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Abstract. In our recent work [Z. Peng et al., J. Comput. Phys., 415 (2020), 109485], a family of
high-order asymptotic preserving (AP) methods, termed IMEX-LDG methods, are designed to solve
some linear kinetic transport equations, including the one-group transport equation in slab geometry
and the telegraph equation, in a diffusive scaling. As the Knudsen number ¢ goes to zero, the
limiting schemes are implicit discretizations to the limiting diffusive equation. Both Fourier analysis
and numerical experiments imply the methods are unconditionally stable in the diffusive regime
when ¢ < 1. In this paper, we develop an energy approach to establish the numerical stability
of the IMEX1-LDG method, the subfamily of the methods that is first-order accurate in time and
arbitrary order in space, for the model with general material properties. Our analysis is the first to
simultaneously confirm unconditional stability when € < 1 and the uniform stability property with
respect to €. To capture the unconditional stability, we propose a novel discrete energy and explore
various stabilization mechanisms of the method and their relative contributions in different regimes.
A general form of the weight function, introduced to obtain the unconditional stability for ¢ < 1,
is also for the first time considered in such stability analysis. Based on uniform stability, a rigorous
asymptotic analysis is then carried out to show the AP property.
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1. Introduction. In this paper, we continue our efforts in devising and advanc-
ing mathematical understanding of asymptotic preserving (AP) methods to solve time-
dependent multiscale kinetic transport equations within the discontinuous Galerkin
(DG) framework [16, 15, 28]. Particularly, we focus on establishing energy-type nu-
merical stability and the AP property for some methods proposed in [28] for the model
equation

(1.1) Pe . sft+vaxf:%(<f>—f)—goaf

with periodic boundary conditions. The function f = f(z,v,t) is the probability
distribution function of the particles, with the space variable x € Q, C R, velocity
variable v € , C R, and time ¢t > 0. o4(x) > 0 and o,(z) > 0 are the scattering
and absorption coefficients, respectively. £(f) = (f) — f defines a scattering operator,
where (f) := fﬂv fdv and v is a measure of the velocity space satisfying va 1dv = 1.
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The parameter € > 0 is the dimensionless Knudsen number, defined as the ratio of
the mean free path of the particles over the characteristic length of the system. The
model (1.1) is in a diffusive scaling, and as € — 0, it approaches its diffusive limit

(1.2) PO . Oip = (01 0,(0pp/0s) — Tap.

Here p = (f) is the macroscopic density. Though seemingly simple, the equation in
(1.1) provides a prototype model to study many realistic problems, such as in neutron
transport or radiative transfer theory, both numerically and mathematically.

To simulate multiscale models like that in (1.1) effectively and reliably for a broad
range of values for £, AP methods are widely recognized by the scientific community
(see, e.g., review papers [17, 9]). These methods are designed for the governing model
with ¢ > 0. Additionally, when ¢ — 0, the methods become consistent and stable
discretizations for the limiting model as in (1.2) even on underresolved meshes with
Ax, At > . Hence, AP methods provide a natural transition of different regimes in
multiscale simulations. AP methods usually involve some level of implicit treatment
to deal with the stiffness of the model when ¢ < 1. It is known that stability alone
does not guarantee the scheme to capture the correct asymptotic limit [5, 26].

In our recent work [28], a family of high-order AP methods, termed IMEX-LDG
methods, are designed for (1.1). The methods are based on the reformulation of
the equation and involve local DG (LDG) discretization in space [6], globally stiffly
accurate implicit-explicit (IMEX) Runge-Kutta (RK) methods in time [4], and a
judicially chosen IMEX strategy. The reformulation has two steps: micro-macro
decomposition [24, 22] and addition/subtraction of a w-weighted diffusive term [8, 4].
The latter is introduced to obtain fully implicit limiting schemes as ¢ — 0 to achieve
unconditional stability of the methods in the diffusive regime with ¢ < 1 and hence to
circumvent the otherwise stringent parabolic-type time step condition in this regime,
namely, At = O(Ax?), of many AP schemes whose limiting schemes are explicit
[18, 20, 22, 16]. Using globally stiffly accurate IMEX RK methods in time and LDG
methods in space with suitable numerical fluxes, the IMEX-LDG methods project the
numerical solutions to the local equilibrium at both inner stages and full RK steps
in the limit of ¢ — 0, and this is important for the AP property and seemingly also
for accuracy (see appendix of [28]). In [28], unconditional stability in the diffusive
regime is observed numerically and is confirmed by a Fourier-type stability analysis
applied to the two-velocity telegraph equation with Q, = {—1,+1} and constant
material properties o0, = 1, 0, = 0. We want to mention that different strategies were
proposed in [7, 25] to achieve AP methods with implicit limiting schemes for kinetic
transport models in a diffusive scaling.

In this work, we restrict our attention to the IMEX1-LDG method, the subfam-
ily of the methods in [28] that is first-order accurate in time and arbitrary order in
space, and examine it systematically for the model with the general material prop-
erties, namely, with the spatially varying scattering and absorption coefficients o ()
and o4 (x). Our main objectives are twofold. The first is to establish unconditional
stability in the diffusive regime with ¢ < 1 as well as uniform stability with respect
to €. By following an energy approach as in [23, 15], one can get uniform stability yet
fail to capture the unconditional stability for € <« 1. Note that the methods examined
in [23, 15] in the limit of ¢ — 0 are explicit. We instead propose and work with a new
notion of p-stability and get the stability we want by better exploring various stabi-
lization mechanisms of the method in different regimes. The stability results up to
this point depend on a parameter p. An intricate algebraic-based optimization with
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respect to the admissible p is subsequently followed to further maximize the uncondi-
tional stability region while also maximizing the allowable time step size in the regime
when the method is conditionally stable. As our second objective, a rigorous asymp-
totic analysis is proved to show the AP property based on uniform stability. To our
best knowledge, our analysis is the first to capture unconditional stability when ¢ < 1
along with the uniform stability property for the model (1.1) with general material
properties. A general form of the weight function w is also for the first time considered
in such stability analysis. In this work, we keep the velocity variable continuous, and
our analysis can be easily adapted when the velocity variable is further discretized,
such as by discrete ordinates or Py methods [29]. Our analysis can also be extended
to AP methods with the same IMEX strategy yet with other spatial discretizations as
long as they satisfy some key properties, such as the adjoint property in (2.16) (also
see Lemma 3.5 in [28]) and the stabilization as in (5.5) due to the upwind treatment.
Though not presented here, a priori error estimates can follow similarly as in [15], and
they are uniform in e for smooth enough solutions with uniform bounds in € under
the relevant Sobolev norms. What seems to be more challenging and left to our future
endeavor is to obtain the stability analysis for IMEX-LDG methods with higher-order
temporal accuracy.

Finally, we want to briefly review some related literature, especially in establishing
numerical stability of AP methods for kinetic transport models in a diffusive scaling.
One commonly used approach is Fourier-type analysis. For the telegraph equation
with €, = {—1,+1}, an analytical time step condition is given in [22] via Fourier
analysis to ensure uniform L2-stability of a first-order finite difference AP method,
while in [28], necessary conditions on €, Az, At are obtained numerically for the pth-
order IMEX-LDG AP scheme (p = 1,2,3) to ensure an L? energy nonincreasing in
time. The results seem to be uniform in e, with unconditional stability captured for
e <« 1. Klar and Unterreiter in [21] considered a formally first-order-in-time and
second-order-in-space AP scheme for the one-group transport equation with Q, =
[-1,1] and established uniform stability by first establishing the result in Fourier
space and then transforming it back to the physical space. Their analysis assumes
the H' smoothness of the initial data. It is known that Fourier-type analysis requires
uniform meshes and the models being linear and constant coefficient. Energy-based
stability analysis, on the other hand, does not pose these restrictions, yet they are not
always easy to get. In [23], Liu and Mieussens revisited the first-order AP method in
[22] for a more general kinetic transport model and proved uniform stability following
an energy approach. A similar analysis is carried out in [15] for the first-order-in-time
DG-IMEX1 method in [16]. Based on the uniform stability analysis, error estimates
and rigorous asymptotic analysis are further established in [15]. In [2], a finite volume
method is analyzed for its rigorous AP property following an energy approach. In
both [28] and here in this work, we want to capture the unconditional stability in the
diffusive regime in addition to uniform stability. A few other theoretical works, among
many, for AP methods include uniform consistency [5, 20, 19], uniform convergence
[12, 11] based on the commuting diagram of AP schemes (see Figure 1.1 in [12]),
uniform accuracy with IMEX multistep methods [14], and uniform stability for models
with stochastic effect [1].

The remainder of the paper is organized as follows. In section 2, we review and
extend the IMEX1-LDG method in [28] to our model (1.1) with general material prop-
erties. Section 3 presents main results on numerical stability. Here several theorems,
including Theorems 3.1 and 3.3, are stated to obtain uniform stability while capturing
the unconditional stability in the diffusive regime. An optimization step is carried out
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in Theorem 3.4 to find the best value of the parameter p in the notion of p-stability
in order to optimize the stability results. Once uniform stability is available, the AP
property of the method is stated in Theorem 4.1 in section 4. The proofs of all major
theorems are presented in sections 5—7 for better readability.

2. The IMEX1-LDG scheme. In this section, we will review the IMEX1-LDG
method proposed in [28] and extend it more systematically to the model (1.1) with
general material properties o4(x) and o,(x), both being in L*°(Q,) and satisfying
oy > os(x) > om > 0,04(x) > 0 Vo € Q,. The boundary conditions in space are
periodic, and the velocity variable v will not be discretized.

Two examples of the model (1.1) will be examined. One is the one-group trans-
port equation in slab geometry. Here 2, = [—1,1], and the measure v is defined
as va fdv = %fﬂv f(z,v,t)dv, with dv being the standard Lebesgue measure. The
other is the telegraph equation with Q, = {—1,1}, and v is a discrete measure, given
as va fdv =1 (f(z,v=1,t)+ f(z,v = —1,t)) . There is little difference in the for-
mulation and analysis of the IMEX1-LDG method for both examples.

2.1. Reformulation. The IMEX1-LDG method is defined based on a reformu-
lation of (1.1), which is obtained in several steps. As the first step, we rewrite the
model into its micro-macro decomposition [24, 22]. Let L?(f,,v) be the square inte-
grable space in v, with the inner product (f,g) := (fg). Let II be the L? projection
onto Null(£) = Span{1}, I be the identify operator, and p := (f) = IIf be the macro-
scopic density. Then f can be decomposed orthogonally into f = p + eg, with p and
g satisfying

(2.1a) Orp + O, (vg) = —0oaup,

1 1 Os
(2.1b) Org + g(I — 1) (v0zg) + ?vﬁxp =29~ 0ag-

This is the micro-macro decomposition. As ¢ — 0, the equations (2.1) formally
become

(2.2) Oip + 0x(vg) = —0ap, 0sg = —00zp,
which is a first-order form of the limiting diffusion equation,

(2.3) Ohp = (v*)0, (8up/os) — Oup,

equipped with the compatible initial condition. The relation 59 = —v9,p in (2.2)
will be referred to as the local equilibrium. For the telegraph equation, the diffusion
constant is (v2) = 1, while for the one-group transport equation in slab geometry,
(v?) =1/3.

As the second step, a weighted diffusion term, w(v?)9,(d.p/0s), is added to both
sides of (2.1a), leading to

(2.4a) Bep + 92 (vg) + w(v?) 0y (9up/s) = w(v?)Dy (Bup/os) — Tap,
1 1 Ts
(2.4b) Org + E(I — 1) (v0.g) + 6—21181./) =29~ %ag-

Here the weight function w is nonnegative and bounded. It is independent of x and
can depend on ¢, satisfying

(2.5) w—1 as e¢—0.
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Additional properties desired for w in general and considered specifically in this work
will be discussed in next subsection. The idea of reformulating a kinetic transport
model in the diffusive scaling based on adding and subtracting a diffusive term was pre-
viously used in [8, 4, 10] to remove some parabolic stiffness in designing AP schemes.
One advancement we made in [28] and here is to improve the mathematical under-
standing of the desired property and the role of the weight function w, and such
advancement can guide one to choose w in practice.

With the auxiliary variables ¢ = 9,.p and u = ¢/0o, the system (2.4) can also be
written in its first-order form

(263) q = 0zp, U = Q/Usa
(2.6b) 0ip 4 0z (v(g + won)) = W) Opu — oup,
1 1 s
(2.6¢) Ohg + Z (L= ) (vdeg) + 00 = —;ng — 0ag,

and correspondingly its limiting system as € — 0 now is
(2.7) Op = <v2>8$u —0ap, q=0p=05u, ¢g=—vq/0s=—vU.

The property (2.5) has been used. The introduction of w is to deal with the spatially
varying scattering coefficient os. Note that the term vd,p in (2.6¢) can be replaced

by vq.

2.2. The IMEX1-LDG scheme. To present the scheme, we start with some
notation. For the computational domain Q, = [z, zg| in space, a mesh, x, = r1 <
T3 < <y, =g, is introduced. Let I; = [;_1,2;,1] be an element, with z;
as its center and h; as its length. Set h = max; h;. (Az in the introduction is just h
here.) For any nonnegative integer k, we define a finite dimensional discrete space

(2.8) Uk = {ue L*(Q,) : ul;, € P*(L) Vi,

where the local space P*(I) consists of polynomials of degree at most k on I. We also
introduce

(2.9) GY = {u(-,v) cUy: /Q /Q lu(z, v)[2dzdv < oo}.

For a function ¢ € UF, we write ¢(z%F) = lima,_,0+ ¢(z + Ax) and ¢il = qb(xil).
v 2 v 2

The jump and average of ¢ at Tiy1 are defined as [¢]i+% = qﬁzjr% - qS;L% and {QS}H% =
%( :r% + d);r%), respectively.

The IMEX1-LDG scheme in [28] involves a LDG discretization in space and a
first-order globally stiffly accurate IMEX RK scheme in time. And an IMEX strategy
is adopted so that all the terms, which are formally dominating in the regime ¢ < 1,
are treated implicitly. The IMEX1-LDG scheme for the model with a general o,
is based on the system (2.6), and it is defined as below. Given p}, ¢, uy € U,’f,
g € G% that approximate the solution p, ¢ = O.p, u, and g at t", we look for
Pt gt uptt e UF, gitt € G at 7! = ¢ 4+ At such that ¥ ¢,n,¢ € UF and
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v € Gy,
(2.10a)
(@rth 0) +dn(py ™) =0,
(2.10b)
(osup ™, m) = (a3, ),
(2.10c)
u ¢ +l n n _ 2 l n+1 n+1
At ’ h(<v(gh + wvuh)>7 ¢) - w(v > h(uh 7¢) (Oaph a¢> )
(2.104d)
n+l _ n 1 1
(W,w) + Zbnalgh ¥) = Sdn(oh ) = 5 (0 0) — (dugh ™) -

Here (-,-) is the standard inner product for L?(€,). The bilinear forms dy,, [}, and
bn, are all related to discrete spatial derivatives and defined as

(2.11a) n(pn, @ Z/ phamcpdeerh Z_, 1_%
(2.11b) n(up, & Z/ UpOppdr — Zuh z_, z_,

(2.11c) bh,w(gn, V) = (I =) Du(gn;v),¥) = (Dr(gn;v) — (Dr(gn;v)), ¥)-

For a given v € Q,, the function Dy (gp;v) € UF in (2.11c) is an upwind DG dis-
cretization of the transport term vd,g. It is determined by

212 Dulanio). ) =~ 3 ([ vomevie) = 3 eyl v e Uk

where vg is the upwind flux,

—  JovgT ifv>0 B M

213 m={ 20 =l -

The terms p and 4 in (2.11a)—(2.11b) are one of the following alternating flux
pairs:
(2.14) right-left:  p=p", 4 =u"; left-right: p=p-, 4 =ut.
The choice of the numerical fluxes g and 4 is important for the numerical solution to
stay close to the local equilibrium when ¢ < 1, and it contributes to the AP property
of the scheme. Similar as in standard LDG methods, the auxiliary unknowns ¢, and
up, can be locally represented and hence eliminated in terms of py,.

At t = 0, the initialization is done via the L? projection 7}, onto U,’f, namely,

(2'15) p(})b() = ﬂ-hp('v O)’ 92(" U) = WhQ('v’Uv O)v u(})b(’ U) = 7Th(0';18xp).

To complete the formulation of the scheme, one needs to specify the weight func-
tion w. In our previous work [28], Fourier-type stability analysis suggests that w

should be chosen in the form of w = w(3, Azt) to preserve the intrinsic scale of the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/17/21 to 128.113.26.88. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

STABILITY AND AP PROPERTY OF IMEX1-LDG METHOD 931

underlying model. In this paper, we only consider w = w(e/(o,h)), which is indepen-
dent of e /At. Some specific examples include w = exp (—&/(o,h)) and w = 1. One
can also use a piecewise constant choice w = 1(./(5,.n)<a}, With some fixed positive
constant «; see Remark 3.7 for a specific choice of o recommended by our stability
analysis. (Here 1p is an indicator function with respect to a set D.) Note that all
these choices are nonnegative and independent of z, satisfying (2.5).

The next lemma states the relation of bilinear forms dj, and [j, and this can be
verified directly.

LEMMA 2.1. With either alternating fluz pair in (2.14), the bilinear forms dy, and
l;, are related:

(2.16) (e, d) =dn(d,0) Ve, ¢ € UL

The unique solvability of the solution to the IMEX1-LDG method is given in the
next proposition, together with some properties in (2.18) that can be easily verified.
The key to prove the first part of the proposition is the unique solvability of the
problem examined in Lemma 2.3.

PROPOSITION 2.2. The IMEX1-LDG method is uniquely solvable for any € > 0.
In addition, the solution satisfies

(2.17) (giy =0V¥n >0,
(osuj’,n) = —ln(n, pj') ¥ € Uy ¥m > 1.

LEMMA 2.3. Given S € L*(Q;) and v; > 0,5 = 1,2. Consider the following
problem: Look for pn,qn,un € U,’f such that Vo, n, ¢ € U,’f,

(2.18) (an, @) +dn(pnsp) =0,  (osun,n) = (g, ),
(Prs @) — 1iln(un, ¢) = —v2(oapn, ) + (S, ¢).

Then py, qn,up, are uniquely solvable.

Proof. We first consider the homogeneous case with S = 0. Taking ¢ = n =
up, ¢ = pp, and using the relation of d; and I, we get

(pn, pr) + 71(osun, un) + v2(oapn, pr) = 0.

With 71,72, 05,0, being nonnegative, one has p, = 0, and the equations in (2.19)
further ensure that ¢, = wp = 0. This, in combination with the linearity of the
problem as well as that both the solution and the test function are from the same
finite dimensional space U }’f , implies the unique solvability of the problem with the
general source term S. O

Following the formal asymptotic analysis as in [28], we can show that the IMEX1-
LDG method is AP; namely, as € — 0, its limiting scheme is a consistent and stable
discretization of the limiting system (2.7) when the initial data are well prepared. This
will be stated in section 4 and proved in section 7 once uniform stability is available.
When the initial data are not well prepared, our scheme can adopt a similar initial
fix [28] when n = 0 to stay AP. There is no change to numerical stability, while the
AP property can be established rigorously, and the details are not presented in this

paper.
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2.3. Norms, inverse inequalities, and more notation. We introduce some

standard norms ||¢|| = ||||z2(a.). [[|9]l| = ((||¢]/*))'/? and weighted norms ||¢||s =
Ilv/asoll, [11éllls = |llv/Tsol||. For a bounded function v(v) of v, without confusion
we will write |[{||cc = [[¥||L(q,)- Even though for our specific examples with Q, =
[—1,1] or {—1,1} we have ||v]|oc = ||v?||ec = 1, we still keep ||v||oo and |[v?|| in

most results to possibly inform about the case with a more general bounded velocity
space (.

In our analysis, the following inverse inequalities will be frequently used, and they
are fairly standard in finite element analysis: There exist constants Cjpy = Ciny (k)
and Cipy = Ciny(k), such that for any ¢ € P*([a, b)),

b
(2.19a) |6())%(b — a) < Ciny / |p(2)|da, with y = a or b,
b b
(2.19b) (b a)? / 16/ (2) 2z < G / 6(2)[2da.

Particularly, C;p,(k)|x=0 = 1. The next lemma states a property of the inverse
constants Cipny, Cing-
LEMMA 2.4. With Q, = [-1,1] or Q, = {—1,1} and with @m,, Ciny from (2.19),
we define
8(Cinvl[vl]0)? 8(Cinv)*

2.20 K =K(k) = —— = =
( ) ( ) Cz'nv”'UzHoo Cinw

Then at least for k=1,2,...,9, we have IC > 1.

Proof. Based on Lemmas 1-2 in [30] and a linear scaling, one can take Cjp, = (k+
1)2 and Cjp,,, = 12k*, which can be used to verify K > 1 directly for k =1,2,...,9. O

Sharper values of Cy,,, (k) and Cine (k) can be numerically obtained for each k by
solving an eigenvalue problem (see section 4.1 in [30]); hence, one can check numer-
ically whether K > 1 holds for larger k. Given that the temporal accuracy of the
IMEX1-LDG method is first order, it is more than enough for us to consider £ <9 in
our analysis.

For convenient reference, we summarize in Table 2.1 the definitions of some no-
tation arising from analysis, including A, As, and ps, which all depend on inverse
constants and hence on k. They also depend on the weight function w and the veloc-
ity space €,. The same table also includes the definitions of K in (2.20), a function
ts(A), and its inverse Ag(u) as well as two more functions A;(u),j = 1,2. The place
where each notation appears for the first time is also included.

3. Numerical stability. In this section, we will establish numerical stability for
the IMEX1-LDG method following an energy approach. At the continuous level, one
can derive an energy relation

d
G (el + 2 lglE) +2lgllE = -2 [ [ oo+ eoyduds
Q, JQy

for the model (1.1). And at the limit when & = 0, based either on (3.1) or directly on
the limiting equation (2.3) as well as the relations among g, d,p and u in (2.2) and
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TABLE 2.1
Some notation (with the possible w-dependence suppressed) and the place of the first appearance.

Notation First appearance

K = 8(Cinyllv]loc)? (2.20)

Cinullv?loo

A, = — 2(1-1/(2w))Cinvllvlloo 3.19
¥ Cinullv oo +8(Cinp1v]]00)? ( )

1 -
55K _ Cinullv?lloo+4(Cinullvll)® /w

He = T 7 " G102 1100 +8(Cinullvllo0)? (3.21a)
_ 1 4 1y Cinullv?leo

= Ciny oo
As () = g (1) = 20 — ) sl Lemma 6.1

invl[v?]]oo

X = Ag(l) =2(1 — &) SZnallolleo. (3.21b)

Cinvllv2]loo

(=)= g) -
M =y s TErs s R = s (3.13a)

(2.6a), one has

d
—llel*) + 2 = OlllglllZ + <Ilgll[3

_d 2 _ 2 2 2 _ 2
32 =GP + =00 [Oupoall 4 llgllE = 2 [ [ outdaa.

[lull2

Here ¢ can be any parameter in [0,2]. Our numerical stability is a discrete analogue
of (3.1)—(3.2) while being uniform in e. In addition, we want to confirm that the
method is unconditionally stable in the diffusive regime when ¢ < 1. A general form
of the weight function w = w(e/(omh)) will be taken into account in our analysis.
Without loss of generality, we assume the mesh is uniform with h = h; Vi. Our
results can be extended to general meshes when ;‘"‘li’; Zl is bounded uniformly during
mesh refinement. For easy readability, we will present and discuss the main results in
this section and defer the proofs to sections 5-6.

The natural first attempt is to follow a similar analysis as in [15], and this will
lead to the stability result in next theorem.

THEOREM 3.1. The following stability result holds for the IMEX1-LDG method,
defined as (2.10) with (2.11)—(2.14),

(33) By < ER Vn>1, with By =yl + €llgn I+ Atw ) ug]I2,

under the time step condition

2h (g, h + aze) fork=0
. < sta — Qo . ) )
(3:4) A1 Bl { 7(11422&3 (0mh + min(e, a(fl")oz?,) Jork > 1.

Here a;,i = 1,2,3 are defined in terms of the inverse constants and the velocity space,
namely,

(35) a1 = (|loll% + (©*)Cinv s @2 =2(|[v]loc + (V1) Clinv s 3 = 2][0] [0 Cinor
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Note that the time step condition in (3.4) is essentially the same as the one for the
DG-IMEX1 method defined in [15]. This theorem, on the one hand, gives uniform
stability with respect to ¢, which is important for the AP property of the method; see
sections 4 and 7 and also [15]. On the other hand, the theorem fails to capture the
unconditional stability property of the method in the diffusive regime when ¢ < 1.
The main reason for Theorem 3.1 to miss the unconditional stability observed
numerically and predicted by Fourier analysis in [28] is that not all stabilization mech-
anisms available in the proposed method are fully utilized. Indeed, the proof of The-

orem 3.1 uses the stabilization terms due to implicit time discretizations (i.e., ||p}*" —

n—1

oyl and €2|||g7— gy~ *|||*), upwind spatial discretization of 9, (i.e., (>, VS—‘[Q,’Z]?_% N,

and the damping effect from the scattering operator (i.e., |||g?|||?). What has not been
used is the new stabilization term w||u " — u}||2, arising due to the different tem-
poral treatments of the two d,u terms in (2.10c). Moreover, when ¢ goes to zero, the
contribution of €2[||g7 — g/ '|||? is diminishing, and this fortunately can be compen-
sated in part by |||g7]||? from the scattering effect (e.g., see (5.7)—(5.8)). By better
exploring the various stabilization terms and their relative contributions in different
regimes, new stability results can be established, and they will capture the uncondi-
tional stability property of the method. This indeed is one main contribution of this
work. The new stability analysis will be based on a new discrete energy Ej o inspired

by the energies in (3.1)—(3.2) of the continuous model.

DEFINITION 3.2. For any given constant p € [0,1], we define a discrete energy
(3.6) B = ok +e2lllgn ™ IIP + wAt(w?)|Jupll + At(L — w)lllgr I3
The IMEX1-LDG method is said to be u-stable if it satisfies

n+1 n
(3.7) EpfP<ER, V>l

If the method is p-stable for some p € [0, 1], then it is said to be stable. If the scheme
being p-stable (resp., stable) is independent of the time step size At, the method is
further said to be unconditionally p-stable (resp., unconditionally stable). Note that
Ep, =Ey.

With respect to the p-stability above, a new stability result will be stated in
the next theorem under the assumption w > 1/2. This is to ensure a substantial
contribution of the stabilization term w||u}™ — «}||2. When the weight function is
w = 1, this assumption always holds. In general, with the property w — 1 ase — 0
n (2.5), the stability result can capture the property of the method at least in the
diffusive regime.

THEOREM 3.3 (u-stability: w > %) When w > %, the following p-stability

results hold for the IMEX1-LDG method, defined as (2.10) with (2.11)—(2.14).
(i) When k=0 and with any fized i € [5,1], if

€ 1—p L—p
(3.8) — < do(p) = = ,

the IMEX1-LDG method is unconditionally u-stable. Otherwise, the method
is conditionally p-stable when the time step satisfies
(3.9)

2:2h 2¢2h
At <7 po(p):

N 20171'0”””005 - (1 - M)Omh N 2||’UHOO8 - (1 - M)O’mh
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Here we have used Cipy(k) k=0 = 1. The result can be expressed more com-
pactly as At <7, po(p) by introducing an extended real-valued function

(3.10) no(u) = {00 if 757 < Ao(n),

Te.ho(p) otherwise.

And the scheme is unconditionally p-stable if and only if 7o po(p) = 0.
(ii) When k > 1 and with any fived p € (5,1], if

(3.11)

< min (A (@), Aa (),

omh

the IMEX1-LDG method is unconditionally p-stable. Otherwise, the method
is conditionally p-stable when the time step satisfies

Ten,1 (1) Frp) < o < Na(p),
(3.12) At < Ten2(n) Zf)\2( ) < hS A1 (),
min(TE,h,l(u)?TE,h,Q(H)) [ ( ( ) ( ))
Here
_ A =m—55) __l-n
(313&) )\1(/1’) T 251'7“;”’02”00 ’ )\2(,[1/) o 4Cinv‘|v||oo’

26% (1 — 5= )h20om

22Cin 12|00 — (1= p) (1 — 55)02,h?’
2¢2h

ACim||v]|oe — (1 — p)omh

(3.13b) (i) =

(3130)  Tna(n) =

Again the results can be expressed more compactly as

At <min (7 p1 (1), T n,2(1))

by introducing two extended real-valued functions

<
(3.14) Fopilp) =4 Famp <)
Teh,i (1) otherwise

And the scheme is unconditionally p-stable if and only if

min (72,1 (1), Te,n,2 (1)) = oo.

Let us take a closer look at the results in Theorem 3.3. When k£ = 0, as long as
uwe [Qw, 1), our analysis confirms the unconditional stability of the proposed method
in the diffusive regime, which at the discrete level is characterized by relatively small
e/(omh); see (3.8). Moreover, among all the viable choices for p, it seems p = 1/(2w)
is the best in the sense that the unconditionally stable region captured by our analysis
in €/(omh) is the greatest due to the fact that max,cp/(2w)1) Ao() = Ao(1/(2w)).
Similar observation can be made when k > 1. This motivates us to further refine our
results by seeking the “best” y in the definition of the discrete energy Ej . More
specifically, we consider an optimization problem for any given e, h and look for the
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best possible choice of p that maximizes the unconditionally stable region (that is,
to maximize the allowable range of ¢/(op,h) in (3.8) and (3.11)) and possibly also
simultaneously maximizes (this can be achieved but is not obvious) the allowable
time step condition in (3.9) and (3.12) when the method is conditionally stable. The
optimization process leads to Theorem 3.4, which comes next, with the underlying
logic as
max{\: A < O(u,\) Vu € [H(N), 1]} =max{A: A< max ©O(u,\)}
HE[H(N),1]

if all maximums are assumed to exist and ©,H are some continuous functions. The
relation holds if [H(\), 1] is replaced by (H(A),1]. Note that the weight function in
the stability results is in the form w = w(e/(omh)).

THEOREM 3.4 (stability: w > 4). When w > 3, the following stability results

hold for the IMEX1-LDG method, defined as (2.10) with (2.11)—(2.14).
(i) When k =0, the IMEX1-LDG method is stable when

~ ~ 1

(3.15) At < Atgapo(e, h) == max Tepo(ft) = Teno0 () .

n€lzs 1] 2w
In particular, the method is unconditionally stable if Atsp0(e, h) = 00, that
s, when

€ 1 11—

3.16 —— < max A(p)=X|(=— )= 2o
(316) o Mo =0 () = g

Otherwise, the method is conditionally stable under the time step condition

1 2:2h
3.17 At < max T =7 — | = .
317) A< max o) Jw(%) I

(ii) When 1 <k <9, the IMEX1-LDG method is stable when

(3.18) At < Atgap(e, h) := max min (Te p,1 (1), Te n,2(1)) -

pe(55,1]
In particular, the method is unconditionally stable if Atgap(e, h) = oo, that

is, when

e : :
< max min(Ai(p), A2(n) = min (A (1) Ae (1)) =y,
Om HE(55,1]

2(1 - i)cianUHoo
Cino|[V?]]oo + 8(Cinv||v]]00)?

Otherwise, the method is conditionally stable under the time step condition

(3.19) =\ =

At < max min (Te 1 (1), Ten2(p))
wE(55,1]

SN )

(3.20)
€
Te,h,1 (MS<0mh ))
— 4Cinv”'”||oo€2h
= (8(Cinvllvll00)24+Cino|[v?]|00)e=2Cinu 0] e (1= 55 ) Tm b

_ (=5)omh e 3
Te,h,l(l) = alriuvrlx for - > A,

for A, < ﬁ <A
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Here
(3.21a)
o= 18K ConalPlloe + 4(Cumalolloo)?
* = = = b)
1+K Cmv”UzHoo +8(Cinv””||00)2
(3.21Db)
1 1 Conll®llee < 1 1\ Cinol|v]]o
A= — 4 A 02\, = 1 :2(1——)A7.
15O = 20 3 o ol us (1 %) Com 1021

Remark 3.5. The results in Theorem 3.4 also imply an alternative route to obtain
this theorem. In fact, one can establish Theorem 3.4 by following the proof of Theorem
3.3 and taking u = i when k£ = 0 and taking
o for = <A,

min (us(ﬁ), 1) for =5 > A

32)  p=plehik) = {

in defining the discrete energy £}, in (3.6), tailored for each given e, h (implicitly
also for a given weight function w(e/(o.,h)). Note that p is chosen according to
¢/(omh), which describes the regime the model is in with respect to the discretization
parameter h. The assumption 1 < k <9 in this theorem is to ensure that IC > 1; see
Lemma 2.4.

Following the notion of the stability in Definition 3.2 and with E}' ;| = E}}, we can
combine the results in Theorems 3.1 and 3.4 and obtain our final results on numerical
stability for a general weight function w = w(e/(o,,h)) that satisfies the property
(2.5).

THEOREM 3.6. The following stability results hold for the IMEX1-LDG method,
defined as (2.10) with (2.11)—(2.14).

(i) When k = 0, the method is unconditionally stable if

1 € 1—L
3.23 — d — < 2w
(3.23) R

Otherwise, the method is conditionally stable under the time step condition

2||U‘|005h+0mh2 2%h - 1{w>%} )
Yomh

3.24 At < max ( )
520 Aol ool + {J01)” 2ollce — (1 — &

(ii) When 1 < k <9, the method is unconditionally stable if

1 €
2 — — < A,
(3.25) w > 5 and p A

Otherwise, the method is conditionally stable under the time step condition

h h
(3.26) At < max < <0’mh + min (5, a2> a3>,
a1 + agas &3]

sy 7o (i o (55 1) )

where o;,i = 1,2,3 are given in (3.5).
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Remark 3.7. When k£ = 0, the IMEX1-LDG method, denoted as the IMEX1-
LDG1 method, will be of first order in both space and time. We here will examine
more explicitly the stability results for this first-order method when the model is the
telegraph equation (referred to as the T model) and the one-group transport equation
in slab geometry (referred to as the OG model). Note that (|v|) = 1 for the former
and (Jv]) = 1 for the latter. Particularly, we want to give the results for three weight
functions, including w =1 and w = exp(—=7) (used in [28]) and a piecewise-defined
w taking value 1 for “relatively small” € and 0 for large € (used in [3]). Our analysis will
provide some guidance on how to define such piecewise constant w. All three examples
of w are monotonically nonincreasing in /(o,,h). First of all, for the IMEX1-LDG1
method, the result (3.24) is indeed

%h +omh?  2e%h-1g,01
(3.27) Atgmax<€ +om {>2}h ’ 52{3 (T model)

B T2 - (1-)om (OG model).

2

% [
W always holds. Then the stability results for the IMEX1-LDG1
method in (3.23)—(3.24) become that the method is unconditionally stable
when e/(o,,,h) < 1/4; otherwise, it is conditionally stable under the time step
condition At < 45475?; ;- Note that this stability condition is the same for
both T and OG models and is used in [28] for numerical experiments.

(ii) We next consider a piecewise constant w taking value either 1 or 0. To
have the largest possible unconditional stability region, our analysis suggests
w = 1{c/(0,,n)<1/4}, and the respective stability results for the IMEX1-LDG1
method become that the method is unconditionally stable when e/(o,,,h) <
1/4 and is conditionally stable when

(i) We first consider w = 1. It is easy to verify that

2eh + o, h?
— 5

Note that when w = 0, our IMEX1-LDG1 method is just the DG1-IMEX1
method in [16, 15], with (3.28) as the respective time step condition for sta-
bility. The results imply that, if we apply the IMEX1-LDG1 method with
w =1 in the relatively diffusive regime, namely, ¢/(o,,h) < 1/4, and apply
the DG1-IMEX1 method elsewhere, the stability condition will be inherited
from the method used in each regime.

(iii) The final case is for w = exp(—¢/(omh)). Note that w > 1/2 is equivalent to
e/(omh) < ry with . = In(2) ~ 0.69314718 and that the second inequality
in (3.23) is equivalent to £/(op,h) < 74, where 74 ~ 0.19589899 is the root of
x = (2—e%)/4. While the stability results in (3.23)—(3.24) are straightforward
when ¢/(o,h) < 74 and when €/(0,,h) > r,, the results when ¢/(o,h) €
(ry, ) would depend on the model. With some calculation, one can obtain
the stability results for the IMEX1-LDG1 method with this weight function:
(3.29)

(3.28) At <

00 when ¢/(o,h) < 14
2e’h when e/(omh) € (14, 74)

T model: At < 2e— <lfexp(6/(amh))/2 omh

(2eh + o,,h?) /4 when e/(oh) > 1y,
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(3.30)
00 when €/ (o, h) < 1t
2¢%h
) when ¢/(oh) € (14,75)
OG model: At <{ (l_exp(g PR f
(2eh + omh?)/3 when e/(c,,,h) > ro.

Here r, &~ 0.38161849 is the root of (2 + 1)/3 = 222?/(2z — 1 + exp(z)/2).

4. AP property. In this section, we will state the main theorem on the AP
property of the IMEX1-LDG method when the initial data are well prepared, namely,
g+ vdzp/os = O(e) at t = 0. The proof will be established in section 7 based on the
uniform stability property of the method. With W = p, q, g, u, we write W¢|i—o = W2,
Wli=o = Wy and denote the numerical solution at time t" as W[, to emphasize
the dependence on h, At, e. Here ¢° = 9,9 and qo = 9,p° are weak derivatives of
pY and po, respectively. The following assumptions are made in this section for the
initial data and weight function w.

Assumption 1 (weak convergence and being well prepared):

(4.1) pl—po in L*,) as e—0,
(4.2) (Cg%) — (Cgo) in L*Q) as e—0 V¢ L),
(4.3) (C(g° +vo7¢0) =0 in L%(Q,) as e—0 V¢eL*(Q,).

Assumption 2 (boundedness of initial data):

(4.4) sup [[p2]] < oo, supl[|gZ][| < oo, and sup|lg?]| < co.
€ g €

Assumption 3 (boundedness for w): For any h, there exists eqg(h), such that
(4.5) 2/3<w <2 Ve<eqlh).

The assumption for w = w(e/(o,,h)) is reasonable due to its property (2.5). The
next theorem is our main result in terms of the AP property of the IMEX1-LDG
method, defined as (2.10) with (2.11)—(2.15).

THEOREM 4.1. Let the mesh size h be fized. For any time step size At, there exist
UNIqUe PRy py WAL g € U,]f, and ga; p, € GE forn >0, qR, ), € U}’f for n > 1 such that

(46&) hl% WsnAt h — Wgt h> W= P, q,u,

e— = ’
(@6h) T (Cghaun(e)) = (G oRenla) V¢ € I3@) V€ 9,
(W60) B (C (e ) = (G (R ¥) VG € L) Voo € L3(R,).

Furthermore, they satisfy the scheme

(4.7a)  (qRT}. @) +dnlpAl).0) =0 Vo € UF,

(4.7b) (0suXi},,m) = (dArh,m) Vn € UL,
PAI L — PA
At,h At,h n n
(4.7C) <At, ¢)> = <U2>lh(uA—l_}L7 ) - (UapA-;}l’ ¢) V¢ (S U;f,
(4.7d) Wh(asgzt}m) = _UQZJ{}N ggt,h + vuzt,h =0
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forn >0, with the initial data pom,h = mppo. This scheme is consistent and stable for
the limiting equation (2.7); it involves a standard LDG method in space and backward
Euler method in time. Therefore, the IMEX1-LDG method is AP. When the velocity
space is discrete such as Q, = {—1,1}, (4.6b)—~(4.6¢c) can be replaced by a stronger
form:

(4.8) lim ggm,h(wv) = th,h('ﬂ v) Vv € Q.
e—0

Remark 4.2. The AP property in Theorem 4.1 is obtained by following a com-
pactness argument which does not inform the convergence rate with respect to e.
Numerically, we observe first-order convergence in e for p computed by the IMEX-
LDG methods [28] when they are first-, second-, and third- order accurate in both
space and time. A different analysis would be needed to quantify the convergence
rate in €.

Remark 4.3. As an alternative to the modal form of the LDG discretization
adopted in this work, one can instead consider its nodal form [13]. Most of our
analysis in this work can be extended to the resulting nodal methods, with one main
difference in how the local equilibrium is satisfied as ¢ — 0. More specifically, using
the nodal form, the equations in (4.7) containing o, will be replaced by their nodal
counterpart, namely,

Us(x*)th,h(x*a'U) = *qu.t,h(x*)a US(w*)UZt,h(x*) = qgt,h(x*)a

where x, is any nodal point in the discretization. In addition, the absorption terms
oqp and 0,9 can be treated explicitly in the methods, and the interested reader can
refer to [27] for more details of the related changes in the analysis.

5. Proof for stability: Theorems 3.1 and 3.3. In this section, we will present
the proof for Theorem 3.3 first and then Theorem 3.1.

Proof of Theorem 3.3. Let n > 1. Taking ¢ = pZH in (2.10c) and using Lemma
2.1 and Proposition 2.2, we get

n+1 n
Ph —P n n n n n n
(7} Al h7Ph+1) + lh(<vgh>7ph+1) - W<”2>lh(uh+1 - “h»PhH)
pn+1 _ pn
= (PP )+ (wdn (0 g1)) + (o) o (™ = i), )
1

= 57 U P = oIl + o™ = pII®) + (vdn(po ™, 1)

5.1 w(v?) n+112 _ (1,,m((2 n+l _  np2y _ n+l  ntl
(5.1) + =5 (s = [kl + [luh ™ = whlls) = —(oapy™ pp7)-

Taking ¢ = e2g;" ™! in (2.10d), integrating over Q, in v, and shifting index n to n — 1,
we get

2 92_9271 n n—1 n n on
(T 9 ) +Enolon 90)) — (vdn(pRs i)
2
5 n n— n — — n ' n
=oAL (Mgrll1® = Mar= 117 + gr — gn =" 17) + lbnwlgr ™" gm)) — (vdn(ph, i)

(5.2)
= —llgrllI2 = €*((oagit, 91))-
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Now we sum up (5.1) and (5.2), with E}? defined in (3.3), and have

n+1 n n n n n— < > n n
i B = B + s (I = ol + <l — g 17 + 20 gt — a2

(5.3)
+Mlgnll1? + (wdn(op™ = pis i) — enw(gi = g "5 1)) + (bnw (g7, 1)) < 0.

To estimate (vdy(py ™" — pf, g7)) in (5.3), based on the scheme (2.10a)-(2.10b)
and applying the Cauchy—Schwartz inequality, we get

[(vdn (o™ = Pt gi D = ldn (ot = oy (gi))| = (g™ = ais wai)]

(5-4) = (s (up™ = i), (gDl < VWDllgillls [lup ™ = uills.

This is different from the treatment of the same term in [15], as now there is an
additional stabilization term w|ju} ™ — u}||? available in (5.3).

The two terms in (5.3) involving the bilinear form by, can be handled similarly
as in [15] (see its Lemma 3.2, particularly equations (3.22)—(3.24)). More specifically,
with (¢7*) = 0 in Proposition 2.2, utilizing the upwind treatment in the proposed
scheme for vd,g, in addition to a few applications of inverse inequalities (2.19) and
Young’s inequality, it can be shown that

(5.5)

<bh,v<gz,gz>>:<Z'”2'[gm$_2> (brolgh — 97" 98]

%

< (== +n)llgk — g5 IP + <Z/ (v0:35 >i§7"52<<v[9%é>2>
(5.6)

¢ —1y112 ainv||v2||oo 2 mv”UHoo |U|
< (= n__.n Yinv||V [loo n .
< (5 + ) llaf = g+ =g = gk 12 + 5 LRl

Here 6 and 7 are two positive constants, which will be specified later.

One important step in this proof is to split |||g7]||? in (5.3) into two terms, each
playing different roles, according to some parameter p € [0, 1] (additional conditions
required for p will soon become clear), with one term further rewritten based on the
parallelogram identity:

(57) R l12 = wllgh I + 1 = o) (S gh 12 = 5 Migf 12

1 _ 1 _
+ 1 lllgh = gp I + gk + g ).
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We now combine (5.3)-(5.7), with the discrete energy Ej , defined in (3.6), and reach

1 Cinallolloe ) / 1ol
n+1 n ZTLU o0 71
(5.8) AT (Eptl—Ep ) +e (1 - Z Y
(g e —e@i+ )) ek = a1 + (1 = B e
2At 4 O ) ) W9k = In 2
ol i + Ot a2~ gl i~

ainv||U2||oo 2
+<usg%2 lIgh 2 <.

In order for the discrete energy to be nonincreasing, namely, E,’ftl < By ,,, we require
the quadratic form in the final row of (5.8) to be nonnegative, and this can be ensured
by a nonnegative discriminant, leading to

6inv”UQHoo 1
. — el e > |
(5.9) P25 on =
Additionally, we also require
OianU”oo
5.10 1-————>0
(5.10) L,
g2 1—p 0
11 _ (7 ) > 0.
(5.11) 2At+ —1 Om 5Um+77 >0

The inequality (5.9) implies that p needs to be restricted as p > ﬁ We now

choose
o 1 € +1—,u
Um_n_ 2At 4e 0 )0

and with this, (5.11) is satisfied automatically, while (5.10) becomes

™

g 4C;np|]|ooe — (1 — p)omh

12 — >
(5.12) At — 2h ’
and (5.9) is now
2 22@m 200717 1 2h2
513 2 220l — (i = o
At 2(p — 55)omh?

When =5 < 40“11“%, the right-hand side of (5.12) is nonpositive; hence, (5.12)
holds for any time step At. Otherwise, the time step needs to satisfy At < 7 5 2(1)

with 7¢ j,2(p) defined in (3.13c). Similarly, when

PN (G Ol k)
Umh o 20””,”1)2”00

the right-hand side of (5.13) is nonpositive; hence, (5.13) holds for any time step
At > 0. Otherwise, the time step needs to satisfy At < 7. p, 1 (1) with 7 1 (@) defined
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in (3.13b). The discussions so far can be summarized into the claims in Theorem 3.3

when k > 1.
When k = 0, we have J,g} = 0, and the estimate in (5.6) can be replaced by

n — n n - CWWHUHOO ‘Ul n
(5:14)  [Gnolgri = g7 o)) < mlllgis = gr I+ = 2 5 Ty )

and all analysis up to (5.11) holds without the terms containing 6. Specifically, (5.9)—
(5.11) become

1 Cin'UH'UHoo e? 1—p
5.15 > = ozl 5 g = L 2R >0,
(5.15) H=50 ah = oAt g OmoEns
Now taking
€ +1—u
TToAr T Tae O

in (5.15) and following a similar analysis as above, one reaches the results for k = 0. 0O

Proof of Theorem 3.1. The proof can be established by starting with the equation
(5.3) and then following almost the identical analysis in [15] (particularly, see equa-
tions (3.22), (3.26)—(3.28), (3.36)—(3.41) in [15]), together with |||g7[||2 > om|||g]]|?,
to deal with the general scattering coefficient o4(x). The details are omitted.

6. Proof for stability: Theorem 3.4. When £ = 0, the optimization is
straightforward, and the detail is omitted. The remainder of this section will be
devoted to the case when k > 1, for which the analysis is more technically involved.
From here on, we assume 1 < k < 9. With this, we have K > 1 and Cj,, > 0. We also
assume w > 1/2, though not all preliminary results next depend on this assumption.
One can refer to Table 2.1 for a summary of notation.

6.1. Preliminary lemmas. We first state and prove some preparatory lemmas.
Lemmas 6.1 and 6.4 can be directly verified, and the proofs are skipped.
LEMMA 6.1.
(i) With w > 1/2, there always holds pi. € (5, 1).
(il) With us(X) defined in (3.21b), let its inverse be Ag(p) = Q(M—ﬁ)%
— Both ps(A) and As(p) are monotonically increasing, and ps(A) >
= VA > 0.
— With A\, = As(1), we have ps(\,) = 1. In addition, ps(\) < 1< A <
A
- ,US(/\*) = [ty and )\S(M*) = A
LEMMA 6.2. Consider ji € (5,1]. Then

2w’
(i)
1
(6.1) A(p) < Aep) <= p < s <<=>2w<u<u*<1)

and A1(p) = Aa(ps) = M. In addition, \i(u) is monotonically increasing
on (i, ty], and Aa(p) is monotonically decreasing;
(i)

1
(6.2) As(p) € Ai(p) <= p < i (<=>2w<uéu*<l>-
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(iii)
~ ~ 1
(6.3) N> (), A > de(p) Vue (7, 1}.

2w

1
2w’

Proof. For p € (5-,1], to prove (i),
A-mp=5) __ 1-p
2Cinv‘|v2”oo N 40”1’UHU||OO

Py o Ll-p

ainv”/U?Hoo N 8(Ci7tv”71||oo)2

The equality is achieved at p = u4, with the value being A,. The monotonicity of

A2(p) is straightforward. For A;(u), note that with K > 1, we have p, < 3 (1 + 55),

with 3 (1 + 5-) being where A(u) achieves its maximum. This implies that A1 (u),

whose square is a downward-facing parabola, is monotonically increasing on (i, Loe]
To prove (ii), we proceed as follows:

A(p) < Az(p) =

= 1< .

As(p) < Ar(p) <:>2(,u ! ) Cino| [Vl < (1—n (M B i)

_i é\inv||v2||00 B 261'711)”1)2”00
@(M_L)W<1—u@u<u
20/ Coall?lloe -

To prove (iii), related to A2(u), given its being monotonically decreasing, we only
need to show A\, > As( i), which is ensured by IC > 1 as follows:

1

i) Cinol|v]]oo > =55
2w CianUQHoo 40”“’”“”00

(6.4) X*>>\2($> <:>2(17 —K>1

Related to Ai(u), from the proof of (i) of this lemma, we only need to verify A >
AM()ly=1 4 L)- This can be argued as follows:

(6.5) X

N 1 Cinv V|0 1- 2w

/\*>)\1(u)|uz%(1+i)<:>2(1—2—>A H2|| > — - 4K > 1.
w Cinv”” Hoo 24 /20”“)”@2”00

This holds because IC > 1. 0

Remark 6.3. Lemmas 6.1-6.2 tell the properties and the relative locations of the
curves A = Ag(p), A = A1 (p) and A = Ag(u). Particularly,
e according to Lemmas 6.1-6.2, the curves A = Ag(u), A = A1 (p) and A = Ao (p)
intersect at (fix, Ax);
e according to Lemma 6.2, to the left of 1 = pu,, the graph of A = Ay(p) is
above that of A = A;(u), which is above the graph of A = Ag(u); to the right
of u = py, the ordering is reversed.

It is important to know the relative locations of various curves to optimize the time
step condition. For general weight function w, it is nontrivial to visualize these curves,
yet their relative locations and some special points are captured in Figure 6.1, which
is for the constant weight function w = 1. The figure can also facilitate the reader in
following and understanding the analysis in this section, which is given algebraically
for general w and has a geometric interpretation for the special case of w = 1.
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As (1)
~
Palk) M)
Ae -
Lt -
20 lw=1 M W 1

Fic. 6.1. Plots with constant w = 1 to facilitate the understanding of Lemmas 6.1-6.2. The
scheme is (i) unconditionally stable when A = e/(omh) and p fall into the gray region, (ii) p-stable
under At < 7. p, 1 (1) in the stripped region, (iii) p-stable under At < 7. 2(w) in the latticed region,
and (iv) p-stable under At < min(7¢ p,1(1), Te,n,2(1t)) in the blank (white) region.

LEMMA 6.4. When Uih > max(A1(p), A2 (), both 7o p1(p) and 7o p2(p) are fi-
nite, and they satisfy
(6.6)

~ —~ g
Tena1 () = Ten1(p) < Tepo(p) = Ten(p) = p < us(f h) — Ag(p) <
m

&
omh’
Moreover, 7o n1(1s(57)) = Ten2(ps (557))-

LEMMA 6.5. When restricted to {p : == > Xa(p)}, 7en2(p) is positive and

monotonically decreasing. When restricted to {u € (i,min(ug(ﬁ), 1
M)}, Ten1(p) is positive and monotonically increasing.

Proof. The definitions of \;(u) ensures that 7. 5 ; (1) is positive with j = 1,2 for
the considered p. The monotonicity of 7. p 2(pt) directly comes from its being linear,
and what remains will be devoted to showing the monotonicity of 7. 1 (1)

Based on the definition of 7. 5 1 (1) in (3.13b), we know that when —=- > Ay (u),

7nh
we have 26?Ciyy |[v?]|oo — (1 — p) (1 — 55)02,h% > 0 and

2e2h20,, (252am||v2\|oo (- i)Qofnfﬂ)

(262Cino[02| o0 — (1 = ) (1 = 55)0%,h%)?

Ta/,h,1(ﬂ) =

As a result, the sign of 7/, (), the same as that of ¢(u) := 262Ciny|[02]| 00 — (1t —

1

55)%02,h?, will inform about the monotonicity of 7¢ 5.1 (1).

Consider the two roots of ¢(u), which are

- . € 1 € ~
Hi2 = #1,2(@) = % + m 2Cin0][v?|] 00,

and q(u) > 0 when p € (fu, fiz). Note that fiy < 5-. One can further show that
f2(A) > ps(A) VA > 0 as follows:

~ 1 1 ainv”'UZHoo 1 -~
A A<= — 4+ A—7F7—— < — + 2/ 2C; 2
ps(A) < fia(A) 2w+2 Cimo[0]] < 2w+ inw][V?]] 0o

aianUQHOO

Zinoll” 100 1 2C 0|02 0e == K > 1.
2Cinv||v||oo 1H||U ||OO
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g

Hence, (i,min(us(amh),l)] C (fu1, fi2), and the monotonicity of 7. 5 1(u) will fol-
low. |

LEMMA 6.6. Assume A > 0.
(1) A> A<= 2> XAa(us(N).
(ii) When X < A4, we have A > A\, <= X > A\ (us(N)).

(iii) When A\, < ;5 < A, we have oh > max()\l(u),)\g(u))|u=us(ﬁ).

Proof. To prove (i), we proceed from the definitions of Ao(u) and pg(\) and get

1— L _ 1) Cinull?’l

2w 27" Cinollv]]oo

6.7)  A>Xa(us(V) <=A> 4Ciny[v]

oo

6inv||U2Hoo 1 - 2i
(6.8) < ([1l+———— s | A> ——=— = A > A\,
8(Cinvl|v]|oo)? 4Cino] || oo

To prove (i), we first notice that pg(A) > 5 holds when A > 0. With A < s
equivalently pg(A) < 1, we then have

1 1y Cinollv®lles \ 1y Cinolv?]lso
(1 2w 2)\ Cinolv]]oo )2)\

26%‘%””2”00

ino|[V]] oo

A> A(us(A) <=\ >

1 1 Cinollv?] 1
6.9 <=A> [1—— —=A = > A,
( ) ( 2w 2 Cmv”””oo 4Oinv||v||oo
(i) is a direct result of (i) and (ii) of this lemma. O

6.2. Proof of Theorem 3.4: Unconditionally stable region, k > 1. Based
on Theorem 3.3 and the definition of (unconditional) stability, the IMEX1-LDG
method is unconditionally stable if and only if Atgan(e,h) = oo, which is equiva-
lent to

(6.10) ﬁ < uer?gcyl] (min (A (1), A2 (p)))-

Using Lemma 6.1(i) and Lemma 6.2(i), one has

(6.11) min (A1 (p), A2 (p)) = { :\\;Ezg ?;ﬁ § Z:

where y1, € (5-,1), and the inequality (6.10) will be simplified as

2w’

(6.12) ih < max< max A (p), max )\g(u)> = max (Al(u*),/\g(p*)> = A&

Om HE (5 11 pE 1]

This gives the result in Theorem 3.4 regarding the unconditional stability when k£ > 1.

6.3. Proof of Theorem 3.4: Conditionally stable region, 1 < k < 9,
U:Lh > A4. In this subsection, we focus on € and h that satisfy Uih > \,. For such
g, h, we have Atgap (g, h) < 00, and the IMEX1-LDG method is conditionally stable.
Based on the p-stability result in Theorem 3.3, we want to optimize the time step
condition by properly choosing p from the admissible set, hence to get Atgap(e, h)

and establish the remaining result in Theorem 3.4.
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h >
<> maxOu (), da() it €

A Accordmg to Lemma 6.2(111)

(35, 1]; hence, 7. p (1) < 00, j = 1,2, and

Atgan(e, h) = max min(7ep1(1), Te,n,2(1)).
N€(2w71]

Using the property of pg(A) in Lemma 6.1, we get
e —~ IS ~ £ 1
6.13) —— > A, & (7) N =1= (7) >4V (7, 1}.
(6.13)  —— > ns( o) > #s(A) ns( o) 2 e (g

Now following the comparison property in Lemma 6.4 and the monotonicity of 7. j, 1 (1)
in Lemma 6.5, we have, when —= > \,,

Atgstan (e, h) = max Ten1(1) = Tena (min (,ug(i)7 1)) .

e (o 1N (oh us (525)] omh

mh

6.3.2. When A\, <
relation in (6.13) implies

. From here on, we assume —=5 € (A, A,]. The
m

€
(6.14) Ms(ﬁ) <1.
We decompose (i, 1] into three disjoint sets S;(e, h), j = 1,2, 3, defined as
1 €
Si(e,h) = {u € <%7 1} P> max()\l(u),)\g(,u))},
1 €
alect) = {we (5] s < 55 <l
1
Sales) = {n e (551] el < 55 < MG |

One can refer to Figure 6.1 to visualize the decomposition for a constant weight
function w = 1, and, correspondingly,

Atgap(e,h) = max min(7 (1), 7ep2(i)) = max Atbtib(e h),

Ne(zw?l] j=12
where Atsmb(s h) = max,cs,(c,n) Min(Te p1(1), 7en2(1)). Next we will calculate
Atitlib(s h) and then show Atgtab(s h) > Atéi;b(s h),j = 2,3; therefore,

(6.15) Atgtan (g, h) = Atsmb(s, h).

Step 1: To compute Atitib(e,h). When p € Si(e, h), we have 7, 1(p) =
Ten1 () < 00, T po(pt) = Tep,2(pt) < co. Based on the comparison result in Lemma
6.4 and the property of pg(A) in Lemma 6.1, there holds

N ~ Tshl(,uf)7 NE(L7MS( Eh)]a
(6.16) min (7 p1 (1), Ten2 (1) = ” 27 2R am
Ten2(),  pE (us(555), 1
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o -(iii), we will get us(==5) € Si(e, h).
By further usmg the monotonicity of 7., ](,u) 7 = 1,2, in Lemma 6 5 and the fact

that 7. n1(1s(557)) = Tena(ps(555)) i € Ay A,

AtY (e h ( in (7. 7 )
btab(E ) ;Leglla(‘}s(,h) mln(T&h,l(u)vT&h,Q(ﬂ))

(617) = rena (s (555)) = 7o (min (s (557).1) ).
Step 2: To show At(tab(s h) < ArD

stab(€: 7). When p € Sa(e,h), we have

Tena (i) = Tena(p) < 00, 7en2(p) = 005 hence, min(7e p,1 (1), 7e,n,2(1)) = Ten1 (1)
For any p € Sa(e, h), based on Lemma 6.2, we have p < p,. Moreover, using
the fact of pg(Ay) = py and the monotonicity of ug(A) in Lemma 6.1, as well as the

(e, h),

[
omh *

< e = ps(A) < us(m)-

Finally, we can once again use the monotonicity of 7 5, 1 (1) in Lemma 6.5 and conclude

) _ in (7 7 —
A ) = max (mwin (o1 (0), Fena(1) ) = max 7o (n)
3
(6.18) < Tehd </~LS(U h)) AtG) (2, h).

Step 3: To show Atstab( h) < Atstab(e,h). When p € Ss(e,h), we have

P (1) = 00, T2 (1) = Tena(s) < 005 henice, min( g1 (12), 7 2(1)) = 72 n2(n).
Given any p € Ss(e, h), we know Aa(p) < 55 < Ai(u). This, combined with
Lemma 6.2, implies 4 > p, and additionally

(6.19) S ) < As(w) © > s () .

Umh O'mh

The equivalency is based on the monotonicity of pg(\) in Lemma 6.1. Finally, one
can use the monotonicity of 7 j 2(1) in Lemma 6.5 and conclude

3) . ~ ~
AtS), (e, h) = | nax (mm (Ta,h,1(u)ﬁa,h,z(u))) = Jpax Te,n2(1)

< rana(pns(55)) = rems (s (555) ) = At

7. Proof for AP property: Theorem 4.1. We will first build some prepara-
tory results in Lemma 7.1 before proving the main result on the AP property in
Theorem 4.1. The three assumptions in section 4 still hold. Let {\I/j};v:kl be an

orthonormal basis of UF with respect to the standard L? inner product of L?(£,).
Recall that the initialization is via the L? projection onto U;f, namely, p?yAt’h = mpl,

gg,At’h = Whgga ugAt,h = Wh(U;Il]g). We also define ngh =Wy for W = p, g and
uOAt,h =mn(07 ).

LEMMA 7.1. The following results hold.

(i) ¢° — qo in L?(Q,) as e — 0.
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(ii) lime—0 pg,At,h = pOAt,h: lim._o ug,At,h = qut,iN and

(1) (G g0 ann(e ) = (G oRene ) VC € LA(Q) Vo € 0,
(72) (G (a0 ) = (G (R ®)) VC € L) Vi € L3(Q,).

(iti) sup, |[W2 5, |l < 00, where W = p, g,u.
(iV) SUP{o<e<eg(h)} ||W51,At,h|| = CW(kv At, h, Qv) < 00, where W = P U.

Proof. (i) Start with any ¢ € C§°(2;). Then
(7.3) (90, ) = —(po, ¢=) = —Eli_%(/?ga%) = 611_%((12,(;5)-

This result can be extended to any ¢ € L?(€2,); hence, ¢¥ — qo in L?(Q,) ase — 0
due to the uniform boundedness of ||¢?|| in e in Assumption 2 and C§°(£2,) being
dense in L?(£2,).

(i) With W2 weakly convergent to Wy in L*(Q,), for W = p, ¢, we have

Ny,
: 0 1 0 _ 1 0 . .
lim 2 o, , = lim mp¢ = lim Zl(ps,‘l/g)‘l’a
iz
Ny Ny,
= Z;i_{%(ﬂga U)W = (po, ¥;)T; = mhpo = pAsns
j=1 j=1
Ny,
: 0 : —1_0 : —1.0
;l_r)% ue,At,h = il_{% ﬂ—h(as qs) = 611_I>% Z:l(as qSV\Ilj)\I/j
iz
Ny,
_ —1 _ —1 _ .0
= (050, U)W = w05 q0) = udg -
j=1

Now we consider any ¢ € L2(€,). With ((g!) weakly convergent to (Cgo) in
L?(Q,), we have, for any = € Q,,

Ny, Ny

lisy 6,69 800 ) = iy (G >t )00 ) = EICERNLAE
Ny

(7.4 = 3 (G0 W) = (G )

And (7.2) can be proved similarly.
(iii) Note that

Nk Nk
92 aenlll? = (U192 arnll?) = <Z(92,\I’j)2> < M1g2l11> D 11W51* = Nelllg2]1]?,
j=1 j=1
|42, aenll = llmn(os )] < Hlogtalll < ot llal]]-

With Assumption 2, we have sup, \|\W£At’h|\| < 00,W = g,u. A similar proof goes
to p.
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(iv) Based on (2.10), one has

(P2 avn> @) = Atw ()l (ul agps @) + (P2 Arns D)
(7.5) — At ((0(g2 ap + @Vud A1), @) — (Gaplaen @) Vo € Uy.

Taking ¢ = péAt’h and using lh(u;,At,h’p;,At,h) = —(asu;’m’h,u;,m’h) based on
(2.18) and Assumption 3 for w, we get, when ¢ < go(h),

20, At
||P;,At,h|\2 =+ (O'ap;,At,hap;,At,h) + %W%Hui,m,h 2
(7.6) < (pg,At,h’ p;,At,h) - Atlh(@(ggm,h + wwg,At,h)>a p;,At,h)-

Following some standard steps to apply the Cauchy—Schwarz inequality, Young’s in-
equality, and the inverse inequality (see, e.g., Lemma 3.9 in [15]), based on Assumption
3, we can find a constant C'(k, At, h, Q,) such that

|(pg,At,h7 p;,At,h) - Atlh(<v(gg’m,h + W“”S,At,m p;,At,h)>|
(7.7) < C(k, At, b, Q) (1102 A pll + 1192 arplll + 110 arnll) 0L arnll-

Combining (7.6)—(7.7) with o,(x) > 0, we obtain

sup [lpz arnll < Ok, At b, Qo) sup(llp2 ar sl + g, aenlll + [1ug arnll) < oo,
0<e<eqg(h) €

3

1

sup U < |————C(k,At, h,Q

0<ecen(h) H e,At,h | QO'mAt<”U2> ( U)

SUP(Hpg,At,h” + |Hgg,At,h |+ ||ug,At,h||) < oo. o
€

We are ready to prove Theorem 4.1 on the AP property of the IMEX1-LDG
method.

Proof of Theorem 4.1. Let the mesh size h be fixed.
Step 1: we first show that supg....,n) U agnll < 00 for any At, n > 1, where

W = p, g,q, u. First note that when € < gq(h), from Assumption 3, we have 2 > w > %
and p = % € (i, 1]. Based on the p-stability result in Theorem 3.3, we have

1 2
0841 + 0l + Ao Gl acnllP + S22 1)

n+1 n L. 1
< Eh,u:% = Ehv#:% R Eh»#:%

1
(78) <ot aunlP + 2o aenll> + Atos (4|||g£,m,h|2 n 2<v2>||u;,m,h||2) .

Moreover from (2.10b), we have ||qg7At7hH2 = (0sul A p» 42 Arp); hence, Hqg’m’hﬂ <
oml|ul agpll- In combination with Lemma 7.1, the finiteness of supg . <. () WAzl
Vn > 1 follows for W = p, g, q, u.

Step 2: With Lemma 7.1, we only need to establish (4.6) for any n > 1. This is
equivalent to show that for any given sequence {&,,}5°_,, satisfying lim,, 00 € = 0
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(we no longer emphasize that € considered here is bounded above by €q(h)), we have

(7.92) hm W aeh =Wiin: W=p,qu
(T96)  lim (Cgl, aen(@.) = (Cgkenla ) VC € LAQ,) Var € 0,
(T9¢) T (. (00, s ) = (G (gRon ) VC € LA(Q) Vib € LA(Q)

for some WX, , € U,’f, with W = p,q,u and gx, ) € GZ Vn > 1. Let W be any of
p,q,u. Given that U} is finite dimensional, the finiteness of sup,, |[[W/ Aepll from

Step 1 implies that there is a subsequence {W[ N ntre1 converging in Uy ¥ under
any norm as r — co. Let the limit be

(7.10) Wain = Tle W2 atns W=pqu

Emyps

We now turn to {g@' A;,}tm=1- Note that each gg Ath can be written as
92, aen(@.0) = 0% @)W, (@), with [[lg2, 1| = (3% 0] B, ) /2. This, in
addition to the finiteness of sup,, H|g€m7m’h\|| in Step 1, 1nd1cates that
sup,. HozngHQLQ(Q ) is bounded for any j = 1,...,N. As a Hilbert space, L?(Q,)
is weakly sequentially compact; that is, {ozs 9 _}72, has a subsequence which is weakly
convergent in L2(€2,). Without loss of generahty7 this subsequence is still denoted as
{a 12, and the weak limit when r — oo is denoted as a(]) € L*(,) Vj. We

now define g}, ,(z,v) = Z 1046”( v)V;(x). It is clear that g, € G¥.  For any
¢ € L*(€,) and any = € QI,

2

k

(711 lim (Gl sl ) =Y (Jim (G al) ) W)

T—00

<.
I
—

<<, afNVW(x) = (¢, gRon (@, )

Mz

<.
Il

Furthermore, we have V¢ € L?(Q,) Vi € L?(Q,),
(7.12)

Ny
Jim (€ (02, st ) Z(hm (€.a8) ) (¥5) = (¢, (9Ben ) = (o) ).

Using (7.10)—(7.12) for n > 1 as well as the similar result in Lemma 7.1 for n = 0,
with ¢ taken when needed as v, v1{,~0}, v1{y<o}, vC(vV), v¢(V)1{y>0y, vC(V)1fp<o},
and also using the property (2.5) for w, we have, for any n > 0,

(7.13a)
lim 0 (002, son + @lemen, 002 ari)s®) = n((0(gR0s + v0ke0))0) V6 € UE,

T—00

(7.13b)
Tim (G b0, aenr ©)) = (G bra(gBen ) VC € L2() W9 € UL
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Now with (7.10)—(7.13) and Lemma 7.1 for the initial data, the numerical scheme
(2.10) as 7 — oo becomes Vo, 1, ¢ 1 € UF

(7.14a)

(gxi 3 @) + dn(pkP ), ) =0,

(7.14b)
(osuXthom) = (gai . m),
(7.14c)
PZJ& — PAth n n 2 nt1 n+1
(Ta¢) + lh(<“(9At,h + UUAt,h)>7¢) = (v >lh(uAt,h7 ) — (aapAt,h’ )
(7.144d)

((Cosgntn)s ) = (Cv)dn(pat ) V¢ € L ()
for n > 0. Furthermore, (7.14a) and (7.14d) lead to

(7.15) (M (0sghsn) + V4R, C¥)) =0 VC € LP(Q), ¥ €UR, n> 1.

With gR, , € Gy and hence m,(0sgRk, 1) + V4R, € L*(Q) x U, (7.15) equivalently
becomes

(7.16) 7Th(UsuC]Zt,h) = _UQZt,ha n>1

Moreover, from (7.14b) and (7.16), one can get g, ;, +vuR, , = 0,n > 1, as follows:

0 < omlllgken + vurepll® < ((06(9Ren +v0Re1)s R0 + VUK 1))
= <(_vq2t,h + VqAL py GALR T ngt’h» =0.

Compare (7.14) and (7.16) with what we want in (4.7), one also needs to have
gOAt,h + vuOAt,h = 0. This can be argued based on the initial data being well prepared

in Assumption 1. To see this, V¢ € L2(,), V¢ € UF, we proceed as

0 = lim ((¢(92 +vor "a?). ) = lim (((Co2), %) + (WO (2, o))
(717) = (<C90>7'¢)> + <U<>(QO,O'S_1 ) = (<Cg%t,h>7’(/}) + <C’U>(U’OAt,h7’(/})a

and this gives (C(gQ, + vud, 5, %)) = 0. Note that g}, , +vul,, € L*(,) x Uk,
therefore, (7.17) is indeed gOAt’ thvu%t) » = 0, and we can conclude the limiting scheme
in (4.7).
It is easy to see that the limiting scheme (4.7) is a consistent discretization for
(2.7). Tts stability can be obtained similarly as Lemma 2.3, with
[1PAr bl + At [[uxT b 112 + (@apiT b PatR) = (PAens PAER)
(7.18)
1 1 1
= SUPRTAIR + At ol kT < SRl < - < Sl

* < 5 llpoll*.

N =

Finally, with a standard contradiction argument and the uniqueness of the so-
lution to the system (4.7) (see Lemma 2.3), we conclude that the limiting functions
PAth Qe 1y IAL e WA, are unique, and (7.9) holds for the entire sequence. In the
case that the velocity space €1, is discrete, the analysis related to the convergence
of g' as.p(-,v) for each v is just as simple as that for p” o, and ¢ 5, ;, and the
convergence is in a strong sense as in (4.8). ’ ’ d
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