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ABSTRACT

Modeling touch pointing is essential to touchscreen interface
development and research, as pointing is one of the most ba-
sic and common touch actions users perform on touchscreen
devices. Finger-Fitts Law [4] revised the conventional Fitts’
law into a 1D (one-dimensional) pointing model for finger
touch by explicitly accounting for the fat finger ambiguity
(absolute error) problem which was unaccounted for in the
original Fitts” law. We generalize Finger-Fitts law to 2D touch
pointing by solving two critical problems. First, we extend
two of the most successful 2D Fitts law forms to accommodate
finger ambiguity. Second, we discovered that using nominal
target width and height is a conceptually simple yet effective
approach for defining amplitude and directional constraints
for 2D touch pointing across different movement directions.
The evaluation shows our derived 2D Finger-Fitts law mod-
els can be both principled and powerful. Specifically, they
outperformed the existing 2D Fitts’ laws, as measured by the
regression coefficient and model selection information criteria
(e.g., Akaike Information Criterion) considering the number
of parameters. Finally, 2D Finger-Fitts laws also advance our
understanding of touch pointing and thereby serve as the basis
for touch interface designs.

CCS Concepts
*Human-centered computing — HCI theory, concepts and
models; Pointing;

Author Keywords
Fitts’ law; finger input; pointing models

INTRODUCTION

Despite the widely recognized “fat finger” problem, finger-
touch based interaction has played a central role in the mo-
bile revolution of everyday computing and communication.
Among a number of touch operations, pointing is one of the
most basic and common actions. Because of its prevalence,
modeling touch pointing is critical to touch interface design,
development, and evaluation. The most widely known point-
ing model is Fitts’ law [7, 11, 25], which relates the pointing
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movement time (MT) to the relative precision of the tasks (%).
Although Fitts’ law has been very successful for modeling
mouse or stylus based pointing actions, it does not take the
finger touch ambiguity problem into account and hence cannot
accurately model touch-based pointing as is.

Finger-Fitts law [4] revised Fitts’ law into a one dimensional
pointing model by accounting for the fat finger ambiguity
(absolute error caused by finger input) problem that arises
in touch interaction. Recent research [2, 4, 24] has shown
it is an useful extension and has been adopted for modeling
and interface development. However, Finger-Fitts law is only
dimensional, whereas most of the interface elements are two
dimensional such as buttons and icons. There are both theo-
retical and practical needs for expanding Finger-Fitts law for
modeling two dimensional pointing (2D).

There are challenges that need to be resolved for modeling
2D touch pointing. First, we need to develop and select the
right model forms. Although the Fitts’ law literature [1, 26]
has produced multiple 2D pointing models, none of them
accommodate the absolute ambiguity of finger touch. Second,
2D pointing is governed by both amplitude and directional
constraints; the former is the constraint along the movement
direction while the latter is the constraint perpendicular to
the movement direction. How can the model define these two
constraints from the screen coordinates of the target, especially
when the movement direction does not align with either of the
screen’s x or y direction?

In this paper we generalize Finger-Fitts law to 2D touch point-
ing by resolving these two critical challenges. We first revise
the two common 2D Fitts’ models — the Euclidean [1] and
Smaller-Of models [26] — to accommodate the absolute am-
biguity of finger touch. The Finger-Fitts Euclidean model,
which generalizes Fitts Euclidean model for touch pointing, is
expressed as:

MT = a+blog,( \/(‘;‘2_(2)24‘7‘[(\/#)24—1)

ey

where a, b, c, and 1 are empirically determined parameters.

The Finger-Fitts Smaller-Of model, which generalizes Fitts
Smaller-Of Model for touch pointing, is stated as:

A

MT =a+blo
& min(W,H)? — c2

+1). 2)

where a,b, and ¢ are empirically determined parameters.
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Compared with the existing 2D Fitts’ models [1, 26], these
two 2D Finger-Fitts models ( Equations 1 and 2) introduce a
parameter (denoted by ¢?) to account for the variance caused
by the absolute error of finger touch.

Our evaluation showed that these 2D Finger-Fitts models sig-
nificantly improved the prediction accuracy for movement
time compared to the existing 2D Fitts’ models [1, 26], as
measured by regression coefficient and model selection infor-
mation criteria (AIC, BIC, and WAIC) metrics considering
the number of parameters. Among all the models, Finger-Fitts
Euclidean (Equation 1) performed the best. Adding more free
parameters to it brings no further performance gain. In ad-
dition to creating new model forms, we investigate how to
define the amplitude and directional constraints. We discover
that it is effective to approximate amplitude and directional
constraints with nominal target width and height defined in
screen coordinates.

RELATED WORK
We review related work on (1) modeling touch pointing using
Fitts’ law, and (2) modeling 2D pointing.

Modeling touch pointing

As finger touch has become the dominant input modality in mo-
bile computing, a sizable amount of research has been carried
out to understand and model the uncertainty in touch interac-
tion. On a capacitive touchscreen, a touch point is converted
from the contact region of the finger. This is an ambiguous and
“noisy” procedure, which inevitably introduces errors. Factors
such as finger angle [17, 18] and pressure [13] may affect the
size and shape of the contact region, unintentionally altering
the touch position. The lack of visual feedback on where the
finger has landed due to occlusion (the “fat finger” problem)
further exacerbates the issue [17, 18, 28, 29, 30]. As a result,
it is hard to precisely control the touch position even with fine
motor control ability.

This “fat finger” problem, or the lack of absolute precision in
finger touch, presented a challenge to use Fitts’ law as a model
of finger touch-based pointing, because the only variable in
Fitts” law, namely Fitts” index of difficulty, loga(A/W + 1), is
solely determined by the relative movement precision, or the
distance to target size ratio.

Bi, Li and Zhai [4, 5, 6] identified this challenge, and proposed
the Finger Fitts law [4] to address it. They derived their model
by separating two sources of end point variance - those due
to the absolute imprecision of finger touch (denoted by 6,,%)
and those due to the speed-accuracy trade-off demonstrated in
a pointing process (denoted by 6,%). The end point variance
caused by the imprecision of finger touch (c,?) is irrelevant
to the speed-accuracy tradeoff that the traditional Fitts’ law
models. They accounted for it by subtracting o, from the ob-
served variance 62, which led to Finger-Fitts law (Equation 3).
Following the notation of effective width W, = v/2mec (or
4.1330) [9, 27, 31], Finger-Fitts law (Equation 3) can be
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re-expressed as Equation 4:

A
A
:a-l—blogz (\/ﬁ‘f’l), (4)

Later research [2, 4, 24] showed that Finger-Fitts law was
useful in modeling various touch interactions. For example,
research [2] showed it was more accurate than the typical
Fitts’ law in estimating the upper bound of typing speed on a
virtual keyboard. Researchers [24] extended the Finger-Fitts
law to the crossing action with finger touch, which improved
the model fitness (R?) from 0.75 to 0.84 over the original Fitts’
law.

The underlying assumption behind Finger-Fitts law is that the
absolute ambiguity caused by the input device (e.g., finger
touch) should be separated when modeling pointing tasks.
This assumption has later been generalized to model moving
target selection [19, 20, 21], and to model target acquisition in
VR/AR [32]. The generalized assumptions all led to improved
modeling performance. Despite the success, Finger-Fitts law
is limited as it is a 1D model. In this paper, we generalize it
for 2D pointing.

Modeling 2D pointing

As one of the best known theoretical foundations of HCI, Fitts’
law [11, 25] has served as a cornerstone for interface and input
device evaluation [7, 25], interface optimization [22, 23], and
interaction behavior modeling [8].

As the majority of the graphical interfaces are two dimensional,
a considerable amount of research has been conducted to ex-
tend Fitts” law to 2D pointing. The very first study was carried
out by Crossman [10]. He proposed that target height had a
similar logarithmic effect on the pointing time (Equation 5).
Although it was the first proposed model for 2D pointing, the
additive nature of two indexes of difficulty, log, (A/W +1) and
log,(A/H + 1), failed to reflect the interaction effect between
target height and width:

D)4 lop(2tD).  (5)

A
MT = a+blog,( i

w
MacKenzie and Buxton [26] studied bivariate pointing in the
spirit of keeping the form of Fitts’ law, i.e., predicting the
movement time using the ratio of distance to be covered and
the target “extent”. Among the five candidates of target “ex-
tent”, they found the ID,,;,w x) model (referred to as the
smaller-of model, Equation 6), which used the minimum width
and height as the target “extent”, had the best correlation with
the experimental data:

MT = a+blog,( +1). (6)

A
min(W,H)
Accot and Zhai [1] used the notion of £, norm to model bivari-
ate pointing with explicit amplitude and directional constraints
(a.k.a, a Euclidean model). Their investigation led to their
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model with one more free weight :

— A A,
MT = a+blog,( (W) +n(H) +1). @)
Unlike the previous research which viewed ID of a pointing
task as a function of task variables such as A, W, and H, Gross-
man and Balakrishnan [15] proposed a different approach of
predicting MT: firstly modeling the probability of landing end
points within a target and then calculating the ID from such a
probability. The MT is then predicted based on the estimated

ID.

In the present research, we adopted the approach of modeling
ID as a function of task variables. To select the best model
form we based the current 2D Finger-Fitts model development
on both the smaller-of and Euclidean models: we revised them
to account for the ambiguity caused by the finger touch.

Previous research has also shown that it is not straightforward
to properly define spatial constraints for 2D pointing. For
example, previous work [1] identified that there were both
amplitude (W) and directional constraints (H) in 2D pointing.
However, their research considered only horizontal and ver-
tical movement directions. We generalized Accot and Zhai’s
model [1] to angled movement directions in this research. One
option we investigated in this research is using apparent width
and apparent height to define amplitude and direction con-
straint. Such an option was inspired by the apparent width
idea in Fitts’ law research, though this option slightly under-
performed another option — using nominal width/height to
approximate amplitude/direction constraint.

Next, we describe how we generalize Finger-Fitts law to 2D
pointing and how we tested it.

TWO DIMENSIONAL FINGER-FITTS LAW

There are two critical challenges for successfully modeling 2D
touch pointing: (1) model form selection and (2) amplitude
and directional constraint definition. We address them as
follows.

Model Form Selection

We propose models for 2D touch pointing by extending the
dual Gaussian distribution hypothesis [4] to the two most
successful 2D Fitts’ model for cursor and stylus pointing: Eu-
clidean model (Equation 7) [1] and Smaller-Of model (Equa-
tion 6) [26].

The dual Gaussian distribution hypothesis is the assumption
under which Finger-Fitts law was derived. It hypothesized that
the observed variability in the touch point distribution (W?2) is
the sum of variables from dual independent sources: (a) the
relative precision governed by the speed-accuracy tradeoff of
human motor systems, and (b) the absolute precision governed
by the uncertainty of finger touch (denoted by 27wec2). Under
this assumption, the endpoint variability caused by source
(a), which is related to the relative precision the movement
follows, should be calculated as (W2 — 27e - 62), because
We2 is the sum of variabilities from sources (a) and (b), and
the variance from (b) is caused by the ambiguity of finger
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input and is independent from the movement. Therefore, it
would be logically more sound to replace W, in Fitts’ law with
effective width with /W2 —27e - 62, because the latter more
truly reflect the speed-accuracy tradeoff human motor system
actually follows in the task. It means, that the variance caused
by the finger touch ambiguity is taken away when modeling
the movement.

Here we extend the dual Gaussian distribution hypothesis to
2D pointing. In 2D pointing, the endpoints have variability
in two directions: (1) the direction parallel to the movement
direction of the finger (i.e., W), and (2) the direction per-
pendicular to the movement direction of the finger (i.e., H).
We hypothesize that the absolute error of finger input has con-
tributed variance to both directions, and these variances should
be subtracted when modeling the speed-accuracy tradeoff of
human motor system.

Finger-Fitts Euclidean Model
Applying this hypothesis to the Fitts’ Euclidean model, we
obtain the follows:

MT = a+blog,( \/(

A A

N R Sy e

where c is an empirically determined parameter. We refer to
Equation 8 as Finger-Fitts Euclidean model.

P+1). (®)

Compared with the Fitts’ Euclidean model, Finger-Fitts Eu-
clidean model replaces W with VW2 — c2, where c? represents
the absolute variance caused by finger touch along the direc-
tion of W (the direction parallel to the movement of the finger).
The physical meaning of v/ W2 — ¢2 is that by taking away the
absolute variance caused by finger touch, the remaining value
would more truly reflect the speed-accuracy tradeoff human
motor system actually follows. In other words, it means the
absolute variance caused by the ambiguity of finger touch is
independent from the movement and should be subtracted. It
also means that, to attain a given level of accuracy, the sub-
ject would have to aim at a higher level, because touch input
introduces a certain amount of noise (represented by ¢?). We
also applied the same principle to the direction perpendicular
to the movement of the finger (i.e., H), and replace H with

VH? — 2.

Equation 9 shows a variant of Finger-Fitts Euclidean model,
which assumes the absolute variances in W and H directions
are different:

MT:a+blog2(\/( AP n(—A=)P+1). ©)

where ¢, and d are empirically determined parameters. Equa-
tion 9 is the more complete version of 2D Finger-Fitts Eu-
clidean model, and Equation 8 is a simplified one. The com-
plete model increases the fitting flexibility, but adds one extra
parameter.

We also made the following two further simplifications over
the original Finger-Fitts law. First, we use the nominal target
width W, rather than the effective width W,. This assumes
that participants respect the spatial constraint set by the task
parameters. Second, instead of assuming the absolute finger
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touch variance is a pre-defined constant across tasks (denoted
by Gg in Finger-Fitts law), we let it be an empirically deter-
mined parameter from the task (denoted by ¢* in Equation 8).
The assumption here is that the absolute error caused by finger
varies in different task contexts. Thus it would be logically
more sound to determine it from the empirical data.

The Finger-Fitts Euclidean models are expansions of the Fitts’
Euclidean model which can be viewed as a special case where
c? ~0and d” ~ 0. It indicates that the input device is accurate
enough and the variance caused by it is negligible (near 0).
This could happen in mouse or stylus input.

Finger-Fitts Smaller-Of Model

We also follow a similar approach to extend another widely
used 2D pointing model, the smaller-of model [26] for touch
pointing. We assume that the absolute ambiguity of finger
touch cause variance in endpoint distribution, and such amount
of variance should be accounted for by subsracting it from
min(W,H)?, which is the counterpart of W, in the smaller-of
model. This assumption leads to the Finger-Fitts Smaller-Of
model:

A
MT =a+b-lo +1). (10)
& min(W,H)% — c2 )

where a, b, and ¢ are empirically determined parameters, and
¢? accounts for the noise or input uncertainty caused by finger

touch.

In sum, Equations 8, 9, and 10 are three model candidates
for 2D touch pointing. We have derived them by building
the absolute error of finger touch into the most successful 2D
pointing models for desktop interaction [1, 26].

Defining amplitude (W) and directional () constraints
Another key challenge of modeling 2D pointing is to appropri-
ately determine the amplitude (W) and directional constraints
(H) [1], which are defined as:

e Amplitude Constraint (W): it is the constraint along the
movement direction of the finger, specifying how wide the
end point spread can be along the movement direction.

e Directional Constraint (H): it is the constraint perpendicular
to the movement direction of the finger, specifying to what
degree the end point can deviate from the travel direction.
In other words, it specifies how wide the end point spread
can be perpendicular to the finger travel direction.

To avoid confusion, we refer to the nominal width of a rect-
angular target as x-length, and the nominal height as y-length.
The x-length of a rectangle as the length of the side parallel to
the x direction on the device screen which is normally parallel
to the human body (i.e., left/right direction), and y-length as
the length of the side parallel to the y direction on tablet (i.e.,
up/down direction). The x— and y— lengths are defined in the
screen coordinate system, while the amplitude (W) and direc-
tional H constraints are defined in the movement coordinate
system.
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Figure 1: A illustration of option 1: using nominal width (x-length) and
height (y-length) to define amplitude (W) and directional (H) constraints.
(a): in vertical movement direction, y-length is W and x-length is H. (b):
in horizontal movement direction, x-length is W and y-length is H. (c):
in angled movement direction, if the direction falls within the grey area,
x-length is W and y-length is H; if the direction is within the white area,
y-length is W and x-length is H.

W and H for vertical and horizontal movements

Both amplitude and directional constraints are well defined
for horizontal and vertical movements. For example, if a user
moves the finger horizontally (along the x-axis) to select a
20mm (x-length) x 10mm (y-length) rectangle, the 20mm x-
length is the amplitude constraint and the 10 mm y-length is the
directional constraint. In contrast, if the user moves the finger
vertically (along the y-axis) to select the target, amplitude and
directional constraints are swapped for the identical target: the
amplitude constraint is 10mm and the directional constraint is
20mm.

W and H for angled movements

However, it is a challenge for defining W and H for an angled
movement, which referred to movement directions that are
not horizontal or vertical. Because both x-length and y-length
may contribute to the amplitude and directional constraints, as
shown in Figure 1, the question is how they should be defined.

We explored 2 options for defining amplitude and direction
constraints for angled movement directions:

e Option 1: Nominal Width and Height. As shown in Fig-
ure 1, this method uses nominal width (x-length) and height
(y-length) of a target to approximate W and H. If 6 fell
within the ranges of [0°, 45°], [135°, 225°], [315°, 360°]
x-length served as amplitude constraint and y-length served
as the directional constraint. If 6 was with [45°, 135°] and
[225°, 315°], y-length was the amplitude while x-length was
the directional constraint. This method essentially simpli-
fies angled conditions to their nearest vertical or horizontal
conditions, using either nominal width (x-length) or nomi-
nal height (y-length) as amplitude or directional constraints
according to the movement angles.
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Figure 2: A illustration of option 2: using apparent width (in blue) and
height (in green) to define amplitude (W) and directional (H) constraints.

e Option 2: Apparent Width and Height. As shown in Fig-
ure 2, this method uses the apparent widths and heights
as amplitude and directional constraints. We first draw a
straight line connecting the center of starting rectangle to
the target rectangle. The apparent width is the length of the
line segment intersected within the target. We then draw
another straight line crossing the center of the target and
perpendicular to the movement direction. The length of the
line segment intersected within the target is the apparent
height.

After creating model forms and methods for defining W and
H, we carried out a user study to evaluate them.

EVALUATION IN 2D POINTING TASKS

We conducted a rectangular target acquisition experiment to
evaluate the three proposed 2D Finger-Fitts pointing models,
and the two options of deciding W and H in a 2D rectangular
targets pointing task.

Participants and Apparatus

We recruited 18 participants (8 females) aged from 21 to 29
(mean: 24.89, std: 2). All were right-handed. The participants
performed tasks on a Android Pixel C Tablet with Android
API 27. The tablet was 211 mm wide and 148 mm high.
Throughout the entire experiment, the device was fixed in the
landscape orientation and placed on a table.

Design

The study followed a within-subject factorial design. The
independent variables were distance (A) between target cen-
ters, x-length and y-length of a rectangular target, and pointing
direction(0). There were 3 different A: 36, 54 and 80mm. Sim-
ilar to the previous 2D pointing study [1], our experiment had
3 basic x-length and y-length values (4, 8 and 10 mm) along
with 4 x-length and y-length ratios (1, 1.5, 2, 2.5). Sixteen dif-
ferent pointing direction were also considered (0°, 22.5°, 45°,
67.5°,90°, 112.5°, 135°, 157.5°, 180°, 202.5°, 225°, 247.5°,
270°,292.5°, 315°, and 337.5° ). There were in total 1008 x-
length x y-length x distance x angle combinations as shown
in Table 1.

Procedure

We designed a reciprocal target acquisition task. Each partic-
ipant placed the tablet on the table and selected the targets
using the index finger of their dominant hands. In each trial
(Figure 4), two rectangles were displayed on the screen with
a randomly chosen x-length x y-length x distance x angle
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Distance (A mm)

36, 54, 80

x-length = y-length (mm)

4, 4), 8, 8), (10, 10)

4, 6), (4, 8), (4, 10),
(8, 12), (8, 16), (8, 20),
(10, 15), (10, 20), (10, 25)

(6,4), (8,4), (10, 4),
(12, 8), (16, 8), (20, 8),
(15, 10), (20, 10), (25, 10)

0,225, 45, 67.5,

90, 112.5, 135, 157.5,

180, 202.5, 225, 247.5,
270, 292.5, 315, 337.5

x-length < y-length (mm)

x-length > y-length (mm)

Angle (6°)

Table 1: Distance (A), target sizes (x-length and y-length), and movement
directions (0) in experiment.

Figure 3: An illustration of experimental setting. The dotted circles show
3 possible movement distances (A). 0 is the angle between movement di-
rection and the x-axis of the screen coordinate system. The blue rectan-
gle is the starting rectangle and the red rectangle is the target.

combination from the experimental conditions. The combi-
nations showed up in random order for each participant. We
defined a trial as a target acquisition action. At the beginning
of each trial, the starting rectangle was in light blue and the
target rectangle was in light red. A participant was instructed
to select the starting rectangle to start the trial. Upon suc-
cessfully selecting the starting rectangle, the target rectangle
changed to light blue, and the participant was instructed to
select the target rectangle as quickly and accurately as pos-
sible. If the participant failed to select the target (the touch
point fell outside the target), a failure sound was played and
she/he would repeat the trial until the selection was successful.
If the selection was successful, a success sound was played,
and the previous starting rectangle became the target. The
participant then moved the finger to select the target, which
was considered the next trial.

Because a reciprocal target selection task included two move-
ment angles (e.g., a horizontal reciprocal target selection task
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included both 0° and 180° angles), the 1008 x-length x y-
length x distance x angle combinations formed 504 recipro-
cal target selection tasks. After the participant successfully
performed a reciprocal target selection a task 6 times, a new
reciprocal target selection task was randomly selected and
displayed and the participant moved on to the next trials.

The experiment collected 59,427 target selection trials in total.
We considered the trails in which the touch points fell beyond
3 std as outliers. After removing the outliers (1.08% of total
trials), we had 58,785 trials. There were 54,432 success trials:
504 (reciprocal tasks) x 6 (success trials in a task) x 18
(participants) = 54,432 (success trials). The average error rate
was 7.4%, which was the percentage of the failed trials.

Target
rectangle

\
/

Starting
rectangle

Figure 4: Left: a participant in the study. Right: a screenshot of the
task.

Results

Although our main focus was to model movement time MT,
we first examined the pointing performance measured by
movement time and error rates in different conditions (by
x-length, y-length, and A). The movement time M7 is defined
as the duration between the moment the finger lifted from the
starting rectangle and the moment the finger landed on the tar-
get rectangle. The error rate was the percentage of trials where
touch points landed outside the target. MT (s) and error rates
by x-length, y-length and A are shown in Table 2. As x-length
(or y-length) decreased, or A increased, MT increased.

Model candidates
We evaluated the following five candidates for modeling M T':

e Fitts’ Euclidean Model (Equation 7). It is an Euclidean
model with one free weight, a successful 2D pointing model
for mouse and stylus pointing.

Finger-Fitts Euclidean Simplied Model (Equation 8). As
previously described, it built the absolute error of finger
touch (denoted by ¢?) into the Fitts’ Euclidean model.

Finger-Fitts Euclidean Complete Model (Equation 9). As
previously described, it introduced two extra parameters
(i.e., ¢? and d?) into the Fitts’ Euclidean model.

Fitts’ Smaller-Of Model (Equation 6). It was another widely
used 2D pointing model for mouse and stylus pointing,
which uses min(W, H) in lieu of W in Fitts’ law.

Finger-Fitts Smaller-Of Model (Equation 10). It was an
extension of Fitts’ Smaller-Of model, which built the ab-
solute error of finger touch (denoted by ¢?) into the Fitts
Smaller-Of model.
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x-length MT Error y-length MT Error
Mean (SD) Mean (SD)
0.59(0.16) | 17.0% 0.58(0.17) 15.0%
0.58(0.15) | 13.8% 0.59(0.16) 16.2%
8 0.43(0.12) 6.4% 0.42(0.13) 6.1%
10 0.40(0.13) 4.9% 10 0.39(0.11) 4.9%
12 0.38(0.12) 3.0% 12 0.40(0.11) 3.6%
15 0.33(0.10) 1.3% 15 0.36(0.10) 3.1%
16 0.36(0.15) 2.3% 16 0.39(0.11) 4.5%
20 0.33(0.13) 2.3% 20 0.38(0.13) 4.2%
25 0.31(0.11) 1.4% 25 0.35(0.11) 2.0%
Distance A MT Mean (SD) Error Rate
36 0.38(0.12) 8.2%
54 0.43(0.13) 7.1%
80 0.52(0.14) 7.3%

Table 2: Movement time (s) and error rate by x-length, y-length, and A
(mm)

Besides evaluating different models, we also compared two
approaches to defining amplitude (W) and directional (H)
constraints, as described in the previous section:

e Nominal Width and Height. As previously described, it
uses nominal target width (x-length) and height (y-length)
to approximate W and H (Figure 1).

o Apparent Width and Height. As previously described, it de-
fines W along the movement direction and H perpendicular
to the movement direction (Figure 2)

In sum, we evaluated 5 model candidates x 2 W and H defini-
tion options.

Model Evaluation

We grouped trials by width x height x distance x angle,
resulting in 504 groups. We then obtained the mean movement
time (MT) of each group. These 504 MT means were data
in our model evaluation. By a least-squares fit method, we
estimated the parameters of the 5 model candidates, using two
W and H definition methods separately.

Nominal Width(Height) vs. Apparent Width(Height)

We first compared the two W and H definition methods by
examining the coefficient of determination (R*) across all the
five model candidates.

As shown in Table 3, using nominal width and height out-
performs using apparent width and height in all the model
candidates. The former led to a higher R? for every model. Us-
ing nominal width and height is also simple, straightforward,
and easy for implementation. The rest of the data analysis was
based on this W and H definition approach.

Model Comparision

Figure 5 and Table 4 show the regression results by /D for all
of the 5 models. The two Finger-Fitts Euclidean models had
the best fitting results, with R = 0.943 and R? = 0.944. The
Finger-Fitts Smaller-Of model also outperformed the Fitts’
Smaller-Of model, with R? = 0.915.
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Figure 5: MT vs. ID regressions for 5 model candidates. As shown, the Finger-Fitts Euclidean Simplified model (d) performed the best, and all the 2D
Finger-Fitts models (b, d, and e) outperform their counterparts 2D Fitts’ models (a [26] and c [1]).

Model R? RMSE AIC WAIC BIC Parameters
a) Fitts 0886 0041 269794 2716 -2689.49 a=-0.126, b=0.177
Smaller-Of
b) Finger-Fitts 0915 0036 284204 286049  -2829.37 a=-0.035,b=0.138,c2=9.213
o) Fitts 0914 0036 28395  -2857.76  -2826.83 a=-0.150,6=0.175,7=0.960
Euclidean | d) Finger-Fitts Simplified | 0943  0.029  -3044.95  -3063.56  -3028.06  a=-0.060,b=0.138,c2=9.634,7=0.967
— — i T
¢) Finger-Fitts Complete | 0.944 0029  -3045.08  -3064.17  -3023.95 %= O'Osg’b‘o'lﬁ’oc 8‘93'164"’ =9.999,

Table 4: Model parameters and evaluation results of 5 model cadidates. Information criteria (AIC, BIC, and WAIC) measure prediction
accuracy after taking into account model complexity. The smaller the value, the better a model.

R? of Using Nominal

R? of Using Apparent

Model Width & Height Width & Height
Fitts’ 0.886 0.834
Smaller-Of
Finger-Fitts 0.915 0.848
Fitts’ 0914 0.898
: Finger-Fitts
Euclidean g
Simplified 0.943 0914
Fénger—Fltts 0.944 0915
omplete

Table 3: Coefficient of determination (R?) of 5 model candidates with 2
W and H definition methods.

Cross validation. To maintain external validity of the analysis,
we also examine the leave-one-out Root Mean Square Error

864

(RMSE) for each model on the mean movement time. As
shown in Table 4, the results were consistent with R2 values.
For both Euclidean and Smaller-Of models, the Finger-Fitts
versions outperformed their standard Fitts’ law model counter-
part.

Information Criteria. Additionally, we also examined the
Information criteria, which are commonly used metrics for
model selection because (1) they reflect the relative quality of
a model, and (2) they take into account the complexity of the
model (i.e., the number of parameters). Some information cri-
teria such as Akaike information criterion (AIC) approximates
the amount of information lost with a model. Other commonly
used information criteria include Watanabe—Akaike informa-
tion criterion (WAIC), and Bayesian Information Criterion
(BIC). Each of these three criteria penalizes the complexity
of a model to various degrees: AIC has the least while BIC
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has the most severe penalties. Quantitatively, the smaller the
information criterion value, the better the model is.

The information criteria results are displayed in Table 4. The
results were consistent with R* and RMSE. The Finger-Fitts
models have smaller values than their Fitts’ counterpart in
each of the three information criteria, confirming that the
Finger-Fitts 2D models outperformed the Fitts’ version.

Likelihood Ration Test (LRT). We carried out LRT to exam-
ine whether the prediction improvements of Finger-Fitts 2D
models are significant compared with their Fitts’ counterparts.
LRT is often used to compare multiple models if one of them is
a constrained version (or nested) of another. Our comparision
fell within this category. The Fitts’ Smaller-Of model can be
considered as a constrained version of Finger-Fitts Smaller-of
in which ¢ = 0; the Fitts’ Euclidean model is a constrained
version of Finger-Fitts Euclidean where ¢ =0 and d = 0.
The LRT tests showed p < 0.001 for Finger-Fitts Smaller-
Of vs. Fitts’ Smaller-of(y?(1) = 145.82), for Finger-Fitts
Euclidean Simplified vs. Fitts’ Euclidean (y?(1) = 207.8),
and for Finger-Fitts Euclidean Complete vs. Fitts” Euclidean
(x*(2) = 208.46). However, no significant difference was ob-
served for Finger-Fitts Euclidean Simplified vs. Finger-Fitts
Euclidean Complete (x2(1) = 1.3816, p = 0.24).

DISCUSSION

Model Selection

Finger-Fitts Euclidean Simplified model performed the best
among all the candidates. Its R? is 0.943, almost the same
with the Finger-Fitts Euclidean Complete model which in-
troduced one more extra parameter. Its prediction accuracy
measured by information criteria is also stronger than other
models. Comparing the three Euclidean models, the results
showed introducing one parameter ¢ leads to a great fitness
gain, increasing R? from 0.914 to 0.943, while further introduc-
ing another parameter d> does not improve the model fitness.
The results suggested Finger-Fitts Euclidean Simplified model
(Equation 8) as the extension of Euclidean model for 2D touch
pointing.

Finger-Fitts Smaller-Of model also improved the fitness per-
formance over the original Smaller-Of model. It improved R?
from 0.886 to 0.915; information criteria also showed predic-
tion accuracy improvement and LRT showed the improvement
was statistically significant. It could serve as a simplified
version of 2D touch pointing model.

Overall, the results showed that subtracting the absolute vari-
ance caused by finger touch (denoted by c?) is effective in
improving 2D pointing model fitness. It has led to improved
model for both Euclidean model and Smaller-Of model.

Defining amplitude W and directional H constraints.

The results showed using nominal width and height outper-
forms using apparent width and height, across all the model
candidates. Additionally, using nominal width and height is
a conceptually simpler approach. We recommend using this
approach to define W and H in modeling 2D touch pointing.
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Explaining Violation of Scale-Independence

The Fitts’ law predicts that the pointing performance is scale-
independent: the MT is determined by the ratio of % and is in-
dependent from the absolute value of A or W. However, previ-
ous research [16] has shown that this scale-independence claim
is inconsistent with empirical data for mouse-based pointing
tasks. The touchscreen users’ experience has shown that touch
pointing performance is also no longer scale-independent. For
example, empirical evidence shows that typing on a smaller
keyboard is harder even if the ratio % remains the same as
that on a large keyboard. Studies [3, 14] showed that the input
speed decreased from 40 Word Per Minute (WPM) on a phone-
sized keyboard to 22 WPM on a watch-sized keyboard, even
with the help of modern predictive and statistical decoding
primed on modeling language regularities.

The 2D Finger-Fitts models provide a mathematical explana-
tion for the violation of scale-independence in touch pointing.
The Finger-Fitts Euclidean Simplified model shows that given
a constant %, and % ratio, a greater W and H lead to better per-
formance, which contradicts the Fitts’ law scale-independence
prediction that the same % and % lead to the same perfor-
mance. Below is a detailed explanation.

Fitts’ law predicts that when A, W, and H decrease or in-
crease proportionally, /D will remain unchanged because the
decrease/increase in A and W (or H) will not cancel each
other out. However, introducing ¢? to the denominator of ID
alters this scale-independent relationship. The Finger-Fitts Eu-
clidean Simplified model predicts that proportionally increas-
ing A, W, and H will reduce ID. Here is a simple mathematical
demonstration.

Finger-Fitts Euclidean model has defined the index of diffi-
culty of task (ID) as:

A A
ID =log,( \/(Wz—c2)2+n(HZ—c2)2+ 1). (an

Assuming the movement distance A, target width W, and target
height H proportionally increase to A’ = oA, W = aW, and
H' = ooH with o > 1, the index of difficulty (ID’) becomes:

(12)

1D = logy (| [(—2 2y m(—2 e
2 ,/W/2_cz 1/I_I/Q_Cz

We obtain the following relationship with a simple math deriva-
tion:

A B oA - oA B A
2_ 2 N2 o VWi W2
VWIS W (g) ‘ ‘
(13)
Similarly, we have:
A A
(14)

<
\/H’zfc2 VH? -2
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Plugging Inequations 13 and 14 into Equation 12 and assum-
ing 1 is positive, we have:

+1) (15)

ID/:IOg ( (A7/)2+n(A7/)2
2 q/W/Z_Cz ,/H/Z_cz

A A
<logy( \/(\/m)2+n(w)2+ 1)=1ID
(16)

Inequation 16 shows that proportionally increasing A, W, and
H will reduce ID, leading to shorter movement time. Such
a finding is consistent with the touchscreen interface design
guideline that target sizes should be above a pre-defined lower-
bound (e.g., 48 dp in Android [12]) to ensure satisfying point-
ing performance.

CONCLUSION
We proposed 2D Finger-Fitts models, which extend Finger-
Fitts law to bivariate touch pointing:

MT = a—+blog,( \/(

7/‘}%)2+U(7ﬁ)2+ 1).
17)

where a, b, c, and 1 are empirically determined parameters. A
simplified version is:

A
min(W,H)% — c2

where a, b, and ¢ are empirically determined parameters. The
2D Finger-Fitts models account for the ambiguity of finger
touch by subtracting components representing the variance
caused by touch ambiguity (represented by ¢?).

MT =a+b-log,( +1). (18

Our evaluation shows 2D Finger-Fitts law can predict the
movement time in bivariate pointing tasks well, and outper-
form the existing 2D pointing models including the Fitts’ Eu-
clidean [1] and Smaller-Of models [26] originally proposed
for desktop pointing by two measures together. The first mea-
sure is the coefficient of determination (R?) and second is
information criteria which factors in model complexity. The
2D Finger-Fitts Euclidean model (Equation 17)’s performance
is nearly saturated as adding more free parameters bring no
performance gain. Our investigation also shows using nominal
target width and height is a convenient yet effective approach
for defining amplitude and directional constraints of 2D finger
touch pointing.
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