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Abstract—Visual ‘point-and-click’ interaction artifacts such as
mouse and touchpad are tangible input modalities, which are
essential for sighted users to conveniently interact with computer
applications. In contrast, blind users are unable to leverage these
visual input modalities and are thus limited while interacting with
computers using a sequentially narrating screen-reader assistive
technology that is coupled to keyboards. As a consequence, blind
users generally require significantly more time and effort to do
even simple application tasks (e.g., applying a style to text in a
word processor) using only keyboard, compared to their sighted
peers who can effortlessly accomplish the same tasks using a
point-and-click mouse.

This paper explores the idea of repurposing visual input
modalities for non-visual interaction so that blind users too
can draw the benefits of simple and efficient access from these
modalities. Specifically, with word processing applications as the
representative case study, we designed and developed NVMouse
as a concrete manifestation of this repurposing idea, in which
the spatially distributed word-processor controls are mapped to a
virtual hierarchical ‘Feature Menu’ that is easily traversable non-
visually using simple scroll and click input actions. Furthermore,
NVMouse enhances the efficiency of accessing frequently-used
application commands by leveraging a data-driven prediction
model that can determine what commands the user will most
likely access next, given the current ‘local’ screen-reader context
in the document. A user study with 14 blind participants compar-
ing keyboard-based screen readers with NVMouse, showed that
the latter significantly reduced both the task-completion times
and user effort (i.e., number of user actions) for different word-
processing activities.

Index Terms—Accessibility, assistive technology, screen reader,
visual impairment, word processing

I. INTRODUCTION

Blind users rely on special-purpose assistive technology,
namely a screen reader (e.g., JAWS [1], VoiceOver [2], NVDA
[3]), to interact with computer applications. A screen reader
narrates the screen content serially, and with the aid of this
narration, a blind user navigates and accesses different parts
or components of the application using keyboard shortcuts.
However, most applications manifest an intricate and dense
arrangement of different components and features in their
GUIs that are by design, more suitable for a visual ‘point-and-
click’ interaction with a basic pointing device such as a mouse,
as opposed to a serial shortcut-based keyboard interaction.
Therefore, blind screen-reader users find it arduous and tedious
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“Formatting, Objects,
Collaboration, ...”
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Mouse

Fig. 1. A blind user accessing application features using NVMouse’s
repurposed mouse instead of keyboard. The user (i) does a middle click to
access the custom Feature Menu, (ii) scrolls to find the desired feature in the
menu, (iii) does a left click to access controls associated with the feature, (iv)
scrolls to find the desired control, and (v) left-clicks on the desired control.

to do even simple activities (e.g., access ribbon commands) in
applications by relying only on the keyboard.

To address the usability-related shortcomings associated
with keyboard-only screen-reader interaction, in this paper,
we explore the idea of transforming or “repurposing” the
existing visual input modalities intended for sighted users into
convenient-to-use non-visual input modalities for blind users.
In this regard, we selected word processing applications as
the vehicle for our investigation, as they exemplify the typical
GUIs of computer applications that consist of a main work
area with several auxiliary commands and features spatially
distributed around this work area. Furthermore, the word
processing applications are commonly used in everyday lives
of blind users, and proficiency with the applications has been
recognized as an important skill for the employment of blind
individuals [4], [5].

To understand the scope and magnitude of the usability
problems faced by blind screen-reader users with word pro-
cessing applications using just the keyboard, we conducted a
user study with 10 blind users. The study revealed that the
fundamental bottleneck impeding users’ productivity was the
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tedious and frustrating process of accessing the application
features corresponding to different user activities. Further-
more, using only the keyboard for all activities such as
accessing formatting commands, typing, navigating document
content, reviewing content changes, adding and resolving com-
ments, etc., caused a lot of disorientation, shortcut mix-ups,
and other unintended errors due to repeated context switching.

Informed by the findings of the preliminary study, we de-
signed and developed NVMouse, a ‘scroll-and-click’ input in-
terface designed by repurposing (reprogramming) a computer
mouse, which serves as an auxiliary non-visual input modality
for accessing important application features, in addition to the
keyboard. For example, as shown in Figure 1, using the simple
scroll-and-click actions available in the mouse, blind users can
quickly and easily access the various ribbon commands (e.g.,
Font, Styles, etc.) via a custom Feature Menu, without
losing any context. Similarly, the blind user can also access the
list of comments in the Collaboration feature group in the
menu, and scroll over them one-by-one. Thus, with NVMouse,
blind users can reap the benefits of the computer mouse in
word-processing activities, akin to their sighted peers.

To further enhance efficiency, for a select category of
frequently-used ribbon commands such as formatting, NV-
Mouse leverages a custom-trained data-driven prediction
model to dynamically reorder these commands under the
Formatting feature group in the Feature Menu, based on
their likelihood of being used next, given the user’s current
screen-reader context in the document. The reordering places
the commands most likely to be used next at the front (i.e.,
first child) in the group, making them “within easy reach” for
blind users — akin to “point-and-click”.

II. RELATED WORK

Our work closely relates to extant research on alternative
non-visual input modalities and usability of word processors.

A. Alternative Input Interfaces for Blind Users

To compensate for the lack of non-visual alternatives to
convenient-to-use visual input modalities, alternative input
modalities for blind users have been previously explored
[6], [7]. For example, the multimodal audio-haptic interface
proposed by Doush et al. [6] enables screen-reader users to
access the content of Excel charts. However, their interface
only helps blind users consume existing content easily, but
does not support creating or editing it, as well as accessing
other application features. In the IBM Home Page Reader
(HPR) [7], the numeric keypad was used as an auxiliary input
interface for navigating web pages. Besides the need to re-
member numerous shortcuts, HPR only supported information
consumption in webpages, which has vastly different user-
interaction needs compared to that of general productivity
applications, such as Word supported by NVMouse.

Analogous to HPR’s numeric pad, Apple’s MacBook Touch
Bar [8] provides contextual menus and navigation shortcuts for
a variety of productivity applications. But these suggestions
are manually engineered, and the design of Touch Bar is

primarily for visual consumption, thereby requiring screen-
reader users to spend significant time exploring and orienting
themselves each time they want to access the suggestions
on it. Similar to the Touch Bar, Apple’s built-in screen
reader, VoiceOver, also provides access to commands via
its rotor feature. However, these commands mainly assist in
navigating content. Speed-Dial [9], like VoiceOver’s rotor, also
supports easy hierarchical navigation of content via its external
Microsoft Surface Dial input interface. Khurana et al. [10],
on the other hand, propose spatially interaction techniques
that leverage the keyboard surface to easily facilitate non-
visual interaction with 2D structures. However, both these
works exclusively focus on non-visual web browsing and are
limited to content navigation, which in essence is tantamount
to reading the web page elements. In contrast, interaction
with applications such as word processors not only involves
navigating content, but also frequently accessing the auxiliary
spatially-distributed application content, such as command
ribbons, menus, sidebars, comments and version history, etc.

B. Non-visual Usability of Word Processors

Despite the importance of word processing applications,
there is a dearth of studies on improving the usability of these
applications for blind users [11]-[15]. Moreover, almost all
of these works primarily focus on improving the interaction
experience for only a specific aspect of word processors. For
example, Mori et al. [11] only focused on accessibility, where
they made Google Docs more accessible by providing vir-
tual overlays, without considering usability or user-interaction
strategies. Morales et al. [14], on the other hand, focused
only on formatting; they propose guidelines for a support
tool in Microsoft Word that can assist blind users format
their documents independently. Recent works have focused
on accessibility and usability of collaborative features in word
processors [15], [16]. For example, an accessible prototype
for collaborative writing was suggested [15]. The prototype
enables blind users to exploit the right-click context menu
to access all the comments and document revisions, and also
accept/reject these revisions. Waqar et al. [16] also focused on
the accessibility of collaborative features of word processors,
by providing audio notifications to blind users informing about
changes made by other collaborators.

In contrast to the aforementioned research, we propose a
single cohesive interface framework that enables blind users to
easily perform assorted word-processing related activities such
as document navigation, formatting, reviewing, proofreading,
collaborating, etc. Besides we augment the framework with a
novel prediction model that provides nearly “instant access”
to an important category of application commands. Moreover,
unlike the existing works, our approach is informed by the
blind users’ interaction behavior and interaction strategies
with word-processing applications, which we gathered via a
preliminary user study with blind participants.
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III. UNCOVERING USABILITY ISSUES

To understand the usability issues that blind users face while
interacting with productivity applications using only keyboard,
and also obtain insights regarding how to “repurpose” a mouse
for convenient non-visual interaction, we conducted a user
study with 10 fully blind word-processor users.

A. Participants

The 10 participants were recruited through local mailing
lists and word-of-mouth. The average age of participants was
43.8 (Median = 41, SD = 10.8, Range = 30-61), and the
gender representation was equal (5 male, 5 female). Initial
screening was done via phone interviews to enforce the
initial criteria requiring participants to be frequent users (or
experts) of JAWS and Microsoft Word. All participants also
stated that JAWS was their preferred screen reader. Many
participants (especially elderly) did not own laptops, but had
desktops. Even participants owning laptops stated that they
used desktops at school/work.

B. Apparatus

The study was conducted using an Acer laptop running
Windows 10, with JAWS 16 and Word 2016 installed. A
traditional external keyboard was plugged into the laptop.

C. Design and Procedure

The participants were asked to create a document (in
Microsoft Word) with a title, a heading, and a bulleted list with
two items. They were then asked to track and accept changes,
add three comments, and navigate document content and
comments while checking for grammar and spelling mistakes.
All information such as the textual content and formatting style
(e.g., font, font size, and font color) for each task was given,
and a concurrent think-aloud protocol was adopted.

Before the tasks, the participants were given practice time
(~10 minutes) to familiarize with the keyboard, and customize
JAWS and other computer settings to suit their preferences.
All user actions were captured using a screen recording
software, and a keystroke logger was used to record individual
keystrokes. All conversations during the study were in English.

D. Notable Findings

Repeated switching of screen-reader context. All partici-
pants repeatedly switched the screen-reader focus back-and-
forth between the main edit-area and the other application
features concerned with formatting, review, proofreading, and
collaboration. This was due to the fact that there was only
one cursor (i.e., keyboard) that the participants could leverage
while interacting with the application.

Problem in navigating grids. Five participants struggled to
locate the desired formatting command options for commands
such as Font Color and Text Styles that appeared in
a 2D grid, despite JAWS reading out instructions on how to
navigate the grid. These participants at first used only the UP
and DOWN arrow keys to loop through the first column of the

grid before realizing that additional options could be accessed
with the LEFT and RIGHT arrow keys.

Excessive key presses for accessing formatting commands.
To find and apply most formatting commands (e.g., font,
styles, color, etc.), almost all (eight) participants repeatedly
pressed the TAB hotkey to serially navigate through numerous
formatting commands in the application ribbon, before finding
the desired command. These users stated that they cannot
remember hundreds of shortcuts associated with different
application features, and therefore rely only on a few basic
navigational ones that let them surf through the features one-
by-one. Only two participants who knew the complex Word
shortcut (CTRL+SHIFT+P) for opening a separate format
dialog box could do most of the formatting commands in one
iteration by setting the different parameters. Nonetheless, they
too accessed the ribbon to apply the commands not available
in the format dialog box.

Re-orientation after every non-edit activity. Eight participants,
in at least two instances, pressed arrow keys after performing
a non-edit activity (e.g., adding a comment, applying a font,
etc.), to reorient themselves within the main edit-area. They
stated that they did this because they had forgotten what they
had typed and where the cursor was, prior to shifting screen-
reader focus away from the main edit-area to access other
application features. However, four participants, in at least
one instance, did not realize that the focus had shifted back
to the edit-area after completing an activity, and therefore
unintentionally modified the existing content by pressing the
shortcut keys in the edit-area.

E. Summary

The study observations indicate that almost all of the
usability problems stem from the fact that blind users pre-
dominantly rely only on the keyboard to do both typing and
other activities, whereas sighted users can efficiently split the
interaction effort between the keyboard and mouse, i.e., using
the keyboard for editing and the mouse for quickly accessing
other application features via point-and-click. One way to
address these usability problems is through a “separation of
concerns” by using the keyboard only for editing, and a non-
visual “repurposed mouse” for accessing other application
features. In this regard, we propose the NVMouse assistive
technology described next.

IV. NVMOUSE DESIGN

The fundamental design goal of NVMouse is to provide a
streamlined access to various application controls associated
with different word-processing activities for blind users; the
present spatially-distributed 2D layout of application controls
is not favorable for non-visual interaction [10].

Figure 2 presents an architectural schematic of NVMouse.
With NVMouse, the computer mouse is adapted or ‘repur-
posed’ such that the blind user can interact with a word
processor using both the keyboard and the mouse modalities;
presumably the user can utilize the keyboard for typing and
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Fig. 2. An architectural schematic of NVMouse.

editing content, and the mouse for performing authoring activ-
ities, such as formatting, reviewing changes, adding/resolving
comments, navigating content, etc.

NVMouse operates in two modes (Figure 2): navigation
mode and action mode. By default, NVMouse is in navigation
mode, i.e, mouse actions are associated with navigating the
document content structure hierarchically (e.g., title, sections,
subsections). Action mode, on the other hand, is triggered by
a middle click. In this mode, the mouse input gestures are re-
programmed to facilitate user interaction with a hierarchically-
organized custom Feature Menu that provides alternative ac-
cess to the assorted application features. Also, the controls
or commands in the frequently-accessed Formatting feature
group of the Feature Menu are dynamically reordered based
on their likelihood of being used next, given the current screen-
reader context in the document.

A. Custom Feature Menu

The Feature Menu consists of feature groups (see Table
I), where each feature group is associated with one of the
word-processing activities, e.g., formatting, proofreading, etc.
Each feature group contains all associated application controls
arranged in the form of a tree, with an abstract node containing
the name of the feature (e.g., “Collaboration”) as the root.
Table I details the list of feature groups that we have manually-
defined in NVMouse, along with their constituent application
controls. We selected these features and associated controls
after interviewing 20 proficient blind users who indicated what
activities they frequently performed in word processors, and
what application controls they wished to be easily accessible.
As also mentioned in Section II, these features have also been
individually explored by other works [6], [13]-[15].

Note that some controls (e.g., Insert Row) are activated
only when applicable. The first group (child) of the Feature
Menu is Formatting, as it is the most-frequent user activity
in word processing. Also, unlike other groups where the
order of application controls is manually fixed, the order of
controls (i.e., children) in the Formatting group is dynamically
determined by the custom prediction model (Section IV-C).

B. Redefining Mouse Actions

1) Accessing Feature Menu: Table II lists the mouse actions
and their corresponding functions as redefined by NVMouse

TABLE I
FEATURE GROUPS AND THEIR FEATURE CONTROLS.

Feature Group  Top-level Application Controls

Formatting Font, Font Size, Font Color, Alignment, Bold,
Underline, Italic, Line Spacing, Bullet List, Fill
Color, Styles, Borders

Objects Insert [Table, Picture, Shape, Symbol, Equation,

Row, Column], Delete Row, Delete Column, Merge
Cells

Insert Comment, View Comments, Next Com-
ment, Previous Comment, Delete Comment, Track
Changes, View Changes, Accept All Changes, Next
Change, Previous Change, Accept Change, Reject
Change

Collaboration

Proofreading Next Typo, Previous Typo, All Typos, Next Error,
Previous Error, All Errors, Dictionary, Translation
Miscellaneous Word Count, Character Count, Line Count, Current

Page Number, Margins, Insert Page Break

for interacting with the Feature Menu. The middle click
toggles the NVMouse mode between navigation and action. By
default, scrolling moves the focus between the feature groups
when the menu is first activated. A left click selects a feature
group, and the subsequent scroll actions will then move the
focus between the top-level controls in the menu tree. Once the
desired control is found, another left click will either activate
it if it doesn’t have sub-controls (e.g., Bold) or move the
focus down the menu tree to the first sub-control (e.g., font
color options) of that control (e.g., Font Color). To close
the currently focused sub-control and move focus up the tree
to the parent control, the user needs to execute a right click.
Regardless of the focus, a middle click deactivates the Feature
Menu and toggles the mode back to navigation.

2) Document Navigation: Table II also lists the mouse
actions and their corresponding functions as redefined by
NVMouse for navigating document content. NVMouse treats
the entire document content as a sequence of paragraphs (Open
XML format'), each having a specific outline level (an integer
between 0 and 9); lower outline levels represent nodes higher
up in the outline tree (e.g., outline level 1 for title, section
headings), whereas larger outline levels indicate nodes lower
in the tree (e.g., outline level 3 for subsubsection headings).
By leveraging this “paragraph outline” information in the
document metadata, NVMouse constructs a document outline
tree. This outline tree is then coupled with the mouse interface
as defined in Table II. Note that navigating to a node in the
outline tree corresponds to moving the screen-reader focus to
the associated portion of the document content.

To keep track of updates to the document structure, NV-
Mouse monitors all user edits. If a user’s edit results in
alteration of the overall document outline, NVMouse rebuilds
the outline tree. We found the overhead of recomputing the tree
to be negligible (less than 500 ms for 200+ page documents).

Ihttp://officeopenxml.com/
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MOUSE ACTIONS AND THEIR RE-DEFINED FUNCTIONS IN TWO MODES.

TABLE I

Action Mode

Mouse Action

Function

Middle click

Close the Feature Menu

Scroll through feature groups, or controls at the

Scroll
same tree level
Right click Go up one level in the menu tree
Left click Activate a control or go one level down in the

menu tree

Navigation Mode

Mouse Action

Function

Middle click

Open the Feature Menu

Scroll through the siblings or elements at the

Scroll present depth in the document tree
Right click Go up one level in the document tree
Left click Go down one level in the document tree

C. Prediction Model for Formatting

The ordering of commands in the Formatting group is
dictated by a custom prediction model. We implemented the
prediction model in the form of a multi-class classifier, with
each of the commands representing a class. The class scores
from this classifier were then used to determine the command
order in the Formatting group, with the command with the
highest score placed first. We trained the classifier using
example documents scraped from the web, as explained next.

1) Command Dataset: We first scraped 6,000 Word doc-
ument templates and examples from the web. This collection
comprised diverse document types, such as CV, statement,
report, letter, thesis, etc. Since these documents were com-
plete with all the formatting already applied throughout their
content, we used them to generate ground truth dataset.
Specifically, for each command that we identified using the
Office Word Primary Interop Assembly service in a document,
we extracted several features representing the local context in
which that command was applied, and then created an example
(x, ¢) with the command c¢ and the context feature vector
x. The dataset comprised a total of 2,728,962 command
examples. To learn a model, this dataset was randomly split
into three parts (60% for training, 20% for validation, and 20%
for test sets).

In our dataset, we observed that the most commonly-used
commands were: Styles, Alignment, Line Spacing, Format
(e.g., Bold, Italic), Font, Font Size, Font Color, Bullet List,
and Insert (e.g., Insert Picture). Since the occurrence of other
commands were negligible, we built our prediction model for
only these nine types of formatting commands. Interestingly,
the existing context menu in Microsoft Word application too
contains mostly these nine types of commands, although most
of them are not accessible with a screen reader.

2) Attribute Representation:. We hand-crafted command
attributes to fit the word processing application domain. We
defined the local context of an applied command to be its
containing paragraph, based on our observation in the collected
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Fig. 3. A rank histogram computed on the test set and cumulative percentage
as the rank increases.

documents that most of the application commands are applied
at the granularity of either paragraph (e.g., Alignment com-
mand) or selection within a paragraph (e.g., Bold command).
Therefore, the attributes can be categorized into two groups:
(i) paragraph-level — e.g., total word count, style, alignment,
Line Spacing command usage; and (ii) selection-level
— e.g., selection word count, selection position (within the
paragraph), Font command usage, Font Size command
usage, Font Color command usage, usage count of other
commands on a selection, etc. For each command ¢, the em-
beddings of these two groups of attributes were concatenated
to generate the corresponding feature vector x. The categorical
attributes (e.g., alignment feature) were represented using one-
hot encoding.

3) Model Architecture: We trained a neural network model
on our dataset with three hidden layers having 120, 84, and
25 units, respectively. A linear transformation was applied in
each layer, and rectified linear unit (ReLU) was used as an
activation function. To predict the likelihood of commands
being used next, we tapped into the scores of all the commands
given by the last hidden layer.

4) Model Evaluation: We assessed the performance of
prediction model using mean reciprocal rank (MRR) metric,
as we are interested in the rank of only one command, i.e,
class, in the model output, and not all the commands. MRR
is defined as the average of the inverse of the ranks for a set
of command examples C:

MRR = —
€=

Here r; is the rank of the command ¢; in the predicted
command list. Overall, our prediction model yielded a high
MRR value of 0.8264.

Figure 3 shows both the distribution of ranks predicted
by our model for the command examples in the test set, as
well as the cumulative percentage of commands over the rank
dimension. As seen in Figure 3, 68.85% of commands were
correctly ranked first, thereby enabling the users to instantly
access the command in the Feature Menu. Also, 99.85% of
commands were ranked within the top 4, which indicates that
with the prediction model, almost all desired commands can
be accessed with at most three mouse scrolls.
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5) Comparison with the Default Context Menu: As men-
tioned earlier, Microsoft Word supports a default context menu
listing several commonly-used commands. The menu can be
brought up by right-clicking a mouse, and it is also accessible
by a menu key in keyboard. However, unlike our menu with
prediction model, the order of commands within the context
menu is fixed. For the same aforementioned nine frequently-
used commands, the fixed command order in the context menu
was as follows: Font, Font Size, Styles, Format, Font Color,
List, Alignment, Line Spacing, Insert. With this fixed order,
the overall MRR on the test set was only 0.3556.

D. Implementation Details

In this paper, we implemented NVMouse as a Microsoft
Visual Studio Tools for Office (VSTO) Add-in®>. To re-
define mouse functions, we used the publicly available
MouseKeyHook library® to capture mouse events and im-
plemented custom event handlers to respond to these events.
To access the document and application metadata, extract
contextual features, and also to apply the selected application
controls, we leveraged the services of the Interop Assembly.
The Interop Assembly gave us access to application features
and associated controls, as well as document content and its
structure. Microsoft TTS was used to narrate the Feature Menu
contents in response to user actions.

V. EVALUATION

A. Participants

We recruited 14 participants (7 female, 7 male) who were
completely blind, through local mailing lists and word-of-
mouth (Table III). The participants varied in age between 31
and 63 (M = 45.79, SD = 10.7). All participants stated that
they were either blind by birth or lost eyesight at a very young
age (less than 10 years old). None of the participants had any
motor impairments that affected their physical interaction with
keyboard and mouse. Our inclusion criteria required that the
participants be proficient with the JAWS screen reader and the
Microsoft Word application on Windows platform.

B. Apparatus

The study was conducted using ASUS ROG GUS501 laptop
with Windows 10, Microsoft Word, JAWS screen reader, and
NVMouse installed. An external standard keyboard and a
wireless mouse were connected to the laptop. While NVMouse
could have been interfaced with a touchpad instead of a
mouse, we chose a mouse because in the pre-study interviews,
touchpad was not preferred by all participants as they could
not rest their hands comfortably on it before doing gestures,
unlike keyboard and mouse.

Zhttps://docs.microsoft.com/en-us/visualstudio/vsto/
office-solutions-development-overview-vsto?view=vs-2017
3https://github.com/gmamaladze/globalmousekeyhook

TABLE III
PARTICIPANT DEMOGRAPHICS FOR THE USER STUDY.
ID Gender Age Screen Reader Word Usage
Frequency

Pl F 31 JAWS, NVDA Daily

P2 F 46  JAWS, NVDA 5 days a week
P3 M 60  JAWS 3 days a week
P4 M 39  JAWS, VoiceOver Daily

PS5 M 54  JAWS 2 days a week
P6 M 44 JAWS, VoiceOver 5 days a week
P7 F 56  JAWS 2 days a week
P8 F 45 JAWS, NVDA, System Access 5 days a week
PO M 35  JAWS 2 days a week
P10 F 32 JAWS, System Access Daily

P11 M 63  JAWS 2 days a week
P12 M 56  JAWS 1 day a week
P13 F 46  JAWS 3 days a week
P14 F 34 JAWS, VoiceOver Daily

C. Design and Procedure

The main goal of the study was to evaluate how easily and
quickly the participants could do different word-processing
activities with NVMouse. Specifically, the participants did the
following tasks: (i) Task 1: Find a pre-specified formatting
command; (ii) Task 2: Read and delete all the comments
in a document (all pre-specified); (iii) Task 3: Find and
correct the typos in a pre-specified document; and (iv) Task
4: Navigate a predefined document and answer a question
relevant to the document. Under a within-subjects design, the
participants were asked to do the tasks under the following
two conditions: (i) Screen reader: the participants used only
the standard JAWS keyboard shortcuts; and (ii) NVMouse:
the participants used only the mouse interface. In order to
minimize learning effect, the ordering of tasks and conditions
were counterbalanced using the Latin Square method [17].

For Task 1, the following two commands were chosen: (a)
Set Text Highlight Color to ‘Dark Blue’; (b) Select
‘Heading 2’ as Style. For Task 2, we created two 2-page
documents each with 5 comments. For Task 3, we created two
2-page documents each with 5 typos at similar locations. For
Task 4, we created two well-structured same-length documents
from Wikipedia articles. Specifically, we chose two articles
(each being 10 pages): (a) New York City; (b) Los Angeles.

Before starting the study, the participants were given enough
practice time (~10 minutes) to familiarize themselves with
the keyboard, and customize JAWS and Word settings to suit
their preferences. Each study lasted for 2.5 hours, and all
conversations during the study were in English.

Measurements. During the study, we logged all screen-
reader keystrokes and mouse actions. Audio and computer-
screen activities were also recorded using the Open Broad-
caster Software for further analysis. We measured the task
completion time and the number of shortcuts or mouse actions.
At the end of the study, we administered the System Usability
Scale (SUS) [18], NASA Task Load Index (NASA-TLX) [19],
and an exit interview to collect subjective feedback.
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TABLE IV
STATISTICS FOR TASK COMPLETION TIME AND NUMBER OF USER
ACTIONS. THE BEST RESULTS ARE IN BOLD. THE WILCOXON
SIGNED-RANK TEST RESULTS ARE ALSO SHOWN.

Task Completion Time (in seconds)

Screen Reader NVMouse Significance

Task
g MD Max Min g MD Max Min Test Result
T1 2145 220 472 45 599 60 95 39 Y(W=0<21)
T2 3344 3235 541 181 122.7 114 181 89 Y(W=0<21)
T3 4787 452 865 110 150.2 1335 310 74 Y(W=0<2l)
T4 376 350 880 110 99.5 965 186 56 Y(W=0<21)

Number of Shortcuts/Mouse Actions

Screen Reader NVMouse Significance

Task
g4 MD Max Min p MD Max Min Test Result
Tl 471 475 66 28 206 21 25 16 Y(W=0<21)
T2 1572 159 229 84 352 34 51 25  Y(W=0<21)
T3 1465 146 186 100 29.8 30 36 23 Y(W=0<21)
T4 2751 2345 391 193 557 54 68 44 Y(W=0<21)

D. Results

1) Evaluation of the NVMouse Interface: Table IV presents
the statistics for both the task completion time and the number
of shortcuts/mouse actions for two study conditions, as well as
the outcomes of statistical tests determining if the difference
between the measures of two study conditions were statisti-
cally significant.

With NVMouse, all participants consistently performed
better in all tasks, and the overall difference in both time
taken and number of shortcuts/mouse actions between the two
study conditions were statistically significant for all tasks. For
Task 1, i.e., formatting, the participants struggled to properly
navigate the complex ribbon structure with the screen reader,
and find the target command. Ten participants, on at least
one occasion, unintentionally pressed incorrect shortcuts that
moved the focus away from ribbons, and therefore they had
to repeat the command-search task by navigating the ribbons
again from the beginning. No such accidental context switches
were observed while using NVMouse. Also, since the task in-
volved just finding a command, instead of applying it on some
highlighted text, the prediction model did not contribute to
the performance improvement; the default manually specified
command order (mimicking the Home ribbon) was provided
in the Formatting feature group. Therefore, all improvements
are attributed only to the mouse interface.

For Task 2, with the screen reader, almost all (12) partic-
ipants did not exactly know where to find the comments at
the beginning, and therefore spent considerable time exploring
the application. During the post-study interviews, they stated
that although they occasionally collaborate with others, they
find it difficult to remember the shortcut path to comments
as well as changes. For Task 3, with the screen reader,
all participants started off by manually checking each word,
before searching for the application control that automatically
moves the focus between typos. This contributed significantly
to the completion time. Even with NVMouse, five participants

started manually inspecting word-by-word, before switching to
the mouse interface. For Task 4, with the screen reader, the
participants mostly navigated line by line, while sometimes
making fast hotkey-presses to quickly navigate through irrel-
evant document sections. As shown in Table IV, this turned
out to be much slower than hierarchical content navigation
enabled by NVMouse.

2) Subjective Evaluation: System Usability Scale (SUS).
For the standard SUS questionnaire [18], the participants rated
positive and negative statements about each study condition on
a Likert scale from 1 for strongly disagree to 5 for strongly
agree, with 3 being neutral. Overall, we found a significant dif-
ference in the SUS scores between screen reader (= 58.57,
o = 16.73) and NVMouse (¢ = 85.35, o = 4.41) conditions
(Wilcoxon signed-rank test, W = 1 < 21, p < 0.001, n = 14).

NASA-TLX. NASA-TLX [19] is widely used for assessing
perceived task workload (expressed as a value between 0
and 100, with lower values indicating better results). Overall,
we found a significant difference in the NASA-TLX scores
between screen reader (= 61.49, 0 = 13.77) and NVMouse
(n = 18.80, o = 2.55) conditions (Wilcoxon signed-rank test,
W =0<21, p<0.001, n =14).

3) Qualitative Feedback: All participants stated that NV-
Mouse’s input actions were much simpler, intuitive, and easier
to remember and perform, compared to the screen-reader
keyboard shortcuts. Seven participants (P2, P3, PS5, P6, P9,
P11, and P12) stated that they frequently get confused between
the screen reader’s web shortcuts and the word-processing
shortcuts, and therefore make mistakes. However, they in-
dicated that they would never run into such an issue with
NVMouse. Six participants (P2, P6, P7, P9, P10, and P12)
expressed that NVMouse allowed them to do actions with just
one hand, whereas the keyboard interface often required them
to use two hands to press complex key combinations (e.g.,
INSERT+F7) as shortcuts, which occasionally caused them
to make unintentional mistakes when the keys were far apart
from each other on the keyboard; such problems will not occur
with the mouse interface of NVMouse.

Twelve participants (except P1 and P4) noted that in contrast
to the screen reader, the NVMouse interface has clear “entry”
and “exit” points when accessing controls. They stated that
with keyboard there are multiple ways/shortcuts which one can
use to enter, navigate, or exit the ribbons, thereby increasing
the likelihood of unintentionally skipping certain controls
that can only be accessed through specific shortcuts. They
mentioned that such an issue will not arise with NVMouse,
as there was only one way to access, navigate, and exit the
feature menu.

VI. DISCUSSION

Limitations. In this paper, the potential of the “repurposed”
mouse was validated only for word-processing applications.
However, the underlying concepts and methodologies easily
generalize to other applications as well, since most applica-
tions follow a typical GUI design pattern like word processors,
i.e., having a main work-area surrounded by many application
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features and commands, which is more suitable for visual
“point-and-click” interaction for sighted users.

Also, the current NVMouse prototype relies on Microsoft’s
Interop Assembly to access the application metadata, and
therefore it is not directly adaptable for non-Microsoft applica-
tions. However, the modular structure of NVMouse easily lets
it replace Interop with other alternatives such as Ul Automa-
tion accessibility framework [20], thereby enabling NVMouse
to work with other applications. Lastly, the prediction model
for dynamically reordering commands needs to be separately
defined for each application. However, this is expected since
different applications have different purposes, and therefore
the notion of ‘local user context’ varies across applications.

Future work — beyond word processing. As mentioned
earlier, NVMouse can be easily adapted for other applications
besides word processors including productivity tools such
as Excel, PowerPoint, Google Docs, Google Sheets, etc.,
by simply mapping the corresponding application features
and commands to the NVMouse’s Feature Menu. As for a
prediction model, the idea of exploiting ‘local context’ to make
command prediction, generalizes to other applications as well.
For instance, in Excel, a group of cells surrounding the focused
cell, can be considered as context, and attributes such as
content type, formatting style, background color, presence of
formulas, etc., can be leveraged to train a prediction model. For
example, if the content of the surrounding cells is a mixture of
formulas and bold or italicized words (such as total, average,
etc.), and the cell to the immediate left or top of the focused
cell has bold or italicized words, then it is very likely that the
user may want to insert a formula. Similarly, in PowerPoint,
in each slide, objects such as shapes, pictures, text boxes,
etc., surrounding the current object in focus, can be defined as
context, from which features (e.g., object properties and type
details) can be extracted and used to train a prediction model.

VII. CONCLUSION

This paper introduces a non-visual scroll-and-click version
of a visual point-and-click mouse input device, to break blind
users’ sole reliance on a keyboard for accessing various appli-
cation features using screen readers. The paper also provides
experimental evidence of the promise of NVMouse in enabling
blind computer users become much more productive with word
processors. It is anticipated that further research on this new
interaction paradigm centered on a repurposed mouse will
hopefully usher similar productivity gains for blind users in
general with any computing application.
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