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STABILITY-ENHANCED AP IMEX1-LDG METHOD:
ENERGY-BASED STABILITY AND RIGOROUS AP PROPERTY\ast 

ZHICHAO PENG\dagger , YINGDA CHENG\ddagger , JING-MEI QIU\S , AND FENGYAN LI\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In our recent work [Z. Peng et al., J. Comput. Phys., 415 (2020), 109485], a family of
high-order asymptotic preserving (AP) methods, termed IMEX-LDG methods, are designed to solve
some linear kinetic transport equations, including the one-group transport equation in slab geometry
and the telegraph equation, in a diffusive scaling. As the Knudsen number \varepsilon goes to zero, the
limiting schemes are implicit discretizations to the limiting diffusive equation. Both Fourier analysis
and numerical experiments imply the methods are unconditionally stable in the diffusive regime
when \varepsilon \ll 1. In this paper, we develop an energy approach to establish the numerical stability
of the IMEX1-LDG method, the subfamily of the methods that is first-order accurate in time and
arbitrary order in space, for the model with general material properties. Our analysis is the first to
simultaneously confirm unconditional stability when \varepsilon \ll 1 and the uniform stability property with
respect to \varepsilon . To capture the unconditional stability, we propose a novel discrete energy and explore
various stabilization mechanisms of the method and their relative contributions in different regimes.
A general form of the weight function, introduced to obtain the unconditional stability for \varepsilon \ll 1,
is also for the first time considered in such stability analysis. Based on uniform stability, a rigorous
asymptotic analysis is then carried out to show the AP property.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . kinetic transport equation, multiscale, asymptotic preserving, discontinuous Galerkin,
numerical stability, energy approach

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65M60, 65M12, 65L04

\bfD \bfO \bfI . 10.1137/20M1336503

1. Introduction. In this paper, we continue our efforts in devising and advanc-
ing mathematical understanding of asymptotic preserving (AP) methods to solve time-
dependent multiscale kinetic transport equations within the discontinuous Galerkin
(DG) framework [16, 15, 28]. Particularly, we focus on establishing energy-type nu-
merical stability and the AP property for some methods proposed in [28] for the model
equation

(1.1) \scrP \varepsilon : \varepsilon ft + v\partial xf =
\sigma s
\varepsilon 

(\langle f\rangle  - f) - \varepsilon \sigma af

with periodic boundary conditions. The function f = f(x, v, t) is the probability
distribution function of the particles, with the space variable x \in \Omega x \subset \BbbR , velocity
variable v \in \Omega v \subset \BbbR , and time t \geq 0. \sigma s(x) > 0 and \sigma a(x) \geq 0 are the scattering
and absorption coefficients, respectively. \scrL (f) = \langle f\rangle  - f defines a scattering operator,
where \langle f\rangle :=

\int 
\Omega v
fd\nu and \nu is a measure of the velocity space satisfying

\int 
\Omega v

1d\nu = 1.
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926 Z. PENG, Y. CHENG, J.-M. QIU, AND F. LI

The parameter \varepsilon > 0 is the dimensionless Knudsen number, defined as the ratio of
the mean free path of the particles over the characteristic length of the system. The
model (1.1) is in a diffusive scaling, and as \varepsilon \rightarrow 0, it approaches its diffusive limit

(1.2) \scrP 0 : \partial t\rho = \langle v2\rangle \partial x(\partial x\rho /\sigma s) - \sigma a\rho .

Here \rho = \langle f\rangle is the macroscopic density. Though seemingly simple, the equation in
(1.1) provides a prototype model to study many realistic problems, such as in neutron
transport or radiative transfer theory, both numerically and mathematically.

To simulate multiscale models like that in (1.1) effectively and reliably for a broad
range of values for \varepsilon , AP methods are widely recognized by the scientific community
(see, e.g., review papers [17, 9]). These methods are designed for the governing model
with \varepsilon > 0. Additionally, when \varepsilon \rightarrow 0, the methods become consistent and stable
discretizations for the limiting model as in (1.2) even on underresolved meshes with
\Delta x,\Delta t \gg \varepsilon . Hence, AP methods provide a natural transition of different regimes in
multiscale simulations. AP methods usually involve some level of implicit treatment
to deal with the stiffness of the model when \varepsilon \ll 1. It is known that stability alone
does not guarantee the scheme to capture the correct asymptotic limit [5, 26].

In our recent work [28], a family of high-order AP methods, termed IMEX-LDG
methods, are designed for (1.1). The methods are based on the reformulation of
the equation and involve local DG (LDG) discretization in space [6], globally stiffly
accurate implicit-explicit (IMEX) Runge--Kutta (RK) methods in time [4], and a
judicially chosen IMEX strategy. The reformulation has two steps: micro-macro
decomposition [24, 22] and addition/subtraction of a \omega -weighted diffusive term [8, 4].
The latter is introduced to obtain fully implicit limiting schemes as \varepsilon \rightarrow 0 to achieve
unconditional stability of the methods in the diffusive regime with \varepsilon \ll 1 and hence to
circumvent the otherwise stringent parabolic-type time step condition in this regime,
namely, \Delta t = O(\Delta x2), of many AP schemes whose limiting schemes are explicit
[18, 20, 22, 16]. Using globally stiffly accurate IMEX RK methods in time and LDG
methods in space with suitable numerical fluxes, the IMEX-LDG methods project the
numerical solutions to the local equilibrium at both inner stages and full RK steps
in the limit of \varepsilon \rightarrow 0, and this is important for the AP property and seemingly also
for accuracy (see appendix of [28]). In [28], unconditional stability in the diffusive
regime is observed numerically and is confirmed by a Fourier-type stability analysis
applied to the two-velocity telegraph equation with \Omega v = \{  - 1,+1\} and constant
material properties \sigma s = 1, \sigma a = 0. We want to mention that different strategies were
proposed in [7, 25] to achieve AP methods with implicit limiting schemes for kinetic
transport models in a diffusive scaling.

In this work, we restrict our attention to the IMEX1-LDG method, the subfam-
ily of the methods in [28] that is first-order accurate in time and arbitrary order in
space, and examine it systematically for the model with the general material prop-
erties, namely, with the spatially varying scattering and absorption coefficients \sigma s(x)
and \sigma a(x). Our main objectives are twofold. The first is to establish unconditional
stability in the diffusive regime with \varepsilon \ll 1 as well as uniform stability with respect
to \varepsilon . By following an energy approach as in [23, 15], one can get uniform stability yet
fail to capture the unconditional stability for \varepsilon \ll 1. Note that the methods examined
in [23, 15] in the limit of \varepsilon \rightarrow 0 are explicit. We instead propose and work with a new
notion of \mu -stability and get the stability we want by better exploring various stabi-
lization mechanisms of the method in different regimes. The stability results up to
this point depend on a parameter \mu . An intricate algebraic-based optimization with
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STABILITY AND AP PROPERTY OF IMEX1-LDG METHOD 927

respect to the admissible \mu is subsequently followed to further maximize the uncondi-
tional stability region while also maximizing the allowable time step size in the regime
when the method is conditionally stable. As our second objective, a rigorous asymp-
totic analysis is proved to show the AP property based on uniform stability. To our
best knowledge, our analysis is the first to capture unconditional stability when \varepsilon \ll 1
along with the uniform stability property for the model (1.1) with general material
properties. A general form of the weight function \omega is also for the first time considered
in such stability analysis. In this work, we keep the velocity variable continuous, and
our analysis can be easily adapted when the velocity variable is further discretized,
such as by discrete ordinates or PN methods [29]. Our analysis can also be extended
to AP methods with the same IMEX strategy yet with other spatial discretizations as
long as they satisfy some key properties, such as the adjoint property in (2.16) (also
see Lemma 3.5 in [28]) and the stabilization as in (5.5) due to the upwind treatment.
Though not presented here, a priori error estimates can follow similarly as in [15], and
they are uniform in \varepsilon for smooth enough solutions with uniform bounds in \varepsilon under
the relevant Sobolev norms. What seems to be more challenging and left to our future
endeavor is to obtain the stability analysis for IMEX-LDG methods with higher-order
temporal accuracy.

Finally, we want to briefly review some related literature, especially in establishing
numerical stability of AP methods for kinetic transport models in a diffusive scaling.
One commonly used approach is Fourier-type analysis. For the telegraph equation
with \Omega v = \{  - 1,+1\} , an analytical time step condition is given in [22] via Fourier
analysis to ensure uniform L2-stability of a first-order finite difference AP method,
while in [28], necessary conditions on \varepsilon ,\Delta x,\Delta t are obtained numerically for the pth-
order IMEX-LDG AP scheme (p = 1, 2, 3) to ensure an L2 energy nonincreasing in
time. The results seem to be uniform in \varepsilon , with unconditional stability captured for
\varepsilon \ll 1. Klar and Unterreiter in [21] considered a formally first-order-in-time and
second-order-in-space AP scheme for the one-group transport equation with \Omega v =
[ - 1, 1] and established uniform stability by first establishing the result in Fourier
space and then transforming it back to the physical space. Their analysis assumes
the H1 smoothness of the initial data. It is known that Fourier-type analysis requires
uniform meshes and the models being linear and constant coefficient. Energy-based
stability analysis, on the other hand, does not pose these restrictions, yet they are not
always easy to get. In [23], Liu and Mieussens revisited the first-order AP method in
[22] for a more general kinetic transport model and proved uniform stability following
an energy approach. A similar analysis is carried out in [15] for the first-order-in-time
DG-IMEX1 method in [16]. Based on the uniform stability analysis, error estimates
and rigorous asymptotic analysis are further established in [15]. In [2], a finite volume
method is analyzed for its rigorous AP property following an energy approach. In
both [28] and here in this work, we want to capture the unconditional stability in the
diffusive regime in addition to uniform stability. A few other theoretical works, among
many, for AP methods include uniform consistency [5, 20, 19], uniform convergence
[12, 11] based on the commuting diagram of AP schemes (see Figure 1.1 in [12]),
uniform accuracy with IMEX multistep methods [14], and uniform stability for models
with stochastic effect [1].

The remainder of the paper is organized as follows. In section 2, we review and
extend the IMEX1-LDG method in [28] to our model (1.1) with general material prop-
erties. Section 3 presents main results on numerical stability. Here several theorems,
including Theorems 3.1 and 3.3, are stated to obtain uniform stability while capturing
the unconditional stability in the diffusive regime. An optimization step is carried out
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928 Z. PENG, Y. CHENG, J.-M. QIU, AND F. LI

in Theorem 3.4 to find the best value of the parameter \mu in the notion of \mu -stability
in order to optimize the stability results. Once uniform stability is available, the AP
property of the method is stated in Theorem 4.1 in section 4. The proofs of all major
theorems are presented in sections 5--7 for better readability.

2. The IMEX1-LDG scheme. In this section, we will review the IMEX1-LDG
method proposed in [28] and extend it more systematically to the model (1.1) with
general material properties \sigma s(x) and \sigma a(x), both being in L\infty (\Omega x) and satisfying
\sigma M \geq \sigma s(x) \geq \sigma m > 0, \sigma a(x) \geq 0 \forall x \in \Omega x. The boundary conditions in space are
periodic, and the velocity variable v will not be discretized.

Two examples of the model (1.1) will be examined. One is the one-group trans-
port equation in slab geometry. Here \Omega v = [ - 1, 1], and the measure \nu is defined
as
\int 
\Omega v
fd\nu = 1

2

\int 
\Omega v
f(x, v, t)dv, with dv being the standard Lebesgue measure. The

other is the telegraph equation with \Omega v = \{  - 1, 1\} , and \nu is a discrete measure, given
as
\int 
\Omega v
fd\nu = 1

2 (f(x, v = 1, t) + f(x, v =  - 1, t)) . There is little difference in the for-
mulation and analysis of the IMEX1-LDG method for both examples.

2.1. Reformulation. The IMEX1-LDG method is defined based on a reformu-
lation of (1.1), which is obtained in several steps. As the first step, we rewrite the
model into its micro-macro decomposition [24, 22]. Let L2(\Omega v, \nu ) be the square inte-
grable space in v, with the inner product \langle f, g\rangle := \langle fg\rangle . Let \Pi be the L2 projection
onto Null(\scrL ) = Span\{ 1\} , I be the identify operator, and \rho := \langle f\rangle = \Pi f be the macro-
scopic density. Then f can be decomposed orthogonally into f = \rho + \varepsilon g, with \rho and
g satisfying

\partial t\rho + \partial x\langle vg\rangle =  - \sigma a\rho ,(2.1a)

\partial tg +
1

\varepsilon 
(I - \Pi )(v\partial xg) +

1

\varepsilon 2
v\partial x\rho =  - \sigma s

\varepsilon 2
g  - \sigma ag.(2.1b)

This is the micro-macro decomposition. As \varepsilon \rightarrow 0, the equations (2.1) formally
become

(2.2) \partial t\rho + \partial x\langle vg\rangle =  - \sigma a\rho , \sigma sg =  - v\partial x\rho ,

which is a first-order form of the limiting diffusion equation,

(2.3) \partial t\rho = \langle v2\rangle \partial x (\partial x\rho /\sigma s) - \sigma a\rho ,

equipped with the compatible initial condition. The relation \sigma sg =  - v\partial x\rho in (2.2)
will be referred to as the local equilibrium. For the telegraph equation, the diffusion
constant is \langle v2\rangle = 1, while for the one-group transport equation in slab geometry,
\langle v2\rangle = 1/3.

As the second step, a weighted diffusion term, \omega \langle v2\rangle \partial x(\partial x\rho /\sigma s), is added to both
sides of (2.1a), leading to

\partial t\rho + \partial x\langle vg\rangle + \omega \langle v2\rangle \partial x (\partial x\rho /\sigma s) = \omega \langle v2\rangle \partial x (\partial x\rho /\sigma s) - \sigma a\rho ,(2.4a)

\partial tg +
1

\varepsilon 
(I - \Pi )(v\partial xg) +

1

\varepsilon 2
v\partial x\rho =  - \sigma s

\varepsilon 2
g  - \sigma ag.(2.4b)

Here the weight function \omega is nonnegative and bounded. It is independent of x and
can depend on \varepsilon , satisfying

(2.5) \omega \rightarrow 1 as \varepsilon \rightarrow 0.
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STABILITY AND AP PROPERTY OF IMEX1-LDG METHOD 929

Additional properties desired for \omega in general and considered specifically in this work
will be discussed in next subsection. The idea of reformulating a kinetic transport
model in the diffusive scaling based on adding and subtracting a diffusive term was pre-
viously used in [8, 4, 10] to remove some parabolic stiffness in designing AP schemes.
One advancement we made in [28] and here is to improve the mathematical under-
standing of the desired property and the role of the weight function \omega , and such
advancement can guide one to choose \omega in practice.

With the auxiliary variables q = \partial x\rho and u = q/\sigma s, the system (2.4) can also be
written in its first-order form

q = \partial x\rho , u = q/\sigma s,(2.6a)

\partial t\rho + \partial x\langle v(g + \omega vu)\rangle = \omega \langle v2\rangle \partial xu - \sigma a\rho ,(2.6b)

\partial tg +
1

\varepsilon 
(I - \Pi )(v\partial xg) +

1

\varepsilon 2
v\partial x\rho =  - \sigma s

\varepsilon 2
g  - \sigma ag,(2.6c)

and correspondingly its limiting system as \varepsilon \rightarrow 0 now is

(2.7) \partial t\rho = \langle v2\rangle \partial xu - \sigma a\rho , q = \partial x\rho = \sigma su, g =  - vq/\sigma s =  - vu.

The property (2.5) has been used. The introduction of u is to deal with the spatially
varying scattering coefficient \sigma s. Note that the term v\partial x\rho in (2.6c) can be replaced
by vq.

2.2. The IMEX1-LDG scheme. To present the scheme, we start with some
notation. For the computational domain \Omega x = [xL, xR] in space, a mesh, xL = x 1

2
<

x 3
2
< \cdot \cdot \cdot < xN+ 1

2
= xR, is introduced. Let Ii = [xi - 1

2
, xi+ 1

2
] be an element, with xi

as its center and hi as its length. Set h = maxi hi. (\Delta x in the introduction is just h
here.) For any nonnegative integer k, we define a finite dimensional discrete space

(2.8) Uk
h =

\bigl\{ 
u \in L2(\Omega x) : u| Ii \in P k(Ii) \forall i

\bigr\} 
,

where the local space P k(I) consists of polynomials of degree at most k on I. We also
introduce

(2.9) Gk
h =

\biggl\{ 
u(\cdot , v) \in Uk

h :

\int 
\Omega v

\int 
\Omega x

| u(x, v)| 2dxdv <\infty 
\biggr\} 
.

For a function \phi \in Uk
h , we write \phi (x\pm ) = lim\Delta x\rightarrow 0\pm \phi (x+\Delta x) and \phi \pm 

i+ 1
2

= \phi (x\pm 
i+ 1

2

).

The jump and average of \phi at xi+ 1
2
are defined as [\phi ]i+ 1

2
= \phi +

i+ 1
2

 - \phi  - 
i+ 1

2

and \{ \phi \} i+ 1
2
=

1
2 (\phi 

+
i+ 1

2

+ \phi  - 
i+ 1

2

), respectively.

The IMEX1-LDG scheme in [28] involves a LDG discretization in space and a
first-order globally stiffly accurate IMEX RK scheme in time. And an IMEX strategy
is adopted so that all the terms, which are formally dominating in the regime \varepsilon \ll 1,
are treated implicitly. The IMEX1-LDG scheme for the model with a general \sigma s
is based on the system (2.6), and it is defined as below. Given \rho nh, q

n
h , u

n
h \in Uk

h ,
gnh \in Gk

h that approximate the solution \rho , q = \partial x\rho , u, and g at tn, we look for
\rho n+1
h , qn+1

h , un+1
h \in Uk

h , g
n+1
h \in Gk

h at tn+1 = tn + \Delta t such that \forall \varphi , \eta , \phi \in Uk
h and
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930 Z. PENG, Y. CHENG, J.-M. QIU, AND F. LI

\psi \in Gk
h,

(qn+1
h , \varphi ) + dh(\rho 

n+1
h , \varphi ) = 0,

(2.10a)

(\sigma su
n+1
h , \eta ) = (qn+1

h , \eta ),

(2.10b)

\biggl( 
\rho n+1
h  - \rho nh

\Delta t
, \phi 

\biggr) 
+ lh(\langle v(gnh + \omega vunh)\rangle , \phi ) = \omega \langle v2\rangle lh(un+1

h , \phi ) - 
\bigl( 
\sigma a\rho 

n+1
h , \phi 

\bigr) 
,

(2.10c)

\biggl( 
gn+1
h  - gnh

\Delta t
, \psi 

\biggr) 
+

1

\varepsilon 
bh,v(g

n
h , \psi ) - 

v

\varepsilon 2
dh(\rho 

n+1
h , \psi ) =  - 1

\varepsilon 2
(\sigma sg

n+1
h , \psi ) - 

\bigl( 
\sigma ag

n+1
h , \psi 

\bigr) 
.

(2.10d)

Here (\cdot , \cdot ) is the standard inner product for L2(\Omega x). The bilinear forms dh, lh, and
bh,v are all related to discrete spatial derivatives and defined as

dh(\rho h, \varphi ) =
\sum 
i

\int 
Ii

\rho h\partial x\varphi dx+
\sum 
i

\u \rho h,i - 1
2
[\varphi ]i - 1

2
,(2.11a)

lh(uh, \phi ) =  - 
\sum 
i

\int 
Ii

uh\partial x\phi dx - 
\sum 
i

\^uh,i - 1
2
[\phi ]i - 1

2
,(2.11b)

bh,v(gh, \psi ) = ((I - \Pi )\scrD h(gh; v), \psi ) = (\scrD h(gh; v) - \langle \scrD h(gh; v)\rangle , \psi ).(2.11c)

For a given v \in \Omega v, the function \scrD h(gh; v) \in Uk
h in (2.11c) is an upwind DG dis-

cretization of the transport term v\partial xg. It is determined by

(\scrD h(gh; v), \psi ) =  - 
\sum 
i

\biggl( \int 
Ii

vgh\partial x\psi dx

\biggr) 
 - 
\sum 
i

\widetilde (vgh)i - 1
2
[\psi ]i - 1

2
\forall \psi \in Uk

h ,(2.12)

where \widetilde vg is the upwind flux,

(2.13) \widetilde vg :=

\biggl\{ 
vg - if v > 0
vg+ if v < 0

= v\{ g\}  - | v| 
2
[g].

The terms \u \rho and \^u in (2.11a)--(2.11b) are one of the following alternating flux
pairs:

(2.14) right-left: \u \rho = \rho +, \^u = u - ; left-right: \u \rho = \rho  - , \^u = u+.

The choice of the numerical fluxes \u \rho and \^u is important for the numerical solution to
stay close to the local equilibrium when \varepsilon \ll 1, and it contributes to the AP property
of the scheme. Similar as in standard LDG methods, the auxiliary unknowns qh and
uh can be locally represented and hence eliminated in terms of \rho h.

At t = 0, the initialization is done via the L2 projection \pi h onto Uk
h , namely,

(2.15) \rho 0h(\cdot ) = \pi h\rho (\cdot , 0), g0h(\cdot , v) = \pi hg(\cdot , v, 0), u0h(\cdot , v) = \pi h(\sigma 
 - 1
s \partial x\rho ).

To complete the formulation of the scheme, one needs to specify the weight func-
tion \omega . In our previous work [28], Fourier-type stability analysis suggests that \omega 

should be chosen in the form of \omega = \omega ( \varepsilon h ,
\varepsilon 2

\Delta t ) to preserve the intrinsic scale of the
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STABILITY AND AP PROPERTY OF IMEX1-LDG METHOD 931

underlying model. In this paper, we only consider \omega = \omega (\varepsilon /(\sigma mh)), which is indepen-
dent of \varepsilon 2/\Delta t. Some specific examples include \omega = exp

\bigl( 
 - \varepsilon /(\sigma mh)

\bigr) 
and \omega \equiv 1. One

can also use a piecewise constant choice \omega = 1\{ \varepsilon /(\sigma mh)\leq \alpha \} , with some fixed positive
constant \alpha ; see Remark 3.7 for a specific choice of \alpha recommended by our stability
analysis. (Here 1D is an indicator function with respect to a set D.) Note that all
these choices are nonnegative and independent of x, satisfying (2.5).

The next lemma states the relation of bilinear forms dh and lh, and this can be
verified directly.

Lemma 2.1. With either alternating flux pair in (2.14), the bilinear forms dh and
lh are related:

lh(\varphi , \phi ) = dh(\phi , \varphi ) \forall \varphi , \phi \in Uk
h .(2.16)

The unique solvability of the solution to the IMEX1-LDG method is given in the
next proposition, together with some properties in (2.18) that can be easily verified.
The key to prove the first part of the proposition is the unique solvability of the
problem examined in Lemma 2.3.

Proposition 2.2. The IMEX1-LDG method is uniquely solvable for any \varepsilon \geq 0.
In addition, the solution satisfies

\langle gnh\rangle = 0 \forall n \geq 0,(2.17)

(\sigma su
m
h , \eta ) =  - lh(\eta , \rho mh ) \forall \eta \in Uk

h \forall m \geq 1.

Lemma 2.3. Given S \in L2(\Omega x) and \gamma j \geq 0, j = 1, 2. Consider the following
problem: Look for \rho h, qh, uh \in Uk

h such that \forall \varphi , \eta , \phi \in Uk
h ,

(qh, \varphi ) + dh(\rho h, \varphi ) = 0, (\sigma suh, \eta ) = (qh, \eta ),(2.18)

(\rho h, \phi ) - \gamma 1lh(uh, \phi ) =  - \gamma 2(\sigma a\rho h, \phi ) + (S, \phi ).

Then \rho h, qh, uh are uniquely solvable.

Proof. We first consider the homogeneous case with S = 0. Taking \varphi = \eta =
uh, \phi = \rho h and using the relation of dh and lh, we get

(\rho h, \rho h) + \gamma 1(\sigma suh, uh) + \gamma 2(\sigma a\rho h, \rho h) = 0.

With \gamma 1, \gamma 2, \sigma s, \sigma a being nonnegative, one has \rho h = 0, and the equations in (2.19)
further ensure that qh = uh = 0. This, in combination with the linearity of the
problem as well as that both the solution and the test function are from the same
finite dimensional space Uk

h , implies the unique solvability of the problem with the
general source term S.

Following the formal asymptotic analysis as in [28], we can show that the IMEX1-
LDG method is AP; namely, as \varepsilon \rightarrow 0, its limiting scheme is a consistent and stable
discretization of the limiting system (2.7) when the initial data are well prepared. This
will be stated in section 4 and proved in section 7 once uniform stability is available.
When the initial data are not well prepared, our scheme can adopt a similar initial
fix [28] when n = 0 to stay AP. There is no change to numerical stability, while the
AP property can be established rigorously, and the details are not presented in this
paper.
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2.3. Norms, inverse inequalities, and more notation. We introduce some
standard norms | | \phi | | = | | \phi | | L2(\Omega x), | | | \phi | | | = (\langle | | \phi | | 2\rangle )1/2 and weighted norms | | \phi | | s =
| | \surd \sigma s\phi | | , | | | \phi | | | s = | | | \surd \sigma s\phi | | | . For a bounded function \psi (v) of v, without confusion
we will write | | \psi | | \infty = | | \psi | | L\infty (\Omega v). Even though for our specific examples with \Omega v =
[ - 1, 1] or \{  - 1, 1\} we have | | v| | \infty = | | v2| | \infty = 1, we still keep | | v| | \infty and | | v2| | \infty in
most results to possibly inform about the case with a more general bounded velocity
space \Omega v.

In our analysis, the following inverse inequalities will be frequently used, and they
are fairly standard in finite element analysis: There exist constants Cinv = Cinv(k)

and \widehat Cinv = \widehat Cinv(k), such that for any \phi \in P k([a, b]),

| \phi (y)| 2(b - a) \leq Cinv

\int b

a

| \phi (x)| 2dx, with y = a or b,(2.19a)

(b - a)2
\int b

a

| \phi \prime (x)| 2dx \leq \widehat Cinv

\int b

a

| \phi (x)| 2dx.(2.19b)

Particularly, Cinv(k)| k=0 = 1. The next lemma states a property of the inverse

constants \widehat Cinv, Cinv.

Lemma 2.4. With \Omega v = [ - 1, 1] or \Omega v = \{  - 1, 1\} and with \widehat Cinv, Cinv from (2.19),
we define

(2.20) \scrK = \scrK (k) =
8(Cinv| | v| | \infty )2\widehat Cinv| | v2| | \infty 

=
8(Cinv)

2\widehat Cinv

.

Then at least for k = 1, 2, . . . , 9, we have \scrK > 1.

Proof. Based on Lemmas 1--2 in [30] and a linear scaling, one can take Cinv = (k+

1)2 and \widehat Cinv = 12k4, which can be used to verify \scrK > 1 directly for k = 1, 2, . . . , 9.

Sharper values of Cinv(k) and \widehat Cinv(k) can be numerically obtained for each k by
solving an eigenvalue problem (see section 4.1 in [30]); hence, one can check numer-
ically whether \scrK > 1 holds for larger k. Given that the temporal accuracy of the
IMEX1-LDG method is first order, it is more than enough for us to consider k \leq 9 in
our analysis.

For convenient reference, we summarize in Table 2.1 the definitions of some no-
tation arising from analysis, including \lambda  \star , \widehat \lambda  \star , and \mu  \star , which all depend on inverse
constants and hence on k. They also depend on the weight function \omega and the veloc-
ity space \Omega v. The same table also includes the definitions of \scrK in (2.20), a function
\mu S(\lambda ), and its inverse \lambda S(\mu ) as well as two more functions \lambda j(\mu ), j = 1, 2. The place
where each notation appears for the first time is also included.

3. Numerical stability. In this section, we will establish numerical stability for
the IMEX1-LDG method following an energy approach. At the continuous level, one
can derive an energy relation

(3.1)
d

dt

\Bigl( 
| | \rho | | 2 + \varepsilon 2| | | g| | | 2

\Bigr) 
+ 2| | | g| | | 2s =  - 2

\int 
\Omega v

\int 
\Omega x

\sigma a(\rho + \varepsilon g)2dxdv

for the model (1.1). And at the limit when \varepsilon = 0, based either on (3.1) or directly on
the limiting equation (2.3) as well as the relations among g, \partial x\rho and u in (2.2) and
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.
Table 2.1

Some notation (with the possible \omega -dependence suppressed) and the place of the first appearance.

Notation First appearance

\scrK =
8(Cinv| | v| | \infty )2\widehat Cinv| | v2| | \infty 

(2.20)

\lambda  \star =
2(1 - 1/(2\omega ))Cinv| | v| | \infty \widehat Cinv| | v2| | \infty +8(Cinv| | v| | \infty )2

(3.19)

\mu  \star =
1+ 1

2\omega 
\scrK 

1+\scrK =
\widehat Cinv| | v2| | \infty +4(Cinv| | v| | \infty )2/\omega \widehat Cinv| | v2| | \infty +8(Cinv| | v| | \infty )2

(3.21a)

\mu S(\lambda ) =
1
2\omega 

+ 1
2
\lambda 

\widehat Cinv| | v2| | \infty 
Cinv| | v| | \infty 

(3.21b)

\lambda S(\mu ) = \mu  - 1
S (\mu ) = 2(\mu  - 1

2\omega 
)

Cinv| | v| | \infty \widehat Cinv| | v2| | \infty 
Lemma 6.1

\widehat \lambda  \star = \lambda S(1) = 2(1 - 1
2\omega 

)
Cinv| | v| | \infty \widehat Cinv| | v2| | \infty 

(3.21b)

\lambda 1(\mu ) =

\sqrt{} 
(1 - \mu )(\mu  - 1

2\omega 
)

2 \widehat Cinv| | v2| | \infty 
, \lambda 2(\mu ) =

1 - \mu 
4Cinv| | v| | \infty 

(3.13a)

(2.6a), one has

d

dt
(| | \rho | | 2) + (2 - \zeta )| | | g| | | 2s + \zeta | | | g| | | 2s

=
d

dt
(| | \rho | | 2) + (2 - \zeta )\langle v2\rangle | | \partial x\rho /\sigma s| | 2s\underbrace{}  \underbrace{}  

| | u| | 2s

+\zeta | | | g| | | 2s =  - 2

\int 
\Omega v

\int 
\Omega x

\sigma a\rho 
2dxdv.(3.2)

Here \zeta can be any parameter in [0, 2]. Our numerical stability is a discrete analogue
of (3.1)--(3.2) while being uniform in \varepsilon . In addition, we want to confirm that the
method is unconditionally stable in the diffusive regime when \varepsilon \ll 1. A general form
of the weight function \omega = \omega (\varepsilon /(\sigma mh)) will be taken into account in our analysis.
Without loss of generality, we assume the mesh is uniform with h = hi \forall i. Our
results can be extended to general meshes when maxi hi

mini hi
is bounded uniformly during

mesh refinement. For easy readability, we will present and discuss the main results in
this section and defer the proofs to sections 5--6.

The natural first attempt is to follow a similar analysis as in [15], and this will
lead to the stability result in next theorem.

Theorem 3.1. The following stability result holds for the IMEX1-LDG method,
defined as (2.10) with (2.11)--(2.14),

En+1
h \leq En

h \forall n \geq 1, with En
h := | | \rho nh| | 2 + \varepsilon 2| | | gn - 1

h | | | 2 +\Delta t\omega \langle v2\rangle | | unh| | 2s,(3.3)

under the time step condition

(3.4) \Delta t \leq \Delta tstab =

\Biggl\{ 
2h

\alpha 2\alpha 3
(\sigma mh+ \alpha 3\varepsilon ) for k = 0,

h
\alpha 1+\alpha 2\alpha 3

(\sigma mh+min(\varepsilon , \alpha 2h
\alpha 1

)\alpha 3) for k \geq 1.

Here \alpha i, i = 1, 2, 3 are defined in terms of the inverse constants and the velocity space,
namely,

(3.5) \alpha 1 = (| | v| | 2\infty + \langle v2\rangle ) \widehat Cinv , \alpha 2 = 2(| | v| | \infty + \langle | v| \rangle )Cinv , \alpha 3 = 2| | v| | \infty Cinv.
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Note that the time step condition in (3.4) is essentially the same as the one for the
DG-IMEX1 method defined in [15]. This theorem, on the one hand, gives uniform
stability with respect to \varepsilon , which is important for the AP property of the method; see
sections 4 and 7 and also [15]. On the other hand, the theorem fails to capture the
unconditional stability property of the method in the diffusive regime when \varepsilon \ll 1.

The main reason for Theorem 3.1 to miss the unconditional stability observed
numerically and predicted by Fourier analysis in [28] is that not all stabilization mech-
anisms available in the proposed method are fully utilized. Indeed, the proof of The-
orem 3.1 uses the stabilization terms due to implicit time discretizations (i.e., | | \rho n+1

h  - 
\rho nh| | 2 and \varepsilon 2| | | gnh - g

n - 1
h | | | 2), upwind spatial discretization of \partial xg (i.e.,

\bigl\langle \sum 
i
| v| 
2 [gnh ]

2
i - 1

2

\bigr\rangle 
),

and the damping effect from the scattering operator (i.e., | | | gnh | | | 2s). What has not been
used is the new stabilization term \omega | | un+1

h  - unh| | 2s, arising due to the different tem-
poral treatments of the two \partial xu terms in (2.10c). Moreover, when \varepsilon goes to zero, the
contribution of \varepsilon 2| | | gnh  - gn - 1

h | | | 2 is diminishing, and this fortunately can be compen-
sated in part by | | | gnh | | | 2s from the scattering effect (e.g., see (5.7)--(5.8)). By better
exploring the various stabilization terms and their relative contributions in different
regimes, new stability results can be established, and they will capture the uncondi-
tional stability property of the method. This indeed is one main contribution of this
work. The new stability analysis will be based on a new discrete energy En

h,\mu , inspired
by the energies in (3.1)--(3.2) of the continuous model.

Definition 3.2. For any given constant \mu \in [0, 1], we define a discrete energy

En
h,\mu = | | \rho nh| | 2 + \varepsilon 2| | | gn - 1

h | | | 2 + \omega \Delta t\langle v2\rangle | | unh| | 2s +\Delta t(1 - \mu )| | | gn - 1
h | | | 2s.(3.6)

The IMEX1-LDG method is said to be \mu -stable if it satisfies

En+1
h,\mu \leq En

h,\mu \forall n \geq 1.(3.7)

If the method is \mu -stable for some \mu \in [0, 1], then it is said to be stable. If the scheme
being \mu -stable (resp., stable) is independent of the time step size \Delta t, the method is
further said to be unconditionally \mu -stable (resp., unconditionally stable). Note that
En

h,1 = En
n .

With respect to the \mu -stability above, a new stability result will be stated in
the next theorem under the assumption \omega > 1/2. This is to ensure a substantial
contribution of the stabilization term \omega | | un+1

h  - unh| | 2s. When the weight function is
\omega \equiv 1, this assumption always holds. In general, with the property \omega \rightarrow 1 as \varepsilon \rightarrow 0
in (2.5), the stability result can capture the property of the method at least in the
diffusive regime.

Theorem 3.3 (\mu -stability: \omega > 1
2 ). When \omega > 1

2 , the following \mu -stability
results hold for the IMEX1-LDG method, defined as (2.10) with (2.11)--(2.14).

(i) When k = 0 and with any fixed \mu \in [ 1
2\omega , 1], if

(3.8)
\varepsilon 

\sigma mh
\leq \lambda 0(\mu ) :=

1 - \mu 

2Cinv| | v| | \infty 
=

1 - \mu 

2| | v| | \infty 
,

the IMEX1-LDG method is unconditionally \mu -stable. Otherwise, the method
is conditionally \mu -stable when the time step satisfies
(3.9)

\Delta t \leq \tau \varepsilon ,h,0(\mu ) :=
2\varepsilon 2h

2Cinv| | v| | \infty \varepsilon  - (1 - \mu )\sigma mh
=

2\varepsilon 2h

2| | v| | \infty \varepsilon  - (1 - \mu )\sigma mh
.
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Here we have used Cinv(k)| k=0 = 1. The result can be expressed more com-
pactly as \Delta t \leq \widehat \tau \varepsilon ,h,0(\mu ) by introducing an extended real-valued function

(3.10) \widehat \tau \varepsilon ,h,0(\mu ) = \Biggl\{ \infty if \varepsilon 
\sigma mh \leq \lambda 0(\mu ),

\tau \varepsilon ,h,0(\mu ) otherwise.

And the scheme is unconditionally \mu -stable if and only if \widehat \tau \varepsilon ,h,0(\mu ) = \infty .
(ii) When k \geq 1 and with any fixed \mu \in ( 1

2\omega , 1], if

(3.11)
\varepsilon 

\sigma mh
\leq min (\lambda 1(\mu ), \lambda 2(\mu )) ,

the IMEX1-LDG method is unconditionally \mu -stable. Otherwise, the method
is conditionally \mu -stable when the time step satisfies

(3.12) \Delta t \leq 

\left\{     
\tau \varepsilon ,h,1(\mu ) if \lambda 1(\mu ) <

\varepsilon 
\sigma mh \leq \lambda 2(\mu ),

\tau \varepsilon ,h,2(\mu ) if \lambda 2(\mu ) <
\varepsilon 

\sigma mh \leq \lambda 1(\mu ),

min(\tau \varepsilon ,h,1(\mu ), \tau \varepsilon ,h,2(\mu )) if \varepsilon 
\sigma mh \geq max (\lambda 1(\mu ), \lambda 2(\mu )) .

Here

\lambda 1(\mu ) :=

\sqrt{} 
(1 - \mu )(\mu  - 1

2\omega )

2 \widehat Cinv| | v2| | \infty 
, \lambda 2(\mu ) :=

1 - \mu 

4Cinv| | v| | \infty 
,(3.13a)

\tau \varepsilon ,h,1(\mu ) :=
2\varepsilon 2(\mu  - 1

2\omega )h
2\sigma m

2\varepsilon 2 \widehat Cinv| | v2| | \infty  - (1 - \mu )(\mu  - 1
2\omega )\sigma 

2
mh

2
,(3.13b)

\tau \varepsilon ,h,2(\mu ) :=
2\varepsilon 2h

4Cinv| | v| | \infty \varepsilon  - (1 - \mu )\sigma mh
.(3.13c)

Again the results can be expressed more compactly as

\Delta t \leq min (\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu ))
by introducing two extended real-valued functions

(3.14) \widehat \tau \varepsilon ,\mu ,i(\mu ) = \Biggl\{ \infty if \varepsilon 
\sigma mh \leq \lambda i(\mu )

\tau \varepsilon ,h,i(\mu ) otherwise
, i = 1, 2.

And the scheme is unconditionally \mu -stable if and only if

min (\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu )) = \infty .

Let us take a closer look at the results in Theorem 3.3. When k = 0, as long as
\mu \in [ 1

2\omega , 1), our analysis confirms the unconditional stability of the proposed method
in the diffusive regime, which at the discrete level is characterized by relatively small
\varepsilon /(\sigma mh); see (3.8). Moreover, among all the viable choices for \mu , it seems \mu = 1/(2\omega )
is the best in the sense that the unconditionally stable region captured by our analysis
in \varepsilon /(\sigma mh) is the greatest due to the fact that max\mu \in [1/(2\omega ),1] \lambda 0(\mu ) = \lambda 0(1/(2\omega )).
Similar observation can be made when k \geq 1. This motivates us to further refine our
results by seeking the ``best"" \mu in the definition of the discrete energy En

h,\mu . More
specifically, we consider an optimization problem for any given \varepsilon , h and look for the
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best possible choice of \mu that maximizes the unconditionally stable region (that is,
to maximize the allowable range of \varepsilon /(\sigma mh) in (3.8) and (3.11)) and possibly also
simultaneously maximizes (this can be achieved but is not obvious) the allowable
time step condition in (3.9) and (3.12) when the method is conditionally stable. The
optimization process leads to Theorem 3.4, which comes next, with the underlying
logic as

max\{ \lambda : \lambda \leq \Theta (\mu , \lambda ) \forall \mu \in [\scrH (\lambda ), 1]\} = max\{ \lambda : \lambda \leq max
\mu \in [\scrH (\lambda ),1]

\Theta (\mu , \lambda )\} 

if all maximums are assumed to exist and \Theta ,\scrH are some continuous functions. The
relation holds if [\scrH (\lambda ), 1] is replaced by (\scrH (\lambda ), 1]. Note that the weight function in
the stability results is in the form \omega = \omega (\varepsilon /(\sigma mh)).

Theorem 3.4 (stability: \omega > 1
2 ). When \omega > 1

2 , the following stability results
hold for the IMEX1-LDG method, defined as (2.10) with (2.11)--(2.14).

(i) When k = 0, the IMEX1-LDG method is stable when

(3.15) \Delta t \leq \Delta tstab,0(\varepsilon , h) := max
\mu \in [ 1

2\omega ,1]
\widehat \tau \varepsilon ,h,0(\mu ) = \widehat \tau \varepsilon ,h,0\biggl( 1

2\omega 

\biggr) 
.

In particular, the method is unconditionally stable if \Delta tstab,0(\varepsilon , h) = \infty , that
is, when

(3.16)
\varepsilon 

\sigma mh
\leq max

\mu \in [ 1
2\omega ,1]

\lambda 0(\mu ) = \lambda 0

\biggl( 
1

2\omega 

\biggr) 
=

1 - 1
2\omega 

2| | v| | \infty 
.

Otherwise, the method is conditionally stable under the time step condition

\Delta t \leq max
\mu \in [ 1

2\omega ,1]
\tau \varepsilon ,h,0(\mu ) = \tau \varepsilon ,h,0

\biggl( 
1

2\omega 

\biggr) 
=

2\varepsilon 2h

2| | v| | \infty \varepsilon  - (1 - 1
2\omega )\sigma mh

.(3.17)

(ii) When 1 \leq k \leq 9, the IMEX1-LDG method is stable when

(3.18) \Delta t \leq \Delta tstab(\varepsilon , h) := max
\mu \in ( 1

2\omega ,1]
min (\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu )) .

In particular, the method is unconditionally stable if \Delta tstab(\varepsilon , h) = \infty , that
is, when

\varepsilon 

\sigma mh
\leq max

\mu \in ( 1
2\omega ,1]

min (\lambda 1(\mu ), \lambda 2(\mu )) = min (\lambda 1(\mu ), \lambda 2(\mu )) | \mu =\mu  \star 

= \lambda  \star :=
2(1 - 1

2\omega )Cinv| | v| | \infty \widehat Cinv| | v2| | \infty + 8(Cinv| | v| | \infty )2
.(3.19)

Otherwise, the method is conditionally stable under the time step condition

\Delta t \leq max
\mu \in ( 1

2\omega ,1]
min (\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu ))

= \tau \varepsilon ,h,1

\Bigl( 
min

\Bigl( 
\mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
, 1
\Bigr) \Bigr) 

=

\left\{       
\tau \varepsilon ,h,1(\mu S(

\varepsilon 
\sigma mh ))

= 4Cinv| | v| | \infty \varepsilon 2h

(8(Cinv| | v| | \infty )2+ \widehat Cinv| | v2| | \infty )\varepsilon  - 2Cinv| | v| | \infty (1 - 1
2\omega )\sigma mh

for \lambda  \star <
\varepsilon 

\sigma mh \leq \widehat \lambda  \star ,
\tau \varepsilon ,h,1(1) =

(1 - 1
2\omega )\sigma mh2\widehat Cinv| | v2| | \infty 

for \varepsilon 
\sigma mh >

\widehat \lambda  \star .

(3.20)

D
ow

nl
oa

de
d 

07
/1

7/
21

 to
 1

28
.1

13
.2

6.
88

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY AND AP PROPERTY OF IMEX1-LDG METHOD 937

Here

\mu  \star =
1 + 1

2\omega \scrK 
1 +\scrK 

=
\widehat Cinv| | v2| | \infty + 4(Cinv| | v| | \infty )2/\omega \widehat Cinv| | v2| | \infty + 8(Cinv| | v| | \infty )2

,

(3.21a)

\mu S(\lambda ) =
1

2\omega 
+

1

2
\lambda 
\widehat Cinv| | v2| | \infty 
Cinv| | v| | \infty 

, \widehat \lambda  \star = \mu  - 1
S (1) = 2

\Bigl( 
1 - 1

2\omega 

\Bigr) Cinv| | v| | \infty \widehat Cinv| | v2| | \infty 
.

(3.21b)

Remark 3.5. The results in Theorem 3.4 also imply an alternative route to obtain
this theorem. In fact, one can establish Theorem 3.4 by following the proof of Theorem
3.3 and taking \mu = 1

2\omega when k = 0 and taking

\mu = \mu (\varepsilon , h; k) :=

\Biggl\{ 
\mu  \star for \varepsilon 

\sigma mh \leq \lambda  \star ,

min
\Bigl( 
\mu S(

\varepsilon 
\sigma mh ), 1

\Bigr) 
for \varepsilon 

\sigma mh > \lambda  \star 
(3.22)

in defining the discrete energy En
h,\mu in (3.6), tailored for each given \varepsilon , h (implicitly

also for a given weight function \omega (\varepsilon /(\sigma mh)). Note that \mu is chosen according to
\varepsilon /(\sigma mh), which describes the regime the model is in with respect to the discretization
parameter h. The assumption 1 \leq k \leq 9 in this theorem is to ensure that \scrK > 1; see
Lemma 2.4.

Following the notion of the stability in Definition 3.2 and with En
h,1 = En

h , we can
combine the results in Theorems 3.1 and 3.4 and obtain our final results on numerical
stability for a general weight function \omega = \omega (\varepsilon /(\sigma mh)) that satisfies the property
(2.5).

Theorem 3.6. The following stability results hold for the IMEX1-LDG method,
defined as (2.10) with (2.11)--(2.14).

(i) When k = 0, the method is unconditionally stable if

(3.23) \omega >
1

2
and

\varepsilon 

\sigma mh
\leq 

1 - 1
2\omega 

2| | v| | \infty 
.

Otherwise, the method is conditionally stable under the time step condition

(3.24) \Delta t \leq max

\biggl( 
2| | v| | \infty \varepsilon h+ \sigma mh

2

2| | v| | \infty (| | v| | \infty + \langle | v| \rangle )
,

2\varepsilon 2h \cdot 1\{ \omega > 1
2\} 

2| | v| | \infty \varepsilon  - (1 - 1
2\omega )\sigma mh

\biggr) 
.

(ii) When 1 \leq k \leq 9, the method is unconditionally stable if

(3.25) \omega >
1

2
and

\varepsilon 

\sigma mh
\leq \lambda  \star .

Otherwise, the method is conditionally stable under the time step condition

\Delta t \leq max

\biggl( 
h

\alpha 1 + \alpha 2\alpha 3

\biggl( 
\sigma mh+min

\biggl( 
\varepsilon ,
\alpha 2h

\alpha 1

\biggr) 
\alpha 3

\biggr) 
,(3.26)

1\{ \omega > 1
2\} 

\cdot \tau \varepsilon ,h,1
\Bigl( 
min

\Bigl( 
\mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
, 1
\Bigr) \Bigr) \biggr) 

,

where \alpha i, i = 1, 2, 3 are given in (3.5).
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938 Z. PENG, Y. CHENG, J.-M. QIU, AND F. LI

Remark 3.7. When k = 0, the IMEX1-LDG method, denoted as the IMEX1-
LDG1 method, will be of first order in both space and time. We here will examine
more explicitly the stability results for this first-order method when the model is the
telegraph equation (referred to as the T model) and the one-group transport equation
in slab geometry (referred to as the OG model). Note that \langle | v| \rangle = 1 for the former
and \langle | v| \rangle = 1

2 for the latter. Particularly, we want to give the results for three weight
functions, including \omega \equiv 1 and \omega = exp( - \varepsilon 

\sigma mh ) (used in [28]) and a piecewise-defined
\omega taking value 1 for ``relatively small"" \varepsilon and 0 for large \varepsilon (used in [3]). Our analysis will
provide some guidance on how to define such piecewise constant \omega . All three examples
of \omega are monotonically nonincreasing in \varepsilon /(\sigma mh). First of all, for the IMEX1-LDG1
method, the result (3.24) is indeed

(3.27) \Delta t \leq max

\Biggl( 
2\varepsilon h+ \sigma mh

2

\beta 
,

2\varepsilon 2h \cdot 1\{ \omega > 1
2\} 

2\varepsilon  - (1 - 1
2\omega )\sigma mh

\Biggr) 
, \beta =

\biggl\{ 
4 (T model)
3 (OG model).

(i) We first consider \omega \equiv 1. It is easy to verify that 2\varepsilon 2h
2\varepsilon  - (1 - 1

2\omega )\sigma mh

\bigm| \bigm| 
\omega =1

\geq 
2\varepsilon h+\sigma mh2

\beta always holds. Then the stability results for the IMEX1-LDG1

method in (3.23)--(3.24) become that the method is unconditionally stable
when \varepsilon /(\sigma mh) \leq 1/4; otherwise, it is conditionally stable under the time step

condition \Delta t \leq 4\varepsilon 2h
4\varepsilon  - \sigma mh . Note that this stability condition is the same for

both T and OG models and is used in [28] for numerical experiments.
(ii) We next consider a piecewise constant \omega taking value either 1 or 0. To

have the largest possible unconditional stability region, our analysis suggests
\omega = 1\{ \varepsilon /(\sigma mh)\leq 1/4\} , and the respective stability results for the IMEX1-LDG1
method become that the method is unconditionally stable when \varepsilon /(\sigma mh) \leq 
1/4 and is conditionally stable when

(3.28) \Delta t \leq 2\varepsilon h+ \sigma mh
2

\beta 
.

Note that when \omega = 0, our IMEX1-LDG1 method is just the DG1-IMEX1
method in [16, 15], with (3.28) as the respective time step condition for sta-
bility. The results imply that, if we apply the IMEX1-LDG1 method with
\omega = 1 in the relatively diffusive regime, namely, \varepsilon /(\sigma mh) \leq 1/4, and apply
the DG1-IMEX1 method elsewhere, the stability condition will be inherited
from the method used in each regime.

(iii) The final case is for \omega = exp( - \varepsilon /(\sigma mh)). Note that \omega > 1/2 is equivalent to
\varepsilon /(\sigma mh) < r\ast with r\ast = ln(2) \approx 0.69314718 and that the second inequality
in (3.23) is equivalent to \varepsilon /(\sigma mh) \leq r\dagger , where r\dagger \approx 0.19589899 is the root of
x = (2 - ex)/4. While the stability results in (3.23)--(3.24) are straightforward
when \varepsilon /(\sigma mh) \leq r\dagger and when \varepsilon /(\sigma mh) \geq r\ast , the results when \varepsilon /(\sigma mh) \in 
(r\dagger , r\ast ) would depend on the model. With some calculation, one can obtain
the stability results for the IMEX1-LDG1 method with this weight function:
(3.29)

T model: \Delta t \leq 

\left\{       
\infty when \varepsilon /(\sigma mh) \leq r\dagger 

2\varepsilon 2h

2\varepsilon  - 
\Bigl( 
1 - exp(\varepsilon /(\sigma mh))/2

\Bigr) 
\sigma mh

when \varepsilon /(\sigma mh) \in (r\dagger , r\ast )

(2\varepsilon h+ \sigma mh
2)/4 when \varepsilon /(\sigma mh) \geq r\ast ,
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(3.30)

OG model: \Delta t \leq 

\left\{       
\infty when \varepsilon /(\sigma mh) \leq r\dagger 

2\varepsilon 2h

2\varepsilon  - 
\Bigl( 
1 - exp(\varepsilon /(\sigma mh))/2

\Bigr) 
\sigma mh

when \varepsilon /(\sigma mh) \in (r\dagger , r\circ )

(2\varepsilon h+ \sigma mh
2)/3 when \varepsilon /(\sigma mh) \geq r\circ .

Here r\circ \approx 0.38161849 is the root of (2x+ 1)/3 = 2x2/(2x - 1 + exp(x)/2).

4. AP property. In this section, we will state the main theorem on the AP
property of the IMEX1-LDG method when the initial data are well prepared, namely,
g + v\partial x\rho /\sigma s = O(\varepsilon ) at t = 0. The proof will be established in section 7 based on the
uniform stability property of the method. WithW = \rho , q, g, u, we writeW\varepsilon | t=0 =W 0

\varepsilon ,
W | t=0 = W0 and denote the numerical solution at time tn as Wn

\varepsilon ,\Delta t,h to emphasize

the dependence on h, \Delta t, \varepsilon . Here q0\varepsilon = \partial x\rho 
0
\varepsilon and q0 = \partial x\rho 

0 are weak derivatives of
\rho 0\varepsilon and \rho 0, respectively. The following assumptions are made in this section for the
initial data and weight function \omega .
Assumption 1 (weak convergence and being well prepared):

\rho 0\varepsilon \rightharpoonup \rho 0 in L2(\Omega x) as \varepsilon \rightarrow 0,(4.1)

\langle \zeta g0\varepsilon \rangle \rightharpoonup \langle \zeta g0\rangle in L2(\Omega x) as \varepsilon \rightarrow 0 \forall \zeta \in L2(\Omega v),(4.2)

\langle \zeta (g0\varepsilon + v\sigma  - 1
s q0\varepsilon )\rangle \rightharpoonup 0 in L2(\Omega x) as \varepsilon \rightarrow 0 \forall \zeta \in L2(\Omega v).(4.3)

Assumption 2 (boundedness of initial data):

sup
\varepsilon 

| | \rho 0\varepsilon | | <\infty , sup
\varepsilon 

| | | g0\varepsilon | | | <\infty , and sup
\varepsilon 

| | q0\varepsilon | | <\infty .(4.4)

Assumption 3 (boundedness for \omega ): For any h, there exists \varepsilon 0(h), such that

(4.5) 2/3 < \omega < 2 \forall \varepsilon < \varepsilon 0(h).

The assumption for \omega = \omega (\varepsilon /(\sigma mh)) is reasonable due to its property (2.5). The
next theorem is our main result in terms of the AP property of the IMEX1-LDG
method, defined as (2.10) with (2.11)--(2.15).

Theorem 4.1. Let the mesh size h be fixed. For any time step size \Delta t, there exist
unique \rho n\Delta t,h, u

n
\Delta t,h \in Uk

h , and g
n
\Delta t,h \in Gk

h for n \geq 0, qn\Delta t,h \in Uk
h for n \geq 1 such that

lim
\varepsilon \rightarrow 0

Wn
\varepsilon ,\Delta t,h =Wn

\Delta t,h, W = \rho , q, u,(4.6a)

lim
\varepsilon \rightarrow 0

\langle \zeta , gn\varepsilon ,\Delta t,h(x, \cdot )\rangle = \langle \zeta , gn\Delta t,h(x, \cdot )\rangle \forall \zeta \in L2(\Omega v) \forall x \in \Omega x,(4.6b)

lim
\varepsilon \rightarrow 0

\langle \zeta , (gn\varepsilon ,\Delta t,h, \psi )\rangle = \langle \zeta , (gn\Delta t,h, \psi )\rangle \forall \zeta \in L2(\Omega v) \forall \psi \in L2(\Omega x).(4.6c)

Furthermore, they satisfy the scheme

(qn+1
\Delta t,h, \varphi ) + dh(\rho 

n+1
\Delta t,h, \varphi ) = 0 \forall \varphi \in Uk

h ,(4.7a)

(\sigma su
n+1
\Delta t,h, \eta ) = (qn+1

\Delta t,h, \eta ) \forall \eta \in Uk
h ,(4.7b) \biggl( 

\rho n+1
\Delta t,h  - \rho n\Delta t,h

\Delta t
, \phi 

\biggr) 
= \langle v2\rangle lh(un+1

\Delta t,h, \phi ) - (\sigma a\rho 
n+1
\Delta t,h, \phi ) \forall \phi \in Uk

h ,(4.7c)

\pi h(\sigma sg
n+1
\Delta t,h) =  - vqn+1

\Delta t,h, gn\Delta t,h + vun\Delta t,h = 0(4.7d)
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for n \geq 0, with the initial data \rho 0\Delta t,h = \pi h\rho 0. This scheme is consistent and stable for
the limiting equation (2.7); it involves a standard LDG method in space and backward
Euler method in time. Therefore, the IMEX1-LDG method is AP. When the velocity
space is discrete such as \Omega v = \{  - 1, 1\} , (4.6b)--(4.6c) can be replaced by a stronger
form:

(4.8) lim
\varepsilon \rightarrow 0

gn\varepsilon ,\Delta t,h(\cdot , v) = gn\Delta t,h(\cdot , v) \forall v \in \Omega v.

Remark 4.2. The AP property in Theorem 4.1 is obtained by following a com-
pactness argument which does not inform the convergence rate with respect to \varepsilon .
Numerically, we observe first-order convergence in \varepsilon for \rho computed by the IMEX-
LDG methods [28] when they are first-, second-, and third- order accurate in both
space and time. A different analysis would be needed to quantify the convergence
rate in \varepsilon .

Remark 4.3. As an alternative to the modal form of the LDG discretization
adopted in this work, one can instead consider its nodal form [13]. Most of our
analysis in this work can be extended to the resulting nodal methods, with one main
difference in how the local equilibrium is satisfied as \varepsilon \rightarrow 0. More specifically, using
the nodal form, the equations in (4.7) containing \sigma s will be replaced by their nodal
counterpart, namely,

\sigma s(x\ast )g
n
\Delta t,h(x\ast , v) =  - vqn\Delta t,h(x\ast ), \sigma s(x\ast )u

n
\Delta t,h(x\ast ) = qn\Delta t,h(x\ast ),

where x\ast is any nodal point in the discretization. In addition, the absorption terms
\sigma a\rho and \sigma ag can be treated explicitly in the methods, and the interested reader can
refer to [27] for more details of the related changes in the analysis.

5. Proof for stability: Theorems 3.1 and 3.3. In this section, we will present
the proof for Theorem 3.3 first and then Theorem 3.1.

Proof of Theorem 3.3. Let n \geq 1. Taking \phi = \rho n+1
h in (2.10c) and using Lemma

2.1 and Proposition 2.2, we get\Bigl( \rho n+1
h  - \rho nh

\Delta t
, \rho n+1

h

\Bigr) 
+ lh(\langle vgnh\rangle , \rho n+1

h ) - \omega \langle v2\rangle lh(un+1
h  - unh, \rho 

n+1
h )

=
\Bigl( \rho n+1

h  - \rho nh
\Delta t

, \rho n+1
h

\Bigr) 
+ \langle vdh(\rho n+1

h , gnh)\rangle + \omega \langle v2\rangle (\sigma s(un+1
h  - unh), u

n+1
h )

=
1

2\Delta t

\bigl( 
| | \rho n+1

h | | 2  - | | \rho nh| | 2 + | | \rho n+1
h  - \rho nh| | 2

\bigr) 
+ \langle vdh(\rho n+1

h , gnh)\rangle 

+
\omega \langle v2\rangle 
2

(| | un+1
h | | 2s  - | | unh| | 2s + | | un+1

h  - unh| | 2s) =  - (\sigma a\rho 
n+1
h , \rho n+1

h ).(5.1)

Taking \psi = \varepsilon 2gn+1
h in (2.10d), integrating over \Omega v in v, and shifting index n to n - 1,

we get

\varepsilon 2
\Bigl\langle \Bigl( gnh  - gn - 1

h

\Delta t
, gnh

\Bigr) \Bigr\rangle 
+ \varepsilon \langle bh,v(gn - 1

h , gnh)\rangle  - \langle vdh(\rho nh, gnh)\rangle 

=
\varepsilon 2

2\Delta t

\bigl( 
| | | gnh | | | 2  - | | | gn - 1

h | | | 2 + | | | gnh  - gn - 1
h | | | 2

\bigr) 
+ \varepsilon \langle bh,v(gn - 1

h , gnh)\rangle  - \langle vdh(\rho nh, gnh)\rangle 

=  - | | | gnh | | | 2s  - \varepsilon 2\langle (\sigma agnh , gnh)\rangle .
(5.2)
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Now we sum up (5.1) and (5.2), with En
h defined in (3.3), and have

1

2\Delta t
(En+1

h  - En
h ) +

1

2\Delta t
(| | \rho n+1

h  - \rho nh| | 2 + \varepsilon 2| | | gnh  - gn - 1
h | | | 2) + \omega \langle v2\rangle 

2
| | un+1

h  - unh| | 2s

+ | | | gnh | | | 2s + \langle vdh(\rho n+1
h  - \rho nh, g

n
h)\rangle  - \varepsilon \langle bh,v(gnh  - gn - 1

h , gnh)\rangle + \varepsilon \langle bh,v(gnh , gnh)\rangle \leq 0.

(5.3)

To estimate \langle vdh(\rho n+1
h  - \rho nh, g

n
h)\rangle in (5.3), based on the scheme (2.10a)--(2.10b)

and applying the Cauchy--Schwartz inequality, we get

| \langle vdh(\rho n+1
h  - \rho nh, g

n
h)\rangle | = | dh(\rho n+1

h  - \rho nh, \langle vgnh\rangle )| = | (qn+1
h  - qnh , \langle vgnh\rangle )| 

= | (\sigma s(un+1
h  - unh), \langle vgnh\rangle )| \leq 

\sqrt{} 
\langle v2\rangle | | | gnh | | | s | | un+1

h  - unh| | s.(5.4)

This is different from the treatment of the same term in [15], as now there is an
additional stabilization term \omega | | un+1

h  - unh| | 2s available in (5.3).
The two terms in (5.3) involving the bilinear form bh,v can be handled similarly

as in [15] (see its Lemma 3.2, particularly equations (3.22)--(3.24)). More specifically,
with \langle gmh \rangle = 0 in Proposition 2.2, utilizing the upwind treatment in the proposed
scheme for v\partial xg, in addition to a few applications of inverse inequalities (2.19) and
Young's inequality, it can be shown that

\langle bh,v(gnh , gnh)\rangle =

\Biggl\langle \sum 
i

| v| 
2
[gnh ]

2
i - 1

2

\Biggr\rangle 
, | \langle bh,v(gnh  - gn - 1

h , gnh)\rangle | 

(5.5)

\leq 
\Bigl( \theta 

\sigma m
+ \eta 
\Bigr) 
| | | gnh  - gn - 1

h | | | 2 + \sigma m
4\theta 

\Biggl\langle \sum 
i

\int 
Ii

(v\partial xg
n
h)

2dx

\Biggr\rangle 
+
Cinv

4\eta h

\sum 
i

\Bigl\langle 
(v[gnh ]i - 1

2
)2
\Bigr\rangle 

\leq 
\Bigl( \theta 

\sigma m
+ \eta 
\Bigr) 
| | | gnh  - gn - 1

h | | | 2 +
\widehat Cinv| | v2| | \infty 

4\theta h2
| | | gnh | | | 2s +

Cinv| | v| | \infty 
2\eta h

\Biggl\langle 
| v| 
2

\sum 
i

[gnh ]
2
i - 1

2

\Biggr\rangle 
.

(5.6)

Here \theta and \eta are two positive constants, which will be specified later.
One important step in this proof is to split | | | gnh | | | 2s in (5.3) into two terms, each

playing different roles, according to some parameter \mu \in [0, 1] (additional conditions
required for \mu will soon become clear), with one term further rewritten based on the
parallelogram identity:

| | | gnh | | | 2s = \mu | | | gnh | | | 2s + (1 - \mu )
\Bigl( 1
2
| | | gnh | | | 2s  - 

1

2
| | | gn - 1

h | | | 2s(5.7)

+
1

4
| | | gnh  - gn - 1

h | | | 2s +
1

4
| | | gnh + gn - 1

h | | | 2s
\Bigr) 
.
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We now combine (5.3)--(5.7), with the discrete energy En
h,\mu defined in (3.6), and reach

1

2\Delta t
(En+1

h,\mu  - En
h,\mu ) + \varepsilon 

\biggl( 
1 - Cinv| | v| | \infty 

2\eta h

\biggr) \Biggl\langle 
| v| 
2

\sum 
i

[gnh ]
2
i - 1

2

\Biggr\rangle 
(5.8)

+

\biggl( 
\varepsilon 2

2\Delta t
+

1 - \mu 

4
\sigma m  - \varepsilon 

\Bigl( \theta 

\sigma m
+ \eta 
\Bigr) \biggr) 

| | | gnh  - gn - 1
h | | | 2 + (1 - \mu )| | | 

gnh + gn - 1
h

2
| | | 2s

+
1

2\Delta t
| | \rho n+1

h  - \rho nh| | 2 +
\omega \langle v2\rangle 
2

| | un+1
h  - unh| | 2s  - 

\sqrt{} 
\langle v2\rangle | | | gnh | | | s | | un+1

h  - unh| | s

+

\Biggl( 
\mu  - \varepsilon 

\widehat Cinv| | v2| | \infty 
4\theta h2

\Biggr) 
| | | gnh | | | 2s \leq 0.

In order for the discrete energy to be nonincreasing, namely, En+1
h,\mu \leq En

h,\mu , we require
the quadratic form in the final row of (5.8) to be nonnegative, and this can be ensured
by a nonnegative discriminant, leading to

(5.9) \mu  - \varepsilon 
\widehat Cinv| | v2| | \infty 

4\theta h2
\geq 1

2\omega 
.

Additionally, we also require

1 - Cinv| | v| | \infty 
2\eta h

\geq 0,(5.10)

\varepsilon 2

2\Delta t
+

1 - \mu 

4
\sigma m  - \varepsilon 

\Bigl( \theta 

\sigma m
+ \eta 
\Bigr) 
\geq 0.(5.11)

The inequality (5.9) implies that \mu needs to be restricted as \mu > 1
2\omega . We now

choose
\theta 

\sigma m
= \eta =

1

2

\biggl( 
\varepsilon 

2\Delta t
+

1 - \mu 

4\varepsilon 
\sigma m

\biggr) 
,

and with this, (5.11) is satisfied automatically, while (5.10) becomes

(5.12)
\varepsilon 2

\Delta t
\geq 4Cinv| | v| | \infty \varepsilon  - (1 - \mu )\sigma mh

2h
,

and (5.9) is now

(5.13)
\varepsilon 2

\Delta t
\geq 

2\varepsilon 2 \widehat Cinv| | v2| | \infty  - (1 - \mu )(\mu  - 1
2\omega )\sigma 

2
mh

2

2(\mu  - 1
2\omega )\sigma mh

2
.

When \varepsilon 
\sigma mh \leq 1 - \mu 

4Cinv| | v| | \infty , the right-hand side of (5.12) is nonpositive; hence, (5.12)

holds for any time step \Delta t. Otherwise, the time step needs to satisfy \Delta t \leq \tau \varepsilon ,h,2(\mu )
with \tau \varepsilon ,h,2(\mu ) defined in (3.13c). Similarly, when

\varepsilon 

\sigma mh
\leq 

\sqrt{} 
(1 - \mu )(\mu  - 1

2\omega )

2 \widehat Cinv| | v2| | \infty 
,

the right-hand side of (5.13) is nonpositive; hence, (5.13) holds for any time step
\Delta t > 0. Otherwise, the time step needs to satisfy \Delta t \leq \tau \varepsilon ,h,1(\mu ) with \tau \varepsilon ,h,1(\mu ) defined
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in (3.13b). The discussions so far can be summarized into the claims in Theorem 3.3
when k \geq 1.

When k = 0, we have \partial xg
n
h = 0, and the estimate in (5.6) can be replaced by

(5.14) | \langle bh,v(gnh  - gn - 1
h , gnh)\rangle \leq \eta | | | gnh  - gn - 1

h | | | 2 + Cinv| | v| | \infty 
2\eta h

\Biggl\langle 
| v| 
2

\sum 
i

[gnh ]
2
i - 1

2

\Biggr\rangle 
,

and all analysis up to (5.11) holds without the terms containing \theta . Specifically, (5.9)--
(5.11) become

(5.15) \mu \geq 1

2\omega 
, 1 - Cinv| | v| | \infty 

2\eta h
\geq 0,

\varepsilon 2

2\Delta t
+

1 - \mu 

4
\sigma m  - \varepsilon \eta \geq 0.

Now taking

\eta =
\varepsilon 

2\Delta t
+

1 - \mu 

4\varepsilon 
\sigma m

in (5.15) and following a similar analysis as above, one reaches the results for k = 0.

Proof of Theorem 3.1. The proof can be established by starting with the equation
(5.3) and then following almost the identical analysis in [15] (particularly, see equa-
tions (3.22), (3.26)--(3.28), (3.36)--(3.41) in [15]), together with | | | gnh | | | 2s \geq \sigma m| | | gnh | | | 2,
to deal with the general scattering coefficient \sigma s(x). The details are omitted.

6. Proof for stability: Theorem 3.4. When k = 0, the optimization is
straightforward, and the detail is omitted. The remainder of this section will be
devoted to the case when k \geq 1, for which the analysis is more technically involved.
From here on, we assume 1 \leq k \leq 9. With this, we have \scrK > 1 and \widehat Cinv > 0. We also
assume \omega > 1/2, though not all preliminary results next depend on this assumption.
One can refer to Table 2.1 for a summary of notation.

6.1. Preliminary lemmas. We first state and prove some preparatory lemmas.
Lemmas 6.1 and 6.4 can be directly verified, and the proofs are skipped.

Lemma 6.1.
(i) With \omega > 1/2, there always holds \mu  \star \in ( 1

2\omega , 1).

(ii) With \mu S(\lambda ) defined in (3.21b), let its inverse be \lambda S(\mu ) := 2(\mu  - 1
2\omega )

Cinv| | v| | \infty \widehat Cinv| | v2| | \infty 
.

-- Both \mu S(\lambda ) and \lambda S(\mu ) are monotonically increasing, and \mu S(\lambda ) >
1
2\omega \forall \lambda > 0.

-- With \widehat \lambda  \star = \lambda S(1), we have \mu S(\widehat \lambda  \star ) = 1. In addition, \mu S(\lambda ) < 1 \leftrightarrow \lambda <\widehat \lambda  \star .
-- \mu S(\lambda  \star ) = \mu  \star and \lambda S(\mu  \star ) = \lambda  \star .

Lemma 6.2. Consider \mu \in ( 1
2\omega , 1]. Then

(i)

(6.1) \lambda 1(\mu ) \leq \lambda 2(\mu ) \Leftarrow \Rightarrow \mu \leq \mu  \star 

\biggl( 
\Leftarrow \Rightarrow 1

2\omega 
< \mu \leq \mu  \star < 1

\biggr) 
and \lambda 1(\mu  \star ) = \lambda 2(\mu  \star ) = \lambda  \star . In addition, \lambda 1(\mu ) is monotonically increasing
on ( 1

2\omega , \mu  \star ], and \lambda 2(\mu ) is monotonically decreasing;
(ii)

(6.2) \lambda S(\mu ) \leq \lambda 1(\mu ) \Leftarrow \Rightarrow \mu \leq \mu  \star 

\biggl( 
\Leftarrow \Rightarrow 1

2\omega 
< \mu \leq \mu  \star < 1

\biggr) 
.
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(iii)

(6.3) \widehat \lambda  \star > \lambda 1(\mu ), \widehat \lambda  \star > \lambda 2(\mu ) \forall \mu \in 
\Bigl( 1

2\omega 
, 1
\Bigr] 
.

Proof. For \mu \in ( 1
2\omega , 1], to prove (i),

\lambda 1(\mu ) \leq \lambda 2(\mu ) \Leftarrow \Rightarrow 

\sqrt{} 
(1 - \mu )(\mu  - 1

2\omega )

2 \widehat Cinv| | v2| | \infty 
\leq 1 - \mu 

4Cinv| | v| | \infty 

\Leftarrow \Rightarrow 
\mu  - 1

2\omega \widehat Cinv| | v2| | \infty 
\leq 1 - \mu 

8(Cinv| | v| | \infty )2
\Leftarrow \Rightarrow \mu \leq \mu  \star .

The equality is achieved at \mu = \mu  \star , with the value being \lambda  \star . The monotonicity of
\lambda 2(\mu ) is straightforward. For \lambda 1(\mu ), note that with \scrK > 1, we have \mu  \star <

1
2

\bigl( 
1 + 1

2\omega 

\bigr) 
,

with 1
2

\bigl( 
1 + 1

2\omega 

\bigr) 
being where \lambda 1(\mu ) achieves its maximum. This implies that \lambda 1(\mu ),

whose square is a downward-facing parabola, is monotonically increasing on ( 1
2\omega , \mu  \star ].

To prove (ii), we proceed as follows:

\lambda S(\mu ) \leq \lambda 1(\mu ) \Leftarrow \Rightarrow 2
\Bigl( 
\mu  - 1

2\omega 

\Bigr) Cinv| | v| | \infty \widehat Cinv| | v2| | \infty 
\leq 

\sqrt{}    (1 - \mu )
\Bigl( 
\mu  - 1

2\omega 

\Bigr) 
2 \widehat Cinv| | v2| | \infty 

\Leftarrow \Rightarrow 
\Bigl( 
\mu  - 1

2\omega 

\Bigr) 8(Cinv| | v| | \infty )2\widehat Cinv| | v2| | \infty 
\leq 1 - \mu \Leftarrow \Rightarrow \mu \leq \mu  \star .

To prove (iii), related to \lambda 2(\mu ), given its being monotonically decreasing, we only

need to show \widehat \lambda  \star > \lambda 2(
1
2\omega ), which is ensured by \scrK > 1 as follows:

(6.4) \widehat \lambda  \star > \lambda 2

\Bigl( 1

2\omega 

\Bigr) 
\Leftarrow \Rightarrow 2

\Bigl( 
1 - 1

2\omega 

\Bigr) Cinv| | v| | \infty \widehat Cinv| | v2| | \infty 
>

1 - 1
2\omega 

4Cinv| | v| | \infty 
\Leftarrow \Rightarrow \scrK > 1.

Related to \lambda 1(\mu ), from the proof of (i) of this lemma, we only need to verify \widehat \lambda  \star >
\lambda 1(\mu )| \mu = 1

2 (1+
1
2\omega ). This can be argued as follows:

(6.5)\widehat \lambda  \star > \lambda 1(\mu )| \mu = 1
2 (1+

1
2\omega ) \Leftarrow \Rightarrow 2

\Bigl( 
1 - 1

2\omega 

\Bigr) Cinv| | v| | \infty \widehat Cinv| | v2| | \infty 
>

1 - 1
2\omega 

2

\sqrt{} 
2 \widehat Cinv| | v2| | \infty 

\Leftarrow \Rightarrow 4\scrK > 1.

This holds because \scrK > 1.

Remark 6.3. Lemmas 6.1--6.2 tell the properties and the relative locations of the
curves \lambda = \lambda S(\mu ), \lambda = \lambda 1(\mu ) and \lambda = \lambda 2(\mu ). Particularly,

\bullet according to Lemmas 6.1--6.2, the curves \lambda = \lambda S(\mu ), \lambda = \lambda 1(\mu ) and \lambda = \lambda 2(\mu )
intersect at (\mu  \star , \lambda  \star );

\bullet according to Lemma 6.2, to the left of \mu = \mu  \star , the graph of \lambda = \lambda 2(\mu ) is
above that of \lambda = \lambda 1(\mu ), which is above the graph of \lambda = \lambda S(\mu ); to the right
of \mu = \mu  \star , the ordering is reversed.

It is important to know the relative locations of various curves to optimize the time
step condition. For general weight function \omega , it is nontrivial to visualize these curves,
yet their relative locations and some special points are captured in Figure 6.1, which
is for the constant weight function \omega \equiv 1. The figure can also facilitate the reader in
following and understanding the analysis in this section, which is given algebraically
for general \omega and has a geometric interpretation for the special case of \omega \equiv 1.
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Fig. 6.1. Plots with constant \omega \equiv 1 to facilitate the understanding of Lemmas 6.1--6.2. The
scheme is (i) unconditionally stable when \lambda = \varepsilon /(\sigma mh) and \mu fall into the gray region, (ii) \mu -stable
under \Delta t \leq \tau \varepsilon ,h,1(\mu ) in the stripped region, (iii) \mu -stable under \Delta t \leq \tau \varepsilon ,h,2(\mu ) in the latticed region,
and (iv) \mu -stable under \Delta t \leq min(\tau \varepsilon ,h,1(\mu ), \tau \varepsilon ,h,2(\mu )) in the blank (white) region.

Lemma 6.4. When \varepsilon 
\sigma mh > max(\lambda 1(\mu ), \lambda 2(\mu )), both \widehat \tau \varepsilon ,h,1(\mu ) and \widehat \tau \varepsilon ,h,2(\mu ) are fi-

nite, and they satisfy
(6.6)\widehat \tau \varepsilon ,h,1(\mu ) = \tau \varepsilon ,h,1(\mu ) \leq \widehat \tau \varepsilon ,h,2(\mu ) = \tau \varepsilon ,h,2(\mu ) \Leftarrow \Rightarrow \mu \leq \mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
\Leftarrow \Rightarrow \lambda S(\mu ) \leq 

\varepsilon 

\sigma mh
.

Moreover, \tau \varepsilon ,h,1(\mu S(
\varepsilon 

\sigma mh )) = \tau \varepsilon ,h,2(\mu S(
\varepsilon 

\sigma mh )).

Lemma 6.5. When restricted to \{ \mu : \varepsilon 
\sigma mh > \lambda 2(\mu )\} , \tau \varepsilon ,h,2(\mu ) is positive and

monotonically decreasing. When restricted to \{ \mu \in ( 1
2\omega ,min(\mu S(

\varepsilon 
\sigma mh ), 1)] :

\varepsilon 
\sigma mh >

\lambda 1(\mu )\} , \tau \varepsilon ,h,1(\mu ) is positive and monotonically increasing.

Proof. The definitions of \lambda j(\mu ) ensures that \tau \varepsilon ,h,j(\mu ) is positive with j = 1, 2 for
the considered \mu . The monotonicity of \tau \varepsilon ,h,2(\mu ) directly comes from its being linear,
and what remains will be devoted to showing the monotonicity of \tau \varepsilon ,h,1(\mu ).

Based on the definition of \tau \varepsilon ,h,1(\mu ) in (3.13b), we know that when \varepsilon 
\sigma mh > \lambda 1(\mu ),

we have 2\varepsilon 2 \widehat Cinv| | v2| | \infty  - (1 - \mu )(\mu  - 1
2\omega )\sigma 

2
mh

2 > 0 and

\tau \prime \varepsilon ,h,1(\mu ) =
2\varepsilon 2h2\sigma m

\Bigl( 
2\varepsilon 2 \widehat Cinv| | v2| | \infty  - (\mu  - 1

2\omega )
2\sigma 2

mh
2
\Bigr) 

(2\varepsilon 2 \widehat Cinv| | v2| | \infty  - (1 - \mu )(\mu  - 1
2\omega )\sigma 

2
mh

2)2
.

As a result, the sign of \tau \prime \varepsilon ,h,1(\mu ), the same as that of q(\mu ) := 2\varepsilon 2 \widehat Cinv| | v2| | \infty  - (\mu  - 
1
2\omega )

2\sigma 2
mh

2, will inform about the monotonicity of \tau \varepsilon ,h,1(\mu ).
Consider the two roots of q(\mu ), which are

\~\mu 1,2 = \~\mu 1,2

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
=

1

2\omega 
\mp \varepsilon 

\sigma mh

\sqrt{} 
2 \widehat Cinv| | v2| | \infty ,

and q(\mu ) > 0 when \mu \in (\~\mu 1, \~\mu 2). Note that \~\mu 1 <
1
2\omega . One can further show that

\~\mu 2(\lambda ) > \mu S(\lambda ) \forall \lambda > 0 as follows:

\mu S(\lambda ) < \~\mu 2(\lambda ) \Leftarrow \Rightarrow 1

2\omega 
+

1

2
\lambda 
\widehat Cinv| | v2| | \infty 
Cinv| | v| | \infty 

<
1

2\omega 
+ \lambda 

\sqrt{} 
2 \widehat Cinv| | v2| | \infty 

\Leftarrow \Rightarrow 
\widehat Cinv| | v2| | \infty 
2Cinv| | v| | \infty 

<

\sqrt{} 
2 \widehat Cinv| | v2| | \infty \Leftarrow \Rightarrow \scrK > 1.
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Hence, ( 1
2\omega ,min(\mu S(

\varepsilon 
\sigma mh ), 1)] \subset (\~\mu 1, \~\mu 2), and the monotonicity of \tau \varepsilon ,h,1(\mu ) will fol-

low.

Lemma 6.6. Assume \lambda > 0.
(i) \lambda > \lambda  \star \Leftarrow \Rightarrow \lambda > \lambda 2(\mu S(\lambda )).

(ii) When \lambda \leq \widehat \lambda  \star , we have \lambda > \lambda  \star \Leftarrow \Rightarrow \lambda > \lambda 1(\mu S(\lambda )).

(iii) When \lambda  \star <
\varepsilon 

\sigma mh \leq \widehat \lambda  \star , we have \varepsilon 
\sigma mh > max(\lambda 1(\mu ), \lambda 2(\mu ))| \mu =\mu S( \varepsilon 

\sigma mh ).

Proof. To prove (i), we proceed from the definitions of \lambda 2(\mu ) and \mu S(\lambda ) and get

\lambda > \lambda 2(\mu S(\lambda )) \Leftarrow \Rightarrow \lambda >
1 - 1

2\omega  - 1
2\lambda 

\widehat Cinv| | v2| | \infty 
Cinv| | v| | \infty 

4Cinv| | v| | \infty 
(6.7)

\Leftarrow \Rightarrow 

\Biggl( 
1 +

\widehat Cinv| | v2| | \infty 
8(Cinv| | v| | \infty )2

\Biggr) 
\lambda >

1 - 1
2\omega 

4Cinv| | v| | \infty 
\Leftarrow \Rightarrow \lambda > \lambda  \star .(6.8)

To prove (ii), we first notice that \mu S(\lambda ) >
1
2\omega holds when \lambda > 0. With \lambda \leq \widehat \lambda  \star ,

equivalently \mu S(\lambda ) \leq 1, we then have

\lambda > \lambda 1(\mu S(\lambda )) \Leftarrow \Rightarrow \lambda >

\sqrt{}    (1 - 1
2\omega  - 1

2\lambda 
\widehat Cinv| | v2| | \infty 
Cinv| | v| | \infty ) 12\lambda 

\widehat Cinv| | v2| | \infty 
Cinv| | v| | \infty 

2 \widehat Cinv| | v2| | \infty 

\Leftarrow \Rightarrow \lambda >

\Biggl( 
1 - 1

2\omega 
 - 1

2
\lambda 
\widehat Cinv| | v2| | \infty 
Cinv| | v| | \infty 

\Biggr) 
1

4Cinv| | v| | \infty 
\Leftarrow \Rightarrow \lambda > \lambda  \star .(6.9)

(iii) is a direct result of (i) and (ii) of this lemma.

6.2. Proof of Theorem 3.4: Unconditionally stable region, \bfitk \geq 1. Based
on Theorem 3.3 and the definition of (unconditional) stability, the IMEX1-LDG
method is unconditionally stable if and only if \Delta tstab(\varepsilon , h) = \infty , which is equiva-
lent to

\varepsilon 

\sigma mh
\leq max

\mu \in ( 1
2\omega ,1]

\bigl( 
min

\bigl( 
\lambda 1(\mu ), \lambda 2(\mu )

\bigr) \bigr) 
.(6.10)

Using Lemma 6.1(i) and Lemma 6.2(i), one has

(6.11) min
\bigl( 
\lambda 1(\mu ), \lambda 2(\mu )

\bigr) 
=

\biggl\{ 
\lambda 1(\mu ) if \mu \leq \mu  \star ,
\lambda 2(\mu ) if \mu \geq \mu  \star ,

where \mu  \star \in ( 1
2\omega , 1), and the inequality (6.10) will be simplified as

\varepsilon 

\sigma mh
\leq max

\Biggl( 
max

\mu \in ( 1
2\omega ,\mu  \star ]

\lambda 1(\mu ), max
\mu \in [\mu  \star ,1]

\lambda 2(\mu )

\Biggr) 
= max

\biggl( 
\lambda 1(\mu  \star ), \lambda 2(\mu  \star )

\biggr) 
= \lambda  \star .(6.12)

This gives the result in Theorem 3.4 regarding the unconditional stability when k \geq 1.

6.3. Proof of Theorem 3.4: Conditionally stable region, 1 \leq \bfitk \leq 9,
\bfitvarepsilon 

\bfitsigma \bfitm \bfith 
> \bfitlambda \star . In this subsection, we focus on \varepsilon and h that satisfy \varepsilon 

\sigma mh > \lambda  \star . For such

\varepsilon , h, we have \Delta tstab(\varepsilon , h) <\infty , and the IMEX1-LDG method is conditionally stable.
Based on the \mu -stability result in Theorem 3.3, we want to optimize the time step
condition by properly choosing \mu from the admissible set, hence to get \Delta tstab(\varepsilon , h)
and establish the remaining result in Theorem 3.4.
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6.3.1. When \bfitvarepsilon 
\bfitsigma \bfitm \bfith 

> \widehat \bfitlambda \star . We start with the simplest case, that is, when \varepsilon 
\sigma mh >\widehat \lambda  \star . According to Lemma 6.2(iii), for such \varepsilon , h, one has \varepsilon 

\sigma mh > max(\lambda 1(\mu ), \lambda 2(\mu )) \forall \mu \in 
( 1
2\omega , 1]; hence, \tau \varepsilon ,h,j(\mu ) <\infty , j = 1, 2, and

\Delta tstab(\varepsilon , h) = max
\mu \in ( 1

2\omega ,1]
min(\tau \varepsilon ,h,1(\mu ), \tau \varepsilon ,h,2(\mu )).

Using the property of \mu S(\lambda ) in Lemma 6.1, we get

(6.13)
\varepsilon 

\sigma mh
> \widehat \lambda  \star \leftrightarrow \mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
> \mu S(\widehat \lambda  \star ) = 1 \Rightarrow \mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
\geq \mu \forall \mu \in 

\Bigl( 1

2\omega 
, 1
\Bigr] 
.

Now following the comparison property in Lemma 6.4 and the monotonicity of \tau \varepsilon ,h,1(\mu )

in Lemma 6.5, we have, when \varepsilon 
\sigma mh >

\widehat \lambda  \star ,
\Delta tstab(\varepsilon , h) = max

\mu \in ( 1
2\omega ,1]\cap ( 1

2\omega ,\mu S( \varepsilon 
\sigma mh )]

\tau \varepsilon ,h,1(\mu ) = \tau \varepsilon ,h,1

\biggl( 
min

\Bigl( 
\mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
, 1
\Bigr) \biggr) 

.

6.3.2. When \bfitlambda \star < \bfitvarepsilon 
\bfitsigma \bfitm \bfith 

\leq \widehat \bfitlambda \star . From here on, we assume \varepsilon 
\sigma mh \in (\lambda  \star , \widehat \lambda  \star ]. The

relation in (6.13) implies

(6.14) \mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
\leq 1.

We decompose ( 1
2\omega , 1] into three disjoint sets Sj(\varepsilon , h), j = 1, 2, 3, defined as

S1(\varepsilon , h) =

\biggl\{ 
\mu \in 

\Bigl( 1

2\omega 
, 1
\Bigr] 
:

\varepsilon 

\sigma mh
> max(\lambda 1(\mu ), \lambda 2(\mu ))

\biggr\} 
,

S2(\varepsilon , h) =

\biggl\{ 
\mu \in 

\Bigl( 1

2\omega 
, 1
\Bigr] 
: \lambda 1(\mu ) <

\varepsilon 

\sigma mh
\leq \lambda 2(\mu )

\biggr\} 
,

S3(\varepsilon , h) =

\biggl\{ 
\mu \in 

\Bigl( 1

2\omega 
, 1
\Bigr] 
: \lambda 2(\mu ) <

\varepsilon 

\sigma mh
\leq \lambda 1(\mu ))

\biggr\} 
.

One can refer to Figure 6.1 to visualize the decomposition for a constant weight
function \omega \equiv 1, and, correspondingly,

\Delta tstab(\varepsilon , h) = max
\mu \in ( 1

2\omega ,1]
min(\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu )) = max

j=1,2,3
\Delta t

(j)
stab(\varepsilon , h),

where \Delta t
(j)
stab(\varepsilon , h) := max\mu \in Sj(\varepsilon ,h) min(\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu )). Next we will calculate

\Delta t
(1)
stab(\varepsilon , h) and then show \Delta t

(1)
stab(\varepsilon , h) \geq \Delta t

(j)
stab(\varepsilon , h), j = 2, 3; therefore,

(6.15) \Delta tstab(\varepsilon , h) = \Delta t
(1)
stab(\varepsilon , h).

Step 1: To compute \Delta t
(1)
\bfs \bft \bfa \bfb (\varepsilon , h). When \mu \in S1(\varepsilon , h), we have \widehat \tau \varepsilon ,h,1(\mu ) =

\tau \varepsilon ,h,1(\mu ) < \infty , \widehat \tau \varepsilon ,h,2(\mu ) = \tau \varepsilon ,h,2(\mu ) < \infty . Based on the comparison result in Lemma
6.4 and the property of \mu S(\lambda ) in Lemma 6.1, there holds

min (\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu )) = \Biggl\{ \tau \varepsilon ,h,1(\mu ), \mu \in ( 1
2\omega , \mu S(

\varepsilon 
\sigma mh )],

\tau \varepsilon ,h,2(\mu ), \mu \in (\mu S(
\varepsilon 

\sigma mh ), 1].
(6.16)
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948 Z. PENG, Y. CHENG, J.-M. QIU, AND F. LI

With \lambda  \star <
\varepsilon 

\sigma mh \leq \widehat \lambda  \star , based on Lemma 6.6-(iii), we will get \mu S(
\varepsilon 

\sigma mh ) \in S1(\varepsilon , h).
By further using the monotonicity of \tau \varepsilon ,h,j(\mu ), j = 1, 2, in Lemma 6.5 and the fact

that \tau \varepsilon ,h,1(\mu S(
\varepsilon 

\sigma mh )) = \tau \varepsilon ,h,2(\mu S(
\varepsilon 

\sigma mh )) in Lemma 6.4, when \varepsilon 
\sigma mh \in (\lambda  \star , \widehat \lambda  \star ],

\Delta t
(1)
stab(\varepsilon , h) = max

\mu \in S1(\varepsilon ,h)

\Bigl( 
min (\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu ))\Bigr) 

= \tau \varepsilon ,h,1

\Bigl( 
\mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) \Bigr) 
= \tau \varepsilon ,h,1

\biggl( 
min

\Bigl( 
\mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
, 1
\Bigr) \biggr) 

.(6.17)

Step 2: To show \Delta t
(2)
\bfs \bft \bfa \bfb (\varepsilon , h) \leq \Delta t

(1)
\bfs \bft \bfa \bfb (\varepsilon , h). When \mu \in S2(\varepsilon , h), we have\widehat \tau \varepsilon ,h,1(\mu ) = \tau \varepsilon ,h,1(\mu ) <\infty , \widehat \tau \varepsilon ,h,2(\mu ) = \infty ; hence, min(\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu )) = \tau \varepsilon ,h,1(\mu ).

For any \mu \in S2(\varepsilon , h), based on Lemma 6.2, we have \mu \leq \mu  \star . Moreover, using
the fact of \mu S(\lambda  \star ) = \mu  \star and the monotonicity of \mu S(\lambda ) in Lemma 6.1, as well as the
assumption \varepsilon 

\sigma mh > \lambda  \star , we have for \mu \in S2(\varepsilon , h),

\mu \leq \mu  \star = \mu S(\lambda  \star ) < \mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) 
.

Finally, we can once again use the monotonicity of \tau \varepsilon ,h,1(\mu ) in Lemma 6.5 and conclude

\Delta t
(2)
stab(\varepsilon , h) = max

\mu \in S2(\varepsilon ,h)

\Bigl( 
min (\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu ))\Bigr) = max

\mu \in S2(\varepsilon ,h)
\tau \varepsilon ,h,1(\mu )

\leq \tau \varepsilon ,h,1

\biggl( 
\mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) \biggr) 
= \Delta t

(1)
stab(\varepsilon , h).(6.18)

Step 3: To show \Delta t
(3)
\bfs \bft \bfa \bfb (\varepsilon , h) \leq \Delta t

(1)
\bfs \bft \bfa \bfb (\varepsilon , h). When \mu \in S3(\varepsilon , h), we have\widehat \tau \varepsilon ,h,1(\mu ) = \infty , \widehat \tau \varepsilon ,h,2(\mu ) = \tau \varepsilon ,h,2(\mu ) <\infty ; hence, min(\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu )) = \tau \varepsilon ,h,2(\mu ).

Given any \mu \in S3(\varepsilon , h), we know \lambda 2(\mu ) <
\varepsilon 

\sigma mh \leq \lambda 1(\mu ). This, combined with
Lemma 6.2, implies \mu > \mu  \star and additionally

\varepsilon 

\sigma mh
\leq \lambda 1(\mu ) < \lambda S(\mu ) \leftrightarrow \mu > \mu S

\biggl( 
\varepsilon 

\sigma mh

\biggr) 
.(6.19)

The equivalency is based on the monotonicity of \mu S(\lambda ) in Lemma 6.1. Finally, one
can use the monotonicity of \tau \varepsilon ,h,2(\mu ) in Lemma 6.5 and conclude

\Delta t
(3)
stab(\varepsilon , h) = max

\mu \in S3(\varepsilon ,h)

\Bigl( 
min (\widehat \tau \varepsilon ,h,1(\mu ), \widehat \tau \varepsilon ,h,2(\mu ))\Bigr) = max

\mu \in S3(\varepsilon ,h)
\tau \varepsilon ,h,2(\mu )

\leq \tau \varepsilon ,h,2

\Bigl( 
\mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) \Bigr) 
= \tau \varepsilon ,h,1

\biggl( 
\mu S

\Bigl( \varepsilon 

\sigma mh

\Bigr) \biggr) 
= \Delta t

(1)
stab(\varepsilon , h).

7. Proof for AP property: Theorem 4.1. We will first build some prepara-
tory results in Lemma 7.1 before proving the main result on the AP property in
Theorem 4.1. The three assumptions in section 4 still hold. Let \{ \Psi j\} Nk

j=1 be an

orthonormal basis of Uk
h with respect to the standard L2 inner product of L2(\Omega x).

Recall that the initialization is via the L2 projection onto Uk
h , namely, \rho 0\varepsilon ,\Delta t,h = \pi h\rho 

0
\varepsilon ,

g0\varepsilon ,\Delta t,h = \pi hg
0
\varepsilon , u

0
\varepsilon ,\Delta t,h = \pi h(\sigma 

 - 1
s q0\varepsilon ). We also define W 0

\Delta t,h = \pi hW0 for W = \rho , g and

u0\Delta t,h = \pi h(\sigma 
 - 1
s q0).

Lemma 7.1. The following results hold.
(i) q0\varepsilon \rightharpoonup q0 in L2(\Omega x) as \varepsilon \rightarrow 0.
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(ii) lim\varepsilon \rightarrow 0 \rho 
0
\varepsilon ,\Delta t,h = \rho 0\Delta t,h, lim\varepsilon \rightarrow 0 u

0
\varepsilon ,\Delta t,h = u0\Delta t,h, and

lim
\varepsilon \rightarrow 0

\langle \zeta , g0\varepsilon ,\Delta t,h(x, \cdot )\rangle = \langle \zeta , g0\Delta t,h(x, \cdot )\rangle \forall \zeta \in L2(\Omega v) \forall x \in \Omega x,(7.1)

lim
\varepsilon \rightarrow 0

\langle \zeta , (g0\varepsilon ,\Delta t,h, \psi )\rangle = \langle \zeta , (g0\Delta t,h, \psi )\rangle \forall \zeta \in L2(\Omega v) \forall \psi \in L2(\Omega x).(7.2)

(iii) sup\varepsilon | | W 0
\varepsilon ,\Delta t,h| | <\infty , where W = \rho , g, u.

(iv) sup\{ 0<\varepsilon <\varepsilon 0(h)\} | | W
1
\varepsilon ,\Delta t,h| | = CW (k,\Delta t, h,\Omega v) <\infty , where W = \rho , u.

Proof. (i) Start with any \phi \in C\infty 
0 (\Omega x). Then

(7.3) (q0, \phi ) =  - (\rho 0, \phi x) =  - lim
\varepsilon \rightarrow 0

(\rho 0\varepsilon , \phi x) = lim
\varepsilon \rightarrow 0

(q0\varepsilon , \phi ).

This result can be extended to any \phi \in L2(\Omega x); hence, q
0
\varepsilon \rightharpoonup q0 in L2(\Omega x) as \varepsilon \rightarrow 0

due to the uniform boundedness of | | q0\varepsilon | | in \varepsilon in Assumption 2 and C\infty 
0 (\Omega x) being

dense in L2(\Omega x).
(ii) With W 0

\varepsilon weakly convergent to W0 in L2(\Omega x), for W = \rho , q, we have

lim
\varepsilon \rightarrow 0

\rho 0\varepsilon ,\Delta t,h = lim
\varepsilon \rightarrow 0

\pi h\rho 
0
\varepsilon = lim

\varepsilon \rightarrow 0

Nk\sum 
j=1

(\rho 0\varepsilon ,\Psi j)\Psi j

=

Nk\sum 
j=1

lim
\varepsilon \rightarrow 0

(\rho 0\varepsilon ,\Psi j)\Psi j =

Nk\sum 
j=1

(\rho 0,\Psi j)\Psi j = \pi h\rho 0 = \rho 0\Delta t,h,

lim
\varepsilon \rightarrow 0

u0\varepsilon ,\Delta t,h = lim
\varepsilon \rightarrow 0

\pi h(\sigma 
 - 1
s q0\varepsilon ) = lim

\varepsilon \rightarrow 0

Nk\sum 
j=1

(\sigma  - 1
s q0\varepsilon ,\Psi j)\Psi j

=

Nk\sum 
j=1

(\sigma  - 1
s q0,\Psi j)\Psi j = \pi h(\sigma 

 - 1
s q0) = u0\Delta t,h.

Now we consider any \zeta \in L2(\Omega v). With \langle \zeta g0\varepsilon \rangle weakly convergent to \langle \zeta g0\rangle in
L2(\Omega x), we have, for any x \in \Omega x,

lim
\varepsilon \rightarrow 0

\langle \zeta , g0\varepsilon ,\Delta t,h(x, \cdot )\rangle = lim
\varepsilon \rightarrow 0

\biggl\langle 
\zeta ,

Nk\sum 
j=1

(g0\varepsilon ,\Psi j)\Psi j(x)

\biggr\rangle 
=

Nk\sum 
j=1

lim
\varepsilon \rightarrow 0

(\langle \zeta g0\varepsilon \rangle ,\Psi j)\Psi j(x)

=

Nk\sum 
j=1

(\langle \zeta g0\rangle ,\Psi j)\Psi j(x) = \langle \zeta , g0\Delta t,h(x, \cdot )\rangle .(7.4)

And (7.2) can be proved similarly.
(iii) Note that

| | | g0\varepsilon ,\Delta t,h| | | 2 = \langle | | g0\varepsilon ,\Delta t,h| | 2\rangle =
\biggl\langle Nk\sum 

j=1

(g0\varepsilon ,\Psi j)
2

\biggr\rangle 
\leq | | | g0\varepsilon | | | 2

Nk\sum 
j=1

| | \Psi j | | 2 = Nk| | | g0\varepsilon | | | 2,

| | u0\varepsilon ,\Delta t,h| | = | | \pi h(\sigma  - 1
s q0\varepsilon )| | \leq | | \sigma  - 1

s q0\varepsilon | | \leq \sigma  - 1
m | | q0\varepsilon | | .

With Assumption 2, we have sup\varepsilon | | | W 0
\varepsilon ,\Delta t,h| | | < \infty ,W = g, u. A similar proof goes

to \rho .
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(iv) Based on (2.10), one has

(\rho 1\varepsilon ,\Delta t,h, \phi ) = \Delta t\omega \langle v2\rangle lh(u1\varepsilon ,\Delta t,h, \phi ) + (\rho 0\varepsilon ,\Delta t,h, \phi )

 - \Delta tlh(\langle v(g0\varepsilon ,\Delta t,h + \omega vu0\varepsilon ,\Delta t,h)\rangle , \phi ) - (\sigma a\rho 
1
\varepsilon ,\Delta t,h, \phi ) \forall \phi \in Uk

h .(7.5)

Taking \phi = \rho 1\varepsilon ,\Delta t,h and using lh(u
1
\varepsilon ,\Delta t,h, \rho 

1
\varepsilon ,\Delta t,h) =  - (\sigma su

1
\varepsilon ,\Delta t,h, u

1
\varepsilon ,\Delta t,h) based on

(2.18) and Assumption 3 for \omega , we get, when \varepsilon < \varepsilon 0(h),

| | \rho 1\varepsilon ,\Delta t,h| | 2 + (\sigma a\rho 
1
\varepsilon ,\Delta t,h, \rho 

1
\varepsilon ,\Delta t,h) +

2\sigma m\Delta t

3
\langle v2\rangle | | u1\varepsilon ,\Delta t,h| | 2

\leq (\rho 0\varepsilon ,\Delta t,h, \rho 
1
\varepsilon ,\Delta t,h) - \Delta tlh(\langle v(g0\varepsilon ,\Delta t,h + \omega vu0\varepsilon ,\Delta t,h)\rangle , \rho 1\varepsilon ,\Delta t,h).(7.6)

Following some standard steps to apply the Cauchy--Schwarz inequality, Young's in-
equality, and the inverse inequality (see, e.g., Lemma 3.9 in [15]), based on Assumption
3, we can find a constant C(k,\Delta t, h,\Omega v) such that

| (\rho 0\varepsilon ,\Delta t,h, \rho 
1
\varepsilon ,\Delta t,h) - \Delta tlh(\langle v(g0\varepsilon ,\Delta t,h + \omega vu0\varepsilon ,\Delta t,h, \rho 

1
\varepsilon ,\Delta t,h)\rangle | 

\leq C(k,\Delta t, h,\Omega v)
\bigl( 
| | \rho 0\varepsilon ,\Delta t,h| | + | | | g0\varepsilon ,\Delta t,h| | | + | | u0\varepsilon ,\Delta t,h| | 

\bigr) 
| | \rho 1\varepsilon ,\Delta t,h| | .(7.7)

Combining (7.6)--(7.7) with \sigma a(x) \geq 0, we obtain

sup
0<\varepsilon <\varepsilon 0(h)

| | \rho 1\varepsilon ,\Delta t,h| | \leq C(k,\Delta t, h,\Omega v) sup
\varepsilon 
(| | \rho 0\varepsilon ,\Delta t,h| | + | | | g0\varepsilon ,\Delta t,h| | | + | | u0\varepsilon ,\Delta t,h| | ) <\infty ,

sup
0<\varepsilon <\varepsilon 0(h)

| | u1\varepsilon ,\Delta t,h| | \leq 

\sqrt{} 
3

2\sigma m\Delta t\langle v2\rangle 
C(k,\Delta t, h,\Omega v)

sup
\varepsilon 
(| | \rho 0\varepsilon ,\Delta t,h| | + | | | g0\varepsilon ,\Delta t,h| | | + | | u0\varepsilon ,\Delta t,h| | ) <\infty .

We are ready to prove Theorem 4.1 on the AP property of the IMEX1-LDG
method.

Proof of Theorem 4.1. Let the mesh size h be fixed.
Step 1: we first show that sup0<\varepsilon <\varepsilon 0(h) | | U

n
\varepsilon ,\Delta t,h| | < \infty for any \Delta t, n \geq 1, where

W = \rho , g, q, u. First note that when \varepsilon < \varepsilon 0(h), from Assumption 3, we have 2 > \omega > 2
3

and \mu = 3
4 \in ( 1

2\omega , 1]. Based on the \mu -stability result in Theorem 3.3, we have

| | \rho n+1
\varepsilon ,\Delta t,h| | 

2 + \varepsilon 2| | | gn\varepsilon ,\Delta t,h| | | 2 +\Delta t\sigma m

\biggl( 
1

4
| | | gn\varepsilon ,\Delta t,h| | | 2 +

2

3
\langle v2\rangle | | un+1

\varepsilon ,\Delta t,h| | 
2

\biggr) 
\leq En+1

h,\mu = 3
4

\leq En
h,\mu = 3

4
\leq \cdot \cdot \cdot \leq E1

h,\mu = 3
4

\leq | | \rho 1\varepsilon ,\Delta t,h| | 2 + \varepsilon 2| | | g0\varepsilon ,\Delta t,h| | | 2 +\Delta t\sigma M

\biggl( 
1

4
| | | g0\varepsilon ,\Delta t,h| | | 2 + 2\langle v2\rangle | | u1\varepsilon ,\Delta t,h| | 2

\biggr) 
.(7.8)

Moreover from (2.10b), we have | | qn\varepsilon ,\Delta t,h| | 2 = (\sigma su
n
\varepsilon ,\Delta t,h, q

n
\varepsilon ,\Delta t,h); hence, | | qn\varepsilon ,\Delta t,h| | \leq 

\sigma M | | un\varepsilon ,\Delta t,h| | . In combination with Lemma 7.1, the finiteness of sup0<\varepsilon <\varepsilon 0(h) | | W
n
\varepsilon ,\Delta t,h| | 

\forall n \geq 1 follows for W = \rho , g, q, u.
Step 2: With Lemma 7.1, we only need to establish (4.6) for any n \geq 1. This is

equivalent to show that for any given sequence \{ \varepsilon m\} \infty m=1, satisfying limm\rightarrow \infty \varepsilon m = 0
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(we no longer emphasize that \varepsilon considered here is bounded above by \varepsilon 0(h)), we have

lim
m\rightarrow \infty 

Wn
\varepsilon m,\Delta t,h =Wn

\Delta t,h, W = \rho , q, u,(7.9a)

lim
m\rightarrow \infty 

\langle \zeta , gn\varepsilon m,\Delta t,h(x, \cdot )\rangle = \langle \zeta , gn\Delta t,h(x, \cdot )\rangle \forall \zeta \in L2(\Omega v) \forall x \in \Omega x,(7.9b)

lim
m\rightarrow \infty 

\langle \zeta , (gn\varepsilon m,\Delta t,h, \psi )\rangle = \langle \zeta , (gn\Delta t,h, \psi )\rangle \forall \zeta \in L2(\Omega v) \forall \psi \in L2(\Omega x)(7.9c)

for some Wn
\Delta t,h \in Uk

h , with W = \rho , q, u and gn\Delta t,h \in Gk
h \forall n \geq 1. Let W be any of

\rho , q, u. Given that Uk
h is finite dimensional, the finiteness of supm | | Wn

\varepsilon m,\Delta t,h| | from
Step 1 implies that there is a subsequence \{ Wn

\varepsilon mr ,\Delta t,h\} \infty r=1 converging in Uk
h under

any norm as r \rightarrow \infty . Let the limit be

(7.10) Wn
\Delta t,h = lim

r\rightarrow \infty 
Wn

\varepsilon mr ,\Delta t,h, W = \rho , q, u.

We now turn to \{ gn\varepsilon m,\Delta t,h\} \infty m=1. Note that each gn\varepsilon m,\Delta t,h can be written as

gn\varepsilon m,\Delta t,h(x, v) =
\sum Nk

j=1 \alpha 
(j)
\varepsilon m(v)\Psi j(x), with | | | gn\varepsilon m | | | = (

\sum Nk

j=1 | | \alpha 
(j)
\varepsilon m | | 2L2(\Omega v)

)1/2. This, in

addition to the finiteness of supm | | | gn\varepsilon m,\Delta t,h| | | in Step 1, indicates that

supr | | \alpha 
(j)
\varepsilon mr

| | 2L2(\Omega v)
is bounded for any j = 1, . . . , Nk. As a Hilbert space, L2(\Omega v)

is weakly sequentially compact; that is, \{ \alpha (j)
\varepsilon mr

\} \infty r=1 has a subsequence which is weakly
convergent in L2(\Omega v). Without loss of generality, this subsequence is still denoted as

\{ \alpha (j)
\varepsilon mr

\} \infty r=1, and the weak limit when r \rightarrow \infty is denoted as \alpha 
(j)
0 \in L2(\Omega v) \forall j. We

now define gn\Delta t,h(x, v) =
\sum Nk

j=1 \alpha 
(j)
0 (v)\Psi j(x). It is clear that gn\Delta t,h \in Gk

h. For any

\zeta \in L2(\Omega v) and any x \in \Omega x,

lim
r\rightarrow \infty 

\langle \zeta , gn\varepsilon mr ,\Delta t,h(x, \cdot )\rangle =
Nk\sum 
j=1

\Bigl( 
lim
r\rightarrow \infty 

\langle \zeta , \alpha (j)
\varepsilon mr

\rangle 
\Bigr) 
\Psi j(x)(7.11)

=

Nk\sum 
j=1

\langle \zeta , \alpha (j)
0 \rangle \Psi j(x) = \langle \zeta , gn\Delta t,h(x, \cdot )\rangle .

Furthermore, we have \forall \zeta \in L2(\Omega v) \forall \psi \in L2(\Omega x),
(7.12)

lim
r\rightarrow \infty 

\langle \zeta , (gn\varepsilon mr ,\Delta t,h, \psi )\rangle =
Nk\sum 
j=1

\Bigl( 
lim
r\rightarrow \infty 

\langle \zeta , \alpha (j)
\varepsilon mr

\rangle 
\Bigr) 
(\Psi j , \psi ) = \langle \zeta , (gn\Delta t,h, \psi )\rangle = (\langle \zeta gn\Delta t,h\rangle , \psi ).

Using (7.10)--(7.12) for n \geq 1 as well as the similar result in Lemma 7.1 for n = 0,
with \zeta taken when needed as v, v1\{ v>0\} , v1\{ v<0\} , v\zeta (v), v\zeta (v)1\{ v>0\} , v\zeta (v)1\{ v<0\} ,
and also using the property (2.5) for \omega , we have, for any n \geq 0,

lim
r\rightarrow \infty 

lh(\langle v(gn\varepsilon mr ,\Delta t,h + \omega | \varepsilon =\varepsilon mr
vun\varepsilon mr ,\Delta t,h\rangle , \phi ) = lh(\langle v(gn\Delta t,h + vun\Delta t,h)\rangle , \phi ) \forall \phi \in Uk

h ,

(7.13a)

lim
r\rightarrow \infty 

\langle \zeta , bh,v(gn\varepsilon mr ,\Delta t,h, \psi )\rangle = \langle \zeta , bh,v(gn\Delta t,h, \psi )\rangle \forall \zeta \in L2(\Omega v) \forall \psi \in Uk
h .

(7.13b)
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Now with (7.10)--(7.13) and Lemma 7.1 for the initial data, the numerical scheme
(2.10) as r \rightarrow \infty becomes \forall \varphi , \eta , \phi \psi \in Uk

h

(qn+1
\Delta t,h, \varphi ) + dh(\rho 

n+1
\Delta t,h, \varphi ) = 0,

(7.14a)

(\sigma su
n+1
\Delta t,h, \eta ) = (qn+1

\Delta t,h, \eta ),

(7.14b)

\Bigl( \rho n+1
\Delta t,h  - \rho n\Delta t,h

\Delta t
, \phi 
\Bigr) 
+ lh(\langle v(gn\Delta t,h + vun\Delta t,h)\rangle , \phi ) = \langle v2\rangle lh(un+1

\Delta t,h, \phi ) - (\sigma a\rho 
n+1
\Delta t,h, \phi ),

(7.14c)

(\langle \zeta \sigma sgn+1
\Delta t,h\rangle , \psi ) = \langle \zeta v\rangle dh(\rho n+1

\Delta t,h, \psi ) \forall \zeta \in L2(\Omega v)

(7.14d)

for n \geq 0. Furthermore, (7.14a) and (7.14d) lead to

(7.15) \langle (\pi h(\sigma sgn\Delta t,h) + vqn\Delta t,h, \zeta \psi )\rangle = 0 \forall \zeta \in L2(\Omega v), \psi \in Uk
h , n \geq 1.

With gn\Delta t,h \in Gk
h and hence \pi h(\sigma sg

n
\Delta t,h) + vqn\Delta t,h \in L2(\Omega v)\times Uk

h , (7.15) equivalently
becomes

(7.16) \pi h(\sigma sg
n
\Delta t,h) =  - vqn\Delta t,h, n \geq 1.

Moreover, from (7.14b) and (7.16), one can get gn\Delta t,h + vun\Delta t,h = 0, n \geq 1, as follows:

0 \leq \sigma m| | | gn\Delta t,h + vun\Delta t,h| | | 2 \leq 
\bigl\langle \bigl( 
\sigma s(g

n
\Delta t,h + vun\Delta t,h), g

n
\Delta t,h + vun\Delta t,h

\bigr) \bigr\rangle 
=
\bigl\langle \bigl( 
 - vqn\Delta t,h + vqn\Delta t,h, g

n
\Delta t,h + vun\Delta t,h

\bigr) \bigr\rangle 
= 0.

Compare (7.14) and (7.16) with what we want in (4.7), one also needs to have
g0\Delta t,h + vu0\Delta t,h = 0. This can be argued based on the initial data being well prepared

in Assumption 1. To see this, \forall \zeta \in L2(\Omega v),\forall \psi \in Uk
h , we proceed as

0 = lim
\varepsilon \rightarrow 0

\Bigl( 
\langle \zeta (g0\varepsilon + v\sigma  - 1

s q0\varepsilon )\rangle , \psi 
\Bigr) 
= lim

\varepsilon \rightarrow 0

\Bigl( 
(\langle \zeta g0\varepsilon \rangle , \psi ) + \langle v\zeta \rangle (q0\varepsilon , \sigma  - 1

s \psi )
\Bigr) 

= (\langle \zeta g0\rangle , \psi ) + \langle v\zeta \rangle (q0, \sigma  - 1
s \psi ) = (\langle \zeta g0\Delta t,h\rangle , \psi ) + \langle \zeta v\rangle (u0\Delta t,h, \psi ),(7.17)

and this gives \langle \zeta (g0\Delta t,h + vu0\Delta t,h, \psi )\rangle = 0. Note that g0\Delta t,h + vu0\Delta t,h \in L2(\Omega v) \times Uk
h ;

therefore, (7.17) is indeed g0\Delta t,h+vu
0
\Delta t,h = 0, and we can conclude the limiting scheme

in (4.7).
It is easy to see that the limiting scheme (4.7) is a consistent discretization for

(2.7). Its stability can be obtained similarly as Lemma 2.3, with

| | \rho n+1
\Delta t,h| | 

2 +\Delta t\langle v2\rangle | | un+1
\Delta t,h| | 

2
s + (\sigma a\rho 

n+1
\Delta t,h, \rho 

n+1
\Delta t,h) = (\rho n\Delta t,h, \rho 

n+1
\Delta t,h)

\Rightarrow 1

2
| | \rho n+1

\Delta t,h| | 
2 +\Delta t\langle v2\rangle \sigma m| | un+1

\Delta t,h| | 
2 \leq 1

2
| | \rho n\Delta t,h| | 2 \leq \cdot \cdot \cdot \leq 1

2
| | \rho 0\Delta t,h| | 2 \leq 1

2
| | \rho 0| | 2.

(7.18)

Finally, with a standard contradiction argument and the uniqueness of the so-
lution to the system (4.7) (see Lemma 2.3), we conclude that the limiting functions
\rho n\Delta t,h, q

n
\Delta t,h, g

n
\Delta t,h, u

n
\Delta t,h are unique, and (7.9) holds for the entire sequence. In the

case that the velocity space \Omega v is discrete, the analysis related to the convergence
of gn\varepsilon ,\Delta t,h(\cdot , v) for each v is just as simple as that for \rho n\varepsilon ,\Delta t,h and qn\varepsilon ,\Delta t,h, and the
convergence is in a strong sense as in (4.8).
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