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Coherence is a fundamental notion in quantum mechanics, defined relative to a reference basis. As such,
it does not necessarily reveal the locality of interactions nor takes into account the accessible operations
in a composite quantum system. In this paper, we put forward a notion of localizable coherence as the
coherence that can be stored in a particular subsystem, either by measuring or just by disregarding
the rest. We examine its spreading, its average properties in the Hilbert space and show that it can be

applied to reveal the real-space structure of states of interest in quantum many-body theory, for example,
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1. Introduction

One of the most striking properties of quantum mechanics is
the fact that the state of a quantum system can be expressed
as a coherent superposition of different physical states, that is,
the eigenstates corresponding to actual measurable values of some
observable. Since these eigenstates constitute a basis of perfectly
distinguishable states, the coefficients of this linear expansion
also depend on the basis. All the purely quantum features are
closely related to the presence of quantum coherence, which ex-
perimentally manifests itself in interference and quantum fluctu-
ations [1]. The passage from classical to quantum world is in-
deed believed to be due to decoherence [2]. Preserving quantum
coherence, and thus fighting decoherence, is one of the most fun-
damental challenges [3-5] for protocols of quantum information
processing [6].

The quantitative theory of coherence has witnessed several ad-
vances in recent years [7-9] together with its application to the
fields of quantum metrology [10,11], quantum foundations [12,13],
quantum biology [14] and quantum thermodynamics [15,16]. This
approach has also motivated various efforts to extend the quan-
tification of coherence from quantum states to quantum opera-
tions [17-21]. In particular, one notion that has surfaced is that of
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coherence-generating power for a quantum map [22-25], namely
how much coherence can be on average be obtained by a given
class of quantum operations.

The notion of coherence per se makes no reference to the lo-
cality of a quantum system [8]. In other words, the basis with
respect to which coherence is defined does not necessarily require
any underlying tensor product structure of the Hilbert space, as
is the case, e.g.,, for entanglement. On the other hand, every re-
alistic quantum operation is local because of the observables one
has access to [26]. To that end, a few approaches towards taking
into account the subsystem structure have been proposed [27-31].
One of the basic ideas utilized is to consider incoherent states
and operations that, at the same time, respect the underlying local
structure of the Hilbert space, obtaining various hybrids between
coherence and entanglement.

In this paper, we put forward a notion of localizable coherence,
that is, the coherence that can be stored in a particular subsystem
of a quantum system with a given tensor product structure. We
investigate different protocols, that involve either disregarding or
actively measuring a part of the system, so as to localize quantum
coherence in the rest of it. We compute average properties of the
introduced quantities in the Hilbert space and investigate the role
that measurements, with or without post-selection, have in local-
izing coherence. Once one has introduced a notion of locality, we
use this quantity to characterize the coherence of states that have
a particular real space structure, e.g., localized or topological states.


https://doi.org/10.1016/j.physleta.2021.127264
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2021.127264&domain=pdf
mailto:alioscia.hamma@umb.edu
https://doi.org/10.1016/j.physleta.2021.127264

A. Hamma, G. Styliaris and P. Zanardi

2. Localizing coherence
2.1. Localizing coherence by tracing out

Consider a (finite dimensional) Hilbert space H = Hs @ H. We
see Hs as the subsystem in which we want to store coherence, and
Ha as an environment or an ancillary system. Let dim(H) =d =
dsd,. Given a quantum state p € 3 (#), a natural way of obtaining
a quantum state over Hs would be to just trace out the ancillary
part and obtain ps =Tra(p); then, picking a preferential basis Bs
on Hs, one could simply consider the coherence of the state ps in
that basis.

However, it appears immediately that this strategy cannot pro-
duce much coherence in Hs. The marginal state ps is a state
that has decohered considerably [2] unless p is close to separa-
ble, which is a rare event [32]. Indeed, with high probability, the
marginal state will be typically indistinguishable from the maxi-
mally mixed state (for d4 > ds > 1) which is completely incoher-
ent.

Let us make the above observation more precise. For any mea-
sure of coherence cp with respect to a basis B, one can define the
coherence of the reduced state cp,(ps) to represent coherence lo-
calized in S. We denote
Cii s () =Cas [Tra(p)] - (1)

T,Bs S

The connection between coherence and mixedness, as quantified
by purity, is illustrated well if one uses in place of the coherence
measure cp the (squared) 2-norm of coherence [19,22,33]. The lat-
ter is given by

¢2.8(0) := |(Z — Dp)o |3 = Pur(c) — Pur[Dg(0)] (2)

where |X|; = ,/Tr(XTX) denotes the (Schatten) 2-norm,

Dpy(X) =Y, xkX Xk is the dephasing superoperator, Bs = {Xk}iil
denotes a basis on Hs consisting of rank-1 orthogonal projectors
Xk = k) {k|, while Pur(p) := Tr(p?) denotes the purity.! With re-
spect to this measure of coherence, one obtains in terms of purity,
Cly'ps (p) = Pur (Tra(p)) — Pur (D, Tra(p)) - (3)
As it can be seen from the above equation, the purity of the re-
duced state establishes an upper bound to the coherence of the
reduced state.

For a random pure state (i.e., an initial pure state distributed
according to the Haar measure p = U |y) (| UT) the average pu-
rity is

u_ ds +dy
- dsda +1
which implies that, for da > ds, Tra(p) is typically maximally

mixed [35]. Using this result, a straightforward calculation gives
for the coherence

Pur [Tra(U |y) (y|UT)] (4)

U ds—1
Clips [U I (WIUD] = 5)

Even for ds >~ d,, one obtains an average coherence CQB; ~1/ds
which is exponentially small in the number of constituents in the
S system.

1 Notice that the 2-coherence ¢, g might fail to satisfy the monotonicity property
under the action of the free operations, depending on how one defines the resource
theory of coherence (see, e.g., [9] for more details). Nevertheless, it admits a simple
interpretation as an escape probability [34].
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We have seen that the more a state is entangled, the less co-
herence can be stored in the local system by just tracing out the
ancillary part. One can evaluate the relationship between coher-
ence and entanglement by writing a pure state p in a Schmidt
decomposition. Expressing

R
p=" cacl&ama) Ml (6)

a,b=1

the reduced density matrix reads ps = Zf Ical? |&a) (€q]. The 2-
norm of coherence of the reduced state ps is given by

2
cz,Bs(ps>=Z|ca|“—Z<Z|ca|2|<sa|k>|2) : (7)
a k a

Recall that two bases are mutually unbiased if the modulus of the
inner product between any two basis states is equal to d~1/2. Then,
from the above expression, it also follows that, for a fixed reduced
state ps, the coherence c; g, (0s) is always maximum over a basis
that is unbiased with respect to the Schmidt basis {|£;)(&4|}¢ (more
generally, unbiased to an eigenbasis of ps). Therefore, in order to
maximize coherence, one should measure it over a basis that is as
unbiased as possible with respect to the Schmidt basis.

One can additionally consider the [;-norm of coherence?® [8],
which reads

c1,8(0) = (Z —Dp)o ||y, (8)

(o above is understood as a matrix in the B basis) and, for the
reduced state, it gives

R
1o (ps) = | D leal(€alk) (K Ia)| (©)

k#k'  a=1

We will see later in section 5.2 that these expressions are useful in
the case of quantum states with a particular structure, e.g., topo-
logically ordered states.

2.2. Localizing coherence by measurement

Let us now investigate an alternative strategy to localize co-
herence in S that involves performing an orthogonal measurement
on the ancillary system 4. After the measurement process, the
resulting state is in a product form (some state on Hs times an
eigenstate of the operator measured on H,). This is a strategy
that has been employed to localize entanglement and circumvent
the notorious difficulties in measuring entanglement in a mixed
state [36]. We pick some preferred basis B4 := {a),-}fl’*l where the
w; = |i)(i| form a complete set of rank-1 projectors over Ha. A
measurement on H4 of a (non-degenerate) observable diagonal in
B, with result “i” transforms p to a product state of the form

r_Tra(pls @ wi)
P T ls @ )
This is the result of the measurement where one has retained the
information about the outcome i.
For a measurement that is non-selective, since each pj is ob-
tained with probability p; =Tr (p Is ® w;), the post-measurement
state in H is

p' =Dy, (p)= Tra(pls @) ®wi= ) pip; (1

1 1

wj . (10)

2 |IXlly = X3 1Xil for a matrix X.
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where

Dp,(X) =) Is@wiXIs®w; . YXeBH) (12)

1

is the dephasing superoperator with respect to the basis B4, and
similarly Dp, is the dephasing superoperator in a basis of Hs.
Note that if a basis B of H factorizes, i.e., the projectors can take
the form B = Bs ® B4, then also the (total) dephasing factorizes,
namely

Dp = Dp,Dp, (13)
and
Dp(X) =) xx®wXxx @, VX €B(H). (14)

ki

In the rest of the paper, we will always assume that the basis fac-
torizes appropriately.

At this point, given a coherence measure cg, we can define the
following two quantities: The first one,

Cy’ (p) =cp (D, p) (15)

corresponds to the coherence of the post-measurement state p’,
considered over the whole Hilbert space #. Notice that the re-
duced state Trs(p’) is incoherent. The second quantity is

Coot5(0) =Y pichs (0%;) (16)
i

where
_ Tra (o Is ® wy)
Tr(pls ® wi)

corresponds to the post-selected state in S. Therefore the quantity
in Eq. (16) corresponds to the average coherence present in each
post-measurement state, restricted to the subsystem S.

Using the definitions introduced in Eqs. (15) and (16), one could
also define the corresponding optimal localizable coherence by
taking the supremum over the measurement basis in a given state,
or perform the average localizable coherence by Haar averaging
over the states, which we will analyze later in section 4.

Let us compare the two protocols CS;B and Cgs) under some
general assumptions for the coherence measure. If the measure cp

is convex it immediately follows that

P =Tea () 17)

Cy’ (0) <Y pics(ps,; ® wi) . (18)

1
In addition, if the measure also satisfies cp(p ® w;) = cps(p) (for
all i and states p), then one immediately gets that

c® ) <c& o) . (19)

ave,B

Notice that the measures c1 p and cp g satisfy both assumptions,
hence also the above inequality.

Let us now compare the above quantities (that involve mea-
surement) with the earlier protocol C}?BS of tracing out the ancil-
lary part. For the coherence measure c{, g it holds that

Ciilps (P) < C5 () (20)

In fact, the above inequality is true for any coherence measure
that is monotonic with respect to the operation of partial dephas-
ing Z ® Dg,, and also to partially tracing out part A. Indeed, cq 5
has both of these properties [8]. Notice, however, that although
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c2.p also satisfies monotonicity under partial dephasing,’ it fails to
satisfy monotonicity under the partial trace, as it can be checked
explicitly by considering a product state.

Notice that the (non-selective) measurement procedure corre-
sponding to Cgs) will not be able to localize any coherence in the
system S if we start with a state that is already incoherent. In fact,
if the coherence measure cp is monotonic with respect to Dg,, the

resulting coherence Cés) (p) is upper bounded by cp(p).
We now regard the question of finding the basis Bs that maxi-
mizes each of the localizable coherence by measurements C1(35> (p)

and C;S,Z‘,B(p), for fixed B4 and p. The optimal basis turns out to
be simple for the case when {pé,i}i are mutually commuting and
the coherence measure is cy g. Then, as we show in Appendix A,
both localizable coherences become maximal for any Bs that is
unbiased with respect to B which simultaneously diagonalizes
{pls,i}f' However, we expect the answer to be more complicated
for general scenarios.

Let us now invoke the above result to make a connection with
entanglement. As a first simple example, let us consider a sepa-
rable pure state |y) = |&) |n). For any choice of the measurement
basis By, the assumption of mutually commuting {p/s’,.},- is trivially
satisfied, and hence an optimal Bs is given by any basis that is
unbiased to the single element |&)(&].

One can also consider as an example the opposite limit of a
maximally entangled pure state, i.e., as in Eq. (6) with d4 =dp =
J/d and ¢, = d~1/4. For a measurement basis B, related with the
Schmidt basis {|74){na4l}¢ of the ancillary system by a quantum
Fourier transform F, it follows that the optimal basis on the sys-
tem part is given by the Schmidt basis itself Bs = {|&;)(&q|}q. This
is because all {,o’sqi},- are mutually commuting and, in fact, diagonal

in the basis F(Bs).* Since Bs and F(Bs) are unbiased, the claim
follows.

3. Spreading of localizable coherence

Consider a local quantum system Ha = ®xeaHx On a lattice
A endowed with graph distance d(x, y) and with each local sys-
tem a d-level system 7, ~ C%. We will assume that the dynamics
is described by a local Hamiltonian, that is, a Hamiltonian sum
of local operators H =)y ®x where X C A and the operators
®x are bounded hermitian operators on Hy = QxexHx. The map
®: X > dy is the interaction map that specifies the physical inter-
actions between the particles in the system (including one-body
terms). The locality of the subset of sites X € A is specified by
a bound on the number of sites in X, that is, |X| < R and the
maximum distance between two sites in X, that is, diam(X) =
maXy, yex d(x, y) < r. The number R represents a bound to the
maximum number of bodies in an interaction, while r specifies
the maximum distance at which bodies can interact. In this model,
correlations spread out with a maximum speed given by the Lieb-
Robinson bounds [37-39]. In this section we investigate whether
also localizable coherence spreads with a given speed.

In order to establish a connection with our previous setup, we
consider a tripartition of the Hilbert space H = Ha ® Hc ® Hs.
Here, Hs denotes the Hilbert space of the system in which we
want to localize coherence. Let the regions A, S be separated by a
distance I. The localizable coherence in S at the time t depends on
the details of the initial state pp and on the dynamics, dictated by
the Hamiltonian. Unitary evolution will bring the state from pg to

3 This follows from the fact that the 2-norm is monotonic under unital incoherent
operations, such as the partial dephasing considered here.

4 One way to see this is by expressing p;,i in the {|&;)(&4}q basis; the resulting
matrix is circulant (for all i) and hence diagonalizable by a Fourier transform.
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pe = UpUT and we would like to investigate in this state the lo-
calizable coherence at S. What happens if someone at A performs
a local quantum operation on the initial state p? In what follows,
we focus for concreteness on the localizable coherence associated
with ¢y 5.

The Lieb-Robinson bounds imply that it is impossible to send
signals (up to an exponential tail) from A to S outside the light
cone. Here we show that also C‘E‘f,)Bs(p) spreads ballistically ac-
cording to the maximum speed of signaling. On the other hand, a
similar result fails to hold in general for both CI(;S) and CS\S,;!B that
are associated with measurements.

We now make the above claims precise. Let the initial state
of the total system be pp and assume some quantum operation is
performed on A. Then we try to localize coherence on S after some
time t. The quantum operation 74 will be described by a CPTP
map with support on A, i.e., its Kraus operators are of the form
M, := M, ® I Vi, where X thereafter denotes the complement of
a region X. We can therefore define the input state as in that case
as

pb = Ta(po) (21)

Finally, let U denote the unitary evolution operator to the time t
generated by our local Hamiltonian and also p¢, p; the correspond-
ing time evolved states.

Our first result is that a Lieb-Robinson type bound holds for the
localizable coherence Cg)Bs' namely that
€, 00— 5 ()

where ¢, i and s are positive constants. In particular, for the case
of po =1/d, the above inequality reduces to

S
Cp, (07) < cexp(—pub) [exp (st)) — 1] (23)
expressing the fact that a state that is maximally mixed every-
where except possibly at the region A will have exponentially
small localizable coherence CS)BS outside the light cone.

Let us derive Eq. (22). We begin by first noticing that the func-
tion ¢y g(p) is Lipschitz continuous, namely for any two states it
holds that

<cexp(—ul)[exp(slt])) —1] , (22)

lc2,8(01) — c2,8(p2)| < 211p1 — p2ll, - (24)
This follows from the sequence of inequalities (we set Qp =7 —
Dg),

[c2.8000) = c2,8(0)| = |1 Q8 o113 — 128 (02)13]
= (I128(P1) 12 + 128 (P2)112) [I1QB (LD II2 — 198 (P2) 12
<2[128(eD)l — 1980212
<21Q8(p1) — Qp(P2)ly <21 — p2ll; -

To show Eq. (22), we need to show that |Trs (or — pf) |, is ex-

ponentially small outside the light cone. Since

sup Tr[O (o1 — p2)]
10]l0o=1

o1 — p2lla < llp1 — 21l =

let us consider Trs [OsTrs (o — At)]. We have,
Trs [0sTrs (pc = /)] =Tr [ 05U (oo — /o) U']
=Tr[05(0) (00 — o) | =Tr (T = T)Os®)100)

<@ -TH0s)| ., = | M, [}, 050] .,
<>il[My, 0s®]] . »
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where above we denote Os(t) := UTOs ® IsU, while in the last
step we have used the fact that the trace preserving condition for
Ta implies that ||M}[ <1 Vi. We therefore have, by combining
the above inequality with Eq. (24), that

s

‘Cg,)ss (e) — Cpp (pf)|<2 sup Zi”[Miq’OS(t)]”oo'

10lloo=1

Each of the above commutators satisfies a Lieb-Robinson bound
of the form

|[My. 0s®)]]., <2110slloo ISIexp (—pul) [exp (s|t)) — 1] (25)

hence we obtain Eq. (22) for ¢ = 4d% |S|, where the positive con-
stants s and w (specifying the Lieb-Robinson velocity) depend on
the details of the Hamiltonian and the lattice.

As mentioned earlier, the localizable coherence by measure-
ment (selective or not) does not admit a similar Lieb-Robinson
type bound. Indeed, considering an initial state that is sep-
arable po = py ® pyC, it is easy to see that the difference

G (o) = €5 (p5)

exists for this quantity, and similarly for

# 0, hence no bound analogue to Eq. (22)
C(S)

ave,B*

4. Average localizable coherence

As we have seen in section 2.1, if we obtain a reduced state
to the system S by tracing out the ancillary part A, it is ex-
pected that this reduced state will not have much coherence in
the large Hilbert space dimension limit; typically states are max-
imally entangled [32]. In this section, we investigate the average
value of localizable coherence in the Hilbert space by means of
measurement, using the definitions Eqs. (15), (16). These results
will prove useful to understand the local coherence structure of
interesting quantum many-body states, such as many-body local-
ized (MBL) [40-42] states or topologically ordered states.

4.1. Average over global pure states

In this section, we compute the average of the localizable co-
herences Cl(gs),CSg’B over the pure states p in the Hilbert space
according to the Haar measure. Since we are interested in aver-
age properties, we will be again using the lp-norm measure of
coherence cy g. In the following we will always assume that the
coherence basis B = Bs ® Ba factorizes. The two measures of co-

herence (15) and (16) then read

C5(p) = (D5, — Ds) p||; =Pur (Ds, p) — Pur (Dpp) ~ (26a)
Coues(P) =D pi [Pur (o5 ;) — Pur (Dpgps )] - (26b)
i

After a short calculation one can also obtain the alternative forms

Cy (p) = cpg (Z pm,-’) =Y pics(p)
i i

= b} (Pur(ps ) — Pur(Ds o5 ) -
i

(27a)
(27b)

The average over the states p can be performed in many dif-
ferent scenarios. To start, we can average uniformly over all the
pure states in the Hilbert space. To this end, we write p as
pu = U [¥o) (Yol UT for a generic reference state |y). The average
over p then becomes the Haar average over the unitary group [35].

—o P
We start with calculating Cés) (p) . To this end, we double the
Hilbert space as
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Hs@Har> HsQHAQHsy QHay =HQOH' . (28)

We will denote as S the swap operator between # and H’, acting
on the corresponding basis vectors of %®2 as S |ij) = |ji), and also
denote Sy the swap operator between the X, X’ partitions of the
doubled system. Recall also that the total swap S factorizes as S =
Ss ® Sa. We can then write the useful identities

Tr(X?) =Tr(SX® X) VX eB(H) (29)
and

—FU

pF? d+5S) . (30)

Tdd+1)
Exploiting the above identities we obtain
i)

——U
€ (pu) =Tr[Ss @ Sa(DF? — DFHUSYFAUN®? |

I+55®5A]

-0 [SS ®Sa = PE) ~gq 1)

1
=—Tr[S Sa(S Pp—P P
dd+1) I[Ss®Sa(Ss®Pa—Ps® Pa)l
1
=—Tr{I®? QP4 — Ps®P
dd+1) r[s ®Fa—ls® A]
ds)2ds —dsd ds —1
:( s)°da —dsda _ ds (31)
dd+1) d+1
where we used the notation g = |Yo)(¥ol, also Py =

2?21(“) (i)®2% € B(Ha ® Ha) and similarly for Ps. In the third
equality we used the fact that (DE’A2 — D)l =0 together with
DFA(Ss ® Sa) = Ss ® P4 and D§*(Ss ® Sa) = Ps ® Pa. In the
fourth equality we used S3 ¢ = 195 and Sy sPas=Pas.

In the limit of large Hilbert space dimension d, we have CE;S) o~
1/d4. We see that this scheme of measurement returns on aver-
age exactly the same coherence as in the case of tracing out, see
Eq. (5).

In the limit ds — d (and hence d4 — 1) we recover the result
from [22] about average coherence of Haar distributed pure states,
that is,

—uv d-1
cg(pu) = it1’ (32)
—U
Now we calculate the global Haar average for C'5) (UyoUT)

ave,B
In order to perform this calculation, it is convenient to write

1
Cuen(®) =3 T (S5 = DEAp(s @ 0p®?).
i

This calculation is more challenging because of the presence of the
probability factor p;” 1in the above equation. We now argue can
substitute to this value its mean, with an error that becomes irrele-
vant for large Hilbert space dimension. On average, the probability
factor for a given result “i” takes the value

pi0) =Tr(puls @ wp) - =1/da (33)

This average value is also typical. Indeed, we can invoke Levy’s
lemma [43] to bound the probability of having a result different
from the average. The function p; = Tr(pls ® w;) is a function
from the (2n — 1)-dimensional sphere $2"~! to the interval of real
values [0, 1]. Moreover, this function is Lipschitz continuous with
Lipschitz constant 1 =1 since the maximum difference in proba-
bilities is bounded by one. We can then apply Lévy lemma with
error € =d~!/3 and obtain
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Pr( pi(p) ! |>d"13) <3e d1/3 (34)
) _ sxp( ——
bitp da — - P 251w

which shows measure concentration of the function p;. At this

point, we are justified to use a “mean field” approximation in the

——U
C;ig’B(pu) calculation by substituting p; ~ 1/da, which we ex-
pect to be accurate for d > 1.

Computing the average we obtain

— U
S
Colploy) =
U

= ! ®2 '
B Z Pi(U)Tr (SS(I — Dy ) (puls ®a),)®2)

—U
~dpy Tr <55(I— DA (s @ w,-)®2)
i

dA 2
=—— _Tr(I2*®@Ps—Ps®P 35
dd+D r(s ®Pa—Ps® A) (35)
and thus
5 U ds —1
(S) ~ S
Cave,B(PU) ~ m . (36)

Notice that, in view of the mean field approximation, this result is

—U
just dACE;S) (pu) . We can see that in the large d limit we obtain
a coherence of order one (e.g., in the limit of d4 — oc0). Moreover,
if d4 =1, we then recover Eq. (32).

4.2. Average over factorized states

In this section, we consider an initial product state [yg) =
[Y0)s ® |Yo)a separable in the (S, A) bipartition. We are inter-
ested in computing the average localizable coherence to S ob-

tainable by measurement without post-selection, namely, C ,(35) (,o)p.
The density matrix ¥ = |¥o) (Yol is of course of the form vy =
Yo,s @ Yo,4- In the following we want to average over all the sepa-
rable states in this partition according to the Haar measure. To this
end, we write Yo,y = Usyro sUL ® Uavio aU’y with U =Us ® Ua
and the Haar average is performed over the unitaries of the form
Us®Ua.

The calculation will proceed similarly as before. Performing the
average

Us®Ua
(Us ® Ua)®2(o.s ® ¥0.4)2(UL @ UT)®2

U2 +S)@ U+ Sa)

, (37
ds(ds + 1)da(da + 1) (37)
we obtain
T oy TS @E=DEDIUS? + 59 © U5 +50))
B ds(ds +1)da(da+1)
LTI @ Py — Ps ® P4
ds(ds +1)da(da +1)
ds —1
P R (38)

(@ds+1da+1)

which, for large dimension ds returns an average localizable co-
herence scaling as ~ 2/d4. In addition, if also d4 ~ ds we obtain
a result that is twice as large as for the average localizable coher-
ence by tracing out, Eq. (5). On the contrary, in situations where
da > ds > 1, this measurement protocol yields a much lower lo-
calizable coherence on the average factorized state.
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At this point, we want to set the stage so that the notion of
localizable coherence can be used to describe different quantum
many-body systems. In the case of a chain of d.-level systems,
the total Hilbert space H is the tensor product of local Hilbert
spaces corresponding to a single spin system, that is, H = H%Z o~
(Cdoc)®n: and similarly the Hilbert spaces Hs and H, can be
further decomposed in tensor products of the single spins. Let us
consider ‘H = 7-[,%’? for n =ng + ny, ie, ns and ny correspond to
the number of spins in the “system” and “ancillary” partitions, re-
spectively. We denote dim(Hjoc) = djoc-

In such systems, it is interesting to consider states that are fac-
torized in all the spins, or in blocks of spins. A completely factor-
ized state has the form U1 ®---® U, (|0) (0|)®”U}L ®-~~®U,Z where
each of the U’s is Haar i.i.d. and |¥y) is any pure state in Hjoc that
we take as reference state. Denoting w := |0) (0|®" the completely
factorized state can be generically expressed as w; = ®;U;jw ®; Uj,
with U = ®_, U;.

We are interested in knowing the average localizable coherence
(without post-selection) in completely factorized states. We have

g =Tt s (pg2-p§?) ﬁ I Saar
B v B Ba B a=1 dloc(dloc +1)

where S, denotes the swap operation between spins « and o’
(its corresponding in #'). Expanding the product, we get
0 1
(S)
Cp oy =753 (T1—T2) (39)
BT (dioe(dioc + D)
where we set

Ti=Tr [sp?j []‘[ I+ sm,)ﬂ ,

a=1

n
T, =Tr [s D> []‘[ I+ saa/)ﬂ )
a=1
For the calculation of T1 we need to count the swap terms that in-
volve indices « that belong in the “system” part. Given a partition
of the spins in (S, A), we define

k _(7Ns A
Ins.na D = ( I ) (k - 1)

which corresponds to the different ways of choosing k out of n =
ns + na dpoc-level systems such that exactly [ of them are in the
“system” partition. We have

n k
T1=Y Y (i) a5 0, ) .
k=0 =0

since each of the terms with | swaps in the system part contributes
with a factor of (dic)™*'. The T term does not differentiate be-
tween the subsystems S, A, and a similar calculation gives
1 /n
T, = Z (k) (dioo)" = dio)"
k=0
Combining the previous expressions, we finally get

n k

I 1
S
€ @g) = o [ 20D dhon, Ol = 2" (40)
( loc + 1) k=0 =
k=0 1=0

As a simple crosscheck, one can set n =ns =1, in which case
the result collapses to Eq. (32) for d = djoc. As we can see, if as in-
put we have product states then the localizable coherence given by
the (non-selective) measurement protocol is a viable way of stor-
ing coherence in a subsystem.
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Fig. 1. Schematic representation of random states resembling the MBL phase. Each
constituent (e.g., spin in a chain) corresponds to a Hilbert space with dimension djqc
and is represented by a red circle. The gray bubbles denote the action of indepen-
dent randomizing unitaries. The system consists of two constituents (pair of filled
red circles), acted upon by either (a) the same unitary or (b) by two different ones.

5. Applications to quantum many-body systems

In this section, we apply some of the ideas and results intro-
duced so far to the description of notable quantum many-body
states from the coherence point of view. We are interested in states
that can be representative of the ergodic phase (as described by
the Eigenstate Thermalization Hypothesis [44-46] (ETH)), of the
MBL phase, and of the topologically ordered phases. We model the
ETH state simply like a Haar-random state in the Hilbert space.
These states do indeed obey a volume law for the entanglement,
and ergodicity ensures that all the states in (a subspace) of the
Hilbert space can be reached with equal probability. In order to
describe MBL and topologically ordered states, though, we need a
bit more work.

5.1. Localized states

Here we want to describe states that can be representative
of the MBL phase. Such states should be weakly entangled and
feature an area law. However, within the correlation length & asso-
ciated with the localized phase, the states can be highly entangled.
We will hence consider as representatives of MBL phase states
consisting of products of bubbles of length &, such that the con-
stituents (e.g., spins) within each bubble are highly entangled but
the splitting in-between the different bubbles enforces an area law
for the entanglement, see Fig. 1. We model such states as the ten-
sor product of states that are Haar random within the correlation
length &. These states are thus extremely localized as there is no
entanglement at all between one bubble and another.

Equipped with the results from the previous section, we want
to perform the average over the localizable coherence on the above
described states. Consider N =n-& identical systems that are acted
upon by n iid. unitaries, each acting on & systems. Each system
has a (fixed) dimension djqc, so that d = d?fc. As an example, con-
sider quantum states ® of a spin one-half chain, so that the local
Hilbert space at the site i is C? and djoc = 2. A localized state with
correlation length & is a state that resembles a product state of a
system with & spins, that is, |®) = ®]_, |¢), with |¢), € (CH®*.
In other words, this state is the product of n bubbles of spins, each
containing & spins. Within each bubble, the state can be highly
correlated and highly entangled.

This setup is convenient to study some interesting class of
many-body quantum states like many-body localized quantum
states. Indeed, by averaging over bubbles of length &, we obtain
a state that is highly correlated (and entangled) within each bub-
ble, but that is factorized over the bubbles. This state can be used
as a reference state for the quantum many-body localized phase.
On the other hand, the global Haar state is a representative of the
ETH phase, at infinite temperature. Now, imagine to consider the
system S made of two parts, so that Ns =2 and Ny =N — 2. We
ask whether it makes any difference for the localizable coherence
whether these two parts are close to each other. Obviously, in the
ETH case, it does not, as the global Haar measure does not see any
internal structure of the states. However, in the case of averaging
over the bubbles, there are two distinct cases, see Fig. 1.
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1. The two constituents of the systems are acted upon by the
same unitary, i.e., they are within the same bubble. Notice that
hence, in this case, it must be &€ >2 and n > 1.

2. The two constituents of the systems are acted upon by two
different unitaries, i.e., they belong in two separate bubbles. In
this case £ >1 and n > 2.

As in the previous section, one can write

Ui,...,.Un

i (U1 @@ U0 0)em Ul - @ U})
1
- (1~ Ty

(dioc)"™ (A5, + 1)1

where we set

T{=Tr |:SD§>AZ |:l_[ I+ So{a’):|:|

a=1
Ty =Tr [5 D§? []‘[ I+ saa/)ﬂ
a=1

One can now perform a similar calculation, counting the number
of terms with different contributions. For the case (a), we have

S T T Uq,..., Un
i (U1 @ @U.(0) 0)em Ul -~ @ U})

n
2 2 -1
=| e — ., (41)
d +1 2

loc

while for case (b)

s T 7y e
i (Ur®--@U. (0 )" Ul - @ U})

oo
=< 2 )leCHleC_B- (42)

d +1 4

loc

As we can see, the ratio between the localizable coherence in
the two cases is 2 x (dZ . — 1)/(dZ_ + 2djoc — 3). This number is
6/5 for qubits, where djoc = 2, and converges to 2 for large local
Hilbert space dimension. In other words, there is more localizable
coherence if the system is inside the localized bubble (a) than if
the system is made of two parts far away (b). In this sense, the
localizable coherence captures the fact that the state has the lo-
cal structure of bubbles. The representative for the ETH state is the
random Haar state for which, on the other hand, there is no dif-
ference in where and how the system S is located. Of course, this
is a cartoon simplified picture of the structure of ETH and MBL
states as MBL states are not made exactly of disentangled bubbles
(rather, bubbles entangled with area law with each other) and ETH
states are not Haar-random but share with Haar-random volume
law for entanglement. This result, though, suggests that localizable
coherence could be used as a tool to detect the ETH-MBL transi-
tion [47].

5.2. Toric code

In this section, we show how the notion of localizable co-
herence can capture topological features of topologically ordered
quantum states like the ground state of the string-net states, quan-
tum double models, or quantum lattice gauge theories [48-50]. Let
us first show how the localizable coherence in the reduced den-
sity matrix does have a topological character. In these theories,
the reduced density matrix ps of the ground state has a flat spec-
trum {|cq|?}q [50]. Denote 7 the rank of ps. In this case, one has
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c2.8s(ps) =F 1 —F 2% (3, |(§a|k)|2)2. Choosing a mutually un-
biased basis one obtains c3 g, (ps) = 11— d?. Similarly, for the
same states with flat entanglement spectrum, the [;-norm of co-

herence reads c1 pg (0s) =7 34 | g1 (Galk) (K [5) .

Notice that, in the particular case of the toric code (or quantum
lattice gauge theories), the rank R is not full; first of all because
there is area law, and then because there are prohibited configura-
tions on the boundary of the system. In fact, that correction is the
topological “missing” entropy logy [50] and one has 7 = djs/y.
If one chooses as subsystem S a thin region (without bulk) [51],
then 0S = S and we obtain ¢; g (ps) = (¥ —1)/dss. This has to be
compared with other states with flat entanglement spectrum that
are not topologically ordered, where y = 1, hence the coherence
vanishes. In this sense, the previous formula shows a topological
coherence.

As a second application, we show that the localizable coher-
ence by measurement can reveal topological properties. For this
purpose let us focus on the toric code [52]. In order to understand
the measurement protocol, we need to go into the details of the
model. The toric code with spins one half on the bonds of a N x N
square lattice with periodic boundary conditions is described by
the model Hamiltonian

H=-UY Ay—]> Bp. (43)
n p

where the ‘star’ operator Ap =[], o flips all the spins (in the
z— basis) extruding from a vertex n and the ‘plaquette’ operator
By = ]_[,Ep a,z operates with o# on all the spins around a plaquette
p. Denoting by G the group generated by the star operators Ap,
that is, the set obtained by all the possible products of operators
Ap, the ground space of the toric code Hamiltonian [49,53] can be
written as the span of the vectors

o= > a(WH'W3IGI7>D 1g) (44)

i,je{0,1} geG

where W}, W3 correspond to the product o} operators over hor-
izontal and vertical non-contractible loops of the torus. It follows
that the ground space has degeneracy 4. Considering the quantum
coherence of the above ground states with respect to the product
o/ eigenbasis, one identifies two contributions to it: (i) from the
coherent superposition of the 4-fold degenerate ground states (i.e.,
due to the «j; coefficients), and (ii) from the equal superposition
of terms in the group G.

We will now show that the 2-norm localizable coherence by
measurement C ;;2 5 can differentiate between the aforementioned
two types of coherence. Moreover, the topology of the region
where measurements are performed will play a role in the result,
revealing a topological character.

For this purpose, it is instructive to first analyze the scenario
where one performs orthogonal and selective o measurements
for all spins except those belonging to two strips of plaquettes, one
horizontal and one vertical (see Fig. 2). We will refer to the ancil-
lary part consisting of the measured spins as A, while we consider
the complement to be the system S. In fact, the exact shape of
the two regions is not going to matter for the considerations that
follow, except from the fact that the region S is topologically non-
contractible.

After the measurement, the resulting state is of the form

l¥o) > W) o (Is ® [ha) (hal) [¥o) (45)

For a given measurement result h, in region A, let

lh) = |hs) ha) . heG (46)
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Fig. 2. Toric code; spins reside on the edges. The system (red) non-contractible
region consists of two strips that wrap around the torus and meet at a single pla-
quette. In the ancilla (gray) region spins are measured over the local o# basis, and
the region is contractible.

be a “completion”.” Given that the region S is non-contractible,
and the group average is invariant under group multiplication, one
can write

o) oc Y _ai(WH (W3 Y " |g)
ij geG
=Y ay Y [WH WD 1gs)] lga)
i,j geG
=Y ey Y [ W Whsgs10s) [ haga [0a)
i,j geG

and hence also

[W6)oY Y [(W (W) hsgs [05) | 11a) (0] €a10a)

i,j geG
The only surviving term is for g € G such that g4 = id4. One can
formally define the subgroup Gs :={ge€ G:g=gs ® ids}. There-
fore after the measurement the normalized state is

[wo)=1GsI72> e Y (WH (W3 hsgs) Iha) (47)
i,j geGs
It is now important to observe that Gs depends on the geometry
of the partitioning (S, A) but not on the particular measurement
result ha. For instance, for the region as in Fig. 2, |Gs| = 24,
We are now ready to calculate CSQB(WO)WOD for B the prod-

uct of eigenbasis. A straightforward calculation for the coherence
of the post-selected state gives

1
c2,85 (Tra [Wo)(¥ol) =1 - Gol 3 ey (48)
iy

which is also independent of h4. Therefore, under the sole assump-
tion that S is non-contractible, one obtains

1
Caes (W) oh =1 = =3 o[ . (49)
i.j

The resulting coherence ng 5(I%0) (¥ol) is sensitive to the su-
perposition within the 4-dimensional ground state subspace, while

5> Notice that, although the part |hs) might not be unique, a completion always
exists since we have assumed that the measurement result |hs) occurred.
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the contribution of the corresponding group G is through the fac-
tor |Gs| that depends on the geometry. More importantly, it re-
veals topological features of the (S, A) partitioning. To see this, let
us consider what happens in the opposite case where S is con-
tractible. Then, a measurement on A always collapses the 4-fold
superposition due to the «;j, i.e,, from the measurement result on
A one can infer the definite values of i, j € {0, 1}; this is done just
by analyzing whether or not the obtained configuration contains
non-contractible loops along the horizontal and vertical directions.
For a measurement result (W{‘)i(Wé‘)f |ha), the post-measurement
state now becomes

W) =1GsI72 > hsgs) (W) (W5) [ha) (50)
8eGs

where the values of i, j are fixed depending on the measure-
ment outcome. Once again, the coherence of the resulting state
c2.85 (Tra [¥§)(w§]) is independent of hs and also i, j, therefore
one obtains for contractible S,

1
Chvep(IV0) (Yo =1~ R (51)

The analogous expressions when S is only contractible along
only one of the horizontal/vertical directions can be obtained sim-
ilarly. Egs. (49) and (51) therefore show that the localizable coher-
ence by measurement C;i;’B(h//O)(I//()D is sensitive to the superpo-
sition over the 4-dimensional toric code groundspace, but only if
the S region is non-contractible along the corresponding direction.

6. Conclusions and outlook

In this paper, we have addressed the question of quantifying co-
herence in a composite quantum system where a notion of locality
is imposed by a tensor product structure. We have put forward a
notion of localizable coherence as the coherence that is obtainable
in a subsystem of a composite quantum system after either disre-
garding or by measurement on the rest of the system, that serves
as an ancilla. We have computed the average localizable coher-
ence over the Hilbert space, including over different factorizable
states. It results that measurement aided localizable coherence is
more efficient than simply tracing out the ancillary system, as this
would result in strong decoherence. As an application, we have
shown that localizable coherence can distinguish between topo-
logical characters of many-body quantum states, for example, the
toric code.

One of the examples discussed suggests that localizable co-
herence could be a useful quantity to characterize the ETH-MBL
transition. This connection is explored in more detain in [47].

In perspective, localizable coherence can potentially provide
useful insights in situations where one wants to understand the
role of coherence in quantum systems with a tensor product struc-
ture, for instance, in quantum thermodynamics of composed sys-
tems, like quantum batteries, or in the role played by coherence
in operator spreading [54], scrambling, and the transition to quan-
tum chaotic behavior [55] signaled by out-of-time order correla-
tion functions [56]. Further investigation of these subjects, possibly
under the lens of localizable coherence, provides directions for fu-
ture research.
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Appendix A. Optimal coherence basis for Cgs) (p) and C ;‘s’z g(0)

Here we determine the coherence basis Bs such that, for fixed
B4 and p, each of the quantities Cés)(,o) and Cﬁié,B(P) become
maximal for the coherence quantifier c; g, under the assumption
that {pg’i}i are mutually commuting. Let B be a basis that si-
multaneously diagonalizes {pls,i}i- We will show that the optimal
choice is, in both cases, a basis Bs that is unbiased to B/S.

Let us begin with C ,(;5 ). We have

Cy (p) =Pur[Dg, ()] — Pur[Ds, Dz, (0)]

and hence we are looking for the choice of Bs that minimizes the
second term. By the mutually commuting assumption and setting
B, = {vi}i

S ifiy

0 :=Dg,(p) =ij,0§,j®wj =ZQijVi®wj ;
J ij

where {g;j};; are elements of a (bipartite) probability distribution.
We can hence write

Pur[Dg,(0)] = Pur [/ @ 1) Dy U 8 T)(0) |
— Pur [DB/S U® I)(a)]

where U is a unitary that connects the bases B/S and Bg, and the
last step follows since purity depends only on the spectrum. In
other words, optimizing the basis Bs is equivalent to fixing the
basis to B and optimizing the unitary /.

The above step reduces the problem to a classical one, since by
evaluating the above expression one gets
Pur[Dgs(0)] =Pur[(M ® I)q] , (A1)
where M) is the unistochastic matrix [57] with elements M)(au) =
Tr[vld (v;)], while the purity on the RHS is that of a probability
vector (and not of a density matrix). In other words, now the prob-
lem reduces to specifying the unistochastic matrix M that mini-
mizes the purity of a fixed probability vector g as in Eq. (A.1).

The answer to the above is easily obtained using the theory of
majorization [58]. It amounts to recalling that purity is a Schur-
convex function and hence the action of a bistochastic matrix
monotonically decreases the purity. The minimum is therefore ob-

tained for M,(f,’) =1/ds for all vectors q, which corresponds to Bs

1

Physics Letters A 397 (2021) 127264

and B’ being unbiased. Notice that the choice is independent of g,
which is a consequence of the simplifying assumption about mu-
tual commutativity.

Regarding C;ié’B(p), first notice that the probability {p;} in
Eq. (16) is independent of Bs. In addition, each of the ch(p’SJ)

obtain their maxima simultaneously also for Bs and B being
unbiased. This also follows from the above arguments by setting
da=1.
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