independent of the state of the model to the right of the maximal
coordinate of u. Thus, both sides of (6-2) are actually rational functions in x;’s, and the extra assump-
tion (4-1) can thus be removed by analytic continuation. U

Remark 6.2. The factor [ | =1 (s%; q)_l( » in the right-hand side of (6-2) does not make the expression sin-
> |mJ)|

gular in the finite spin situation s> =g/, J =1,2, ..., because the same factor appears in the numerator

when one writes f stoch — (Il fuz1 explicitly by taking the factorization (2-30), where this factor is

manifest, and actmg on it by difference operators (2-31)—(2-32) and colour merging (3-18) as needed.

6B. The colour-blind case. Let us see how Theorem 6.1 works in the colour-blind situation. The
observables then simplify to (4-14), and we obtain:

Corollary 6.3. In the colour-blind case A = (n), with ordered coordinates 01 > ... > 6, > 1 of le and
no column inhomogeneities, we have

F [(1 _ qHV(9|+1))(1 _ qH”(92+])—1) (1= qu(0m+l)_m+l)]

(—l)m(_s)|9| 7{ 7{ —yj <1 —syp) 1—gxayp dyp
= | | | | , (6-3
(27‘[\/ _l)m around{x qyj a=1 ( )

Yp—S 1 — x4y p Yp
where (positively oriented) integration contours are chosen to encircle all points {xj_1 }’}:1 and no other
singularities of the integrand, and H' (x) =#{i € {1, ...,n}:v; > x}.

1<t</<m

Remark 6.4. Equation (6-3) is readily seen to coincide with [Borodin and Petrov 2017, Lemma 9.10],
which is essentially equivalent to the integral representation of the most general multipoint moments for
the colourless stochastic vertex model along a single line.

It is not hard to extend this result, with a very similar proof to the one given below, to the column
inhomogeneous case under the condition that (s, ;) = (s, 1) for any x > 1 such that no parts of y are
equal to x. However, [Borodin and Petrov 2018a, Lemma 9.11] gives such an extension to the fully
column inhomogeneous situation. It remains unclear how to achieve this level of generality in the coloured
case.

Remark 6.5. While the freedom in choosing the contours as g-nested is still there (it can be checked
directly as in the proof of Lemma 5.9 or carried over from Theorem 6.1), the contours cannot include
the point O anymore, and its inclusion (together with g-nestedness) would actually change the g-shifted
moments in the left-hand side into unshifted moments of [Borodin and Petrov 2017, Theorem 9.8]; see
[Borodin and Petrov 2017, Section 9] for a detailed explanation of that transition.
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Proof of Corollary 6.3. In the colour-blind case A = (n), using (4-11), (2-29) and (4-14), we write (6-2) as

E (1— qHV(GH-l))(l _ qH”(Gz—H)—l) c (1= qH”(6m+1)—m+1)
[1i51(q; Cl)mult-(e)

(o ?g ?g D
]_[j>1(s Q)mult,(G) (27TV 1)m dround{x Yj—4)Yi

1<l<j<m

Xi( (—1)ig("s 1_[1_[l—qxayp)Fg(yl1’.”’ym1)1_[()’1_ Oi=dyi o

NG DG Dm—j

with contours around {xj_l} and no other singularities. Observe that if the summation index j in the

integrand above takes any value j < m, then the integrand, viewed as a function in y,,, has no singularities

at {x_ 11, and the integral vanishes. Hence, we can set j = m. 10

Yj— Vi Yj— Vi ) Yi—4qYi
Ey _ll;[ —qyi Il yi—vi

i>]

Further we write

note that the first factor in the right-hand side is symmetric in y;’s, and the same is true about all other
parts of the integrand. Hence, we can sum over the second factor over all permutations of the y;’s, which
yields (g; ¢)m/(1 —g)™ in the integrand and multiplies the value of the integral by m!.

Finally, from [Borodin and Petrov 2017, Theorem 4.12] we read

2. m -1 _ 1 m - o
_1 1 szl(s s @)mult; (6) (1—¢q) Vi qy; yl—s
FSO ey )= ' i _ - ZU 1—[ - 711—[ lz 2 ’
i<j Vi TYj o= N TSV

l_[jzl(Qa q)mult; 0) [TL, =5y ) ol

where the sum is over all permutations ¢ in the symmetric group G, on m symbols, and ¢’s permute the
variables y, ..., ¥, in the expression that they are applied to. Since the rest of the integrand is symmetric
in the y;’s, we can remove the sum over permutation leaving only the term with o = id, and divide the
integral by m!.

Implementing the above transformation and cancelling common factors yields (6-3). O

6C. Duality. One convenient feature of the integral representation (6- 2) for EO,, is that the dependence
on values of coordinates of 1 is concentrated in the factor f,-1 (1= L y1 .-+, ¥, 1) of the integrand. This
allows us to easily derive certain difference equations that EOQ,, must satisfy. Let us see how this works.

The skew-Cauchy identity (2-35) was stated for the rainbow case but is readily extended to the colour-
merged case with the help of Proposition 3.8 (in fact, this colour merging argument was already used in
the proof of Proposition 4.3 for G,’s replaced by their limits G,’s). In particular, it implies

m

1—y X
Yo A0 G e (@) = ]

‘ Z)"Zla _17"-’ 719

w1 is 2= coloured

107t i at this moment that we lose the freedom to have 0 inside the contours, as the terms that we remove may have nontrivial
residues at 0; see Remark 6.5.
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where »x is an arbitrary 1=!-coloured composition, X is a complex parameter. Multiplying both sides

by (=) = (—s)¥I7IHl(—5) I we can also replace f by f5°" and G by G*°! in this identity, where
Gs“icll}” (—s)P |_|M|GM21 /x 18 a stochastic kernel with matrix elements built from stochastic M stoch_
weights (2-12).

Observe that the prefactor is of the form of the exact inverse of the factors in the integrand of (6-2) that
depend on x;’s. Hence, if we compute the expectation E,410,, along the (n+1)-st row of the stochastic

vertex model, with left entering colour (n 4 1) and rapidity X used in that row, and subsequently sum

och

against the stochastic kernel G*'%" ((¢ X )~ 1), the result will coincide (subject to certain convergence

>1/
conditions that we are ignoring here) with the expectation of E,O,, computed along the n-th row:
Y E10, -G (g X)) = E, O, (6-5)

As the transition from row n to row n + 1 is also realized by a stochastic kernel, we observe a duality
of the action of two stochastic operators on the duality functional O,,.

Of course, the above arguments only verify the duality relation (6-5) for a specific class of distributions
on row n. However, this class is sufficiently general (n > m and parameters x, . .., x, are arbitrary), and
it is quite plausible that the duality relation will hold for generic distributions on coloured compositions
w=! on the n-th row, and also for the n-th row being the whole lattice Z, rather than Z-; with a path
entering from the left.

It would be very interesting to see an independent verification of (6-5), possibly by a reduction to
duality functional constructed in [Kuan 2018]. Given that spectral decomposition of stochastic kernels
G*°°M are known (see [Borodin and Wheeler 2018, Section 9.5]) this would likely lead to an alternative
proof of Theorem 6.1, apart from other possible applications.

For a colour-blind version of the above discussion see [Borodin and Petrov 2017, Section 8.5] and
[Borodin and Petrov 2018a, Section 8.5].

6D. The rainbow case. Let us now focus on the rainbow sector, with the labelling composition A being

(1, 1,...,1). The simplification of the observables O,, in this case was given in (4-13), and this leads
us to:
Corollary 6.6. In the notation of Section 6A, assume that . = (1,1, ...,1). Then
v/, . v/u
. 1_[ qHZ,- G+ —q HP(+1D)
qg-—1
i,j>1

mf”:l

_ =1 (M) (—1)m % 7§ yJ Vi
l—[jzl(sz; Q)\m(-/)\ (27‘1’\/—_1)"1 incl.{x —q)i

J 1<l<]<m

n
Xf;tzol(:h(yl 15--"ym1)1_[< J o l_[ .ly.j dy]), (6-6)
j=1 i

] l_xc-fyj i>cj

where (positively oriented) integration contours are chosen to encircle all points {xj_l}’}:1 and no
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other singularities of the integrand, or as q-nested closed simple curves with y;-contour containing
(y -contour) for all i < j, and all of the contours encircling {x / I
The Jormula also holds in the column inhomogeneous setting under the assumption that (s, ;) = (s, 1)
for any x > 1 such that |m™| > 0.

Proof. This can be obtained by either a direct substitution A = (1, ..., 1) into Theorem 6.1, or a substitution
of Proposition 5.2 into the rainbow case of Theorem 4.7. U
Remark 6.7. Denote the parts of u=! by (01, ..., 6,), where 6, carries the smallest colour ¢ of those

=1 9, carries the next smallest colour c,, etc. Then in the antidominant case, when

represented in p
01 <6r<...<06y, flit“h(yf L y,,1) in the integrand of (6-6) completely factorizes — and hence so

does the whole integrand — as (in the column homogeneous case)

fStOCh(y ,...,yml)—l_[(s CI)|m(J>|1_[ l—[(l_syl>, (6-7)

=1 Yi—S

see (2-30), (3-2), and Remark 5.4. In this case there is also another path to (6-6). Namely, using the shift
invariance property established in [Borodin et al. 2019], one can rewrite the left-hand side of (6-6) in
terms of an average for a combination of g-moments of the height function for a colour-blind vertex on a
quadrant taken at points along a down-right path in the quadrant. In their turn, such moments possess
explicit integral representations, see [Borodin et al. 2016a] for details. See also Remark 7.10 below for a
related observation.

Remark 6.8. The identity (6-6) admits two colour-position symmetries, one for each side.

For the left-hand side, [Borodin and Bufetov 2019, Theorem 7.3] shows that the joint distributions
of the coloured height functions of the (rainbow) coloured stochastic vertex model along boundaries of
a certain class of down-right domains are symmetric with respect to rotations of the domains by 180
degrees that also swap the roles of colour and position of the entering/exiting paths. In our case, the
domain is the rectangle, and the application of this symmetry will swap colours and positions in the
observables, as well as the roles of rows and columns. This will give integral formulas for averages of the
new observables, as well as indicate that those observables are also likely to be duality functionals for the
same reasons as those in Section 6C.

For the right-hand side, if we represent f ;“’Ch as a result of a sequence of applications of the difference
operators 7; given by (2-31)—(2-32) to a factorized expression of the type (6-7), then we can use self-
adjointness of the 7;’s with respect to the integral scalar product with weight [, _ i =Y/ (i —ay))
(see [Borodin and Wheeler 2018, Proposition 8.1.3]) to move the application of the 7;’s to the fully
factorized part of the integrand. Treating that part as an analogue of (2-30), or rather of (3-2), at the

specific value of s = ¢g~!/2

, we will see a new f-like function appearing in the integrand, that will
utilize suitably permuted colours ¢y, ..., ¢, for its coordinates, and horizontal rapidities xi, ..., x, as its
inhomogeneities. Thus, we will see a similar formula with positions and colours, as well as rows and

columns, swapped.
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-1/2

It would be interesting to see if applying both symmetries, at least in the case s =g , returns one to

the original formula, but we will not pursue that here.

6E. Fusion. The goal of this section is to fuse rows of the stochastic vertex model from Section 6A and
to see what Theorem 6.1 turns into in that situation.

First, one can fuse finitely many rows, which in terms of individual vertices corresponds to the outer
sum in (2-10) (one can think of the inner sum in that relation as already performed, with our spin
parameter s being ¢ ~™/?). This starts by replacing a single row of colour ¢ with rapidity x by L > 1 rows
of the same colour ¢ and rapidities forming a finite geometric progression x, ..., ¢~ 'x. Since our left
boundary condition in these L rows consists of all incoming edges occupied by paths of the same colour,
no summation along that boundary is necessary. Hence, the L rows of vertices with L*°"-weights can be
collapsed into a single row with the weight of a vertex in that row and column j being

-1 .
Wim(s; §jx; g; >l<)|q—M=S12,,

where (s}, §;) are the column inhomogeneities as in Section 3A, and the appearance of sj_1 in front of
&;x; is due to the argument x /s in the expression (2-11) of Ls°N_weights in terms of W-weights.

The right-hand side of (6-2) also behaves well with respect to such fusion. More exactly, it leads to a
simple replacement of all factors of the form (1 — gxyx)/(1 — xyx), for various k and x = x,. being the
rapidity of the fused row, by

L—gxye 1—q’xyc  1—q"aye _ 1—glay

.. — 6-8
l—xye 1—qxy 1 —qg xy I —xyx (6-8)

Thus, the right-hand side can be immediately analytically continued in ¢". It is not clear, however, what
that would mean on the side of the stochastic vertex model as the left boundary condition in the fused
row consists of L paths.

To remedy this situation, we will perform a special limit transition with vertical inhomogeneity in
column 1; this is parallel to what was done in [Borodin et al. 2019, Section 6]. More exactly, we will rely
on the limiting relation (2-17). According to the left-hand side of that relation, we will take & = ¢ /s
to turn the weight in the first column of the fused row into Wi m (s, 2§x; q; *)] gM=s?> and then take the
limit s; — 0. Here z is an additional parameter that remains finite in the limit s; — O; it regulates the
strength of the left boundary. As we are about to make the rest of the model homogeneous, let us also set
¢ to s, as this value will make the first column “blend in” with the other ones. Thus, our limit results, by
virtue of (2-17), a random number of paths of colour ¢ passing horizontally from column 1 to column 2
in the fused row, with the distribution of this random number given by

L,. —L.
Prob{k} = (5g7X;9)o00 (@75 @k (sq 0k, k>0,

(X3 @)oo (G5 @k

Note that for L € Z5, this distribution is supported by {0, 1, ..., L}, as it should be, as an L-fused row
cannot carry more than L paths. But this distribution is also suitable for analytic continuation in g", which
we will use momentarily.
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Let us now discuss vertices in the fused row and other columns. Their weights WL,M(S‘/-_IS X5 q; %)
are given by the right-hand side of (2-6), which is explicit but rather complicated. We will consider a
simpler situation instead, governed by the g-Hahn specialization of Section 2B. Hence, we will specialize
(x,5;,&;) > (s,s,1) to turn the weights into more tangible expressions as in the right-hand side of (2-16).

Finally, rather than performing fusion for a particular row of colour ¢ as we have done above (replacing
it by L columns first and then fusing them together), let us do it for every row of the stochastic vertex
model of Section 6A.

Gathering all the pieces together, we obtain a stochastic vertex model in the quadrant Z>» x Z>1,
depending on three parameters g, s(= g™/2), and z(= g7/?) satisfying |q|, |s|, |z], |s/z] < 1, defined
as follows:

o Along the boundary of the quadrant, no paths enter the quadrant through its bottom boundary; and
along the left boundary we have a random number of paths entering at every row, with the bottom
A1 rows hosting entering paths of colour 1, next A, rows hosting paths of colour 2, and so on; the
sequence {A;};>1 of nonnegative integers is given. As before, the partial sums of A are denoted
as Zle Ai =Ly, k> 1; £y :=0. The distribution of the number of paths that enter in any row is
given by

Prob{k} =

2,2, 2. 2\ k
(s7/2% @)oo (2% @)k (S ) k>0 (6-9)

6% oo (@ \22

o The vertex weights for the model are given by

¢ s2\'P1 (s2/2%; @) 141-101(Z% Q| D A;
. _ ; 5 i Di(A;—D)) i
Welghts’z<8 D) B (_2> g T I(Ai —Di>q' ©10

2.
A < (S ’ Q)|A‘ i>1

This model is more general than the one in Section 6A in the sense that it can carry any number of
paths along any edges, not just the vertical ones. However, it is less general in that there are no remaining
row and column inhomogeneities.'!

As before, we focus on the paths that cross upwards from row n to row n + 1 for some n > 1.12
Encoding colours and horizontal positions of these crossings by a coloured composition v, we can define
observables O, on the set of possible v’s by the same formula (6-1), where u = om®@3m® 1o an
arbitrary coloured composition with no parts smaller than 2; this is what used to be =!. Let us use
the familiar notation m = £(u) for the length of u, ¢; < --- < ¢, for the colours represented in u, and
my, ..., My > 1 for the number of parts of u of colours cy, ..., cq, respectively. Finally, let colour()
be the composition that encodes the colouring of w, and let . — 1" denote the composition obtained from

u by subtracting 1 from each part.

HTn fact, we could have left s and z parameters column and row dependent, respectively, but chose not to do so for the sake
of simplicity. On the other hand, we could not have left row and column rapidities x4 and &, generic and still had the same
factorized form of the weights.

12Gince rows above n do not matter to us, we assume, as in Section 6A, that colours of left-entering arrows in rows n and
n + 1 are different.
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Corollary 6.9. With the above notation for the fused stochastic vertex model, we have
W, W
qzuzz Zi>j m;om; (—S)m

[Tj220% @i @r/=1)m

Yi—Ji
X =L -
pof T =0

EO, =

I<i<j<m
m j+m[1,k—1] L Lk —te
xﬁ(% (=1)ig("s N ml_[ (1—1—2syp>n fat ml[_[] <l—z_zsyr)n Eék)
k=1 j= (q q)_](q q)mk ,p>m[],k—1] 1_syp r>j+m[1 k—1] l_Syr
d
xfs“) (colour(p); y; ,---,yml)l_[ yl (6-11)

where the integration contours are either positively oriented and q-nested around s~ with y;-contour
containing ¢~ - (y j-contour) for all i < j, or negatively oriented and q-nested around s, with y j-contour
containing q - (y; — contour) for all i < j. The point O can be either inside or outside the contours in
either case.

Proof. The starting point is Theorem 6.1 with  from (6-11) being =" there.

The first step is to turn each row of the quadrant into L rows of the same colour, and fuse them as was
described above. This does not affect the integral representation much, except for the change described
around (6-8).

The next step is the limit transition in column 1 described above. To see how it affects the factor
f S“’Ch L, yml) recall the partmon function definition (2-23) (and its coloured modification (2-41))
of the f s. Since all parts of u=! are assumed to be at least 2, the first column contains only vertices of

the form
0

that have LS°"-weights

(—S1)(51y]1 —s1) _ 0@ —siy) (s s —s1y) Sty —s
1—si&y;! yj = siéi yj—s yji—s

, 1<j<m,

where we used the value & = s/s1 as above. The limit s; — 0 of this expression is —s/(y; —s), and the
product over all 1 < j < m gives (—s)" ]_['}1:1 (yj — s)~!. Adding that to the integrand of (6-2) yields
the integrand of (6-11), together with the replacement £=' > 11 — 1" in the index of ", where the
subtraction of 1" is responsible for removing a column from the partition function representation of fsch
that we just performed.

Let us now look at the contours. For the application of Theorem 6.1 we could choose them to g-nest
around {x;, gx;, ..., q'—_lx,- i =1s.gs, ... I-_15} and either contain O or not. (We could not choose

them to encircle {x;, gx;,...,q"~ x; | and no other singularities as this choice of horizontal rapidities
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forces the inclusion of at least some singularities of ||

integrand is manifestly nonsingular at gs, ..., g"~'s, we can remove the condition of encircling those

i<j(yj — qy,')_1 into the contours.) Since the
points. As the integrand is readily seen to not have poles at y, = 0o, we can also move the contours
through oo and have them g-nest around the only other singularity, which is at s (again, O can be either
inside or outside).

Thus, we have now proved (6-11) for L =1, 2, ..., and the final step consists in analytic continuation
n qL = 772 from the set of points {g, qz, q3, ...} accumulating at 0. This, however, is straightforward:
The only dependence on z of the right-hand side is through factors (1 — z72y,), and the left-hand
side is readily seen to be given by uniformly convergent series with rational terms at least as long as
lg!, Isl, |sz~!| < const < 1. O

7. Limit to polymers

The goal of this section is to explore the consequences of Corollary 6.9 for a few models of directed
polymers in (1+1) dimensions. The exposition of the limit transitions from fused coloured stochastic
models to directed polymers follows [Borodin et al. 2019, Section 7].

7A. Continuum stochastic vertex model. Let us start by introducing a vertex model that will serve as a
limiting object for the fused vertex model of Section 6E described by weights (6-9)—(6-10).

As in the fused case, the vertices of the continuum model will be parametrized by points of a quadrant,
and to keep the notation parallel to that of Section 6E, we will use the quadrant 7>, x Z>1.

Each vertex will have a certain mass of each colour > 1 entering from the bottom and from the left,
and exiting through the top and to the right. The mass is a real number in [0, c0), and for each vertex
the total number of colours that have nonzero mass entering the vertex will always be finite. The mass
of each colour passing through a vertex will always be preserved — the sum of incoming mass from the
bottom and from the left must be equal to the sum of exiting mass to the right and through the top.

Let us denote the masses of colours 1, 2, . . . entering through the bottom of a vertex by & = (¢, o, . . . ),
entering from the left by 8 = (81, B2, ... ), exiting through the top by ¥ = (y1, y2, ... ), and exiting to
the right by § = (81, 82, . . .), respectively. The mass preservation means

le| + B =1y[+13].

The notation is chosen to be in parallel with (A, B; C, D) notation for the vertex models, as in (2-1).
Recall that a random variable with values in (0, 1) is said to be Beta-distributed with parameters
a, b > 0 if it has a density, with respect to the Lebesgue measure, given by
['(a+b)
(@) (b)

Given the coloured masses «, f entering a vertex of our continuum vertex model, the coloured

x4 1 = x)P 1 0<x <. (7-1)

masses Y, & exiting the vertex are random and determined as follows. The procedure has two parameters
a, b > 0, as in the Beta-distribution (7-1). If all coordinates « are zero, i.e., o« = 0, then we set y = 8 and
6=0.If ¢ #0, let n > 1 be the maximal natural number such that «,, # 0, and let ¢ be an (a, b)-Beta
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distributed random variable. Then we set 6,,+1, 8,42, - .. to 0 and define §,, §,—1, ..., 8 recursively via

u = —log(e™ +£(1 = ™),
11+ 8, = —log(e™ 1T £ (1 — ™1 7)), 7-2)

Si+-+8_1+8,=— log(e_al_“'_anfl_an +c(1— eI Ty )

One can show that this implies 0 < §; < «; for 1 < j <n. Finally, we set y = B + (a — ), thus enforcing
mass conservation.

In addition to defining what happens at the vertices of the quadrant, we need to specify boundary
conditions. As before, we will assume that no mass enters the quadrant from the bottom, i.e., &« = 0 for
all vertices in the bottom row. On the other hand, along the left boundary we will assume that for the
left-most vertex in row i, the left-entering coloured mass f has all but one coordinates equal to 0, with
the exception of the i-th one, which is (a, b)-Beta distributed.

As usual, we think of the randomness as having no space dependency, which means that the Beta-
distributed random variables at different vertices, as well as those used to define the left boundary
condition, are independent.

The following statement was proved in [Borodin et al. 2019, Corollary 6.22].

Proposition 7.1. Consider the fused coloured vertex model defined around (6-9)-(6-10) and set
g=exp(=e), s’=¢°, Z=¢, (7-3)

for some o > p > 0and e > 0. Then as € — 0, the fused coloured vertex models scaled by € converges
to the continuum vertex model defined above with parameters (a, b) = (o0 — p, p), in the sense that any
finite collection of numbers of paths of arbitrary fixed colours entering/exiting any fixed set of vertices in
fixed directions, when multiplied by €, weakly converges to the collection of corresponding colour masses
entering/exiting the corresponding vertices of the continuum model.

This immediately implies the convergence of the averages of the observables from Corollary 6.9 as
well, but we will postpone the limiting statement until we reformulate the continuum vertex model as a
directed random polymer in the next section.

7B. Random Beta-polymer. The Beta-polymer was first introduced in [Barraquand and Corwin 2017].
In order to define it, let {1, ,}; m>1 be a family of independent identically Beta-distributed random
variables with parameters a, b > 0; see (7-1). The partition function 3, of the Beta-polymer, with
(t,m) € Z>o X Z>1 and t > m — 1, is determined by the recurrence relation

31,m = 7/}l‘,mz)t—l,m + (1 - nl,m)Bt—l,m—l

and boundary conditions

31 =1, 31 =n01am21 0 e

Pictorially, 3, ,, is a sum over all directed lattice paths with (0, 1) and (1, 1) steps that join (0, 1) and (z, m),
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of products of edge weights that all have the form 5, or 1 — 7,; see [Barraquand and Corwin 2017,
Borodin et al. 2019].
We also define delayed partition functions Bg?n, k>1, t >m+k—1, by the same recurrence relation

k k k
;,rL = Th,mf)ﬁ_)l,m +d - 77t,m)3§_)1’m_1a

where we are using the same family of random variable {1, ,,};.»>1 to evaluate the coefficients, and shifted
boundary conditions

k k
3§,t)—k+2 =1, 3;(1) = M, AMk+1,1 "~ e, 1

Clearly, lg],; = Ek,zl, and for any k > 1, 3,(](,21 can be interpreted graphically in a similar way to 3;,,,, but

with paths joining (k — 1, 1) and (¢, m).

As was shown in [Borodin et al. 2019, Section 7.1], there is a way to identify the continuum vertex
model of Section 7A and the family of Beta-polymer partition functions {3;{‘,2,}. In order to see the
equivalence, let us introduce the coloured height functions {h(zk) (x,y) | x =2;y, k> 1} that count the
total mass of colours > k that exit vertices (x, 1), (x, 2), ..., (x, y), either upward or rightward, in the

continuum model. Then one has the identification
—10g3%) =hEOm+1,1),  tLmk=1t>=m+k—1. (7-4)

For ¢, m, k > 1 that do not satisfy the inequality ¢ > m + k — 1, the right-hand side of (7-4) is readily seen
to vanish, and we set 3§k,,)1 to 1 for these values as well; then (7-4) holds for any ¢, m, k > 1.

Together with Proposition 7.1, this allows us to obtain a limiting version of Corollary 6.9 for the
Beta-polymer. But in order to take the corresponding limit of the integral representation, we need to
introduce limiting versions of the rational functions f,.

Lemma 7.2. Take g = exp(—¢), and s = q° (as in (7-3)), and fix a A-coloured composition p =
om” mom® . of length m > 1, where X is a composition of weight |).| = m. Then there exists a limit

m fu T+eur, ..., 14+€uy)

Fusur, ..o uy) =lime (7-5)
e=0 [Tj200% @ mony
where the convergence is uniform for complex uy, . . ., u,, varying in compact sets that do not include o /2,
and the rational function f,,(A; uy, ..., uy) can be characterized as follows.
(i) For a rainbow W, i.e., for A = (1, ..., 1), in the antidominant sector (11 < i3 < ... < U, one has

(omitting ) from the notation)
m .
1 o/2+u; \M"
yees = , 7-6
P, s ) Ea/2—ui(a/2—ui> (7-6)

and in the case u; < iy for some 1 <i <m — 1, one has

< 'f,u(ul, ce Up) = f(Ml ..... Jit ] s iy eees Mm)(ul’ ey Um),
P — U 1
T=1 -t G ) i<i<m—1, (7-7)
Ui — Uiy

with elementary transpositions s; - h(uy, ..., upy) :=hy, ..., Uiy1, Ui, ..., Upy); see (2-31)—(2-32).
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(i) For a general labelling composition A, let 0 : {1, ..., m} — {1, ..., n} be a monotone map (as in
Section 3C) with 0,.((1, ...,1)) = A. Then

D o) =Fuiur ). (7-8)

rainbow v : 6, (v)=pu

Proof. This limit is an immediate consequence of the recursive definition (2-30)—(2-32) of Section 2E
and (3-18) of Proposition 3.8. U

We are now ready to take a ¢ — 1 limit in Corollary 6.9.

Proposition 7.3. Fix o > p > 0, and consider the partition functions 3,“‘,11 of the Beta-polymer as defined
above with the parameters of (7-1) given by (a, b) = (0 — p, p). Let u = 2m@3m® . be g coloured
composition with no parts smaller than 2, m = £(j1) be the length of u, c¢; < --- < ¢4 be the colours
represented in , and my, ..., my, > 1 be the number of parts of u of colours cy, ..., cy, respectively.
Also, let colour(u) be the composition that encodes the colouring of u. Then for any t > max{i : mﬁx) > 0}
we have

(H-l) 3(1))m
- l_ll_[ m(x)|
x>1i>1 i
_ (= $f
Qm/—1)m 1<ll<_j[<m Uj—u; +1
+m[l,k—1] —c 1,k e
Xﬁ % (=17 ’ ml—[ o/2—u,—p\ ml[_[] o/2—u,—p\
oy —H! o/2—u, ‘ o/2—u,
p>m[l,k—1] r>j+m[l,k—1]
m
Xfu—1m(colour(pe); —uy, ..., —iy) Hdui, (7-9)

with the integration contours either positively oriented and nested around o /2 with u;-contour containing
(uj-contour)+1 for alli < j, or negatively oriented and nested around —o /2, with u j-contour containing
(u;-contour) — 1 for alli < j.

Proof. We start with (6-11) and (A1, A2,...) = (1,1,...); equivalently, £; = j. Let us make the
substitution (7-3) and look at the asymptotics of both sides.
On the left-hand side we have averages of the observables O,, given by (6-1). The denominators are

®) )
—m; m(x) !'as € — 0. For the numerators, according

deterministic and asymptotically give (g; q) e ~€
to Proposition 7.1, we obtain, along row t =n, ¢ 'HY. (x+1) - h=D(x + 1, t), and, changing v
to v/ with e-independent u, € lHiiu(x +1)—> B0 (x +1, 1) weakly as € — 0, where i denotes
the coloured height functions of the B?eta—polymer. Using (7-4) and the fact that all the observables are
bounded, we see that EO,, is asymptotically equivalent to € ™" times the left-hand side of (7-9).

For the right-hand side of (6-11), we change the variables y; = 1 + €u;, use Lemma 7.2, and also

(@3 )7 (@5 @l ~ €™ 1 e — I
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The powers of € from the g-symbols on both sides cancel out, the powers of € from the changes of
variables and f — f limit also cancel out, and the prefactor (—s)™ in the right-hand side of (6-11) together
with (—s)/*=™ required to convert fljtfcl},‘n to f—1m give (—1)#'in the limit. This concludes the proof. [J

7C. Strict-weak polymer. The strict-weak or gamma polymer was first introduced in [Corwin et al. 2015]

and [O’Connell and Ortmann 2015]. Its partition functions are determined by a very similar recurrence as

those for the Beta-polymer. Namely, let us define Zt(k,,)l for (t,m,k) e Z>oxZ>1 X Z>1, t >m+k—1, by

(k) k) *)
Zim =MemZi 2y T 212 m
with boundary conditions
k k
Zt(,t)fk+2 =1, Zt(,l) =Mk ANk+1,1 2 11,5

where {n;m}:.m>1 1s a family of independent identically distributed random variables with a Gamma
distribution that has density
x“~Lexp(—x), x>0,
N p(—x)
with respect to the Lebesgue measure. Here « > 0 is a parameter.
The strict-weak polymer is a limiting instance of the Beta-polymer of Section 7B, because a Beta-

distributed random variable with density (7-1) and parameters (a, b) = (k, € '), when multiplied by e !,

converges to a Gamma-distributed random variable with parameter x as € — 0, both in distribution and
with all moments.

In order to argue the convergence of the partition functions and their moments, we will appeal to the
following:

Lemma 7.4. Let {X,},>1 and {Y,},>1 be two sequences of nonnegative random variables such that
{(Xn, Yn)}n>1 weakly converges to a two-dimensional random variable (X, Y) with finite moments and a
continuous joint distribution function.'3 Furthermore, assume that coordinate moments converge:

lim EX* = EXF, lim EY* =Fv*,  k>1.

n—o00 n—0oo

Then the joint moments also converge:
: kyl kyl
nlggo[E(ann):E(x Y'), k,1>1.
Proof. Fix C > 0 and write
E(XEYh) =E(xty! - 1{Xx, <C, Y, <CH+EXEY! - 1{X, > Cor Y, > C}),

where we use 1{A} to denote the indicator function of an event A. In the first term, we have a bounded
functional under the expectation, which converges to EX*Y' 1{X <C,Y < C})) by the distributional
convergence of (X, ¥,,). (If the distribution of (X, Y) were not continuous, we would have needed to
choose C as its continuity point.)

13 This requirement of continuity can be easily removed by an extra step in the proof.



258 ALEXEI BORODIN AND MICHAEL WHEELER

Further, let us show that the second term converges to 0 as C — oo uniformly in n. We have

E(XyY, - 1{X, = Cor ¥, = CH <EX; Y} (Xo/C+Y,/C)) = CEXL V) (Xu+ V)
S 2C71([EX£+1+1 4 |EY,,];+I+1),

where we used the inequality xy? < x®*? 4 y*? that holds for x, y, a, b > 0. Since the moments of X,
and Y, are bounded (because they converge by the hypothesis), the final expression tends to 0 as C — oo
uniformly in 7.

As lime_, oo E(XFY! - 1{X < C, Y < C}) = E(X*Y!), the proof is complete.'* O

Lemma 7.4 implies, in particular, that by choosing (o — p, p) = (k, € '), we can ensure the convergence

mk—1=2 30 _ 7 ®

lim € £.m f.me t>m+k—2,

e—0
together with all the joint moments. This will allow us to take such a limit in Proposition 7.3 momentarily,
after the following analogue of Lemma 7.2.

o ym® om®

Lemma 7.5. Fix a A-coloured composition (1 = - of length m > 1, where A is a composi-

tion of weight || = m. Then there exists a limit

PuCi i) = Tim (=D, Gl o /24 i 0/2 4 ) (7-10)
where the convergence is uniform for complex vy, . . ., v, varying in compact sets that do not include 0,
and the function p,,(A; uy, ..., uy) is a polynomial in vl_l, ..., v, 1 that can be characterized as follows.

(1) For a rainbow W, in the antidominant sector (41 < oy < ... < [y, one has (omitting A from the
notation)

m
Pui. o) =] [o (7-11)
i=1

and in the case u; < lLi+1 for some 1 <i <m — 1 one uses the exchange relations (7-7) with (p, vy)
instead of (f, uy).

(ii) For a general labelling composition A, let 0 : {1,...,m} — {1, ..., n} be a monotone map with
0.((1,..., 1)) =A. Then

D plun ) = puun, ). (7-12)

rainbow v : 0, (v)=p

The proof of this lemma is straightforward.

Proposition 7.6. Fix k > 0, and consider the partition functions Z,(k,zl of the strict-weak polymer as
defined above with « being the parameter of the Gamma distribution. Let (1 and the associated notation

14Wwe are very grateful to Vadim Gorin for providing this argument.
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ml@ > 0} — 1, we have

n (l+1))m
[El_ll_[ I(X)! (271«/_)’"% % 1_[ —Ul—l

be as in Proposition 7.3. Then for any t > m + max{i :

x>1i=1 1<l<]<m
o mlLk] e m
(k +v.)
X 1_[ 1_[ —r' “Pu—1m(colour(u); vi, ..., vy) Hdvi, (7-13)
k=1r>m[1,k—1] ket i=1

where the integration contours are positively oriented and nested around 0, with v j-contour containing
(vi-contour) + 1 foralli < j.

Proof. We start with (7-9), set 0 — p to «, change the integration variables via u; = —v; — 0/2, and
take the limit. Since 5;'; ~ ¥t _ZZ,(f))C and 32;” ~ o H—I- 1Z,(l))c, the second term domlnates and

employing Lemma 7.4, we obtain the convergence of the left-hand side of (7-9) to that of (7-13), with an
additional power of o that has exponent

o
YomPti—t—D=|ul+ Y comp—(t+ m.
ix>1 k=1
On the other hand, in the integrand we have factors of the form o /2 —u, = o + v, ~ o in the denominator,
that make the terms with j = 0 dominate and produce the power of ¢ with the exponent

o o
ka(ck —1) = chmk —1tm.
k=1 k=1

Finally, the limit relation (7-10) yields the power of o with the exponent || — m, thus matching the
powers of o on both sides. All the signs cancel out, where we note that we used the second choice of the
contours in Proposition 7.3 and changed the negative orientation to the positive one for (7-13). U

7D. O’Connell-Yor semidiscrete Brownian polymer. This model was first introduced in [O’Connell
and Yor 2001]. It is defined using a family {B,(¢)},>1.>0 of independent standard Brownian motions.
For each n > 1 and ¢ > s > 0 we define its point-to-point partition function (with one of the points situated
on level 1) as

n
235~ wn —/ CXP(Z(Bi(Ti) _Bi(Til)))d"fl cedTyy. (7-14)
S=T<T < <Tp =t i—1

The classical functional central limit theorem and the fact that a Gamma-distributed random variable
with large parameter L divided by L is approximately equal to 1 plus a standard normal variable divided
by +/L, yield the convergence (see [Borodin et al. 2019, Section 7.3])

Z(Ls-i—l) ( _ L)

. Lt,n
lim

— oY
Jim —= =exp(35H) - Z3 o s t>s>0, n>1, (7-15)

where on the left we take the strict-weak polymer partition functions from the previous section with the
parameter x = L, and the convergence is in finite-dimensional distributions.



260 ALEXEI BORODIN AND MICHAEL WHEELER

Proposition 7.7. Let . and the associate notation be as in Proposition 7.3, and fix 0 < s| < - -+ < Sq.
Then for any t > s, we have
i=t\.70Y m;”
(exp(*3") - Z )"

(1,5:)— (x,1)
ETITI e
x>1i>1 m; .
~ G b T
T @D vj— v Py

1<i<j<m

o m[1.k] m
ex (t —58K) D ,e vy
| | P Qi milk=1] ) “pu—1m(colour(); vi, ..., Unm) | |dv,», (7-16)
mk.

k=1 i=1

X

where the integration contours are positively oriented and nested around 0, with v j-contour containing
(vi-contour) + 1 foralli < j.

Proof. Let us take the limit L — oo of (7-13) with x = L and the coloured composition u replaced
by 1) that has exactly the same parts, but the colours of those parts are [s{L], ..., [s¢L] instead of
1, ..., Cq, respectively.

Let us look at the left-hand side first. The weak joint convergence of the random variables

: Zé[;zia]-l-l)( — L)

m
L—00 Ll‘L—[S,'L]

=exp(*7) - ZA %o

for various i and x follows from the central limit theorem, as was mentioned above, and the convergence
of moments of these random variables follows from the corresponding convergence of their integral
representations; see [Corwin et al. 2015, Theorem 5.3] for moments of the left-hand side, and [Borodin
and Corwin 2014, Proposition 5.2.8] for the moments of the right-hand side.!> Lemma 7.4 then shows
that the left-hand side of (7-13) divided by the power of L with exponent

> m{ L —[s;L]) =) my(tL — [s¢L])

i,x>1 k=1

converges to that of (7-16).
On the other hand, for the right-hand side the convergence of the L-dependent factors in the integrand
is elementary:
(L +v )th[skL]

LILH;O TiomI exp((f — sk)vr),

uniformly for bounded v,’s, which leads to the right-hand side of (7-16). Il

7E. Continuum Brownian polymer. One way to define partition functions of the continuum Brown-
ian polymer in (1+1)-dimensions is through solving the stochastic heat equation with multiplicative

15That convergence is, in fact, a special case of the one we are about to observe for single-coloured .
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two-dimensional white noise. More exactly, let Z0)(t, x) be the unique solution of the following stochastic
partial differential equation with the initial condition

zP =120 4@, 0zZY, 150, xeR  ZW(0,x)=8x—y),

where n =n(t, x) is the two-dimensional white noise. We refer to the survey [Quastel 2012] and references
therein for an extensive literature on this equation and its close relation to continuum Brownian path
integrals and the Kardar—Parisi—Zhang equation.

The solutions Z%) (¢, x) arise naturally as limits of the partition functions of the semidiscrete Brownian
polymer from the previous section:

y=tvLY . »0Y
. exP( 2 ) Z(l,y)%(thxﬁ,tﬁ) = 200, x) (7-17)
L—>00 exp(rL) - [ &vL—tL)/2 T

This was essentially verified on the level of convergence of integral representations for moments in
[Borodin and Corwin 2014], and a complete proof for convergence of finite-dimensional distributions
and moments with varying x was given in [Nica 2016] (in different scalings). It is very likely that the
methods of [Nica 2016] are sufficient to achieve the same result for varying y as well; we will not address
that here but rather focus on convergence of integral representations for joint moments instead. We need
to start with an appropriate analogue of Lemmas 7.2 and 7.5.

Lemma 7.8. Take a A-coloured composition pu = om® mom® of length m > 1, where X\ is a
composition of weight || = m, and assume that

Wi =tL—/<i«/z+0(\/Z) asL — o0, 1<i<m,
for a fixed m-tuple of reals k = (k1, ..., kn) and t > 0. Then there exists a limit

11m et\/z(wl+~.-+wm) . pﬂ—lm (\/z—‘l- Wiy ewn, \/Z“l_ u)m) _ é(w%_;’__‘,_w’%ﬂ)
L—o00 L—(it+pum)/2 =¢

e (A wy, ..., wy), (7-18)

uniformly for bounded w;’s, where the function ¢, (w1, . .., wy) can be characterized as follows.

(i) For a rainbow W, in the dominant sector k1 >k > ... > Kk, one has (omitting A from the notation)
e;/v(wl’---7wm)zf:xp(/(lwl'i"""'mem)’ (7-19)

and in the case k; > kij41 for some 1 <i <m — 1 one uses the exchange relations (7-7) with (¢, wy)
instead of (f, uy).

(i1) For a general labelling composition A, let 0 : {1,...,m} — {1, ..., n} be a monotone map with
0.((1,...,1)) =A. Then

> e (W, oy W) = e (Wi, .., W) (7-20)

rainbow k' : 0, (k")=k
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Proof. Tt suffices to check the convergence for rainbow antidominant u’s, as the other cases follow from
that one by finite linear combinations (note that w;’s are shifted but not scaled in the left-hand side
of (7-18)). Then we need to prove that

f\/z +-twp - —Mm
g CVHE L A w) T (VL wa) g

KWKy Wiy 3

4

As the relation splits into a product over w;’s, it suffices to consider the case of a single variable. We have

—pilog(WL +wy) = —p (10g\/—+ (? - i +o(L™ 1)))

1 L
el <rL—K1~/_+o<~/_>>(7—i+o<L ))
2

tw
=log L™M2 _ ¢t /Lw, + i w; + Tl +o(1),
as required. O

We can now make a limiting statement for the moments of Z O, x).

Proposition 7.9. Let k = («1, ..., ki) be a coloured composition of length m with real coordinates, and
let the colours s1 < - - - < s of the parts of k also take real values; denote

mgx)=#{j:/cj=x and has colour s;}, mi=Zm§x), I1<i<a, xeR.
Then
X (x)
[ l_[ (20 (t, x))™
m™!
(i,x): m(x)>0 b
(27‘[, )m/ '/l<l<J<m ‘_wl_l
o exp(—s DI IH k-1 W w) S
>m, ‘
X l_[ n:k‘ - e (colour(k); wi, ..., Wy) He’wt Pdw;, (7-21)

k=1 i=l1
where the integration is over upwardly oriented lines w; = a; +~/—1-R with Ra; > Ra; + 1 for j > i.

Sketch of the proof. We obtain (7-21) as a limit of (7-16). The convergence of the left-hand sides was
discussed below (7-17). The convergence of the right-hand sides is a standard steepest descent argument
with the main contribution coming from a finite neighbourhood of the critical point v = +/L; see the
proof of [Borodin and Corwin 2014, Proposition 5.4.2] for a similar situation. The change of variables
v = VL + w;, 1 <i <m, together with Lemma 7.8, leads to the convergence of the integrands. O

Remark 7.10. Assume that the string k = (k1, .. ., k) can be split into three sequential (possibly empty)

substrings x = («, k", k"), with all the coordinates of x” being (weakly) smaller than those of ¥’ and
"

(weakly) larger than those of «””, and with all the colours s; of the coordinates of k” being (strictly) larger
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than those of k" and (strictly) smaller than those of «”’

. A special case of this situation is the dominant
sector k1 > ... > k, with rainbow compositions served by (7-19).

It is not hard to show from the definition of the ¢,-functions in Lemma 7.8, that under a simultaneous
shift of all the coordinates of k" by A that does not change the ordering conditions above, ¢, (wy, . . ., Wy,)
is multiplied by exp(A(w, +. .., wp)), where k” = (k,, .. ., kp). Hence, if one simultaneously performs
the shift of all the colours of the parts of k" by the same amount A, then the right-hand side of (7-21) is
not going to change. Since this means that the moments in the left-hand side do not change either, it is
natural to conjecture that the joint distribution of the participating Z’s also does not change (the moments
do not determine this distribution uniquely, though). When «” consists of one part, this conjecture was
verified in [Borodin et al. 2019], along with its versions for higher models, up to coloured stochastic
vertex models in general “down-right” domains. For general «” this conjecture was very recently proved
in [Dauvergne 2020] and [Galashin 2020] by two different methods.
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