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1Theoretical Division (T4),
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

2Center for Nonlinear Studies,
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Joint Center for Quantum Information and Computer Science and Joint Quantum Institute, NIST/University of Maryland,
College Park, Maryland 20742, USA

4Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA

We study the role of coherence in closed
and open quantum batteries. We ob-
tain upper bounds to the work performed
or energy exchanged by both closed and
open quantum batteries in terms of coher-
ence. Specifically, we show that the energy
storage can be bounded by the Hilbert-
Schmidt coherence of the density matrix in
the spectral basis of the unitary operator
that encodes the evolution of the battery.
We also show that an analogous bound
can be obtained in terms of the battery’s
Hamiltonian coherence in the basis of the
unitary operator by evaluating their com-
mutator. We apply these bounds to a 4-
state quantum system and the anisotropic
XY Ising model in the closed system case,
and the Spin-Boson model in the open
case.

1 Introduction

With the improvement of technology able to
manufacture and manipulate solid-state devices,
we are now able to harness the properties of phys-
ical systems at the nanometer scale [5, 6, 21, 31,
64, 71, 74]. In this regime, their behavior can be
affected by quantum phenomena, and thermody-
namic laws have to be investigated in detail [3, 4,
8, 9, 19, 25, 26, 38, 40, 47, 48, 50, 51, 58, 60, 65,
66, 75–77, 79, 80, 87, 93, 96]. This includes phys-
ical systems designed to store energy [1, 7, 12–
14, 23, 33, 35, 36, 41, 45, 46, 61, 68, 88]. Gen-
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uine quantum phenomena are connected to either
some interference pattern, or to the incompati-
bility of different observables. Such notions are
unified within the framework of quantum coher-
ence [2, 17, 27, 43, 63, 67, 76, 78, 86, 93, 102],
that, in simple words, is a way of evaluating
the anticommutability of a given observable with
the state of a system [17]. Quantum coherence
can be also described in term of resource theory
[11, 20, 90, 91]. Since resource theories serve a
the bedrock of thermodynamics [26], it is natu-
ral that quantum coherence and the role of en-
tanglement [8, 10, 53, 54, 85, 87, 105] have also
been thoroughly studied in the context of quan-
tum thermodynamics [76].

Among the quantum devices capable of per-
forming work, quantum batteries have a special
place. Quantum batteries are of fundamental im-
portance, and are an area of intense study [1, 3–
5, 7, 11, 37, 71, 74, 79, 90, 95], in thermody-
namics [6, 12–14, 31, 33, 41, 61, 68]. We model a
quantum battery by a Hamiltonian H0 that gives
a notion of energy, and a quantum state ρt evolv-
ing in time as Et(ρ) = ρt. Here the map Et is
a generic quantum channel that needs not to be
unitary, as we consider also the possibility of open
quantum systems [34, 49, 90]. The extracted or
stored work results from populating the levels of
H0 in a different way from the initial state.

Previous work has shown the importance of
quantum coherence in extracting work from a
quantum system. In [66], the authors stud-
ied the amount of coherence in the eigenbasis
of the Hamiltonian that can be extracted by
a thermal process. Meanwhile, [75] shows how
the behavior of quantum coherence poses fur-
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ther constraints to thermodynamic processes, in
particular, coherence transformations are always
irreversible. There are already other various
bounds on the performance of quantum batter-
ies [37, 49, 61, 71, 95] and recently some appeared
in which, specifically, coherence has been inves-
tigated [28, 44], and in particular l1 coherence
[29].

In this paper, we obtain quantitative and
rather general bounds on work (extracted en-
ergy), and power in both closed and open quan-
tum systems in terms of the coherence of both
the state or the Hamiltonian H0 in the eigenbasis
of the time evolution operator. By coherence of
Hamiltonian in a given basis we mean the amount
of non commutativity of the Hamiltonian in that
basis and discuss in what regimes the bounds are
tight. We show applications to several systems
of physical interests: arrays of closed quantum
batteries, a spin chain after a quantum quench,
and an open system described in the spin-boson
setting.

The paper is organized as follows. In Section
II we introduce the coherence operators which we
use in the paper, and obtain upper bounds to the
work, power in terms of the coherence of the bat-
tery Hamiltonian and the density matrix in the
basis of the evolution operator. In Section III
we show how these results can be generalized to
generic quantum channels, by finding bounds in
terms of both Kraus and Lindblad operators con-
necting the energy exchange to the coherence in
the basis of these operators. Finally, in Section
IV we show applications of these bounds. For
the closed quantum system case, we consider a
4-level system composed of two interacting spins,
and a many body system given by the anisotropic
XY model. We show that our bounds are fairly
tight for small systems in which coherence is im-
portant. For the open system case, we consider
a spin-boson model, showing that the coherence
bounds give the right dependence at short times.
Conclusions follow.

2 Coherence and work in closed quan-
tum batteries

2.1 Energy storage and coherence bounds

We describe a closed quantum battery by a quan-
tum system on a Hilbert space H ' Cn with time

dependent Hamiltonian H(t) = H0 +V (t). Time
evolution generated by the Hamiltonian is uni-
tary and reads ρ̇t = i[H, ρt], where we use units
in which ~ = 1. The energy of the battery is
measured as the expectation value of the bare
Hamiltonian H0 so that the work extracted from
the battery is [31]

W (t) = Tr
(
(ρ0 − ρt)H0

)
, (1)

where we used the fact that no entropy change
occurs for unitary dynamics. This kind of
quantum battery is described by a closed time-
dependent quantum system. The battery is ex-
ternally driven by V (t) in order to modify its
population levels and change its energy. We de-
rive upper bounds to the energy, and thus also
find maximum bounds on the ergotropy, which
is the maximum energy change when maximiz-
ing over unitary operations [31], and in partic-
ular of the isospectral twirling of the work, e.g.
the spectral-preserving unitary average over the
time evolution [33, 70, 81], or entangling power
[52].

We are interested in obtaining bounds in terms
of (generalizations of) quantum coherence. There
are different ways of defining quantum coherence
in a quantum system. First of all, there is the
coherence of the state in a given basis B = {|i〉}.
The norm of coherence for the state ρ can be
defined as the weight of the off diagonal ele-
ments in the basis B, namely C(ρ) :=

∑
i6=j |ρij |2

[17, 94, 101–103]. If we define the dephasing
super-operator D(·) =

∑
i Πi ·Πi, with Πi = |i〉〈i|

are rank one projectors, then in terms of the de-
phasing superoperator, we have that

C(ρ) = ‖ρ−D(ρ)‖2F , (2)

where ‖A‖F =
√

TrAA† is the Frobenius norm.
A simple calculation shows that C(ρ) = Tr ρ2 −
Tr (Dρ)2. As quantum coherence in a state is
a basis dependent notion, it is important to de-
termine what is the relevant basis. In a typical
quantum experiment, quantum coherence is rele-
vant in the basis of observables that will display
interference.

Here, we consider the instantaneous eigenbasis
of the unitary evolution operator Ut:

Ut =
n∑
j=1

eiθj(t)Πj(t), (3)
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where ρt = Utρ0U
†
t . For instance, if one

deals with a time-independent Hamiltonian H =∑
i λiΠi, then Ut =

∑
i e
−iλitΠi.

One can easily see that the work, expressed as
the energy storage, can be written as [33]

W = WA = Tr(U †tH0[ρ0, Ut])︸ ︷︷ ︸
A

, (4)

W = WB = Tr(Ut[U †tH0, ρ0])︸ ︷︷ ︸
B

, (5)

W = WC = Tr(ρ0[Ut, U †tH0])︸ ︷︷ ︸
C

. (6)

Lower and upper bounds to work can be found
by applying the Von Neumann’s trace inequal-
ity to the energy storage, resulting in bounds in
terms of the singular values of the Hamiltonian.
While these bounds are given for completeness in
App. A, the present paper focuses on bounds in
terms of the norm of the dephased operator.

The identities above show that the amount of
work one can extract from a quantum battery
is related to how much the initial state ρ0 an-
ticommutes with the evolution operator Ut (A),

with the operator U †tH0 (B), or how much these
last two operators anticommute with each other
(C). The amount of non-commutativity between
two operators is related to how much off diagonal
weight one operator has in the eigenbasis of the
other. For a state, this is the definition of quan-
tum coherence. More generally, we can define an
operator-coherence in the basis B as

CB(X̂) := 1
2
∑
j

‖[X̂,Πj ]‖2F . (7)

We refer to the above super operator C(·) as
generalized coherence operator and the quantity
CB(X̂) as the generalized coherence of an ar-
bitrary operator X̂ in B. In the following, all
the definitions of norms are provided in App. B.
The proof of the identity relationship between
Eq. (7) and Eq. (2) is provided for completeness
in App. C. For quantum states, this reduces to
the usual definition of Frobenius-norm coherence.
Given the notation above, let us now introduce
some useful bounds that we will use in the fol-
lowing, and proved in App. D. We will denote
with ‖ · ‖ the operator norm and with ‖ · ‖F the
Frobenius norm.

In general, one has the following Frobenius in-
equality:

|tr(A†B)| ≤ ‖A‖F ‖B‖F . (8)

Also, following from Hölder inequality, one has
(see App. B for details):

|tr(A†B)| ≤ ‖A‖
√

r(B)‖B‖F , (9)

where ‖A‖ is the operator norm, that is, the max-
imum eigenvalue of the operator A; and r(B) is
the rank of the operator B, i.e., the number of
its non-zero eigenvalues. Moreover, we will use
the following two inequalities:
Lemma 1 - Single Normal Coherence Inequal-

ity. Let A be a normal operator and let B be an
Hermitian operator. Then,

‖[A,B]‖2F ≤ 4‖A‖2CA(B). (10)

Proof. Let U =
∑
i ηiΠi, with ΠiΠj = δijΠi.

Then, we have

‖[U,A]‖2F =
∑
ij

ηiη
∗
j tr([Πj , A]†[Πi, A])

= 2
∑
ij

ηiη
∗
j tr
(
A2Πiδij −AΠiAΠj

)
= 2

∑
i

|ηi|2tr
(
A2Πi −AΠiAΠi

)
− 2

∑
i6=j

ηiη
∗
j tr
(
AΠiAΠj

)
(11)

We note that 2
∑
i |ηi|2tr

(
A2Πi − AΠiAΠi

)
≤

2supi|η2
iCU (A) and that

−2
∑
i6=j

ηiη
∗
j tr
(
AΠiAΠj

)
≤ 2

∑
ij

|ηiη∗j | |aij |2

≤ 2|η2
iCU (A). (12)

It follows that

‖[U,A]‖2F ≤ 4‖A‖2CU (A),

as claimed. �
A similar lemma applies to the following com-

mutator, whose proof is shown in App. D.
Lemma 2 - Double Normal Coherence Inequal-

ity. Assume A to be a normal operator and let
B be Hermitian. Then, the following bound ap-
plies:

‖[A†, BA]‖2F ≤ 4‖A‖4CA(B). (13)

The bound above applies in the case of open sys-
tems as we will see soon. Also, according to
Proposition 2 in App. D, one has ‖[A†, BA]‖2F =
‖[A†, AB]‖2F . In the following we will use also
the subadditivity property of the rank, e.g. given
two operators A : Rn → Rn, B : Rn → Rn, we
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have r(A + B) ≤ r(A) + r(B). Clearly, however,

r(A + B) ≤ min
(
r(A) + r(B), n

)
, and if U is a

unitary operator, r(U †AU) = r(A). Also, as a
side remark, we note that by using a different
procedure, also bounds in terms of l1 coherence
can be obtained (see for instance Lemma 2(b) in
App. D).

2.2 Bounds in terms of the generalized coher-
ence
Given the definitions above, we prove the follow-
ing three upper bounds:

|W (t)| ≤︸︷︷︸
A

2‖H0‖
√

min
(
2r(ρ0), n

)
CUt(ρ0)

≤︸︷︷︸
B

2‖ρ0‖
√
Cρ0(U †tH0)

≤︸︷︷︸
C

2‖ρ0‖F
√
CUt(H0) (14)

with n the dimension of the Hilbert space. We
also assumed that ρ0 : Rn → Rn. The ex-
pressions (A) and (C) bound the energy storage
in terms of the quantum coherence of ρ0 and
H0 in the basis of U . One problem with the
above bounds is that both the rank of H0 or the
2−norm operator coherence C(X) may scale with
the dimension n of the Hilbert space. In this case,
these bounds can become very loose for a high-
dimensional systems. On the other hand, for low-
dimensional systems, or for large n systems with
low coherence, they are tighter and turn out to
be useful.

We study specific models in Sec. 4. The bound
(B) relates work to the purity of the initial state,
as ‖ρ‖2F = Tr (ρ2). For a pure initial state work
is upper bounded by the operator norm. The
bound is saturated when the system is prepared
in the highest excited state. One can obtain a
further bound by substituting the operator norm
of ρ with its purity. As a side comment, it is in-
teresting to note that since the bounds (14) can
be also obtained in the interaction representa-
tion, this is also true if we use ρI in the interact-
ing representation ρI = U †0ρU0, U0 = e−iH0t and
Πj ’s are in the interaction representation as well.
Inequality A.— We start with the inequal-

ity |Tr(AB)| ≤
√

r(B)‖A‖‖B‖F , where r(X) is
the matrix rank (see App. B for a proof). We

now pick A = H0 and B = U †t [ρ0, Ut]. We

have ‖U †t [ρ0, Ut]‖F ≤ ‖[ρ0, Ut]‖F . Now note that

r(U †t [ρ0, Ut]) ≤ min(2r(ρ0), n) because of the sub-
additivity of the rank.

If ρ0 has a smaller rank, e.g., r(ρ0) < n/2, then
using Eq. (10), we obtain

|WA| ≤ ‖H0‖
√

2r(ρ0)‖[ρ0, Ut]‖2F

= ‖H0‖
√

2r(ρ0)4CUt(ρ0)

= 2
√

2‖H0‖
√

r(ρ0)CUt(ρ0), (15)

which is the upper bound we reported above.
Inequality B.— If we instead start with the

general bound [24, 97]

‖[A,B]‖2F ≤ 2‖A‖F ‖B‖F − 2(TrA†B)2, (16)

the bound would be loose, as ‖H0‖F is generally
very large. We can then apply the trace inequal-
ity of Eq. (8), and obtain the following upper
bound:

|WB||Tr(Ut[U †tH0, ρ0])| ≤ ‖Ut‖F
√
‖[U †tH0, ρ0])‖2F .

(17)
We can now use ρ0 as the operator in which we
perform the spectral basis expansion. Then, us-
ing Lemma 1, Eq. (10), we have

|Tr(Ut[U †tH0, ρ0])| ≤ 2‖ρ0‖
√
Cρ0(U †tH0) (18)

as claimed.
Inequality C.— We start with the trace in-

equality of Eq. (8), with |Tr(AB)| ≤ ‖A‖F ‖B‖F .
Using the fact that

√
tr(ρ2) = ‖ρ‖F =√

purity(ρ) ≤ 1, we obtain

|WC | = Tr(ρ0[Ut, U †tH0]) ≤ ‖ρ0‖F ‖[Ut, U †tH0]‖F .
(19)

Let us now focus on ‖[Ut, U †tH0]‖2F . Using the
spectral decomposition for the unitary operator
Ut, we have

(20)
|[U †, H0A]‖2F ≤ 4‖A‖4CA(B). (21)

We see that the expression above is not in the
form which can be directly expressed in terms of
coherence. Given the inequality above, then we
have the following inequality

|WC | ≤ 2‖ρ0‖F
√
CU (H0), (22)

which is the inequality we reported above. This
bound has an interesting application in terms of
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designing better quantum batteries, as it states
that better energy transfer can be achieved by a)
starting from a pure state and b) using a driving
system that is maximally not commuting with
the Hamiltonian H0 defining the energy.

2.3 Power and OTOC for closed systems

Similar bounds to those we have obtained for the
energy storage in the case of the closed system
can be obtained for the power, that is, for the
rate of change of the energy as a function of time.
The energy can be written as

W (t) = W (0) +
∫ t

0

d

dt′
W (t′)dt′

= W (0) +
∫ t

0
P (t′)dt′

≤W (t) t supt′∈[0,t]|P (t′)|. (23)

This inequality will be useful in later sections in
particular in the case of open systems.

Bounds for the power can then be useful for
obtaining bounds on the energy. In particular,
as we will see below, the bounds on the power
can be still expressed in terms of the coherence
operator CQ(·), but where as we will see in a
moment Q is different from the unitary operator.

Let us then consider the power in a closed sys-
tem. The power is given by

Pt = | d
dt
W | = |Tr

(
H0ρ̇t

)
|

= |Tr
(
H0
[
H0 + V, ρt

])
|. (24)

Following the three formulations of the work for-
mula as in the previous sections, we have

Pt = d

dt
W = Tr

(
H0ρ̇t

)
= Tr

(
H0
[
H0 + V, ρt

])
=︸︷︷︸
A

Tr
(
H0
[
V, ρt

])
=︸︷︷︸
B

Tr
(
V
[
ρt, H0

])
=︸︷︷︸
C

Tr
(
ρt
[
H0, V

])
,

where in the last equality we introduced the in-
teraction picture operators VI = U †0V U0 and

ρIt = U †0ρtU0.

Proposition - The power obeys the following
upper bounds:

P ≤︸︷︷︸
A

2‖H0‖ · ‖V ‖
√

r([V, ρt]) · CV (ρt), (25)

P ≤︸︷︷︸
B

2‖H0‖ · ‖V ‖
√

r([ρt, H0]) · CH0(ρt),(26)

P ≤︸︷︷︸
C

2‖ρ0‖F ‖V ‖
√
CV (H0), (27)

where ε and v̄ are the maximum eigenvalues of
the operators H0 and V .

Proof. As for the case of the work, we see that
the three different formulations of the work lead
to three different inequalities. We assume that
H0 and V are both Hermitian, and that we can
write both the Hamiltonian and the interaction
operator in a spectral decomposition

H0 =
∑
j

εjΠh
j , V =

∑
j

vjΠv
j , (28)

where Πj ’s are projector operators on the spec-
tral basis of H0 and V respectively. Let us focus
on the first inequality. Using the decomposition
above, inequality A of Eq. (25) can be written as

P ≤ ‖H0‖
√

r([V, ρt]) · ‖[V, ρt]‖2F .

We now use Lemma 1, Eq. (10), using as the
normal decomposition operator V . We thus have

P ≤ 2‖H0‖ · ‖V ‖
√

r([V, ρt]) · CV (ρt), (29)

where CV (ρt) is the coherence of ρt in the eigen-
basis of the interaction operator V . Since ρt has
the same rank of ρ0, and r(AB) ≤ r(A), we have
r([V, ρt]) ≤ r(V ) + r(ρ0). Thus, if V the interac-

tion of a many body system it can be very large
and thus reduce the applicability or tightness of
this bound.

Let us now look at Inequality B. We have

P ≤ ‖V ‖
√

r([ρt, H0]) · ‖[ρt, H0]‖2F . (30)

If we expand H0 =
∑
k εkΠh

k , then following the
steps of the previous inequality we obtain

P ≤ 2‖H0‖ ‖V ‖
√

r([ρt, H0]) · CH0(ρt), (31)

where we see that also here we have r([ρt, H0]) ≤
r(ρt) + r(H0), and for a many body system such
quantity can be very large.
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At last, let us now focus on Inequality C of
Eq. (26). We can use in this case Eq. (8), and
obtain

P ≤ 2‖ρt‖F
√
‖[H0, V ]‖2F , (32)

and use Lemma 1 again, in both the eigenbasis
of H0 and V . Note that since the evolution is
unitary, we have ‖ρt‖F = ‖ρ0‖F . We thus obtain
two equivalent inequalities

P ≤ 2‖ρ0‖F ‖V ‖
√
CV (H0)

≤ 2‖H0‖‖ρ0‖F
√
CH0(V ), (33)

which shows that the the power depends also on
the coherence of H0 in the basis of V and vicev-
ersa, and on the purity of the state. Clearly, this
is a result of the fact that if the interaction V
commutes with H0 no work can be done. Bound
C is the most interesting, as purity(ρt) < 1 and
the rank of H0 or V does not appear explicitly.
This said, both CH0(V ) or CV (H0) can be large.
�

Interestingly, we note that the bounds for P
take the form of Out-of-Time-Order-Correlators
(OTOC) [22, 70, 98, 99] at infinite temperature,
which grow fast in time for typical V and ρ.
Moreover, note that inequalities A and B can be
combined to obtain,(

P

‖H0‖ · ‖V ‖

)2
≤ min

(
Q(ρt), T (ρt)

)
, (34)

where we defined Q = r([ρt, H0])‖[ρt, H0]‖2F and
T = r([ρt, V ])‖[ρt, V ]‖2F . Here, we see observe
that if ρt commutes with all projectors, the
bound collapses to zero. Finally, inequality C
shows that the power is zero for [H0, V ] = 0, as
we discussed for the case of the total work.

3 Coherence and energy in open quan-
tum batteries
In the previous sections we discussed the case
of closed quantum batteries undergoing unitary
evolution. More generally, we can consider the
case of non-unitary quantum evolutions that de-
scribe, e.g., open quantum systems.

3.1 Bounds in terms of Kraus operators
A generic quantum operation can be described
by a quantum channel, that is, a completely pos-

itive, trace preserving map

E : ρ 7→ ρ′ = E(ρ) (35)

In the Kraus operator sum representation such a
map can be described as

E(ρ) =
∑
k

AkρA
†
k (36)

where the Kraus operators Ak are linear opera-
tors satisfying

∑
k A
†
kAk = I. This description

can be used to model the evolution of a sub-
system interacting with other quantum systems.
Indeed, for a composite system H = HS ⊗ HB
evolving unitarily with a Hamiltonian H ∈ B(H)
by U = exp(−iHt), the evolution of the re-
duced system is given by a completely positive
map ρS = TrB(UρU †) ≡

∑
k AkρAA

†
k. For open

quantum systems, or more generally for non uni-
tary evolution, work cannot be identified with the
difference of energy but one has to consider also
variations of entropy. Here we focus thus just on
the energy exchanged ∆E(t).

Now we move on to generalize the bounds to
energy exchange in terms of coherence for the
evolution map Et

Let us define ρa(t) = Aaρ(0)A†a. Also, we de-
fine E as

E(X) =
∑
a

AaXA
†
a, E∗(X) =

∑
a

A†aXAa.(37)

First, we note that because of the Hilbert-
Schmidt duality, we have

Tr(E(ρ)H0) = Tr(ρE∗(H0)). (38)

Then, we can rewrite

∆E =
∑
a

Tr
((
ρS(0)− ρa(t)

)
H0
)

=︸︷︷︸
A

∑
a

Tr
(
AaH0[A†a, ρS(0)]

)
=︸︷︷︸
B

∑
a

Tr
(
A†a[ρS(0), AaH0]

)
=︸︷︷︸
C

∑
a

Tr
(
ρS(0)[AaH0, A

†
a]
)
, (39)

We can upper bound |∆E| as in the case of the
closed quantum system, with the difference that
now instead of a unique evolution operator, we
have a Kraus representation, which albeit satisfy-
ing ‖

∑
aA
†
aAa‖ = ‖I‖ = 1, are not unitary oper-

ators. We can also write ‖A†j +
∑
a6=j A

†
aAaA

†
j‖ =

‖A†j‖.

Accepted in Quantum 2021-07-07, click title to verify. Published under CC-BY 4.0. 6



Proposition The following inequalities apply
for Hermitian Aa:

|∆E| ≤︸︷︷︸
A

2‖H0‖
∑
a

‖Aa‖2
√
R1
aCa(ρS(0)),

|∆E| ≤︸︷︷︸
B

2‖ρS(0)‖‖H0‖

·
∑
a

‖Aa‖
√
R2
a CρS(0)(AaH0),

|∆E| ≤︸︷︷︸
C

2‖ρS(0)‖F
∑
a

‖Aa‖2
√
Ca(H0), (40)

where R1
a = r([A†a, ρS ]) and R2

a =
r([ρS(0), AaH0]); Ca(·) is the coherence op-
erator in the spectral resolution of Aa, while
CρS(0)(·) is the generalized coherence operator in
the spectral basis of the reduced density matrix.
Proof. As an example, let us consider first the

latter equality in Eqs. (39). We can write, for
Equality C,

∆E =
∑
a

Tr
(
ρS(0)[AaH0, A

†
a]
)
.

We can thus write, using the trace inequality of
Eq. (8), the following expression:

|∆E| ≤ ‖ρS(0)‖F
∑
a

·
√
‖[AaH0, A

†
a]‖2F . (41)

We now make some assumptions about the
Kraus operators, i.e., that these are Hermitian
operators, in order to obtain an upper bound for
‖[AaH0, Aa]‖F in terms of the coherence of the
Hamiltonian in the Aa basis. While this assump-
tion is unphysical, it is a loss of generality and
extension of these bounds will be considered in
the future.

Using Lemma 2 in Eq. (13), we have that if Aa
is Hermitian, then,

|∆E| ≤ 2‖ρS(0)‖F
∑
a

‖Aa‖2
√
Ca(H0), (42)

where Ca(·) is the coherence operator in the spec-
tral basis of Aa,

Ca(H0) = 1
2
∑
j

‖[H0, Π̂j
a]‖2F . (43)

The final upper bound above is given in terms
of the sum of the coherences of ρ0 with respect
to the Kraus operators Aa, with the assumption
that r(H0) � 1. While these bounds might be
useful in some cases, typically it is easier to work

in terms of Lindblad operators, as we we do in
the next section.

If instead we start from Equality A and B
in Eqs. (39), and using the same procedure we
used in the closed system, we obtain the bounds
thanks to Lemmas 1 and 2, we obtain the follow-
ing bounds:

‖[A†a, ρS ]‖F ≤ 2‖Aa‖
√
Ca(ρS(0)),

‖[ρS(0), AaH0]‖F ≤ 2‖ρS(0)‖
√
CρS(0)(AaH0).

If we combine these with the inequality of Eq. (9),
we obtain

|∆E| ≤︸︷︷︸
A

2‖H0‖
∑
a

‖Aa‖2
√
R1
aCa(ρS(0)),

|∆E| ≤︸︷︷︸
B

2‖ρS(0)‖

·‖H0‖
∑
a

‖Aa‖
√
R2
a CρS(0)(AaH0),

where R1
a = r([A†a, ρS ]) and R2

a =
r([ρS(0), AaH0]). �

3.2 Bounds in terms of Lindblad operators
Consider the case of a quantum system HS in-
teracting with a bath HB. Under standard as-
sumptions such as Markovian evolution and small
couplings to the environment, the evolution of
the density matrix ρS of the subsystem can be
described by the Liouvillian operator L through
the master equation:

d

dt
ρS(t) = L(ρS(t)).

We can then write

ρS(t) = lim
n→∞

(1 + Lt
n

)n = eLtρS(0).

Then if we assume that ρS(t) has a Kraus repre-
sentation, at the order dt we must have

Â0 = I + dt(−iĤ +
∑
i=1

L̂iL̂
†
i ),

Âi =
√
dt L̂i, i ≥ 1,

see, e.g., [56].
The Kraus operators in fact contain both the

battery Hamiltonian and the interaction with the
bath. These enter in a non-trivial way into the
density matrix evolution for the battery in terms
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of Kraus operators. One way to overcome this
problem is via the fundamental theorem of cal-
culus, which gives

E(t)− E(0) =
∫ t

0

dE

dt
dt =

∫ t

0
Pt′dt

′. (44)

In order to bound the energy difference for
t > 0, we can use the integral inequality, e.g.
that for arbitrary scalar functions A(τ) we have∫ t

0 A(τ)dτ ≤
∫ t

0 |A(τ)|dτ ≤ t supτ∈[0,t]|A(τ)|.
This bound works in particular well for short
times t. In an open system we have that

d

dt
E(t) = tr

(
d

dt
ρS(t)H0

)
= tr

(( i
~

[ρS , H0 + V ] + L(ρt)
)
H0

)
,

where

L(ρS) =
∑
n

γn
(
LnρS(t)L†n −

1
2{L

†
nLn, ρS(t)}

)
with {·, ·} the anticommutators, and where the

Lindblad operators Ln satisfy tr[LpL†t ] = δpt. We
assume below that Ln is Hermitian that, while
not being the most general case, does include
many physically relevant models.

Following the definitions above, then, we prove
the following
Proposition (Upper bound on stored energy).

Consider an open quantum system with Hamil-
tonian H0 evolving under Hermitian Lindlad op-
erators. Then, the stored energy, as defined in
eqn. (44), satisfies the following upper bound:

~|E(t)− E0|
‖H0‖

≤ t(WA +WB), (45)

where the quantity WA can be expressed in the
following forms:

WA = 2 minτ∈[0,t]


‖V ‖

√
r([ρS(τ), V ])CV (ρS(τ))

‖ρS(τ)‖F
√
CH0(V )

‖V ‖
√

r([ρS , H0])CH0(ρS(τ)),
(46)

while

WB = 3
∑
n

γnsupτ∈[0,t]

√
rnCLn

(
ρS(τ)

)
, (47)

where CLn(ρS) is the coherence in the spectral
basis of Ln of ρS(τ). Let us call Πn

i the spectral
basis of Ln. Then,

CLn(ρS) =
∑
i

‖[Πn
i , ρS ]‖2F . (48)

The constant rn is given by rn = r(ρS) + r(Ln).
Proof. Following from the integral inequality,

we begin with,

~|∆E(t)| ≤
∫ t

0
|tr([ρS(τ), V ]H0)|dτ

+
∫ t

0
|tr(L

(
ρS(τ)

)
H0)|dτ. (49)

The first term can be bounded as we did in the
case of the closed system, thus we have the iden-
tities

|tr([ρS(τ), V ]H0)|︸ ︷︷ ︸
W 1

A

= |tr([V,H0]ρS(τ))|︸ ︷︷ ︸
W 2

A

= |tr([ρS , H0]V )|︸ ︷︷ ︸
W 3

A

.

It follows that can use, following the bounds of
Sec. 2.2, we immediately write the three possible
inequalities

W 1
A ≤ 2‖H0‖‖V ‖

√
r([ρS(τ), V ])CV (ρ0),

W 2
A ≤ 2‖ρS‖F ‖H0‖

√
CH0(V ),

W 3
A ≤ 2‖V ‖‖H0‖

√
r([ρS , H0])CH0(ρ0). (50)

In the expressions above we defined CV (·) =∑
k ‖[·,ΠV

k ]‖2F ,, and we wrote ΠV
k is the spectral

basis of the interaction operator V , and of course
similarly CH0(·) =

∑
k ‖[·,Π

H0
k ]‖2F , with ΠH0

k the
spectral basis of the battery Hamiltonian. Let us
now focus on the Lindbladian. First, note that
we have, because {A,B} = [A,B] + 2BA,

L
(
ρS(τ)

)
=
∑
n

γn
(
LnρSL

†
n −

1
2{L

†
nLn, ρS}

)
= −

∑
n

γn
(
[ρSL†n, Ln] + 1

2[L†nLn, ρS(τ)]
)
.

(51)

We thus have

~|∆E(t)| ≤WA

+
∑
n

γn
2

∫ t

0
|tr
(
[L†nLn, ρS(τ)]H0

)
|dτ

+
∑
n

γn

∫ t

0
|tr
(
[ρS(τ)L†n, Ln]H0

)
|dτ.

(52)

Let us now make the assumption the Lindblads
are Hermitian operators, e.g. L†n = Ln. This
bound is the one we use in the following for the
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case of the Spin-Boson model, for which such con-
dition holds true.

For the term of Eq. (52), we use the trace in-
equality of Eq. (9), and the fact that L†nLn is an
Hermitian operator, it has a spectral decomposi-
tion of the form

L̃2
n = L†nLn =

∑
k

|ηnk |2Πn
k . (53)

We can now use the bounds we used in terms
of coherence. We have, using Lemma 1 and
Eq. (10), we have

‖[L†nLn, ρS(τ)]‖2F ≤ 4‖Ln‖4CLn

(
ρS(τ)

)
, (54)

where CLn

(
ρS(τ)

)
=
∑
k ‖[Πn

k , ρS(τ)]‖2F . Since
tr(L†nLn) = 1, we have ‖Ln‖F = 1 and ‖Ln‖ ≤ 1.

If we call R′n = r([L†nLn, ρS(τ)]), then∫ t

0
|tr
(
[L†nLn, ρS(τ)]H0

)
|dτ

≤ 2 t ‖H0‖ · supτ∈[0,t]

√
R′nCLn

(
ρS(τ)

)
For the second term, in Eq. (52), we need to

use the fact that Ln is Hermitian.
If Ln is an Hermitian operator, then it does

have a spectral decomposition of the form Ln =∑
i η
n
i Πn

k , and it follows trivially that L̃2
n =∑

i |ηni |2Πn
k . In this case, we obtain directly from

Eq. (52) that, calling R′′n = r([ρS(τ)L†n, Ln]), that

|tr
(
[ρS(τ)L†n, Ln]H0

)
|

≤ ‖H0‖
√
R′′n‖[ρS(τ)L†n, Ln]‖F .

At this point, we can use the fact that Ln is
Hermitian. We expand Ln in the Π’s basis, ob-
taining from Lemma 2 of Eq. (13):

‖[A,BA]‖2F ≤ 4‖A‖4CA(B)

. Using the bound above, we have

‖[ρS(τ)L†n, Ln]‖F ≤ 2‖Ln‖2
√
CLn(ρS(τ)).

Thus,

‖[ρS(τ)L†n, Ln]‖F ≤ 2
√
CLn(ρS(τ)). (55)

We now note that both R′n ≤ r(Ln) + r(ρS),
and R′′n ≤ r(Ln) + r(ρS). Let us thus call rn =
r(Ln) + r(ρS).

Thus, we have,

~|∆E(t)|
‖H0‖t

≤WA + 3
∑
n

γnsupτ

√
rnCLn

(
ρS(τ)

)
,

(56)

which is the final result which we use in the state-
ment above. �

In the following, we will apply the bounds for
the case of the slave boson model.

3.3 Ensemble of batteries

A setup of interest for practical applications
is the case of an array of batteries interacting
through a potential V , and we want to show how
the coherence enters in this case. Here we as-
sume that the system is closed, but the formal-
ism is analogous to the case of the open system
as we discuss below. We consider M copies of the
same system, a battery, coupled only via an in-
teraction potential. Formally, such situation can
be represented as follows. The M copies of the
same system are represented by a Hamiltonian
of the form H =

⊕M
i=1Hi =

⊕M
i=1(H i

0 + V i), e.g.
an ensemble of batteries If we assume that the M
copies are not interacting, since ρ(t) = ⊗Mi=1ρi(t),
we have

W (t) =
M∑
i=1

Tri
((
ρi(t)− ρi(0)

)
H i

0

)
− E0

≤MWmax,

where Wmax is maximum work obtained for the
single system H i

0 + V i. In this case we can ap-
ply the formalism of the closed system for each
subsystem and thus it is not so interesting. If
however we only have that H0 =

⊕M
i=1H

i
0 =∑M

i=1H
i
0 ⊗ IS\i, while V does have support on

multiple batteries single battery, then we have
that the density matrix is in general not factor-
izable, and the energy storage can be written in
the form

W (t) = Tr
(
ρ(t)(

M∑
i=1

H i
0 ⊗ IS\i

)
)
− E0

=
M∑
i=1

Tri
(
TrS\i

(
ρ(t)

)
H i

0

)
− E0,

where we denote with S \ i as the system S
without the battery subsystem i, and where
ρi(t) = TrS\i

(
ρ(t)

)
is the local density matrix

relative to subsystem i. In this case, the time
evolution of the reduced density matrix can be
written in terms of a positive map [84, 89].
We can write ρi(t) =

∑
aA

i
a(t)ρi(0)Aia(t), with∑

aA
i
a(t)(Aia(t))† = I where Aia are Kraus oper-
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ators. It follows that we can write

W (t) =
M∑
i=1

∑
a

Tri
((
Aia(t)ρi(0)Aia(t)† − ρi(0)

)
H i

0

)

=
M∑
i=1

∑
a

Tri
(
ρi(0)[Aia, H i

0(Aia)†]
)
,

where in the second line we have used the Hilbert-
Schmidt duality. Here, we called Aia the Kraus
operators to avoid confusion with the open sys-
tem case, but the meaning is similar.

If the Kraus operators (Ai)†a = Aia are Hermi-
tian, similarly to what we have done before, they
can be expanded via a spectral decomposition of
the form Aia =

∑
k(ηai )k(Πa

i )k, and we can apply
Lemma 2 of Eq. (13), proven in App. D. Using
the spectral basis decomposition, then we have

‖[Aia, H i
0A

i
a]‖2F ≤ 4‖Aia‖4Cai(H i

0), (57)

where Cai(H i
0) = 1/2

∑
k ‖[(Πa

i )k, H i
0]‖2F . We

now use the trace inequality of Eq. (8), obtaining

W (t) ≤
M∑
i=1

∑
a

‖ρi(0)‖F ‖[Aia, H i
0(Aia)†]‖F .

≤ 2
M∑
i=1

∑
a

‖ρi(0)‖F ‖Aia‖2
√
Cai(H i

0),(58)

from which it follows that the energy storage of
the system can be reduced to coherence bounds
on the single subsystem.

4 Models study
In this section we study the work and charging
power for some models. We consider two closed
quantum systems. The first one is a two-body
spin model, the second one a quantum many-
body system described by a the anisotropic XY
spin chain. The third model studied is the open
quantum system of a single spin in a bosonic
bath.

4.1 A 2-body system example
As described previously, the bounds we have ob-
tained can be tight for small systems. Here
we consider first a 4-level system given by two
spins s1 and s2 interacting with two external field
~G(t) and ~F (t) and among themselves [15, 16].
The Hamiltonian of the system is assumed to
be H = H0 + V , with H0 = 2Jŝ1 ⊗ ŝ2, where

Figure 1: The second protocol proposed for the closed
4-level system via local fields with opposite orientation.

ŝ1 = ~σ ⊗ I and ŝ2 = I ⊗ 1
2~σ. The external fields

enter in V , with V = 2
(
ĥ1 ⊗ I + I ⊗ ĥ2

)
, with

ĥ1 = ~σ · ~G, ĥ2 = ~σ · ~F .
For simplicity, here we consider ~F and ~G to be

aligned along the z direction, thus ~G = (0, 0, B1)
and ~F = (0, 0, B2), which is an exactly solvable
model. In this system, the energy can be stored
due to the coupling between the two spins. If
one introduces B± = B1(t) ± B2(t),the spinor
Ψ = (v1, v2, v3, v4) satisfies the equation

i∂tΨ = ĤΨ,

with

H =

B+ + J/2 0 0 0
0 B− − J/2 J 0
0 J B− − J/2 0
0 0 0 J/2 − B+


= H0 + V, (59)

where we assume H0 to be dependent only on
the J coupling. The components 1 and 4 of the
spinor satisfy the solution, assuming that J is
constant,

v1(t) = e−i
∫ t

0 B+(t′)dt′−iJ
2 tv1(0), (60)

v4(t) = e+i
∫ t

0 B+(t′)dt′−iJ
2 tv4(0). (61)

If we define ψ′ = (v2, v3), then these components
satisfy the equation

i∂tψ
′(t) = (~σ · ~K − J

2 )ψ̃′(t), (62)

where ~K(t) =
(
J, 0, B−(t)

)
.

4.1.1 Work and Power

Let us thus consider the following two quench
protocols.
First protocol. In the first, we have B1(t) =

B2(t) = θ(t− t0)B. Then, B+ = 2Bθ(t− t0) and
B−(t) = 0. Thus, the spin components v2 and v3
decouple from the external field. In this case, ψa
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is a equivalent to a single spin interacting via a
σz Zeeman coupling with external field B+. The
work is given by W (t) = Tr(ρ(t)H0)−Tr(ρ0H0),
and the components 2 are 3 decoupled and do
not change their populations. Thus, this proto-
col while natural is not particularly interesting.
Using Eq. (61) it is not hard to see that W (t) = 0.
Another way of seeing this is through the inequal-
ity B of Eq. (14). We have in fact that ΠV ’s are
identical to the projectors on subspaces spanned
by H0, and thus CUt(H0) = 0.

Second protocol. We consider B1(t) =
−B2(t) = θ(t − t0)B, as shown in Fig. 1. Then,
B− = 2Bθ(t − t0) and B+(t) = 0. Also in this
case the components v1 and v4 decoupled and do
not contribute to the change in energy. We fol-
low all the steps in order to calculate the bounds
later. The Stone operator for the reduced system
is given by

U(t > t0) = e
−i
∫ t

t0
(~σ· ~K(t)−J

2 )dt

= e
−i
(
σxJ(t−t0)+2B(t−t0)σz−J

2 (t−t0)
)
.

If we use the formula eian̂·~σ = I cos(a)+i sin(a)n̂·
~σ, then we can write, using a =

√
J2 + 4B2 and

n̂ = (Ja , 0,
2B
a )

U(t > t0) = ei
J
2 (t−t0)(I cos(a(t− t0))

+i sin(a(t− t0))(J
a
σ̂x + 2B

a
σ̂z)
)
.

If we define ρ0 on the basis of v2, v3, we have
a base Hamiltonian for the battery defined as
H0 = Jσx − J

2 I (with eigenvalues J/2,−3/2J)
and V = 2Bσ̂z (with eigenvalues ±2B). We thus
have ‖H0‖ = 3

2J and ‖V ‖ = 2B. The eigenval-
ues and eigenvectors of the unitary operator U
are given by

Λ(U) = {ei(
J
2±a)}, |v±〉 = (2B ∓ a

J
, 1),

and thus we can easily obtain with projector op-

erators Π± = |v±〉〈vt
±|

‖v±‖2 . It follows that, using the

identities

[σx, σzσx] = −2σz,
[σz, σx] = 2iσy,

[σz, σzσx] = 2σx,

and after some algebra, we obtain

W (t ≥ t0) = Tr(ρ0[Ut, U †tH0]) (63)
= Tr(ρ0 ˆ∆H(t)),

where we defined the operator ˆ∆H(t) as

ˆ∆H(t) = −4BJ2 sin2 (a(t− t0))
a2 σ̂z (64)

− 2BJ sin (2a(t− t0))
a

σ̂y

+ 4B2J (1− cos (2a(t− t0)))
a2 σ̂x

Since the system in this protocol has only two
involved states, we can write

ρ0 = ε0I + ε1σx + ε2σy + ε3σz, (65)
with the constraints Tr(ρ0) = 1. If we impose the
constraint, we must impose ε0 = 1

2 , and write

ρ0 = I

2 + ε1σx + ε2σy + ε3σz. (66)

The purity of the state is then given by

Tr(ρ2) = 1
2 + 2(ε21 + ε22 + ε23) = 1

2 + 2‖~ε‖2,

from which it follows that ‖ε‖2 ≤ 1
4 . The work

can then be written as

W (t) = 4BJ
((4Bε1 − 2Jε3) sin2 (at)

a2

− 2ε2 sin (at) cos (at)
a

)
. (67)

It is easy to see that work is zero only if 4Bε1 −
2Jε3 = 0 and ε2 = 0.

Let us now focus on the upper bound. In order
to calculate the upper bound, we first evaluate

CUt(ρ0) = ‖[Π+, ρ0]‖2 + ‖[Π−, ρ0]‖2

= 4
(
ε22
(
4B2 + J2)+ 4B2ε21 − 4BJε3ε1 + J2ε23

)
4B2 + J2 .

It follows that bound A for the work is given by

|W (t)| ≤√
8J2

(
ε22 (4B2 + J2) + 4B2ε21 − 4BJε3ε1 + J2ε23

)
4B2 + J2 ,

from which we see that the upper bound is of
the same order of magnitude as the work itself.
Also, it is easy to see that if ε2 = 4Bε1−2Jε3 = 0,
then ε22

(
4B2 + J2) + 4B2ε21 − 4BJε3ε1 + J2ε23 =

0, which implies that the maximum work is also
zero, showing that the bounds are tight for this
set of parameters.

We can also calculate the power. We observe
that
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P (t) = dW (t)
dt

= 8BJ
((Jε3 − 2Bε1) sin

(
2t
√

4B2 + J2
)

√
4B2 + J2

− ε2 cos
(
2t
√

4B2 + J2
)
,
)

(68)

while our bound A on the power is given by ‖H0‖·
‖V ‖

√
r([V, ρt]) · CV (ρt). We have Π1

V = (1, 0)t ⊗
(1, 0) and Π2

V = (0, 1)t ⊗ (0, 1), or

Π1
V =

(
1 0
0 0

)
,Π2

V =
(

0 0
0 1

)
, (69)

It follows that

CV (ρ0) = 2(ε21 + ε22). (70)

PC ≤ 2 ∗ 3/2J ∗ 2B ∗
√

2(2ε21 + 2ε22 =

12BJ
√
ε21 + ε22), which is also of the same order

as the power.

4.2 The anisotropic XY model
With increasing experimental control over larger
unitary quantum systems, it becomes more press-
ing to study the thermodynamics of many-body
quantum systems. Theoretical studies have
shown advantages by exploiting collective effects
in quantum batteries [23, 32, 36, 41, 69, 83].
Here, we apply the bounds on work extraction
to a simple many-body spin system described by
the XY model [18, 39, 73], which can be investi-
gated experimentally [59, 104].

The (anisotropic) transverse-field XY model in
one dimension is a well-known spin model in Sta-
tistical Mechanics. One of its advantages is that
properties of the ground and excited states are
known exactly. The transverse XY Ising model
has an interesting phase diagram in which also
quantum phase transitions are present. In re-
cent years the transverse field XY model has been
studied in relation to quantities of interest in
quantum information theory, such as entangle-
ment and quantum discord. Also, it has been
shown that fidelity measures present signatures
of QPTs.

The Hamiltonian of the anisotropic XY spin
chain reads

H = −1
2

N∑
i=1

(1 + η

2 σxi σ
x
i+1 + 1− η

2 σyi σ
y
i+1 + hσzi

)
,

(71)
where h is the external magnetic field, and η is
the anisotropy parameter. We also assume per-
odic boundary condition.

For any value of η, h, the XY model can be
diagonalized using the Jordan-Wigner transfor-
mation:

σzi = 1− 2c†ici, σ
−
i = c†ie

iπ
∑i−1

i=1 c
†
jcj . (72)

The Hamiltonian is then diagonalzed in the form

H =
∑
k>0

Λk
(
γ†kγk + γ†−kγ−k − 1

)
. (73)

Here, the fermionic operator γk is defined by the
Bogoliubov transformation of the Fourier trans-
formed operators, ck i.e.

ck = cos θkγk + i sin θkγ†−k, (74)

with the dispersion ralation given by Λk =√
ε2k + η2 sin2 k, εk = h − cos k, and the angle

θk = tan−1[(η sin k)/(εk + Λk)].

4.2.1 Work and power

We take the XY model Hamiltonain without ex-
ternal field h as the internal Hamiltonian of the
battery, and the battery is initially prepared in
the ground state of its internal Hamiltonian. The
charging process is achieved by turning on a con-
stant field, i.e., via a standard quantum quench.
In the following, we use superscript (1) to la-
bel the operators with initial parameters, and (2)
(or no superscript for simplicity) to label the op-
erators with quenched parameters. The initial
and quenched fermionic operators γk are linked
through

γ
(1)
k = cosχkγ

(2)
k + i sinχkγ

(2)†
k , (75)

where χk ≡ θ
(2)
k − θ

(1)
k . This allows us to express

the initial Hamiltonian in terms of the operators
with the quenched parameters, i.e.,

H(1) =
∑
k>0

Λ(1)
k [cos2 χk(γ†kγk + γ†−kγ−k)+

+ sin2 χk(γkγ†k + γ−kγ
†
−k)+

+ 2i sinχk cosχk(γkγ−k + γ†kγ
†
−k)− 1].

(76)
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Figure 2: Work W (t) (left) and power P (t) (right) after
a quantum quench of the anisotropic XY model (71) for
N = 1000 spins, with the anisotropic parameter η = 0.5.
The battery internal (unquenched) Hamiltonian has zero
field, h(1) = 0. Colors label various quenching field h(2)

at both non-critical (black dashed and blue dotted) and
critical values (red solid).

The initial ground state of the battery internal
Hamiltonian can also be written in terms of the
quenched operators,

|ψ(0)〉 =
∏
k>0

(cosχk − i sinχkγ†kγ
†
−k)|0k〉, (77)

where |0k〉 is the vaccum state of γ±k. The time
evolved state is then,

|ψ(t)〉 =
∏
k>0

(cosχkeiΛkt−i sinχke−iΛktγ†kγ
†
−k)|0k〉.

(78)
Now, the time-dependent work and power can

be computed explicitly, i.e.,

W (t) = 2
∑
k>0

Λ(1)
k sin2 2χk sin2 Λ(2)

k t, (79)

and

P (t) = 2
∑
k>0

Λ(1)
k Λ(2)

k sin2 2χk sin 2Λ(2)
k t. (80)

For non-zero anisotropic paramaters η, the
XY model exhibits two regions of criticality at
h = ±1. Figure 2 depicts the charging work
(79) and power (80) with the battery Hamilto-
nian quenched to critical and non-critical values.
The battery reaches a more stable charging pro-
cess and a higher work with a critical quench.
However, even though non-critical quenches fi-
nally charges the battery to a lower work, the
initial power is higher for larger quench fields.
Therefore, an optimal protocol could use an ini-
tial high field to fast charge the battery, and then
switch to a critical field to maintain the maximal
work.

4.2.2 Upper bounds

We now apply the some of the upper bounds de-
rived in the previous sections to the work and
power of the anisotropic XY model.

The first example we studied is the bound (C)
for work, which involves the coherence of the in-
ternal Hamiltonian H0 = H(1) in the basis of the
evolution operator. The coherence of H0 can be
computed as well, i.e.,

CUt(H0) =

∑
α

∑
k>0

δαk,α−k
(−1)βk(α)Λ(1)

k (1 + cos (2χk))

×
∑
k>0

δαk,α−k
(−1)βk(α)Λ(1)

k (1− cos (2χk))

 ,
(81)

where the outer summation ranges over all
possible configurations of the strings α =
{αk, α−k}k>0 and α±k is either 0 or 1. δ is the
Kronecker delta. Also,

βk(α) =
{

0, if αk = α−k = 1,
1, if αk = α−k = 0. (82)

This result gives a quantitative evaluation of
the energy extracted in a quantum many-body
quench since the work extracted is basically up-
per bounded by twice the square root of the
coherence of H0 (See Eq. (14)). As confirmed
by our numerical evaluation, this upper bound
increases exponentially fast in the number of
spins. Consequently, for the quench parameters
in Fig. 2, this bound is larger than the exact work
for a few orders of magnitude. The exponential
scaling is more apparent for the upper bounds of
the power. Hence, these upper bounds can be
very loose for many-body systems.

The more interesting case is the upper bound
(A) of the work in terms of the coherence of the
initial state in the basis of the time evolution op-
erators. The the quench Hamiltonian is time-
independent, hence the eigen-basis of the unitary
evolution operator U is the basis of the Hamilto-
nian itself, i.e.,

Πα =
∏
k>0

(γ†k)
αk(γ†−k)

α−k |0〉〈0|γαk
k γ

α−k

−k . (83)

Here, αk is either 0 or 1, and the string α =
{αk, α−k}k>0 labels posibble configurations of all
αk’s. There are 2N possible configurations corre-
sponding to the 2N projectors.
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For each given projector, its average over the
initial state ρ0 = |ψ(0)〉〈ψ(0)| is

〈ψ(0)|Πα|ψ(0)〉

=
∏
k>0

(
cos2 χkδαk,0δα−k,0 + sin2 χkδαk,1δα−k,1

)
.

(84)
The coherence is then

CUt(ρ0) =Trρ2
0 −

∑
α

|〈ψ(0)|Πα|ψ(0)〉|2

=1−
∏
k>0

(
cos4 χk + sin4 χk

)
.

(85)

The maximum eigenvalue of initial Hamiltonian
is

E(1)
max =

∑
k>0

Λ(1)
k . (86)

Together with the coherence of the initial state,
we get the upper bound (A) of the work,

W (t) ≤ 2
√

2|
∑
k>0

Λ(1)
k |
√

1−
∏
l>0

(
cos4 χl + sin4 χl

)
(87)

Since χk ≡ θ
(2)
k −θ

(1)
k is cannot be zero for all k′s,

unless the quenched Hamiltonian is the same as
the initial Hamiltonian, the product term in the
above bound vanishes exponentially fast with the
system size. Hence, this upper bound of the work
is only determined by the largest eigenvalue of
the internal Hamiltonian, i.e., its operator norm,
which scales linearly in the number of spins, and
again can be very loose for many-body systems.
However, they could be very useful for small sys-
tems which are more sensitive to the coherence of
the initial state. In this case the product term in
the above equation can have non-trivial contribu-
tions. Fig. 3 shows the upper bound (A) and the
maximum work extracted from the exact solu-
tion (79) at various number of spins. The bound
becomes tighter for smaller particle numbers.

4.3 Spin-Boson model

As an application of the bounds in the open
system, we consider the simplest exactly solved
model, the spin-boson model [30, 42, 82]. The
spin-model model describes the precession of the
two-level system of a spin in an open environ-
ment. The open environment is described by a
reservoir of Harmonic oscillators. The model is

Figure 3: Comparisons between the upper bound
(Eq. (87)) of the work for the anisotropic XY model
and the maximum value of the exact work solution (79).

well known because it serves the purpose of de-
scribing decoherence in a simple exactly solvable
setting [89].

The total Hamiltonian of the system is given
by

H = 1
2(ω0σz −∆0σx)︸ ︷︷ ︸

H0

+
∑
k

ωkb
†
kbk

+
∑
k

σz(gkb†k + g∗kbk). (88)

The constants ω0 and ωk are the level spacing
of the two-level system and the frequencies of
the bosonic degrees of freedom respectively, with
[bk, b†k′ ] = δk,k′ . The parameter ∆0 is associated
to the tunneling between the two states.

Here, we consider S to be the two-level sys-
tem. Under the condition of markovianity, the
master equation for the spin-boson system can
be written in the form [89]

d

dt
ρS = i

~
[ρS , H0] + γσzρSσ

†
z −

γ

2σ
†
zσzρS −

γ

2σ
†
zσz

= iω0
2~ [ρS , σz]−

i∆0
2~ [ρS , σz] + γσzρSσz − γρS ,

(89)

where we used σ2
z = I. where the single Lindblad

operator are given by L1 = L†1 = σz, and thus is
Hermitian. In the derivation of the reduced equa-
tion above the assumption of a thermal reservoir
is made, with the constant γ > 0 containing the
spectrum of the bath.

For the reduced system, it is easy to see that
the energy storage is given by

E(t) = ω0
2 tr(ρSσz)−

∆0
2 tr(ρSσx). (90)
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If we define

ρS =
(
ρ11 ρ12
ρ21 ρ22

)
→ E(t) = ω0

2 (ρ11 − ρ22)

− ∆0
2 (ρ12 + ρ21).

(91)

The evolution of the system is given by the
following general dynamical equations:

ρ̇11 = −1
2 i∆0 (ρ12 − ρ21) ,

ρ̇22 = −1
2 i∆0 (ρ21 − ρ12) ,

ρ̇12 = −γρ12 −
1
2 i∆0 (ρ11 − ρ22)− 1

2 iρ12ω0,

ρ̇21 = −γρ21 −
1
2 i∆0 (ρ22 − ρ11) + 1

2 iρ21ω0,

(92)

from which it is immediate to see that the trace
of the density matrix is preserved, but the off-
diagonal terms change due to decoherence arising
from the interaction with the bath. Substituting
the equations above into dE

dt we obtain

dE

dt
= −∆0

2
(
ρ12

(
−γ − iω0

2

)
+ ρ21

(
−γ + iω0

2

))
= ∆0Re

(
ρ12

(
γ + iω0

2

))
= ∆0γRe(ρ12)− ∆0ω0

2 Im(ρ12), (93)

from which we see instead that a change in en-
ergy is associated to the tunneling, and is zero
otherwise. It is also easy to see that the energy
storage changes when coherence is present, due
to the proportionality of its derivative with ρ12.

We now wish to apply the bounds of Sec. 3.2,
in particular Eq. (45), in which only term WB

contributes:

|∆E(t)|
‖H0‖

≤ 3γtsupτ∈[0,t]

√
rnCLn

(
ρS(τ)

)
.

To this end, we first calculate various quantities
that are related to the bound. The eigenvalues of

Λ(H0) = {±1
2

√
∆2

0 + ω2
0}. Thus we have ‖H0‖ =

1
2

√
∆2

0 + ω2
0 ≈ ∆0/2, while ‖L2

1‖ = 1 and l1 = 1.
Also, both Rn ≤ 4 and rn ≤ 2. The spectral
decomposition of σz is given by

Π1 =
(

1 0
0 0

)
,Π2 =

(
0 0
0 1

)
, (94)

from which, after an immediate calculation, we
get √

CL1(ρS) =
√

2(|ρ12|2 + |ρ21|2). (95)

Using the fact that ρ21 = ρ∗12, assuming ~ = 1,
and applying the upper bound of Eq. (45), we
obtain

|E(t)− E0|
t

≤ ∆03
√

2γsupτ∈[0,t]|ρ12(τ)|

≤ 4.24(2)∆0γ|ρ0
12|. (96)

Let us now make some plots in the regime of
strong decoherence and tunneling, in which we
have γ � ∆0 � ω0. In this case we have
ρ12(t) = ρ∗21(t) ≈ ρ0

12e
−(iω0

2 +γ)t, and thus,

E(t)− E0 ≈ |ρ0
12|∆0

2e−γt
(
− cos

( tω0
2
)

+ eγt
)

2 .

(97)

At the first order in t, we have instead the exact
result

|E(t)− E0|
t

≈ 0.25∆0γ|ρ0
12|+O(t).

We thus see that for short times the bound has
the same functional form as the actual first order
approximation of the energy, and the two con-
stants are both of order one.

5 Conclusions

In this paper, we studied and have made an ex-
plicit connection between work and coherence
in a quantum battery. In particular, we have
provided a quantitative framework for evaluat-
ing upper bounds to energy storage in quantum
batteries, based on the notion of Hilbert-Schmidt
density matrix coherence, and its generalization
to other operators like the Hamiltonian used to
measure the energy of the system, and the inter-
nal Hamiltonian H0. We derived two key results.
The first one is that the charging (or discharging)
of a quantum battery is governed by the amount
of non commutativity of both the density matrix
of the system and the internal Hamiltonian in the
basis given by the spectral decomposition of the
interaction. We provided bounds which clarify
the intricate interplay between coherence of the
density matrix, of the Hamiltonian and the in-
teraction in order for work to be performed by a
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quantum battery. The amount of non commuta-
tivity is quantified by using the Frobenius norm,
namely by summing the modulus squares of all
off-diagonal elements of an operator in the de-
sired basis. For a state, this is a measure of coher-
ence, and is bounded by one. For a generic oper-
ator, e.g. H0, this form of coherence can be very
large and scale with the size of the Hilbert space
in certain cases, rather than the number of parti-
cles in the system. As such, some of our bounds,
if taken as they are, can be very loose for large
systems. Nonetheless, this also implies that some
of our bounds can capture the behaviour of small
systems well. We have tested these bounds on
two exactly solvable closed quantum models, i.e.
a 4-level system and the anisotropic XY model.
In the former, our bounds are fairly tight, while
in the latter we show under which conditions the
operator coherence is small enough in order to
obtain a tight bound.

The second result is the extension to the case
of generic quantum channels, e.g., open quantum
systems, both in terms of Kraus and Lindblad
operators. In order to see how these bounds ap-
ply quantitively, we have studied ensembles of
quantum batteries and the Spin Boson model,
showing the role of coherence in charging such
battery model. In the case of open systems we
have focused on Hermitian Kraus and Linblad
operators, but some of these bounds can be ex-
tended to non-Hermitian ones, with some techni-
cal challenges. This will be the subject of future
investigations. In perspective, we find that the
results of this paper open a certain number of
interesting questions. Since in an open quantum
system coherence is typically exponentially sup-
pressed, we are interested in showing how deco-
herence free subspaces [62, 72, 100] can be used
to obtain more efficient quantum batteries. In
the spirit of the typicality arguments used both
in [33, 81, 102] we can ask how typical quantum
maps can be used to exchange energy. Finally,
an important generalization would be to take in
consideration the entropy change in open quan-
tum systems and extend these results to the free
energy available to a quantum battery.

In the case of many-body quantum batteries,
it is natural to connect coherence to entangle-
ment within the constituents of the battery. Con-
nections between the charging of quantum bat-
teries and their entanglement have been studied

in [6, 23, 32, 61, 68]. In this paper we have
focused on an Frobenius measure of coherence.
While it does not satisfy all the coherence mono-
tones axioms defined in [17], such coherence mea-
sure is connected to entanglement, in the sense
that the more a state is entangled the less co-
herence can be stored in certain local parts of a
system, which can be seen analyzing the Frobe-
nius measure of coherence, via a Schmidt decom-
position [55]. Thus, the higher the entanglement
in a certain system the more coherent the state
can be. In addition, some of our bounds could
possibly be extended to l1 measures of coher-
ence, which will be to focus of future investiga-
tions. If this is case, it is known that from the
point of view of resource theory that entangle-
ment and coherence are quantitatively equivalent
[92]. Thus, while our bounds focused on the re-
lation between energy storage and coherence, a
complementary picture can be obtained in terms
of entanglement.

Moreover, in [33, 70] it has been shown that, in
the context of random quantum batteries, there
is a quantum advantage with respect to classi-
cal devices due to the behavior of the spectral
gaps in the eigenvalues of the evolution operator
U . These gaps are relevant when the initial state
populates both eigenstates of U , and in turn this
contributes to the coherence of U in the basis of
the initial state. It would be interesting to see
whether one can bound the quantum advantage
of a battery in terms of coherence, which would
result in a guide to designing superior devices at
the microscopic level.
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[36] Aurélia Chenu, Javier Molina-Vilaplana,
and Adolfo del Campo. Work statistics,
loschmidt echo and information scrambling
in chaotic quantum systems. Quantum, 3:
127, March 2019. ISSN 2521-327X. DOI:
10.22331/q-2019-03-04-127.

[37] Luis A Correa, José P Palao, Gerardo
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A Work and von Neumann’s trace inequality
Let us now consider another set of bound for the work, based on von Neumann’s trace inequalities.
Consider two operators A and B. Let αi and βi be the ordered set of singular values of A and B, e.g.
αi−1 ≥ αi, and βi−1 ≥ βi. Then we have

|TrAB| ≤
n∑
i=1

αiβi, (98)

and if A and B are Hermitian, then
n∑
i=1

αiβn−i+1 ≤ TrAB ≤
n∑
i=1

αiβi. (99)

It follows that, if we use the equalities from the previous section:

W = Tr(U †tH0[ρ0, Ut])︸ ︷︷ ︸
A

= Tr(ρ[Ut, U †tH0)]︸ ︷︷ ︸
B

= Tr(Ut[U †tH0, ρ0])︸ ︷︷ ︸
C

, (100)

we have three pairs of operators: AA = U †tH0, BA = [ρ, Ut]; AB = ρ, BB = [Ut, U †tH0] and AC = Ut,

BC = [U †tH0, ρ].
Let us thus consider the singular values of the three pairs. Given an operator Q, the singular values

square are the (square roots of the) eigenvalues of the operator Q2 = Q†Q. Von Neumann’s trace

inequality can be applied to equality C as both ρ and [Ut, U †tH0] = H0 − U †tH0Ut are Hermitian
operators. The singular values of ρ are the eigenvalues of ρ2. Let di be the singular values of ρ, and
σi(t) be the singular values of H0 − U †tH0Ut. Then, it follows that

n∑
i=1

dn−i+1σi(t) ≤ |W (t)| ≤
n∑
i=1

diσi(t) (101)

We can perform another upper bound: W (t) <
∑
i diσi(A + B) where A is H0 and B = −U †H0U

now, we can use Weyl’s inequality for the singular values of the sum of Hermitian matrices. This is

W (t) < max d
∑
i

σi(A+B) < max d
∑
i

(σi(A) + σi(U †AU)) < 2max d
∑
i

σi(A) < 2nd maxi σi(H0)

One interesting comment is that both ρ and [Ut, U †tH0] are Hermitian operators. Thus, following
von Neumann’s trace inequality, we can both upper and lower bound the work with

W =
n∑
i=1

dn−i+1σi(t) ≤ |W (t)| ≤
n∑
i=1

diσi(t) = W (102)

where σi(t) are the singular values of ε̂ = H0 − UtH0U
†
t , while di are the singular values of ρ. It can

be immediately seen that the inequality of Eq. (102) is tighter.
These bounds can be further simplified as follows. Consider the upper bound W =

∑n
i=1 diσi(t).

We can further upper bound it via

W̄ ≤ d̄
∑
j

σj(t), (103)

where d̄ = maxidi. We note that numerically the upper bound above is hard to calculate because of
necessity to diagonalize 3 matrices. Now, for the singular values of a sum of Hermitian matrices we
have

∑
j σj(A + B) ≤

∑
j(σj(A) + σj(B)) [57]. Now note that B = −U †AU where U is a unitary

transformation, and thus σi(U †AU) = σi(A). It follows that

W̄ ≤ 2 n d̄ σ̄(H0) (104)
where n is the dimension of the Hilbert space and σ̄(H0) = maxiσi(H0). We thus obtain the upper
bound

|W (t)| ≤ 2 n d̄ σ̄(H0). (105)
which only requires to solve two maximum eigenvalues problems.
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B Norms definitions and upper bounds
In the paper we use various norms, so for the sake of clarity we define the following quantities. Given
a matrix A, we define the 2-norm as ‖A‖2 = supi σi(A), where σi(A) is the i-th singular value, while
‖A‖. For a square matrix A of size n, We then call the Frobenius norm (or Hilbert-Schmidt) norm
the following:

‖A‖F =
√∑

ij

|aij |2 =
√

TrA†A =

√√√√ n∑
i=1

σ2
i (A). (106)

A bound for singular value of two matrices will be the following. Consider two matrices A and
B. First, let us prove a property of the Frobenius norm that will turn useful in the following. If
tr(A†B) = tr(B†A) = 0, then ‖A+B‖2F = ‖A‖2F +‖B‖2F . In order to see this, notice that ‖A+B‖2F =
tr(A+B)†(A+B) = ‖A‖2F + ‖B‖2F + tr(A†B +B†A) from which the statement follows.

In general, we have the inequalities

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2. (107)

Let us now prove the following statement. In general, one has that |tr(AB)| ≤
√
‖A‖2F ‖B‖2F . In this

paper we do use the notation ‖A‖F for the Frobenius norm to avoid confusion with the spectral norm
‖A‖. A tighter series of inequalities can be however:

|tr(A†B)| ≤ σ1(A)
∑
j

σj(B) ≤ σ1(A)
∑
j

σj(B) ≤
√
nσ1(A)

√∑
j

σ2
j (B). (108)

The inequality follows from the following two statements, which can be proved using the singular
value decomposition. For any matrix M = A†B, we have |tr(M)| ≤

∑
i σi(M). Also, σi(A†B) ≤

σ1(A)σi(B), which can be proved using the Fischer min-max theorem.

Another inequality in terms of the Frobenius norm for the trace can be derived as follows. Consider
again |tr(A†B)|. We can write the following Hölder inequality

|tr(A†B)| ≤ |tr(|A†|p)|
1
p |tr(|B|q)|

1
q (109)

with 1/p+ 1/q = 1. Then, if we write p→∞ (or q), we can write

|tr(A†B)| ≤ ‖A‖‖B‖1 (110)

where ‖A‖ is the operator norm, and ‖B‖1 the 1-norm. We also make use of the inequality

‖B‖F ≤ ‖B‖1 ≤
√

r(B)‖B‖F (111)

where r(B) is the rank of B. The right inequality holds when the singular values of B are all the
same, while the left inequality when only one singular value is nonzero. We can say something more
if at least one of the two matrices can be diagonalized, which is our case in the paper.

If B = U †t [ρ0, Ut] = ρt−ρ0, then because of the subadditivity of the rank and the fact that a unitary
transformation does not change the rank, we have r(ρt − ρ0) ≤ 2r(ρ0). If the state ρ0 is thus pure, we
have that r(B) = 2, which is of order 1.

A bound we will also use is the one for the square root. In fact we have that∑
i

√
λiai ≤

√∑
i

λi

√∑
i

ai, (112)

which is due to the concavity of the square root.
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C Relation between C(·) and D(·)

Let us define the overlap in a certain basis defined by projector operators Πk as

C(X) = 1
2

n∑
j=1
‖[X,Πj ]‖2F . (113)

If the operator X is the density matrix, C(ρ) is exactly the coherence of ρ in the basis given by Π’s.

First, we show that the function C(X) is the coherence. We define the super operator D(·) =∑
i Πi ·Πi, and the coherence as

‖X −D(X)‖2F = ‖X −
∑
i

ΠiXΠi‖2F

= Tr
(
(X† −

∑
j

ΠjX
†Πj)(X −

∑
i

ΠiXΠi)
)

= Tr
(
X†X −

∑
j

ΠjX
†ΠjX −X

∑
i

ΠiXΠi +
∑
ij

ΠjX
†ΠjΠiXΠi

)
= Tr

(
X†X −

∑
i

X†ΠiXΠi

)
. (114)

Now we have

C(X) ≡ CΠ(X) = 1
2
∑
i

‖[X,Πi]‖2F = 1
2
∑
i

Tr
(
(XΠi −ΠiX)†(XΠi −ΠiX)

)
= 1

2
∑
i

Tr
(
ΠiX

†XΠi −ΠiX
†ΠiX −X†ΠiXΠi +X†ΠiΠiX

)
= 2

2Tr
(
X†X −

∑
i

X†ΠiXΠi

)
= ‖X −D(X)‖2F . (115)

It follows that if X = ρ, C(ρ) is the coherence operator in the basis of Π’s. Also, we note that,
notationally if we write Xij in the basis of Πi’s, in general

∑
i6=j |xij |2 = CΠ(X). If a certain operator

A has a spectral decomposition in terms of the projectors Π’s, we will write with an abuse of notation
CΠ(·) = CA(·).

Note that ‖[X,Πi]‖2F = �2(
∑
k |xik|2 − |xii|2). Also, note that

Tr
(
X†X −

∑
i

X†ΠiXΠi

)
= Tr

(
X†X

∑
i

Πi −
∑
i

X†ΠiXΠi

)
=
∑
i

Tr
(
X†XΠi −X†ΠiXΠi

)
=
∑
i

Tr(X†[XΠi,Πi]) (116)

which is an expression we will use later.

D Coherence bounds

In this section we prove various auxiliary propositions which enter into the coherence bounds lemmas
proved below and reported in the main text.

First, we prove the following:

Proposition 1. Assuming that ΠiΠj = δijΠi, we have

tr([Πi, AΠi]†[Πj , AΠj ]) = δij‖[Πj , AΠj ]‖2F

.
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Proof. Let us now prove some auxiliary properties related to the spectral decomposition. Note that
Π2
i = I, and ΠiΠj = 0 if i 6= j. Then we have

tr([Πi, AΠi]†[Πj , AΠj ]) = 0 (117)

for any operator A. In fact

tr([Πi, AΠi]†[Πj , AΠj ]) = tr
(
(ΠiAΠi −AΠi)†(ΠjAΠj −AΠj)

)
= −tr

(
(ΠiAΠi −ΠiA)(ΠjAΠj −AΠj)

)
= −tr

(
ΠiAΠiΠjAΠj −ΠiAΠiAΠj −ΠiAΠjAΠj + ΠiAΠiΠjAΠj

)
= −tr

(
ΠiAΠiΠjAΠj −ΠjΠiAΠiA−ΠjΠiAΠjA+ ΠjΠiAΠiΠjA

)
. (118)

Since in every term there is a product of the form ΠiΠj , the trace is given by

tr([Πi, AΠi]†[Πj , AΠj ]) = δij‖[Πj , AΠj ]‖2F , (119)

which completes the proof. �
Proposition 2 If ΠiΠj = Πiδij , then

‖[Πi, BΠj ]‖2F = ‖[Πi,ΠjB]‖2F (120)

Proof. Let us evaluate both sides of the equality. On the right hand side we have

tr([Πi,ΠjB]†[Πi,ΠjB]) = tr
(
(ΠiΠjB −ΠjBΠi)†(ΠiΠjB −ΠjBΠi)

)
= tr

(
(BΠiΠj −ΠiBΠj)(ΠiΠjB −ΠjBΠi)

)
= tr(B2ΠiΠjΠiΠj −BΠiΠjΠjBΠi −ΠiBΠjΠiΠjB + ΠiBΠjΠjBΠi)

= tr
(
δijB

2Πi − 2δijBΠiBΠi + ΠiBΠjB
)
. (121)

On the left hand side instead we have

tr([Πi, BΠj ]†[Πi, BΠj ]) = tr
(
(ΠiBΠj −BΠjΠi)†(ΠiBΠj −BΠjΠi)

)
= tr

(
(ΠjBΠi −ΠiΠjB)(ΠiBΠj −BΠjΠi)

)
= tr

(
ΠjBΠiΠiBΠj −ΠjBΠiBΠjΠi −ΠiΠjBΠiBΠj + ΠiΠjB

2ΠjΠi

)
= tr

(
BΠiBΠj − 2δijBΠiBΠj + δijB

2Πi

)
(122)

from which we see that the equality applies. �
Proposition 3 Let ΠiΠj = δijΠi. Then, if A is Hermitian, we have

‖[Πi, AΠi]‖2F = 1
2‖[Πi, A]‖2F . (123)

Proof. Note that, for A Hermitian

tr[Πi, AΠi]†[Πi, AΠi] = tr(ΠiAΠi −ΠiA)(ΠiAΠi −AΠi)
= tr(ΠiAΠiAΠi −ΠiAΠiAΠi −ΠiAΠiAΠi + ΠiA

2Πi)
= tr(A2Πi −ΠiAΠiA). (124)

A rapid calculation shows that instead

tr[Πi, A]†[Πi, A] = −tr
(
ΠiAΠiA−A2Πi −ΠiA

2 +AΠiAΠi

)
= 2tr(A2Πi −ΠiAΠiA), (125)
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which completes the proof. �
From the Proposition above, it follows that

∑
i ‖[Πi, AΠi]‖2F = CΠ(A).

Proposition 4 Let ΠiΠj = δijΠi and B Hermitian. Then

tr([Πi,ΠjB]†[Πa,ΠbB]) = δjaδabtr
(
B[BΠi,Πa]

)
+ (δiaδjb − δjiδjb)tr(BΠjBΠa) (126)

Proof. We have

tr([Πi,ΠjB]†[Πa,ΠbB]) = tr
(
(ΠiΠjB −ΠjBΠi)†(ΠaΠbB −ΠbBΠa)

)
= tr

(
(BΠjΠi −ΠiBΠj)(ΠaΠbB −ΠbBΠa)

)
= tr

(
B2ΠjΠiΠaΠb −ΠiBΠjΠaΠbB −BΠjΠiΠbBΠa + ΠiBΠjΠbBΠa

)
= tr

(
δjaδiaδabB

2Πi︸ ︷︷ ︸
A

− δjaδabBΠaBΠi︸ ︷︷ ︸
B

− δjiδjbBΠjBΠa︸ ︷︷ ︸
C

+ δiaδjbBΠjBΠa︸ ︷︷ ︸
D

)
(127)

Now we note that terms A+B can be written as

tr
(
δjaδiaδabB

2Πi − δjaδabBΠaBΠi

)
= tr

(
δjaδiaδabB

2Πi − δjaδabBΠaBΠi

)
(128)

= δjaδabtr
(
BBΠiΠa −BΠaBΠi

)
= δjaδabtr

(
B(BΠiΠa −ΠaBΠi)

)
= δjaδabtr

(
B[BΠi,Πa]

)
(129)

Let us now consider the terms C +D. We have that these can be written as

(δiaδjb − δjiδjb)tr(BΠjBΠa) = (δiaδjb − δjiδjb)|bja|2 (130)

which is the final result. �
Corollary 1 We have

‖[Πi,ΠjB]‖2F = δijtr
(
B[BΠi,Πi]

)
+ (1− δij)tr(BΠjBΠi) (131)

Proof. From Proposition 4 we set a = i and b = j.
Corollary 2 We have ∑

ij

‖[Πi,ΠjB]‖2F = 2CΠ(B) (132)

Proof. From Corollary 1, we have∑
ij

‖[Πi,ΠjB]‖2F =
∑
ij

(
δijtr

(
B[BΠi,Πi]

)
+ (1− δji)tr(BΠjBΠi)

)
=
∑
ij

δijtr
(
B[BΠi,Πi]

)
+
∑
ij

(1− δji)tr(BΠjBΠi)

=
∑
i

tr
(
B[BΠi,Πi]

)
+
∑
ij

|bij |2 −
∑
i

|bii|2

=
∑
i

tr
(
B[BΠi,Πi]

)
+ CΠ(B)

= 2CΠ(B) (133)

where we used Eq. (116). The final equation is what we claim in the statement above. �
In the main text, we have provided a proof of
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Lemma 1 - Single Normal Coherence Inequality

‖[U,A]‖2F ≤ 4‖A‖2
∑
i6=j
|aij |2 = 4‖A‖2CU (A). (134)

Lemma 1 implies the following Corollary,

Corollary For a unitary operator U , we have

‖[U,A]‖2F ≤ 4
∑
i6=j
|aij |2 = 4CU (A) (135)

Proof. It follows from Lemma 1 and the fact that ‖U‖ = 1.

Lemma 1′ - Single Unitary coherence inequality

Let U be a unitary operator and A an Hermitian operator. Then

‖[U,A]‖2F ≤ 2
√

2‖A‖
(
2−

1
4

√
n‖A‖C2

U (A) + C1
U (A)

)
(136)

Proof. Let U =
∑
i ηiΠi, with ΠiΠj = δijΠi. Then, we have

‖[U,A]‖2F =
∑
ij

ηiη
∗
j tr([Πj , A]†[Πi, A])

= −
∑
ij

ηiη
∗
j tr
(
(ΠjA−AΠj)(ΠiA−AΠi)

)
= −2

∑
ij

ηiη
∗
j tr(ΠjAΠiA− δijA2Πi)

= 2
∑
ij

ηiη
∗
j tr(A[AΠj ,Πi])

(137)

We can now upper bound the quantity above with the absolute value, and using the identity
|tr(A[AΠj ,Πi])| = |tr(A[ΠjA,Πi])|, we have

‖[U,A]‖2F ≤ 2
∑
ij

|tr(A[ΠjA,Πi])|

= 2
∑
ij

|tr(A[ΠjA,Πi])|

≤ 2‖A‖
∑
ij

√
r([ΠjA,Πi])‖[ΠjA,Πi]‖2F (138)

We note now that r([ΠjA,Πi]) ≤ 2. Then

‖[U,A]‖2F ≤ 2
√

2‖A‖
∑
ij

√
‖[ΠjA,Πi]‖2F (139)
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We now use the fact that, from Corollary 1,

‖[U,A]‖2F ≤ 2
√

2‖A‖
∑
ij

√
δijtr

(
A[AΠi,Πi]

)
+ (1− δij)tr(AΠjAΠi)

= 2
√

2‖A‖
(∑

i

√
tr
(
A[AΠi,Πi]

)
+
∑
i6=j

√
tr(AΠjAΠi)

)
= 2
√

2‖A‖
(∑

i

√
tr
(
A[AΠi,Πi]

)
+
∑
i6=j
|aij |

)

≤ 2
√

2‖A‖
(√√

2‖A‖
∑
i

√
1
2‖[Πi, A]‖2F +

∑
i6=j
|aij |

)
≤ 2
√

2‖A‖
(
2−

1
4

√
‖A‖

∑
i

√
‖[Πi, A]‖2F +

∑
i6=j
|aij |

)
= 2
√

2‖A‖
(
2−

1
4

√
‖A‖

∑
i

(
∑
k 6=i
|aik|2)

1
2 +

∑
i6=j
|aij |

)
(140)

The bound above is the first step of the bound. We now use the fact that the square root is concave,

and thus
∑
ij

√
λijaij ≤

√∑
ij λij

√∑
ij aij . Then

‖[U,A]‖2F ≤ 2
√

2‖A‖
(
2−

1
4

√
‖A‖
√
n
√∑
i6=j
|aij |2 +

∑
i6=j
|aij |

)
(141)

It follows that

‖[U,A]‖2F ≤ 2
√

2‖A‖
(
2−

1
4

√
n‖A‖C2

U (A) + C1
U (A)

)
(142)

which concludes the proof. �

Lemma 2 - Double Normal Coherence Inequality Assume A be a normal operator and let B be
Hermitian. Then,

‖[A†, BA]‖2F ≤ 4‖A‖4CA(B)

Proof. For simplicity, we assume that A is a normal operator, e.g. we have A =
∑
i Πiηi, where

ηi are the eigenvalues of A. If the operator is normal, then A and A† have an identical spectral
decomposition and the proof goes along similar steps, which is Lemma 3.

Then

‖[A†, BA]‖2F = ‖
∑
ij

η∗i ηj [Πi, BΠj ]‖2F =
∑
ij

∑
ab

ηiη
∗
j η
∗
aηbtr([Πi, BΠj ]†[Πa, BΠb]).

(143)
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Now using Proposition 4, we have

‖[A,BA]‖2F = ‖
∑
ij

ηiηj [Πi, BΠj ]‖2F =
∑
ij

∑
ab

ηiη
∗
j η
∗
aηbtr([Πi, BΠj ]†[Πa, BΠb])

=
∑
ij

∑
ab

ηiη
∗
j η
∗
aηb
(
δjaδabtr

(
B[BΠi,Πa]

)
+ (δiaδjb − δjiδib)tr(BΠjBΠa)

)
=
∑
ij

ηiη
∗
j |ηj |2tr

(
B[BΠi,Πj ]

)
+
∑
i6=j

(|ηi|2|ηj |2 − |ηi|2ηiη∗j )||bij |2

=
∑
ij

ηiη
∗
j |ηj |2δijtr

(
B2Πi −BΠiBΠi

)
−
∑
i6=j

ηiη
∗
j |ηj |2tr

(
BΠiBΠj

)
+
∑
i6=j

ηiη
∗
j (η∗i ηj − |ηi|2)||bij |2

≤ supk|ηk|4
∑
i

tr
(
B2Πi −BΠiBΠi

)
+
∑
i6=j
|ηiη∗j (η∗i ηj − |ηi|2 − |ηj |2)|||bij |2

≤ supk|ηk|4
∑
i6=j
||bij |2 +

∑
i6=j
|ηiηj(η∗i ηj − |ηi|2 − |ηj |2)|||bij |2

≤ 4 supk|ηk|4
∑
i6=j
||bij |2 = 4‖A‖4CA(B) (144)

which is what we stated we would prove. �
There is another inequality that can be obtained for a normal operator, in terms of mixed l1

coherence. We report it below for a Hermitian operator, but a similar bound applies to general
normal operator.

Lemma 2(b) - Double Hermitian Coherence Inequality Assume A and B are Hermitian operators.
Then,

‖[A,BA]‖2F ≤ ‖A2‖2
(
‖B‖

(
2−

1
4

√
‖B‖
√
n
√∑
k 6=i
|bik|2 +

∑
i6=j
|bij |

)
+ 2CA(B)

)
.

where bij are the elements of the matrix B in the basis of A.
Proof. For simplicity, we assume that A is Hermitian, we have A =

∑
i Πiηi, where ηi are the

eigenvalues of A and are real. If the operator is normal, then A and A† have an identical spectral
decomposition and the proof goes along similar steps, which is Lemma 3.

Then

‖[A,BA]‖2F = ‖
∑
ij

ηiηj [Πi, BΠj ]‖2F =
∑
ij

∑
ab

ηiηjηaηbtr([Πi, BΠj ]†[Πa, BΠb]).

(145)

Now using Proposition 4, we have

‖[A,BA]‖2F = ‖
∑
ij

ηiηj [Πi, BΠj ]‖2F =
∑
ij

∑
ab

ηiηjηaηbtr([Πi, BΠj ]†[Πa, BΠb])

=
∑
ij

∑
ab

ηiηjηaηb
(
δjaδabtr

(
B[BΠi,Πa]

)
+ (δiaδjb − δjiδib)tr(BΠjBΠa)

)
=
∑
ij

ηiηj |ηj |2tr
(
B[BΠi,Πj ]

)
+
∑
ij

(η2
i η

2
j − η3

i ηj)||bij |2

=
∑
ij

ηiηj |ηj |2tr
(
B[BΠi,Πj ]

)
+
∑
i6=j

ηiηj(ηiηj − η2
i )||bij |2

≤
∑
ij

|ηiηj | |ηj |2 |tr
(
B[BΠi,Πj ]

)
|+

∑
i6=j
|ηiηj(ηiηj − η2

i )| ||bij |2 (146)

Here we wrote bij as the elements ij of the operator B in the basis of Π’s. Let us now look at the two
expressions separately. The exact expression for first term is given by Frobenius norm is thus bounded
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by another Frobenius norm as follows: First, we note that |tr([B[BΠi,Πj ])| = |tr([B[ΠiB,Πj ])|. Then,
using |tr(AB)| ≤ ‖A‖

√
r(B)‖B‖F ,∑

ij

|ηiηj | |ηj |2 |tr
(
B[BΠi,Πj ]

)
| =

∑
ij

|ηiηj |η2
i tr([B[ΠiB,Πj ])| ≤ ‖B‖

∑
ij

|ηiηj |η2
i

√
r([ΠiB,Πj ])‖[ΠiB,Πj ]]‖2F

(147)

Now note that r([ΠiB,Πj) = r(ΠiBΠj −ΠjΠiB) ≤ 2, and using Propositions 1, 2 and 3, we have

‖[ΠiB,Πj ]]‖2F = δijtr
(
B[BΠi,Πi]

)
+ (1− δij)tr(BΠjBΠi). (148)

The first term can then be bounded by∑
ij

|ηiηj | |ηj |2 |tr
(
B[BΠi,Πj ]

)
| ≤ ‖B‖

∑
ij

|ηi|4
√
δijtr

(
B[BΠi,Πi]

)
+ (1− δij)tr(BΠjBΠi)

= ‖B‖ ‖A2‖2
(∑

i

√
tr
(
B[BΠi,Πi]

)
+
∑
i6=j

√
tr(BΠjBΠi)

)
= ‖B‖ ‖A2‖2

(
2−

1
4

√
‖B‖

∑
i

(
∑
k 6=i
|bik|2)

1
4 +

∑
i6=j
|bij |

)
≤ ‖B‖ ‖A2‖2

(
2−

1
4

√
‖B‖
√
n
√∑
k 6=i
|bik|2 +

∑
i6=j
|bij |

)
(149)

For the second term, we have∑
i6=j
|ηiηj(ηiηj − η2

i )| |bij |2 ≤ supij |ηiηj(ηiηj − η2
i )|
∑
i6=j
|bij |2. (150)

Now note that

supij |ηiηj(ηiηj − η2
i )| ≤ 2‖A2‖2 (151)

while
∑
i6=j |bij |2 = 1

2CA(B). The second term can then be bounded by∑
i6=j
|ηiηj(ηiηj − η2

i )||bij |2 ≤ 2‖A2‖2CA(B) (152)

We thus obtain the final bound

‖[A,BA]‖2F ≤ ‖A2‖2
(
‖B‖

(
2−

1
4

√
‖B‖
√
n
√∑
k 6=i
|bik|2 +

∑
i6=j
|bij |

)
+ 2CA(B)

)
(153)

which is what we stated we would prove. �
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