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We develop in this paper a novel intrinsic classification algorithm—multi-frequency class averag-
ing (MFCA)—for classifying noisy projection images obtained from three-dimensional cryo-electron
microscopy by the similarity among their viewing directions. This new algorithm leverages multiple
irreducible representations of the unitary group to introduce additional redundancy into the representation
of the optimal in-plane rotational alignment, extending and outperforming the existing class averaging
algorithm that uses only a single representation. The formal algebraic model and representation theoretic
patterns of the proposed MFCA algorithm extend the framework of Hadani and Singer to arbitrary
irreducible representations of the unitary group. We conceptually establish the consistency and stability
of MFCA by inspecting the spectral properties of a generalized local parallel transport operator through
the lens of Wigner D-matrices. We demonstrate the efficacy of the proposed algorithm with numerical
experiments.
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1. Introduction

The past decades have witnessed an emerging and continued impact of cryo-electron microscopy
(cryo-EM), the Nobel Prize winning imaging technology for determining three-dimensional structures
of macromolecules, on a wide range of natural scientific fields [13, 18, 26, 40, 48, 52]. Compared
with its predecessor, X-ray crystallography, of which the success builds upon the potentially difficult
procedure of crystallization, cryo-EM is able to image the macromolecules in their native states and
produces large numbers of projection images for samples of molecules rapidly frozen in a thin layer
of vitreous ice. The projection images can be thought of as tomographic projections of many copies
of an identical molecule at unknown and random orientations. A major computational challenge in
reconstructing the three-dimensional molecular structure from these projection images is the extremely
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low signal-to-noise ratio (SNR) caused by the limited allowable electron dose (so as to avoid damaging
the molecule before the imaging completes). It is thus customary to improve the SNR by performing
class averaging—the procedure of aligning and then averaging out projection images taken along nearby
viewing directions—from rotationally invariant pairwise comparisons of the projection images [26, 53],
before the downstream reconstruction workflow such as angular reconstitution [39, 56, 65]. In addition
to its scientific value, the rich geometric structure in the cryo-EM imaging model has also inspired many
mathematical and algorithmic investigations [3, 4, 9, 29-31, 35, 59, 61, 62, 67, 71, 75).

1.1 Background: the mathematical model of cryo-electron microscopy and class averaging

Following [38, 63], we view the collection of projection images {Ii eRXL | ji=1,...,N } as tomo-
graphic projection images for the same three-dimensional object along projection directions uniformly
sampled from the two-sphere $2, as it is more convenient to consider the imaging model in the
molecule’s own lab frame, where the molecule is fixed and observed by an electron microscope at
various orientations. For simplicity, we assume the projection images are all centered, i.e., the center
of mass of the clean projection images is at the center of the images. The goal is to identify and
classify projection images produced from similar projection directions, hereafter referred to as viewing
directions.

A point x € SO(3) is identified with an orthonormal basis (e;,e,,e;) of R3, with orientation
compatible with the canonical orthonormal coordinate frame of R>. We identify e; € $? with the
viewing direction and denote it for 7 (x) for the ease of notations. The two-dimensional image obtained
by the microscope observed at a spatial orientation x is a real valued function / : R> — R, given by the
X-ray transform along the viewing direction:

I(s,1) = / ¢ (se; +re, +rez)dr forall (s,1) € R? (1.1)
R

where ¢ : R3 — R is a real-valued function modeling the electromagnetic potential induced from the
charges of the molecule. We assume the images I (s, 7) are all supported on a bounded set of R? which
fits into the size of the projection images.

To measure the similarity between any two projection images /; and /;, obtained by the tomographic

projection along viewing directions 7 (xl-) e S?and (x]-) € 52, respectively, we compute a rotationally
invariant distance between /; and /; defined as

d I.,].) = min
R (- 1}) 0€[0,27)

Ii—RH(Ij)HF, (1.2)
where Ry, (I;) stands for the operation of rotating image /; by an angle 6 € [0, 2r) in the counterclockwise
orientation and |[|-||r is the matrix Frobenius norm. The optimal alignment angle between /; and I will
be denoted as

0; = arg minyeoom) |1 = Ry (1) HF . (1.3)

For images I, and Iy obtained from viewing directions 7 (x) and 7 (y) for x,y € SO(3) and without
noise contamination, [38] models the optimal alignment angle as the transport data encoding the angle
of in-plane rotation needed to align frames x,y after one of them is parallel transported to the fiber
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of the other using the canonical Levi—Civita connection on the unit sphere equipped with an induced
Riemannian structure from the ambient space R>. A rough idea for filtering out far-apart viewing
directions is through thresholding the rotationally invariant distances between pairs of projection images
against a preset threshold parameter € > 0 that should be tuned to reflect the confidence in the accuracy
of the imaging process. The pairwise comparison information after thresholding can be conveniently
encoded into an observation graph G = (V, E), where each vertex of G stands for one of the projection
images and an edge (7,j) belongs to the edge set E if and only if the rotationally invariant distance
drip(;,1;) is smaller than the threshold. In an ideal noiseless world, the geometry of the graph G is a

neighborhood graph on the unit sphere $2, namely, two images are connected if and only if their viewing
directions m(x;) and rr(xj) are close on the unit sphere, (rr(xi),n(xj)) > 1 —h, for h <« 1. From the
noisy cryo-EM images, the rotationally invariant distances dyp, are affected by noise and dgyp-based
similarity measure will connect images of very different views, introducing short-cut edges on the unit
sphere. The main problem here is thus to distinguish the ‘good’ edges from the ‘bad’ ones in the graph
G, or, in other words, to distinguish the true neighbors from the outliers. The existence of outliers makes
the classification problem non-trivial. Without excluding the outliers, averaging rotationally aligned
images with small invariant distance (1.2) yields a poor estimate of the true signal, rendering infeasible
the three-dimensional ab initio reconstruction from denoised images. We refer interested readers to [21,
47] for more detailed statistical analysis of the rotationally invariant distance (1.2). The focus of this
paper is to rectify the noise-contaminated empirical transport data using the spectral information of an
integral operator constructed from the initial local transport data.

1.1.1  The class averaging algorithm One of the most natural ideas for performing class averaging
is through the eigenvectors of the class averaging matrix constructed from the empirical transport data
{e'%i }ijyek [38, 63]. We briefly recapture the main steps in the class averaging algorithm below. Detailed
discussions and the analysis of representation theoretical patterns can be found in [38, 63]. In this
section, we use notation [N] = {1,2,...,N} for N € N.

The algorithm begins with computing rotationally invariant distances d;; between all pairs of
projection images /; and /;, along with the corresponding optimal alignment angles 6;;. After that,
construct an N-by-N Hermitian matrix H by

o e if (i,)) € E,
o otherwise,

where the edge set E C [N] x [N] is obtained by thresholding the pairwise distances {dij 1<Lj<N },

i.e., (i,j) € E if and only if dij is below a preset threshold € > 0, i.e.,

E:={(.) € NI x V) dgop (11;) < €] (1.5)

Set D as the diagonal matrix with diagonal entries

N
Dy=>|H|. 1#i<N (1.6)
=1
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and compute the top three eigenvectors v/, ¥, Y3 € CV of the normalized Hermitian matrix
H:=D '?aD7'/2,
Each projection image is then associated with a point in C> by means of the embedding map
. N 3
'8 {Il-}l.:1 — C
Ii— (Y1 (). ¥, (), 3 ()

where ¥, (i) , ¥, (i) , Y3 (i) denotes for the ith entries of ¥/, /,, V3, respectively. The measure of affinity
between /; and /; is then computed using the embedding map ¥:

e w).e(0)
el e ()]

Finally, the neighbors of a projection image /; are determined by thresholding the affinity measures A;;:

1<i#j<N. (1.7)

Neighbors of /; := {I] | A >1— y}
where 0 < y < 1 is another preset threshold parameter that controls the size of the neighborhoods.

1.2 Main contributions

The main contributions of this paper are (1) the introduction of the multi-frequency class averaging
(MFCA) algorithm to improve the viewing direction classification of cryo-EM single particle images
and (2) a complete characterization of the spectral information of a generalized local parallel transport
operator underlying the geometric relation in MFCA.

Specifically, motivated by recent works [3, 24, 25, 32], which incorporate multiple representations
of the pairwise comparison information into the synchronization problem, we propose in this paper
an MFCA algorithm using the extended empirical transport data {e‘kgi/}(i jreg for k= 1,2, ko
It creates more than one copy of the class averaging matrix—one for each ‘frequency channel’
corresponding to one irreducible representation of SO(2) group element. Those matrices can be viewed

as the discretization of the generalized local parallel transport operators T,(lk). A formal definition of

T}(lk) can be found in (4.2). The new algorithm uses the top 2k + 1 eigenvectors of the class averaging
matrix at frequency k to embed the images into 2k + 1-dimensional complex space. The new frequency
k-affinity measure is defined as the absolute normalized cross correlation of the embedded vectors. We
also propose to aggregate the affinity measures across the frequency channels to enforce the consistency
of the nearest neighbor identification. Since the performance of the algorithm depends on the properties
and stability of the top eigenvectors, we perform the spectral analysis of the corresponding integral
operator T}(lk). We show in Theorem 4.1 and Theorem 4.2 that the top eigenspace of T(k), denoted
as W is (2k 4 1)-dimensional. In addition, we show that the top eigenvalue of T,(lk) decreases as
k increases and the top spectral gap increases as k increases up to a threshold determined by the
local neighborhood size. The increasing spectral gap implies the advantage of using higher frequency
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information for class averaging, as the numerical stability of the eigen-decomposition step in MFCA
depends on the magnitude of the spectral gap.

In addition to the characterization of the dimensionality of the top eigenspace W® of T}Ek), we also
demonstrate in Theorem 4.3 and Theorem 4.4 the existence of a canonical identification of W® with a
complex (2k 4 1)-dimensional linear space spanned by (2k + 1) linearly independent entry functions in
the Wigner D-matrix associated with the unique (2k + 1)-dimensional unitary irreducible representation
of SO(3). A direct corollary of this canonical identification is the equality between the frequency-k
affinity measure and the viewing angle, thus generalizing the result in [38] for the affinity measure
(1.7). These facts establish the admissibility (consistency) of the proposed MFCA algorithm.

We emphasize that these theoretical results are not straightforward extensions of the techniques
in [38] to the generalized localized parallel transport operator T}(lk). The generating-function-based
approach in [38] is not easy to generalize to our setting without heavy notation and lengthy mathematical
inductions. Instead, we observed that the constructions in [38] can be greatly simplified using an
alternative construction by means of the Wigner D-matrices, which has been widely used in studies
in mathematical physics concerning the irreducible representation of SO(3).

In the clean, noiseless scenario, the MFCA matrices certainly carry identical information for exactly
recovering the affinity among view directions of the projection images; the real advantage, as argued
and demonstrated in the theoretical analysis of [32] and the experimental results of [24, 25], lies at
the low SNR region where utilizing higher-moment information becomes particularly beneficial even
without introducing additional independent measurements for those higher moments. Empirically, we
observe that the algorithm can tolerate higher level of noise than what is allowed according to the
traditional Davis—Kahan theorem [17]. In addition, the performance of the single frequency-k class
averaging algorithm improves as k increases up to a critical frequency index determined by the spectral
gap, magnitudes of the top eigenvalues and the noise level.

Besides the improved numerical stability due to increased spectral gap, using higher frequency
information for class averaging can also be interpreted as leveraging the additional redundancy encoded
in the consistency of the ‘higher order moments’, which is in line with our continued exploration for a
‘geometric harmonic retrieval” initiated in [24, 25, 32]. Moreover, in contrast with the computationally
demanding SDP approach in [3] or the noise-type-dependent approximate message passing approach in
[54], the proposed MFCA algorithm is easily parallelizable as the eigen-decompositions for the class
averaging matrices in each frequency channel are completely independent.

1.3 Organization of the paper

The rest of this paper is organized as follows. Section 2 introduces the MFCA algorithms; Section 3
introduces the basic mathematical set-up and notations for the spectral analysis in the remainder of this
paper; Section 4 presents the main theoretical contributions; Section 5 interprets the admissibility of
MEFECA using the theoretical results; Section 6 discusses the noise robustness for the algorithm under two
probabilistic models; Section 7 illustrates the efficacy of MFCA through some numerical experiments;
Section 8 concludes and discusses potential future directions. The basics on group and representation
theory and technical proofs are deferred to the Appendix.

2. Multi-frequency class averaging algorithms

Throughout our discussion involving multiple frequency channels, we will fix an integer k., > 1 for

the total number of frequency channels considered. For each frequency k = 1, ..., k.., we construct a
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separate class averaging matrix by

Q2.1

o _ e if (i,j) € E
i o otherwise.

2.1 Single frequency-k affinity measure

The Hermitian matrix H® stores the empirical transport data under the kth irreducible representation
of SO(2). We then normalize each H®) using the same degree matrix D as in (1.6); note that all
matrices H® share the same sparsity pattern determined by E. After performing eigen-decomposition

for H = D~12g®™ p-1/ 2 we keep the top (2k 4 1) eigenvectors t/fl(k), el 2(?“ € CV and define the
embedding

g ® (L)Y — 2.2)
k) . SN
L (v @i, ).
We compute the affinity measure between /; and /; at frequency k as

o 0w e0 (1))

T ew @) Jew (1)

1<i#j<N. 2.3)

Obviously, ¥V = ¥ and Agjl) = Aj; in the traditional class averaging. We can perform «-nearest

neighbor search using the affinity measure Alg.k) computed from an individual frequency k. The rationale
behind the specific forms of (2.2) and (2.3) is the core of this paper. In a nutshell, we use a (2k + 1)-
dimensional embedding because by Theorem 4.1 and Theorem 4.2 we expect a spectral gap occurring
between the (2k + 1)™ and (2k + 2)™ eigenvector of H (k) (counting multiplicities). The affinity measure
(2.3) is related to the closeness of two viewing directions by the relation (4.15) in Theorem 4.4.

2.2 Combining information from multiple frequencies

Since each affinity measure in (2.3) reflects the closeness of two viewing directions, combining those
scores together can enforce the consistency of the classification results at each frequency and improve
the overall accuracy. We propose one way to aggregate the single frequency affinity measure as

kmax

All . k
Apt =TT AP (2.4)
k=1

We choose aggregation (2.4) because the affinity measure (2.3) is related to the viewing angle by the
relation (4.15) in Theorem 4.4. In particular, comparing (4.15) and [38, Theorem 6) tells us that

(k) k C
Ay = Ay foralll <i#j<N.
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We defer more detailed discussions of the geometric relation of this algorithm to Section 4.3 and
Section 5.

REMARK 2.1 Note that (2.3) and (2.4) are not the only ways to distill and aggregate the affinity
information from multiple irreducible representations. Other natural alternatives include

w0 ()]
s .—»2 : /

’ le® (@) | #® (1)

—1, 1<i#j<N (2.5)

which in the noiseless scenario satisfies

SE}‘) — S,&” =24, —1, forallk>1.

Therefore, it is natural to combing all Gg‘) by arithmetic averaging

s®. (2.6)

However, our empirical experiments suggest that it is numerically much more stable to avoid taking kth
roots for large values of k. We provide a brief interpretation of this phenomenon in Section 5.

There can be other approaches to combine the affinity scores from multiple frequencies, such
as weighted average among different frequencies or majority voting. We will explore other ways to
integrate multi-frequency information in the future.

3. Preliminaries for the spectral analysis of MFCA

In this section, we introduce our set-up and notations for the spectral analysis of MFCA. For additional
concepts in the relevant group and representation theory and Wigner D-matrix, please refer to A.

3.1 Set-up

Throughout this paper, we view SO(3) as a SO(2)-bundle over the two-dimensional sphere S? in R3.
For any d € N, we view C4 as a Hilbert product space equipped with the canonical Hermitian inner
product induced from the standard Euclidean inner product on R¢. We will distinguish two different
types of group actions on SO (3): if g € SO(3), g acts on elements of SO(3) by left multiplication,
denoted as

gD x:=gx, Vg,x € SO(3).
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If w € SO(2) C SO(3), unless otherwise specified, w is assumed to be uniquely identified with an
SO(3) element by

cosf —sinf 0O
w=w(@)=| sinf cos6 0 |, for 0 € [0,27), 3.1
0 0 1

and acts on elements of SO (3) by right multiplication, i.e.,

X <4w = xw, Vx € SO@3), weSO2).
Unless confusions arise, we will also denote x <1 g =: xg, g,x € SO(3) for the right action of SO(3) on
itself, when the context is clear.

Following the convention of [38], we denote the transport data between x,y € SO(3) by T (x,y), the
unique SO (2) element satisfying

x AT (X)) =ty 2o (3.2)

where ;) 7 (y) is the parallel transport along the unique geodesic on $% connecting 7 (y) to 7 (x).
The optimal alignment angle 6;; computed from (1.3) can be used to construct an approximation of the
transport data between x; and x; (the observation frames of I; and I;, respectively), at the presence of
measurement and discretization error, by

T (x,.,xj) = i, (3.3)

We refer to the T (xl-, xj) ’s as the empirical transport data. As shown in [38], T (x, y) satisfy the following

properties:
Txy)=T®ux) "', VryeSOQ3) (Symmetry)
Tg>x,g>y) =Ty, Vx,yeSO@3), YgeSO®B) (Invariance)
T (x <dwp,y w2) = wflT(x,y) wy,  Vx,y € SO3), Yw;,w, € SO(2). (Equivariance)

If p : SO(2) — C is any unitary representation of SO (2) on C, then the three properties above can also
be cast into

p (T (x,y)) =p (T (x), VxyeSOQ3) (Symmetry)

p(TEr>xgr>y)=pTkxy), VYx,yeSOQ3), VgeSO@3) (Invariance)

0 (T (x <dwy,y 4 wz)) =p (wl) o (T (x,y)) p (wz) , Yx,y e SO@3), Yw;,w, € SO(2).
(Equivariance)
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We shall only assume the symmetry to be strictly satisfied by the empirical transport data; the other
properties will be assumed to hold only approximately. To simplify notations, we denote for any k € Z

T® (x,) := pe (T (x,y)), Vx,y € SO(3) (3.4)

where p, : SO(2) — C is the unique unitary irreducible representation of SO(2) with character k € Z.

The corresponding notation for the empirical transport data is T® (xl-, xj>.

In any of these irreducible representations, the empirical transport data {T(k) (xi,xj) |1 <14,j <

N} approximate the ground truth transport data {T(k) (%) | L <6 j<N } only when the viewing

directions 7 (x;) and rr(x]-) are close to each other, in the sense that the vectors 7 (x;) and zr(xj) belong to
some small spherical cap of opening angle a € [0, 277).

3.2 Function on SO(3) and isotypic decomposition

We will use the shorthand notation H = C(SO(3)) for the Hilbert space of smooth complex-valued
functions on SO(3), with standard Hermitian inner product

i)y = /50(3)f1 (X)J%d% fiofo € H. (3.5)

Here dx denotes the normalized Haar measure on SO(3).
The left and right actions of the group elements induce corresponding actions on the Hilbert space
‘H of complex-valued functions over SO(3):

g-s5(x) :=s((gf1 l>x), Vf e H,x € SO3),g €SO(@3). 36)

w-sx):=skx<dw), VseH,xeSOAB),weS0OQ2).

The Hilbert space H can also be considered as a unitary representation of SO(2). Let p;, : SO(2) —
C be the unique irreducible unitary representation of SO(2) of character k € Z. H admits an isotypic
decomposition

H=EEPn,. (3.7)
keZ
where
H; = {s eH|sx<w) = p(w)s(x) forallx € SO3)andw € SO(2)} . (3.8)

Note that SO (3) acts on H, unitarily from the left by

g5 () ::s(g_1|>x), Vg €SO (3), s H,. xeSOQ).
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Each H, thus admits an isotypic decomposition with respect to SO(3), written as

Hy = @ Mg (3.9)

nEN;O

where H, , denotes the isotypic component corresponding to the unique irreducible representation of
SO(3) of dimension (2n + 1), forn = 0, 1,.... An important observation is that each H, ; in (3.8) is of
multiplicity O or 1 in H;:

THEOREM 3.1 [38, Theorem 7]. If n < |k| then H, ;, = 0. Otherwise, H,, , is isomorphic to the unique
irreducible representation of SO(3) of dimension (2n + 1).

4. Main theoretical results
4.1 Generalized parallel transport operators

The motivation for considering these isotypic decompositions is to study the top eigenspace of the
generalized parallel transport operator T® : H — H, defined as

(T<k)s) ) :=/ e (T (4,3)) s () dy=/ T® (x,y)s(y) dy, VseH, xe€SO@3), (4.1)
S0G3) S03)

for all k € Z. When k = 1, T%® reduces to the parallel transport operator T : H — H defined in [38,
Section 2.3]. Similar to [38, Section 2.3.1], we can localize the generalized parallel transport operator
T® for any k € Z as

(T,§k>s) () = /B

where B (x,a) = {y € SO(3) | (;r (x),7 (¥)) > cosa =: 1 — h}. Using the symmetry, invariance and
equivariance of the transport data (Section 3.1), we establish the following basic properties of 7® for
any k € Z:

m@@wn@nw=/ T® (x,y)s (y) dy, VseH, x€SO@3), (4.2)

(x,) B(x,@)

(1) T® is self-adjoint. This can be seen from the symmetry of transport data: for all s,w € H, we
have

<T(k)s,w> = / / o (T (x,¥)) s () w (x) dydx
H SO(3)/SO(3)

=/ / $ ) pr (T 5o0) w (9 dydx = (s, 70w)
S0(3)/S0(3) H
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(2) T® commutes with the action of SO(3) on H: by the invariance of transport data we have for
allg € SOB3) and s € H, x € SO3),

(79 ¢+ 9) 0 = /S o AT s (7 )

&/50(3) P (T (g > (gfl |>x) .8 I>z))s(z) dz

[T )0 s= (199) 7 2) = (e (),

(3) Dprr M, C ker T®, and T® can be viewed as an operator from #H_, to itself. This can be

verified using the equivariance of 7®). First, note that for any s € H we have T®s e H_ps
since for any w € SO (2) we have

w - (T(k)s) (x) = (T(k)s) (x<aw)
_ / P (T (x w.3) s () dy = / o (T (6.3) 5 () dy
B(x,) B(x,a)

= Pk ) / pi (T (x,30) 5 0) dy = p_y ) (TVs) ().
B(x,)

This proves that T® maps 7 into H _,, by the definition of isotypic decomposition (3.8) with
respect to the SO(2) action. The conclusion that @K#fk H, C ker T® then follows from
Schur’s lemma [11, Theorem 2.1].

The arguments above can be applied to T(k), mutatis mutandis, and thus the same properties hold for
the local generalized parallel transport operator. Invoking Schur’s lemma for a second time, we know

that T}Ek) acts on H, _; as a scalar, i.e.,

(k) k
T, |Hn’_k =20 (n) Id|Hn,_k. (4.3)

The multiplicity-one theorem (Theorem 3.1) tells us that )»f,k) = 0 forall 0 < n < |k|. In order to
calculate the remaining Aflk)’s (n > |k|) explicitly, it suffices to fix a point x, € SO(3), and pick an
arbitrary function u € H, _, with u (x;), and use relation A0 = (T}(lk)u) (xg) /u (xp). We will defer
such computations for 0 < h <« 1 to Section 4.2. Next subsection summarizes these properties, in
preparation for the discussion on the main algebraic structure of the generalized intrinsic model in
Section 4.3.

In [38, 63], it was argued that the Hermitian matrix H in (1.4) should be understood as the
discretization (under uniform random sampling on SO(3)) of an integral operator T}El). Consequently,
many properties of the local transport data matrix H can be studied through its ‘continuous limit” 77,
especially the eigenvalues and eigenvectors, which converge to the eigenvalues and eigenfunctions
of T} in an appropriate sense [44]; this perspective is common in the manifold learning literature
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[5, 6, 15, 30, 62]. In the class averaging setting, the integral operator 7}, enjoys many useful invariance
and equivariance properties, which makes it relatively straightforward to study its spectral data using
representation theoretic tools. Hadani and Singer noticed that 7}, acts on the subspace H_; of H. The
space H_ is also canonically identified with the linear space of sections of a complex line bundle over
SO(3) induced by the unitary irreducible representation of U(1) with character k = 1 [10, 12, 20, 34,
49, 50]. Furthermore, T) commutes with the induced left action of SO(3) on H_;, which by Schur’s
theorem indicates that the eigenspaces of 7}, coincides with the isotypic components of #_; under the
left SO(3) action. In particular, this mechanism can be used to show that the top eigenspace of T}, is the
unique isotypic component of H_; corresponding to the unique three-dimensional unitary irreducible
representation of SO(3) for all sufficiently small / > 0 and that the affinity measure 24;; — 1 is exactly
identical with the cosine value of the viewing angle between /; and /; in the noise-free setting.

4.2 Spectral properties of the local parallel transport operator

In this subsection, we summarize the spectral properties of T}(lk) for h <« 1 (which is the relevant regime
for class averaging). Proofs for the main theorems discussed in this subsection are deferred to B. These
proofs essentially follow the proof ideas of [38, Theroem 3 and Theorem 4], with technical modification
due to the complication of Jacobi polynomials—unlike the case for the Legendre polynomials involved
in the analysis of single-frequency class averaging, no sharp Bernstein-type inequality is known for
Jacobi polynomials arising from the Wigner d-matrices. We refer interested readers to discussions and
conjectures in [14, 36, 45] for Bernstein-type inequalities for Jacobi polynomials.

THEOREM 4.1 (Eigenvalues of T}Ek) for small & < 1). The operator T}(lk) has a discrete spectrum )\ﬁ(h) for
alln € N, and )»E,k) =0forall 0 < n < |k|. Forn > |k| and & € (0, 2], the dimension of the eigenspace

of T,(Zk) corresponding to k;,k) is 2n + 1. In addition, )L,(ck) and )»,(ﬁl have the following expressions:

1 — (1 = h/2)kt!

(k)
A () = , 4.4
r (B 1 4.4
K 20k + 11— (1= w2 @2k + DA~ 1 —h/2)*

)“l(<+)1 (h) = — . 4.5)

k+2 k+1

In the regime & < 1, the eigenvalue kf,k) (h) (n = |k|) adopts asymptotic expansion
1 1

MOy = Sh - s (n2 - k2) W+ 0(). (4.6)

REMARK 4.1 When k£ = 1, Theorem 4.1 reduces to [38, Theorem 3].

The proof of Theorem 4.1 in B.1 actually proves the stronger conclusion that each eigenvalue Aflk) (h)
is a polynomial in 2 > O of degree (n 4+ 1) whenever n > |k|. The key step in the proof is identifying
that the (—k, —k) entry of the Wigner D-matrix D" k—k®) € M, forn > |k| and is an appropriate
function u for calculating the eigenvalues. The largest three eigenvalues for cases k = 1 and k = 2 can
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k=1 k=2

o 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2 o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

h h

FiG. 1. The top three eigenvalues )J,k) (h) of operator T}(lk), for k = 1 (left) and k£ = 2 (right) over interval 4 € (0, 2].

be explicitly written out as

11
M 2
A (D)= <h— <h,
1 (W=sh—2

1 5 1
o) 2 3
AV (W) = —h— =h> + =},
2" () 2 8 +6

1 11 25 15
() 2 3 4
A (W) = ~h— —h? + —h — =it 4.7
3 2 8 +24 64 @.7)
and

1 1 1
2) 2 3
A () = =h— =h* + —1°,
2 W 27 4 +24
1 13 3
2) 2 3 4
3 2 +24 32

1 57,5 70, 7
WP (h) = Sh= 20 P — it

4.8
24 64 40 (48)

Plots of A(",, for i = 0, 1,2 are provided in Fig. 1.
COROLLARY 4.1 As k increases, the eigenvalue k,(ck) decreases and lim;_, )L,(ck) =0.

Proof. of Corollary 4.1 Based on Theorem 4.1, the difference between )»,(CTII) and A,Ek) fork > 1is

L s _ 1= R e e TP R S — /)M (1 + 2k + 1))
k+1 k k+2 k+1 (k+1)(k+2)
@-1+d — h/2N A+ R/ 1 (1 — R4y -0

(k+ 1)(k +2) T k+DKk+2) ’

(4.9)
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where (a) is based on the fact that (1 + %)Hl > 1+ (k+ 1)% for h € (0, 2] via Taylor expansion. In

addition, since 0 < 1 —h/2 < 1, lim;_, )L,(ck) (h) = limy_, Hl;r#k“ =0. O

This is an important observation for determining the maximum frequency cutoff, which will be
further discussed in Section 6.
It is natural to conjecture that the top eigenspace of T,(Zk) is the (2k + 1)-dimensional space

corresponding to eigenvalue A,Ek) (h) for sufficiently small & > 0. Moreover, denote

1

_—, 4.10
k+1 (4-10)

k
Ay i=arg maxhe(o,z]k,(cﬁl (h) =

we have the following characterization of the spectral gap for T}(lk) in the regime 0 < h < 1.

THEOREM 4.2 For every value of & € (0, 2], the largest eigenvalue of T,(lk) is )\,({k) (h). In addition, for

every value of 1 € (0, A, ], the spectral gap G® (h) between the largest and the second largest eigenvalue
k) -

of T, is

2— (1 —=h/2 ((k+1Dh+2
GO m =20 20 = (A — /2™ (k+ Dh+2)

i = P @.11)

Again, when k = 1, Theorem 4.2 reduces to [38, Theorem 4]. The main technicality of the proof
of Theorem 4.2, which is deferred to B.2, is to show that )\f,k) (h) < )»,(Q | (h) for every h € (0, A;] and
n = k+ 1, which appears evident from Fig. 1. For small 0 < 7 < A, the spectral gap is approximately

n?, (4.12)

1+k
GOy ~ _:

which gets larger as the ‘angular frequency’ k € N increases. More generally, we have the following
corollary.

COROLLARY 4.2 The spectral gap G®) (h) increases as k increases from 1 to k,,,, = HJ - L

Proof of Corollary 4.2. We show that for any k > 2, the difference G® (h) — G*~D(h) is always
positive for any i € (0, A;]. To begin with, we explicitly write out the difference as

2— (1 —h2) N (k+Dh+2) 2—1—h/2)kkh+2)
k+2 B k+1

(= R/ (k+ 1)?h? 4 2kh + 4) — 4

- 2(k + D(k+2)

(1 —h/2)*

2k 4+ Dk +2)

GOy — V) =

((k 2K 4+ 2kh+ 4 — 41 — h/2)’k>

=:£(h)
_ (1 —h2)t
T 2(k+ D(k+2)

&(h),
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where & (h) is defined as a function of 4. Since the term in front of & (%) is always positive for 4 € (0, A, ],
it suffices to show &§(h) > O for any k > 2 and h € (0, A;]. To this end, clearly §(h) = 0 when h =0
then we can instead show the derivative of & (h) is positive for any & € (0, A;]. That is,

2k
(1— h/2)k+1 ’

de(h) 2
2 = 2k + 1)+ 2k

Again, when h = 0 we observe that dg(h) lp—o0 = 0. So in order to show dé(h) > 0, forall h € (0, 4;] we
can instead check if the second-order derlvatlve of £(h) is positive for any h € (0, A ]. Indeed, we have

Ph Kk + 1 k+1
di—(z ) 2w+ 12 - (1 . hJ/r2)12+2 ~a . hJ;z))m Qe+ D1 =1/ = by
@ _k+D = (k2R — k) 20

(1— h/2)k+2

where (a) comes from the inequality that (1 — x)* > 1 — xa for any x € (0,1) and a > 2, (b) is
satisfied since 2(k+ 1)(1 — (k+ 2)h/ 2) — k is linear and monotonically decreasing for / and the equality

only holds when h = A, = T +1 Therefore, we obtain that d? digh) > 0, Vh € [0,4,;] and it follows

that dsd(hh) > 0, Yh € (0, A.]; furthermore, we can conclude that G» (h) — G(kfl)(h) > 0 for any
h e (0, Al (]

This justifies one benefit of setting k > 1 for class averaging, as larger spectral gaps provide more
robustness to noise corruption for k satisfying k < % — 1. More detailed discussion on the performance
of the algorithm under noise perturbation is in Section 6. In practice, the choice of frequency cutoff
depends on the neighborhood size, noise type and noise level and may need to be empirically identified.

4.3  The main algebraic structure: generalized intrinsic model

Just as the intrinsic model established in [38] equates the ‘extrinsic model’ $2 with the ‘intrinsic
model’ of the top eigenspace W of T = T, we will generalize this correspondence to the setting
for general complex irreducible unitary representations of SO (2). More specifically, we establish the
correspondence between the following two generalized models:

e Generalized extrinsic model: for every point x = x (¢, ¥, ) € SO(3), denote by B,Ek) : C — Q%+l
for the unique complex morphism sending 1 € C to the first (index-(—k)) column of the Wigner
D-matrix D¥ (detailed in A), i.e.,

.
Df_ ()= (Dk_k,_k (), DXy @), Df_y (0. D, (x)) c Q2+

o Generalized intrinsic model: define W) as the top eigenspace of T(k), which by Theorem 4.1
and 4.2, is (2k + 1)-dimensional. Set for every point x € SO(3) the map

ol = 1)@k + 1) - v, [WH)*: ¢ - W, (4.13)

where ev, : H — C is the evaluation morphism at the point x € SO(3).
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FiG. 2. Histograms of the eigenvalues of H ® and R® in (6.4) for data generated from random rewiring model with N = 1000,
p=05andp =0.3.

The main algebraic structure of the multi-frequency intrinsic classification algorithm is summarized
in the following main theorem of this section.

THEOREM 4.3 The morphism 7 : C***! — % defined by

7. CHH oy

y—s> <x|—> %t 1- (5§’<>)*(v))

is an isomorphism between C2**! and W® < % (as Hermitian vector spaces). Moreover, for every
x€SO@B)and k =0,1,... there holds

1080 = o®, (4.14)

X

The proof of Theorem 4.3 is deferred to B.3. Our proof extends the arguments in the proof of [38,
Theorem 5). A key observation is that the top eigenvector H (k,(ck) (h)) coincides with the isotypic

subspace H; _; (see Section 4.1). Furthermore, Theorem 4.3 reveals the correspondence between the
generalized extrinsic and intrinsic models, in terms of the viewing angle information they encode. This
is summarized in the following result.
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THEOREM 4.4 For every pair of frames x,y € SO(3), we have

k
_ ((n(X),JT(y)) + 1) 4.15)

(P 1, o W)y 5

for any choice of unit-norm complex numbers v,u € C.
The proof of Theorem 4.4 is deferred to B.4.

REMARK 4.2 When k = 1, Theorem 4.3 and Theorem 4.4 reduce to [38, Theorem 5] and [38, Theorem
6], respectively, up to a different scaling constant for t. The difference arises from our alternative,
explicit construction of the isomorphism 7 using Wigner D-matrices.

5. Interpretation of the theoretical results for multi-frequency class averaging

In this section, we interpret the MFCA algorithm stated in Section 2 using the theoretical results
established in Section 4 and provide conceptual explanations for the admissibility of MFCA in the
noiseless regime.

First, under the assumption that the projection images {Ii [1<i<N } are produced from orthonor-
mal frames {xl- [1<i<N } sampled i.i.d. uniformly on SO (3) with respect to the normalized Haar

measure, we view I%H () the scaled class averaging matrix at frequency k defined in Section 2, as the
discretization of the local parallel transport operator T,(lk). We know from standard results [44, Theorem
3.1] that the eigenvalues of %H &) converges to the eigenvalues of the generalized localized parallel
transport operator T}Ek) defined in (4.2) as the number of samples N goes to infinity and the opening
angle « is sufficiently small. In particular, this implies that for large sample size N, the spectral gap
of %H &) converges to the spectral gap of T(k), which, by Theorem 4.1 and Theorem 4.2, is roughly of

size (1 4+ k) h?/4 for h < ﬁ and occurs between the (2k + 1) and the (2k + 2) eigenvalues of H (k)
(ranked in decreasing order).

Moreover, as argued in [38, Theorem 2], the MFCA embedding w® defined in (2.2) corresponds
to the morphism (4.13) in the following form:

R (pg‘) (1), forall x; € SO (3), (5.1)

where ||-|| stands for the standard norm on C+1. Combining (5.1) with Theorem 4.4 provides the
justification for using A® to identify similar viewing angles,

o _ 0 @.w (1))

T e )] Jew (1)]

~ [0 (1, 00 (D)on

= - . (5.2)

This relation is demonstrated in the top rows of Figs 5 and 13. In fact, Theorem 4.4 tells us that the

affinity measure Sg() defined in (2.5) coincides with the cosine value for the angle between the two
viewing directions in the noiseless regime. The form of the approximation identity (5.2) also suggests
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FiG. 3. Proportion of the estimated nearest neighbors that satisfy (7 (x;), 7 (x;)) > 0.85 for p=0.5, 0.3 and 0.15. The number of
frames N = 1000 and the number of nearest neighbors is 50.

avoiding directly taking the kth root of the correlation between ¥ ® (Ii) and ¢® (I]> as in (2.5) and

(2.6) since this approach loses control of the numerical relative error when Agc) is close to 0. In contrast,
it is advantageous to use the multiplicative forms (2.3) and (2.4) which do not worsen the relative error.

The logarithm of the combined affinity AA!!" has the following relation with the viewing angles,
Kimax T (x) T (x)> +1
All ®\ . Kmax Kmax + 1D < i) 7T\
log (Al.j ) = > log (A,.j ) o e o 5 . (5.3)
k=1

Using AA or log (AA“) makes small viewing angles much more prominent in the numerical procedures.

One may well expect other linear combinations of the Agc)s, which are degree-k,,, polynomials of the
(cosine value of the) viewing angle. We leave these further explorations to future work.

6. Analysis under probabilistic models

In this section, we discuss the benefit of using AX) with k > 1 to identify nearest neighbors when the
measurement graph is perturbed by noise. To this end, we use the random rewiring model [63] for the
entries of H) in Section 6.1 and extend it to incorporate small angular perturbation in Section 6.2.
We start by randomly generating N orthonormal frames x;, x,, . .., xy uniformly sampled from SO(3)
according to the Haar measure. Each frame x; can be represented by a 3 x 3 orthogonal matrix R; =
[Rl.1 , Rl.z, R?] and det(R;) = 1. We identify the third column R? as the viewing angle 7 (x;) of the molecule.
The first two columns Rl.1 and RJZ form an orthonormal basis for the plane in R> perpendicular to the
viewing angle 7 (x;). If the viewing angles for two projection images belong to a small spherical cap with
opening angle o, then we connect the two points in the graph (i.e. (i,j) € E if (7 (x;), JT(xj)) > cosa).
If x; and x; are two frames with the same viewing angle, 7 (x;) = n(xj), then Rl.l, Rl.2 and le, R]Z are two

orthogonal bases for the same plane and the rotation matrix R; le has the following form:

cost;; —sint; 0
R;le = | sin 9;']' cos Qij 0]. (6.1)
0 0 1
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When the viewing angles are slightly different, (6.1) holds approximately. The optimal in-plane

rotational angle 6;; provides a good approximation to the angle 6; that ‘aligns’ the orthonormal bases
for the planes J'r(xl-)l and n(xj)l. Therefore, if (7 (x;), n(xj)) is close to 1, the angle Qij is given by

cos —sinf 0
0 0 1

In other words, the ground truth local parallel transport data are computed by aligning the local frames
within the connected neighborhood, determined by the entries of the matrix R; " R;:

(r'R),, + (&7'R),,
\/ [(R'R)),, + (7 le)zz]z +[(&R),, (&7 lR.f)lz]z
(R;le)ZI . (R;le)lz |
Jm ), (R) (08, ~ (%), T

6.1 Random rewiring model

B

cost; =

sing; = (6.3)

Starting from the clean neighborhood graph constructed above, we perturb the graph based on the
following process: with probability p, we keep the clean edge and the associated transport data 0;;,
and with probability 1 — p, we remove the edge (i,j) and randomly rewire i or j with a vertex drawn
uniformly at random from the remaining vertices that are not already connected to i or j. We assume that
if the link between 7 and j is a random link, then 6;; = ¢;;, which is uniformly distributed over [0, 27).
Our model assumes that the underlying graph of links between noisy data points is a small-world graph
[68) on the sphere, with edges being randomly rewired with probability 1 — p. The alignments take
their correct values for true links and random values for the rewired edges. The parameter p controls the
signal to noise ratio of the graph connection where p = 1 indicates the clean graph.
The matrix H® is a random matrix under this model with

%% if(i,j) € E and with probabilityp,
H = { g P P (6.4)

¢k if(i,j) ¢ E and with probability—(iv_flz)b :

Since the expected value of the random variable ¢k vanishes for ¢ ~ Uniform[0, 27), the expected
value of the matrix H® is

EH® = pH'})

clean’

(6.5)
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where H (Ele)an is the clean matrix that corresponds to p = 1 obtained in the case that all links and angles

are set up correctly. At each frequency k, the matrix H® can be decomposed into

H® = pH® 4+ RO, (6.6)

clean

where R® is a random matrix whose elements are

(1 — p)etfi, if(i,j) € E and with probability p,

Rl(](‘) — § —pe'0ii, if(i,j) € E and with probability 1 — p, 6.7)
ki if(i,j) ¢ E and with probability {222,

and D is the average degree of the clean neighborhood graph. The elements in R are independent zero
mean random variables with finite moments, since the elements of RX) are bounded for 1 < k < k.

We use ||M]| to denote the spectral norm of a matrix M. Since the underlying graph connectivity for
all R® is identical and the mean and variance of Rg() are identical across k&, the quantity ||R(k) || does

not change over frequency index k. To find an upper bound on IR® |, we take p = 0, where the matrix
R™ represents a sparse random graph. Since the surface area of a spherical cap with opening angle o
is 47 sin’ 5 and N points are uniformly distributed over the sphere, the average degree of the random
graph is N sm2 O‘ . Adapting [42, Theorem 2.1] to our case, we can show that IR®|| < 2/N sin 5 £ with

high probablhty. In Fig. 2, we can see that the eigenvalues of R® follows Wigner’s semi-circle law [69,
70].

For the following discussion, we denote k,, = H - IJ The ordered eigenvalues for PHélgan
ng) > Kék) > 2 Z(k) and the ordered eigenvalues for H® are £<k) > K(k) > Zg/?Jrz’ e 2

El(\f), for k = 1,..., k.. The spectral gap after the (2k + D™ eigenvalue for pHélgan is denoted as

k k Ry2k+1 k \4k+3 k N
8 = €50, — eg,;z We note that {¢{*}2*1 ~ pN» " and ()3}, ~ pNY,, and 8, ~ pNG®),

since NHg‘g an 18 @ discretization of the operator T,(Z ). We consider the following three scenarios for
the discussion of the stability of the algorithm under noise perturbation: (1) small noise regime (8; >
2|[RM ), (2) medium noise regime (§; < 2[RV || < §; ) and (3) large noise regime (8, < 2[RV

e Small noise regime. This noise regime was previously considered in [63] to determine the threshold

probability p,. for the approximation of the top three eigenvectors of H () and the top three eigenvectors

of H (Ele)an under the random rewiring model. According to Corollary 4.2, the spectral gap gets larger for

higher frequency index k. This implies that the linear space spanned by the first (2k + 1) eigenvectors of
H® is closer to the top eigenspace of T(k), since the approximation error is inversely proportional to the
spectral gap according to the renowned Davis—Kahan theorem [17, 72]. This also explains the choice of
extracting the top (2k + 1) eigenvectors of H® in single frequency-k class averaging.

e Medium noise regime. In this situation, we can find a k such that for all k < k < k., 8, >
2RV || = 2||IRW||. In addition, we can show that Ei’;()% > |RP| fork = 1,... » kiax- This is because
we have )L(Ii > GW® for k < kg, and )L,(CI; | decreases as k increases according to Theorem 4.1 and
Theorem 4.2. Using the same argument as in the small noise regime, we can justify the benefit of using
the top (2k + 1) eigenvectors of H® atk > 1.

e Large noise regime. If we further decrease p, the spectral norm of R®) becomes larger than the

spectral gap ;. According to Davis—Kahan theorem, it seems impossible to recover the eigenvectors
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F1G. 4. Bar plots of the 19 largest eigenvalues of the H® at different k and p values.

if the eigenvalue perturbation is too large. However, we observe that under this situation, the subspace
spanned by the top 2k + 1 eigenvectors of H® still has non-trivial correlation with the subspace spanned
by the top 2k + 1 eigenvectors of H'y , if L1 > IIR(|| and in other words £y, > LIR(|l. This
phenomenon is similar to the phase transition for eigenvalues and eigenvectors of a low rank matrix
under the additive perturbation of a Gaussian Wigner matrix in [7, Section 3.1], although our underlying
clean matrices H C(fe)an are full rank. It seems that the eigenvectors of the unperturbed matrix are possible
to recover even when the spectral gap is much smaller than that required by Davis—Kahan. In this case,
the Davis—Kahan theorem is insufficient to bound the distance between the subspaces since it does not
consider the nature of the perturbation. It is useful to use perturbation bounds that take into account the
nature of the perturbation such as the upper bound on the entry-wise deviation of the eigenvector in [23,
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Theorem 8]. The theorem only applies to the situation with £, , | > IR®||. According to the theorem,
both §; and £y, | — |RW || appear in the denominators of the terms in the upper bound for the entry-
wise deviation of the eigenvector. As k increases, the spectral gap §, increases, while the term £y, | —
IR® || decreases based on Corollaries 4.1, 4.2 and Theorem 4.2. This implies that the upper bound of
the deviation in [23, Theorem 8] will decrease initially as k increases from 1 because the reduction in the
term that contains §;, dominates, and then it will increase when the increments in the terms containing
o1 — [R®|| becomes dominant. We empirically observe that the accuracy of the affinity measure
AW increases with increasing k up to a critical cutoff k. as detailed in Section 7.1. We identify k.. as the

point when Eé;{c 22 %HRUQ) | and Eg’,iiiz) < %IIR(I‘C) I, which corresponds to when Zg&z becomes very

close to [|[R®||. The estimation of the top eigenspace gets less accurate when k increases beyond k..,
which will result in worse classification results using A% (see Fig. 8). The eigenvector perturbation of
a full-rank matrix with additive random matrix is still an open problem and we will provide theoretical
justification for our observations in the future.

Based on the discussions above, we see the benefit of using A% for k > 1 to select nearest neighbors
because the underlying embedding ¥ can be more stable than ¥ (1), Under additive noise perturbation
in (6.4), each embedding ¥® is perturbed randomly, but they have non-trivial correlation with the
corresponding true eigenspace when the noise is not too large. In addition, ¥ ® (i) encodes the viewing
direction information in terms of the degree-k polynomial of the frame x; and the underlying information
on x; is perturbed differently at different k even though the noise is not independent. The combined score
is able to identify pairs that have consistently high affinities across k and filter out pairs that only have
a couple of high scores across k.

6.2 Random rewiring model with small angular errors

We extend the random rewiring model in Section 6.1 to incorporate small angular errors in the pairwise
alignment angles for the correctly connected pairs. Specifically, we consider additive errors in the angle,

0;=0;+¢ (6.8)

ij’

where ¢;; are independently drawn from a distribution y on the interval [0, 277). We also assume that

E(eij) = 0 mod 27. We can evaluate ¢;, = E(e'*) for & ~ y([0,27)). The matrix H® is a random
matrix under this model with

¢*itei) | if(i, j) € E and with probability p,
Y = [ J P P (6.9)

ki if(i.j) ¢ E and with probability (=222

Since the expected value of the random variable ¢'*% vanishes for ¢ ~ Uniform[0, 27), the expected
value of the matrix H® is

EH® = cpH @

clean’

(6.10)
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FIG. 5. Scatter plots of Ag‘) against (7 (x), 7 (x))) + 1) /2% at p = 1,0.2,0.1 and 0.08 and k = 1,5and10. The robustness of
the approximation (5.2) is considerably more robust for larger values of k.

where H éfe)an is the clean matrix that corresponds to p = 1 obtained in the case that all links and angles

are set up correctly. At each frequency k, the matrix H® can be decomposed into

H® = ¢ pHY L R, 6.11)

clean
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where R® is a random matrix whose elements are

(e'keii — ckp)e’keif, if(i,j) € E and with probability p,

jo’ﬂ = 1 —cpei, if(i,j) € E and with probability 1 — p, (6.12)
ki, if(i,j) ¢ E and with probability %.

The analysis follows the steps in Section 6.1 and |[R® || < 2+/N sin 5 with high probability. Comparing
Equation (6.10) with Equation (6.5), we find that the main difference is that the eigenvalues of EH®
are scaled by ¢, at frequency k. The condition for the spectral algorithm to work is that the spectral

gap ckpNG(k) and the top eigenvalue ckka,(ck) are sufficiently large compared with [[R®|. For a well-
concentrated distribution y, we can first evaluate ¢, and then determine the critical cutoff frequency
k. that satisfy the condition. With the same p in the random rewiring model, k. gets smaller in the
presence of additional small angular errors since ¢; < 1. In Section 7.1, we show the performance of
the algorithms on a couple of examples where the angular noise follows a von Mises distribution.

6.3 Discussions

In the previous two models, we only consider independent edge noise, i.e., the entries in R%©) for a fixed
k are independent. Across different frequencies, the entries R, are dependent through the relations of the
irreducible representations of the angles (6;;, ¢;;, and ¢;;) and the graph connectivity. We note that these

are simplified models for illustrating the benefits of using A®) for k > 1. In the application to cryo-
EM 2-D image analysis, the edge perturbations are induced by the independent noise from each image.
In this case, for fixed frequency, the entries in R®) become dependent since the edge connections and
alignments are affected by the noise in each image node. Still we observe similar benefits of using A®
for k > 1 with the cryo-EM class averaging experiments detailed in Section 7.2. We leave the analysis
of node level noise to future work. In addition, the current analysis focuses on data points that are
uniformly distributed on the manifold. For non-uniformly distributed data points, different normalization
techniques introduced in diffusion maps [15] are needed to compensate for the non-uniform sampling
density.

7. Numerical results

We conducted two sets of numerical experiments. The first set involves simulations of the probabilistic
model introduced in [63]. The second set applies the proposed algorithm on the noisy simulated
projection images of a three-dimensional volume of 70S ribosome. We point out that there is no
direct way to compare the performance of classification algorithms on real microscope images, since
their viewing directions are unknown. The only way to compare classification algorithms on real
data is indirectly, by evaluating the resulting three-dimensional reconstructions. Here we conduct only
numerical experiments from which conclusions can be drawn directly for two-dimensional images. All
experiments in this section were executed on a Linux machine with 16 Intel Xeon 2.5GHz cores and
512GB of RAM.
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7.1 Experiments with random rewiring model

We generate N = 10,000 orthonormal frames x;, . ..,xy in R3, uniformly sampled from SO(3) with
respect to the normalized Haar measure. To generate the noisy graph under the probabilistic model
introduced in [63], we keep the correct edge in the neighborhood graph with probability p and use the
ground truth local parallel transport data ¢'®%i in (6.3). With probability 1 — p, we rewire the edge such
that the node i is connected to a randomly selected node that is not connected with i. For the rewired
edge, the optimal in-plane rotational alignment angle is replaced with an angle uniformly sampled from
0to2m.

In the first experiment, we use a small dataset with N = 1000 frames in order to visualize all
eigenvalues of H®. The clean geometric neighborhood is constructed by connecting points where
(mr(x;), n(xj)) > (.8 (the opening angle « = 36.9°) to make sure that the graph is well connected. We

vary p and compute all the eigenvalues of H® to illustrate the analysis in Section 6. Figure 2 shows the
histograms of the eigenvalues of the matrices H®) and R®. We observe that the top eigenvalue of H®
decreases as k decreases which is consistent with Corollary 4.1. The upper bound for |R®|| as discussed
in Section 6 is 2+/N sin % = 20, which is consistent with the results shown in the bottom row of Fig. 2.
In addition, the same figure shows that [|[R® || does not vary with frequency index k under the random
rewiring model. Comparing Fig. 2a with Fig. 2b, we see that the spectral gap between (2k 4 1)th and
(2k 4 2)th eigenvalues increases. Increasing k further, we observe that the (2k + 2)th eigenvalue of H®,
ie., Zg&z, becomes very close to the right edge of the semi-circle as shown in Fig. 2c. Figure 3 shows
the proportion of the estimated 50 nearest neighbors for each frame that satisfy (m (x;), n(xj)) > 0.85.
The proportion reaches the maximum at k = 9 for p = 0.5 and p = 0.3.

In the second experiment, we use 10, 000 frames to show the spectral properties and the performance
of the MFCA algorithm for large sample size. The clean geometric neighborhood graph is constructed
by connecting points where (7 (x;),7(x;)) > 0.92 (within 23.1° opening angle). We compute the

eigenvalues and eigenvectors of the normalized Hermitian matrix, H® = p~12gp-1/2, Figure 4
shows the top eigenvalues of H® The multiplicities 2k +1,2k+3,2k+35, . .. of the top eigenvalues are
clearly demonstrated in the bar plots for p = 1 (the first row in Fig. 4). As p decreases, the top spectral
gap gets smaller and when p = 0.1, it is hard to identify the spectral gap for k = 1, whereas the top
spectral gap at k = 5 is still noticeable. This is consistent with our expectation for improved spectral
stability for larger k.

k
The estimated Ag()s provide good approximations to ((n(xi), JT(xj)) + 1) /2K (see the top row of
Fig. 5). This approximation deteriorates as p decreases. The lower left sub-figure of Fig. 5 shows that the

original single frequency class averaging nearest neighbor search algorithm fails at p = 0.08. Figure 6
shows the scatter plots of the combined affinity against the dot products (7 (x;), n(xj)) between the true

viewing angles at varying p. Even at p = 0.08, the combined affinity A?" is still able to identify frames
of similar viewing directions.

We evaluate the performance of the proposed algorithms on the nearest neighbor search by
inspecting the magnitudes of the angles between the viewing directions of frames identified as neighbors
by the algorithm. We identify for each frame 50 nearest neighbors with respect to the affinity measure
and plot in Fig. 7 the histogram of the angles between the viewing directions of neighboring frames
for varying rewiring probabilities p = 1,0.2,0.1,0.08. From Fig. 7, we observe that using the affinity
A® in (2.3) at higher frequency helps improve the performance of the single-frequency class averaging
nearest neighbor search algorithm, especially for the noisy graph at p = 0.08 (i.e., 92% of the true edges
are corrupted). Moreover, combining the measures at different ks according to (2.4) further improves the
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FiG. 7. Histogram of the angles (x-axis, in degrees) between the viewing directions of 10,000 simulated frames and its 50
neighboring points at p = 1, 0.2, 0.1 and0.08. For AAL we use kmax = 20.

classification results with significant reduction of outliers at p = 0.08 compared to the single frequency
nearest neighbor identification results. _

Singer et al. proposed to use more than top three eigenvectors from H! for nearest neighbor
classification in [63, Section 7]. We include it as an additional baseline for comparison here to illustrate
the benefit of using the eigenvectors of H®) for k > 1. Specifically, using the top 2k + 1 eigenvectors
of H () we define the affinity B® ag

@@, 7 )
15 O oI

500 = (W09 0,9 0), BY = (7.1)

We compare the performance of the algorithms in terms of the proportion of estimated nearest neighbors
that satisfy (7 (x;), n(xj)) > 0.95. Figure 8b shows that under large noise regimes, where 90% of the

clean edges are randomly rewired, using A% at k = 16 outperforms the previous class averaging
algorithm that uses only the eigenvectors from H®D. As shown in Fig. 8c, combining the information
from different frequency channels can significantly boost the performance in finding true nearest
neighbors. For S, the proportion reaches the maximum value 0.90 at k = 30. For AA!, the proportion
reaches the maximum value 0.94 at k = 20. Because the higher-order terms A®) get much smaller than
1 and become less informative, incorporating more A®) components deteriorates the performance of the
combined score AA!! when k > 20. The combined affinity SA! is more stable at large k.

To understand why the combined affinities can significantly improve the classification results at
p = 0.08, we check the values of A® fork = 1,...,25 for pairs of frames x; and X; that satisfy

(7w (x);, 7w (x) j) < 0.95, but are still identified as nearest neighbors by AW We observe that although the
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FiG. 8. Comparing the performance of different affinities according to A AAIL GAIl 4nd B We evaluate the proportion of
the estimated nearest neighbors that satisfy (7 (x;), 7 (x;)) > 0.95.
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F1G. 9. Histograms of the affinities Agc) with k = 1,...,25 for (a) a pair of wrongly identified nearest neighbors by AW and (b)

a good nearest neighbor pair identified by AALL byt not by any A®  The data are generated under random rewiring model with
p =0.08.

corresponding affinities at frequency 1 are above 0.97, Ag{) at other frequency indices are below 0.7
and concentrated on the interval (0, 0.2] (see the example in Fig. 9a). Therefore, the combined affinity
AAL s very small and such pair will be removed from the nearest neighbor list. In contrast, for a pair
of true nearest neighbors that does not appear in any nearest neighbor list by A% for k = 1,...25, we
observe that although the affinities are lower than 0.7, all individual affinities lie between 0.2 and 0.5
(see Fig. 9b). Thus, the combined affinity A2 is higher for the pair in Fig. 9b than the pair in Fig. 9a. In
summary, A2 is able to not only reject wrongly identified nearest neighbors by A%, but also find new
correct nearest neighbors that are missed by A%,

In the third experiment, we incorporate the small angular perturbation into the random rewiring
model according to Equation (6.9). Specifically, we assume that the distribution of the angular error
follows the von Mises distribution,

P cos(e)

21y (k) 7.2)

y(e) =

where I;(«) is the modified Bessel function of order 0. The parameter « controls the concentration of

the distribution. For this particular distribution, ¢;, = E(etke) = ;’52—8, where I («) is the modified Bessel

function of order k for k > 0. The clean geometric neighborhood graph is constructed by connecting
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Fic. 11. Samples of simulated projection images on 70S ribosome. From left to right: clean projection images, images
contaminated by additive white Gaussian noise with signal to noise ratio SNR= 0.05, 0.01 and0.008.

points where (Jr(xi),n(xj)) > (.7 with 10,000 frames. We fix p = 0.08 (92% of the clean edges are
randomly rewired) and vary the parameter « in von Mises distribution. We show the accuracy of the
50-nearest neighbor identification in Fig. 10. Figure 10a depicts the distribution of the angle & with
k =500 and k = 64.

Figure 10b shows the results for random rewiring model without angular perturbation and the
performance of A®) is consistently better than B®X). Comparing Fig. 10b with Fig. 8c, we find that
we achieve higher accuracy in the nearest neighbor identification from a more densely connected
graph in all approaches. From Figs 10b—10d, we find the performance of B®) is stable over small
angular perturbation. In comparison, the performance of single frequency affinity A% deteriorates as «
increases. This is due to the fact that c¢; gets smaller as « increases and both the top spectral gap and top
eigenvalue of EH® depend on ¢;- Despite this, the combined scores still achieve higher accuracy than
A® and B® .

7.2 Experiments with simulated cryo-EM images

In this section, we apply MFCA on simulated cryo-EM projection images. For each image, the goal is
to identify projection images with similar viewing directions. We simulate N = 10, 000 clean projection
images of size 129 x 129 pixels from a three-dimensional electron density map of the 70S ribosome.
The orientations for the projection images are uniformly distributed over SO(3). The clean images are
contaminated by additive white Gaussian noise with different SNRs. Sample images are presented in
Fig. 11. Here, we do not consider the effects of contrast transfer functions on the images. In order
to initially identify similar images and the corresponding rotational alignments, we first expand each
image on steerable basis, and denoise the images by using steerable principal component analysis
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FiG. 12. Bar plots of the top 20 eigenvalues at different frequency £ and SNR for simulated cryo-EM projection images.

(sPCA) [73]. Then we generate the rotationally invariant features [75] from the filtered expansion
coefficients to efficiently identify nearest neighbors without performing all pairwise alignments. The
optimal alignment parameters are estimated between initial nearest neighbor pairs. The initial nearest
neighbor list and alignment parameters are used to construct the initial graph. For clean images, the
initial graph corresponds to the true neighborhood graph. For the extremely noisy images illustrated in
Fig. 11, the initial similarity measure is corrupted by noise and images of totally different views can be
misidentified as nearest neighbors.

In Fig. 12, we present the spectral patterns of the top eigenvalues of H® built from our initial
neighborhood identification and rotational alignment. At high SNR, such as SNR > 0.05, we can clearly
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observe the multiplicities 2k + 1,2k 4 3,2k + 5, . .. and the spectral gaps. As the SNR decreases, such
spectral patterns deteriorate.

k
In Fig. 13, we present the scatter plots of Agc) against ((71 (), 7 (x)) + 1) /2%, with different
SNRs. Similar to the synthetic dataset, the Ag{)s at frequency k = 1 fail at low SNRs, such as
SNR = 0.010.008, while the A{"'s at frequency k = 5,10 are still able to distinguish the images
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FiG. 15. Histogram of the angles (x-axis, in degrees) between the viewing directions of 10,000 simulated cryo-EM projection
images and its 50 neighboring projection images, with different SNRs, from left to right: clean projection images, SNR =
0.05, 0.01, 0.008. Here we set the maximum frequency kmax = 20.

k
with similar viewing directions (i.e., ((rr(xi),rr(xj)) + 1) /2% ~ 1). This result indicates that better
neighborhood image identification can be attained using higher frequency k. Moreover, Fig. 14 shows
the scatter plots of the combined affinity against the dot products (7 (x;), 77 (x;)) between the true viewing

angles at varying SNRs. Even at SNR = 0.01, the combined affinity Ag.‘“ is still able to distinguish
projection images that have similar views 7 (x), in contrast to the approximation results in Fig. 13.

In Fig. 15, we evaluate the results by plotting the histogram of angels between viewing directions
arccos (7 (x;), n(xj)) between all identified neighboring images I; and 1. At high SNR, such as SNR =
0.05, using single frequency information as k = 1, 3,5 can achieve similar results as combining all the
frequencies. At low SNRs, such as SNR = 0.01 and 0.008, AA which uses all frequencies information
up to k = 20 outperforms the results obtained from using only a single frequency at k = 1, 3, 5.

In Fig. 16, we compare the nearest neighbor classification results using affinities A®K), B® AAll
and SA at various frequency index k for noisy images with SNR= 0.05, 0.01 and 0.008. The latter
two affinities combine AX) for k' = 1,...,k. Each image is identified with 50 nearest neighbors and
we evaluate the proportion of the estimated nearest neighbors that satisfy (n(xi),rr(xj)) > 0.9. At

SNR= 0.05, all approaches achieve high accuracy (see Fig. 16a). At SNR= 0.01, A®) is able to achieve
better classification results than B® for k between 4 and 32 and the proportion reaches 67.7% for A®)
at k = 22. Using AA!! can improve the results further at k = 40, where the proportion reaches 68.3%.
The improvement of A% and AA! compared with B®) gets more prominent at lower SNR (see Fig. 16¢
with SNR= 0.008).

We note that the construction of the initial graph structure relies on the evaluation of the rotational
invariant distance based on the sPCA expansion coefficients of the projection images [73—75]. Thus,
the noise model is different from the probabilistic models in Section 6 and the perturbation at each edge
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is induced by the noise on the corresponding two nodes. Despite the difference in the noise model, we
still observe the benefit of using A®) with k > 1. However, the improvement of the combined affinity
AALis not as impressive as the examples shown in Fig. 8 and Fig. 10. Although we observe that certain
misclassified nearest neighbors by A" can be corrected by AA!! as shown in Fig. 17a, there are still
some wrong nearest neighbors that enjoy consistently high affinities across different ks as shown in
Fig. 17c.

8. Conclusion and future work

We propose in this paper a novel algorithm, referred to as MFCA, for classifying noisy projection
images in three-dimensional cryo-electron microscopy by the similarity among viewing directions.
The new algorithm is a generalization of the eigenvector-based approach of intrinsic classification first
appeared in [38, 63]. We also extended the representation theoretical framework of [37, 38] by means
of explicit constructions involving the Wigner D-matrices, which completely characterizes the spectral
information of a generalized localized parallel transport operator acting on sections of certain complex
line bundle over the two-dimensional unit sphere in R3; these theoretical results conceptually establish
the admissibility and (improved) stability of the new MFCA algorithm.

One intriguing future direction is to investigate into refined and more systematic aggregations of the
results obtained from each individual frequency channel. Potential candidates include (1) the harmonic-



REPRESENTATION THEORETIC PATTERNS IN MFCA FOR 3D CRYO-EM 33

retrieval-type transformations as in multi-frequency phase synchronization [32], (2) cross-frequency
invariant features such as bispectrum [8, 41] and (3) tensor-based optimizations for multi-dimensional
arrays [1, 43, 58]. The main idea is to further exploit the redundancy in the reconstructed information
across different irreducible representations. A direct extension of the MFCA theoretical framework
could be a refined geometric interpretation of the multi-frequency vector diffusion maps [24] in terms
of aggregating invariant embeddings of the same underlying base manifold from multiple associated
vector bundles of a fixed common principal bundle.

Another future direction of interest is to integrate the multi-frequency methodology into existing
algorithmic approaches for tackling the heterogeneity problem in cryo-EM imaging analysis and
comparative biology [2, 31, 46]. In the context of cryo-EM, this problem occurs when molecules in
distinct conformations coexist in solution, and thus images collected in cryo-EM imaging from random
orientations should typically be first clustered into subgroups (using, e.g., the maximum likelihood
classification approaches [57, 60]) before single-particle reconstruction techniques can be applied
to each individual subgroup. Recent studies [16, 27, 28] even provided evidence for a continuous
distribution of conformation states to present in a solution, which is far beyond the capability of
maximum likelihood classification methods. We expect significant performance boost and sharper
theoretical results from extensions of the multi-frequency methodology in these problems.
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A. Basics on group and representation theory

A group G is a set with a multiplication operation: G x G + G obeying the following axioms:

1

2.
3.

. Forany x,y € G, xy € G (closure);
For any x,y,z € G, (xy)z = x(yz) (associativity);

There is a unique element of G denoted e and called the identity for which ex = xe = x for any
x€g;

For any x € G, there is a corresponding element x~! € G called the inverse of x, which satisfies

xx ' =x"Ix=eforanyx eg.
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The group operations may not be commutative, i.e., xy is not necessarily equal to yx. This is crucial for
our present purposes since three-dimensional rotations do not commute.

We have a group G acting on a set X. This means that each ¢ € G has the corresponding
transformations based on a left (group) action L, : X — X and a right (group) action R, : X — X.
A left (group) action of G on X is a rule for combining elements g € G and elements x € X, denoted by
g > x. We additionally require the following three axioms.

1. g>xeXforallxe Xand g € G.
2. e>x=xforall x € X.
3. > (g >x) =(g,8;) >xforallx e Xand gy,8, € G.

A right (group) action of G on X is a rule for combining elements g € G and elements x € X, denoted
by x <1 g. We additionally require the following three axioms.

l.x<geXforallxe Xand g € G.
2. xde=xforallx € X.
3. (x<g)) <g =x<(g8) forallx e Xandg,g, €G.

The action of G on X extends to functions on X as shown in (3.6).

In the paper, we focus on two groups, namely SO(2) and SO(3). Both are compact Lie groups
and admit irreducible representations. The group SO(2) is commutative and thus its irreducible
representations are one-dimensional complex numbers, p;(W(0)) = ekl for w e SO(2) with a
rotational angle 6 € [0,2m). The irreducible representations of SO(3) are given by the Wigner D-
matrices, which will be described in the subsection below.

A.1  Wigner’s D- and d-matrices

In this section, we recall the definition and relevant properties of the Wigner’s D- and d-matrices, which
are used extensively in the paper for explicit computations related to the irreducible representations of
SO(3). Recall that elements of SO(3) are realized as rotation matrices parameterized by Euler angles
(¢, 9,v%) € [0,27) x [0, 7] x [0,2): each x € SO (3) can be explicitly written as

x=x(p,0,¢)

cos@pcosy —singsinyr cost?r  — cos¢ siny — sin¢ cos ¥ cos v sin ¢ sin
= | singcos ¥ + cos ¢ sin Y cos ¥ — sing sin{ 4 cos ¢ cos Y cos ¥ —cos @ sin
sin v sin @ cos Y cos ¥ cos ¥
(A.1)
Note that this is equivalent to writing x = R, (¢) R, (¥) R; (¥), where
1 0 0 cos? O sinv cosyy —sinyr 0
Ri(p) =1 0 cosp —sing |, R, (VW)= 0 1 0 , Ry(y)=| siny cosy O
0 sing cosg —sing 0 cos? 0 0 1

The last column in the matrix representation (A.1) is exactly the view direction corresponding to x €
SO (3). For the simplicity of statements, we denote the viewing direction of x € SO(3) as

7 (x) =7 (x(¢,0,9%)) = (singsin®, —cossin¥,cos ) | € R>.
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For each integer £ = 0, 1,2, . . ., the Wigner’s D-matrix SO (3) 3 x — D' (x) € CCHDXQHD g the
unique (up to isomorphism) irreducible matrix representation of SO(3) of index ¢. For each x € SO(3),
D! (x) is a (2¢ 4 1)-by-(2¢ + 1) complex Hermitian matrix, of which the entries we denote by Dﬁm (x)
(=€ < m,n < {). As group representations, we have for any £ = 0,1,... and any x,x’ € SO(3) the

multiplicative formula

D' (¥)D' (x) =D" (x > x). (A.2)
The 2¢+1 entries in the central column of DY, i.e., Dﬁm (—¢ <m < ¢), giverise to the 2¢+1 independent
spherical harmonics of degree £. More generally, the 2¢ 4 1 entries in the sth column (—¢ < s < ¢) of

D' give rise to the 2¢ + 1 independent spin-weighted spherical harmonics of degree £ and weight s [20,
33). Using the Euler angles, Wigner’s D-matrices can be written explicitly as

D, (0, 9,9) =Dy, (x (9,9, 9) = e "d,,, ) e, mn=—t,... 1L (A.3)

where matrices d’ () are known as Wigner’s d-matrices. They are real (2¢ 4+ 1)-by-(2¢ + 1) matrices
with an explicit formula for its (m, n)th entry as

iy (D)

9 m—+n—+2s 9 20—m—n—2s
cos — sin —
(23)  (=5)

sll—m—s5)!—n—s)!m+n+s)!

=DM E—m) L E+m) (=) 12D (=1

with the sum running over all s € Z that make sense of the factorials [50, Section 3.3.2). We will only

need the explicit form of d’,, for the special case m = n = —£: in this case it is straightforward to verify
that the summation consists of only one term s = 2¢, and hence
9\ 9\* 1+cos®\"
dg_e,—z () = (cos 5) = (cos2 5) = (%) i (A.4)

Alternatively, dt

. €an also be written explicitly in terms of Jacobi polynomials as (see, e.g., [50, Section
13.1.1))

C—m)! (£ +m)!
C—m!{+n!

3
db () =277 [ ] (1 — cos9) 7" (1 4 cos #) 7" P (cos ) (A.5)

where {Pf,a’b) n=0,1,2,... } denote the sequence of Jacobi polynomials with parameters a, b [50,
Section 13.1.1). This gives rise to the explicit formula for the diagonal entries of the Wigner d-matrices:

d’\y () = 27" (1 4 cos 9)" PO (cos ). (A.6)
In particular, we see directly from (A.5) that
{—m
dﬁm 0) = SmnPﬁiT) 1) =36,," (2 B m) =8, (A.7)

where §,,, is the Kronecker delta notation

5 — 1 ifm=n
m 0 otherwise.
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If the Euler angles of x’ take the form (0,0, 1), then by (A2) we have

L

0
??) _ @7 _
D!, ((0.0,y) >x) = D> DL (0,0,4) D, (1) = D dby (0)e VDL, (x) = ™" D}, (x).
s=—F{ s=—{
(A.8)

We will need this relation in the proof of Theorem 4.1.

Recall from [66, pp. 21-22) that Euler angles admit physical interpretations for the rotation matrix: If
we denote the canonical right-handed orthonormal basis in R? by {e|.e,, €5}, and write R, (@) € SO(3)
for the rotation around axis e; (i = 1, 2, 3) by angle «, then rotation by x (¢, ¥, ¢) € SO (3) is equivalent
to (i) rotation by angle ¢ around es, (ii) rotation by angle © around the new axis €}, = R,, (¢) €, and (iii)
rotation by angle ¥ around the new axis €; = R, (¢) R, () e5. From this geometric interpretation, it
is clear that the action of SO(2) on SO(3) considered throughout this paper only affects the Euler angle
Y. In other words, under the canonical identification of SO(2) with SO(3) elements of the form

cosa —sina 0
g=g(@ =| sine cosa O ], o €[0,2m) (A.9)
0 0 1
then x (¢, 0, ¥) < g, (@) = x (¢, ¥, ¥ + o). Together with (A.3), this implies
D, (x(9,9,9) < g (@) = D, (x(p, 9, ¥ + )
. N (A.10)
= D), (x (0,9, 9)) = p, (87) Dl (02, 9))

where again p,, stands for the complex unitary irreducible representation of SO(2) of character n.

B. Spectral analysis of the local generalized parallel transport operators

We prove Theorem 4.1 to Theorem 4.4 in this appendix.

B.1  Proof of Theorem 4.1

We begin with the isotypic decomposition (3.7) and (3.9). Following (4.3), our strategy is to find a ‘good
point’ x, € SO(3) and a ‘good function’ u € H, _; (n > |k|) such that u (xo) # 0, and evaluate

(Tl(zk) “) (*o)
u(x)

To this end, pick the following basis for the Lie algebra so (3):

A0 (h) = (B.1)

00 0 0 01 0—-10
A=[00-1]), 4= 000], A;=(1 0 0
01 0 ~100 000

It is straightforward to check that these elements satisfy the commutator relations

[A5.A41] =4,, [A)A3] =4, [A,4;]=A4;.
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We fix x;, = L, the canonical standard orthonormal frame in R3. We further equip SO(3) with standard
spherical coordinates—the Euler angles—of the form

x=x(p,0,¥) =xy < #4370 A2¥ 43

where (¢, 9,v¢) € (0,27) x (0,7) x (0,2m), as in [38, Section 3.2.1). The normalized Haar measure
on SO(3) is given by the density
sin 6 do d9 dys
82 ¢ '
Consider the subgroup T, of SO(3) generated by the infinitesimal element A3. For every k € Z and
n € N with n > |k|, the Hilbert space H, ; admits yet another isotypic decomposition with respect to
the left action of 7y

n
H, = P Hy 4 (B.2)
m=—n
where s € ’H:’:f i if and only if
s (e_’A3 > x) =™ (x) foreveryx € SO(3)andt e R. (B.3)

As pointed out in [38, Section 3.3.1), elements of ’HZL . are often referred to as (generalized) spherical
functions. In the physics literature, they are also known as spin-weighted spherical functions, which are
closely related with Wigner D-matrices [10, 12, 20, 34, 51). We extend the computation in [38, Section
3)to k > 1, by fully leveraging properties of the Wigner D-matrices. In fact, we are going to fix m = —k
and choose the ‘good function’ u as D" Kk the (—k, —k)th entry of the Wigner D-matrix of weight n,
for any n > |k| — it is clear from (A.10) that D’jkﬁk € H_, for any n > |k|, and from (A.8) we know
that D" x.— satisfies (B3) with m = —k. Our goal is to evaluate

(k)
2 (Th D'lk,—k) (%o) B4)
" D'y (%) .
Now, on the one hand, we have
(A3) (A7)
Drik,*k ()CO) = Drik’,k (0, O, 0) — dﬁk,*k (0) — 1. (B.S)

On the other hand, note that by the invariance and equivariance of the transport data (3.4) we have for
any x = x (¢, 9,¥) € SOQ3)

T® (xg,x) = T® (xo,xo < e‘pA3eﬂA2ewA3) =7® (xo,e‘pA3 > xp < eﬂAze‘/’A3)
=7® (e*‘pA3 > X, Xy < eMZeW“) =7® (xo e x) < €9A2€WA3>
= etkoT® (xo,xo < e§A2> e

and

D'y @) =D" (@, 0.9) =e M (e =eMar, (Xo g e%) eV



REPRESENTATION THEORETIC PATTERNS IN MFCA FOR 3D CRYO-EM 41

Therefore,
k
(12007, (x) = / T® (x9,%) D"y (x) dx
B(x,a)
= / T® (xo,xo < eﬁAz) DY (xo < eﬁAz) dx (¢, 0, Y)
B(x,x)
= / o (T (xo,xo < e”Az)) D 4 (xo < eﬁAz) dx (¢, 0, Y)
B
— Dy ((xo < eﬁAz) T (xo N eﬁAz,xo)) dx (¢, 9, %)

e DYy 4 (xo < €M2) dx (¢, 9,v),
B(x,a)

where (x) used the fact that D" k—k € H_;, and () follows from the definition (3.2) and the geometric
fact that x, < 42 is exactly the parallel transport of X along the unique geodesic connecting 7 (xo) to
7 (xp <1 e"42):

VA VA _ _ VA
(xo e ) QT (xo Qe ,xo) = I (xpe”2) s (xp)¥0 = Xo L€

It follows that

(T}(zk)DrLk,—k) (xo) = /B

DLy (%0 < ™) deio,0,v)

(.00
1 2 o o3 D a 9

=5 )2/ dgo/ Sn; D"y 4 (0,9,0) dz?:/ SH; A"y (9) do.
T 0 0 0

Since d" bk = d,’(‘,k (see, e.g., [50, formula (3.16))), this further implies

o 3 l? [03
(T,(lk)Drik,_k) (x ) :/o % e (0) dO @9 2_(k+1)/0 sin? (1 4+ cos ﬂ)k Pfl()j{k) (cosv) do

o
= —2("“)/ (1 + cos )k Pfl();ik) (cos ) dcos ¥
0

1
L=C08D o= ktD) / a +2F PO (2) dz (B.6)
1—

where in the last equality we used 4 = 1 — cos «. Using the explicit form of Jacobi polynomials (see,
e.g., [64, Chapter IV, formula (4.2.1)))

n—k v n—k—v
(0,2k) n—k n+k\(z—1 z+1
Pk (Z):Z(n—k—v)( v 2 2
v=0
k

SCACE) E T
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we have

. n—+k z—1\" (z+1\""
(1008, ) () =24+ 2"2( VWYL E) (B«
n—k U
z=1-2w 12(—1)‘) (n — k) (n —I—k) /2 w” (1 —w)"™V . 2dw
21):0 v v 0
n—k
(— 1)”( )(n+k)/ w’ (1 —w)"™" dw
=0 Y 0
n—k
(— ( )(n+k) (é;v—l—l,n—v%—l)
— v 2

v

<

where B (x;a,b) = f(;c w1 — w)b 1 dw is the incomplete Beta function. It follows that for all n >
|k|

(ngk) Drik,fk) (%o)

D'ik —k (xo)

(Yl

From the integral form of the incomplete Beta function, it is clear that B (4/2;v+1,n—v+1)isa
polynomial of degree (n + 1) in A. In particular, by repeatedly applying the recursive relation

A () = = (137021 (x0)

M»

|
B(xa+1,b) = ZB(x;a,b+ D=l — P,

we easily obtain

_ k+1
e (h):B(’; 1k+1) ! (lk+h1/2) , (B.7)

® h h
Mgy () =B Z:Lk+2) = @k+ DB (J:2k+1

—B h—1k+2 2k+113 h~1k+2 +2kJr1 h 1 AN
- 277 k+1 277 k+1 \2 2

C 2+ A=A =R/ @k+ DA =4 = h/2)H
B k+2 k+1

) (B.8)
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h h h
A,(Qz(h):B(E;l,k+3) —4(k+1)B(5;2,k+2)+(k+1)(2k+1)B(§;3,k+1)

:B(E;l,k+3)—2B<5;2,k+2)—(2k+1)<§) (1—5)
=mB(5?1”‘+3)+H—z(z)(l—z) —<2k+”(5) (1—5)

kK 1—(1—h/2)k3 2 (h h\<+? n\? R\ <!
= - + “)(1-= —2k+D(=) (1-2)
k+2 k+3 k+2\2 2 2 2

(B.9)

which give rise to (4.7) and (4.8).
It now remains to compute a quadratic approximation for kflk) (h) for h — 0, for all n > |k|. This can
be done by direct computation using the integral form of the incomplete beta function: for all n > |k|,

A0 () =0, (B.10)
n—k v n—v
® =Sy (" ”+k).l(ﬁ) ( _ﬁ) _1
EIA (0)_2( D ( ] )( ) >(3) (=3 s (B.11)

n—k v—1 n—v
200y — Ny (P ”+k>.2(ﬁ) ( _ﬁ)
0 =3 ( ] )( )G (-3 L

n—k v n—v—1
v (n—k\(n+k\ —(—-v) (h h
+2 D ( v )( v ) 1 (5) (1_5)
v=0

h=0
Ltk 1(2+ @) (B.12)
=——m—k) (n ——=—(n"+n-— .

4 4 4

and (4.6) follows from the Taylor expansion
h2

MO ) = 1P O +hoy 2P ©) + 5 074" 0) + 0 ().

This completes the entire proof of Theorem 4.1. ([

B.2  Proof of Theorem 4.2
LEmMA B.1

1. There exists i\ € (0,2] such that A5 (h) < A\ (h) for every n > k + 1 and h € (0, 2],

2. There exists 45 € (0,2] such that A" () < A", () for every n > k+2 and h € (0,h$"].

Proof of Lemma B.1. Since A% (0) = 0 forall k € Z and n > |k|, we will just compare the first-order
derivatives 0, ;,k) (h) over an interval with O as the left end point. By (B.6), Bhkf,k) (h) admits a closed
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form expression in terms of Jacobi polynomials:

1 h — 1/1
AL (h) = 3 (1 - 5) (02]() (I—"h) bcosa 3 (—+gosa) P(02k) (cosa) .

In particular, under change-of-coordinates 7 = 1 — cos &, we have

k k
®) 1 (1+cosa (0,26) 1 (1T+cosa
Ay (h) = 3 (T) Py (cosa) = \A— )

1 k 1 (1 k

020 () = S PO (osay = 2 (5 NY 1 - k4 1) (1 - cosa)].
2 2 2

It is clear that 0 < ah)‘l(c121 (h) < ahx,((") (h) forallh =1 —cosa € (0, 1/ (k4 1)], which together with

A,Ek) 0) = )L,(Q 1 (0), gives rise to

) *) 1
Mg (W) <A (h)  forall0 < h < 1 (B.13)

With (B.13), the proof of both (1) and (2) of Lemma B.1 is reduced to only the part (2) of Lemma B.1.
The remaining of this proof is devoted to establishing (2) of Lemma B.1.

By the classical result of Szego6 [64, Theorem 8.21.13), there exists a fixed positive number ¢ > 0
such that

PO (o5 0) = Lo [cos (NO + y) + (nsing)~! 0(1)], forall S<o<z—< (B.14)
ﬁ n n
where
1 ( 2 )" 2
kO) = —— ~ J—
7 sin (6/2) cos (8/2) - [cos (6/2)1% 1+ cos® 7 sin 6

2k + 1 T
N: y )\,:——
n-—+ > 1

In particular, by making the O (1) term in (B.14) explicit, we have for some absolute constant C > 0

1 + cos0O 02k( 9)’ / 1 1+ ¢ forall < <6 < c (B.15)
cos - . or all — T = .
> /sin 6 nsin@ n— n

Note that the left-hand side is precisely the absolute value of ZBhAflk) (h) = ZBhAE,k) (1 — cosf). We seek
an upper bound for the right-hand side of (B.15) that holds uniformly for all sufficiently large n. To this

end, consider the largest zero of P(O 126) (x) forx € [—1, 1], denoted as x;,_, = cosa,_, (thus,a;_, is the

smallest zero of the function o +— P;Oj{k) (cosa) on a € [0, 7]). Well-known estimates for the extreme
zero of Jacobi polynomials (see, e.g., [19, Section 2.2)) indicates
1
Xy g > 1—0(—2) asn—>o0 = a, ;—>0asn—> o0
n

thus for any €; > 0 there exists N; > 0 such that for all sufficiently large n > N; we have
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since lim,_,, (sinx) /x = 1. In the meanwhile, [22, Theorem 3.1) bounds x:—k = COS oz;k from above
by

*

2

1 1
(2k+§) +4(n—k)(n+k+§) 4n® +2n+ 1/4 2n+3/4
Xn—k < - -

(2n — 2k + 1 + 2k)? Qn+ 12 @2n+ D

(B.17)

Using the elementary inequality 1 — x?/2 < cosx for x € [0, 2], (B.17) leads to

2
o 2n+3/4 4n+3/2 1
Mgcosa;‘k=x:k<l—L/2 = ar_ ;> L/Z—)— asn — oo,
2n+1) 2n+1) Jn

which further implies (1) for sufficiently large n, ) , € [c/n.r — c¢/n], and (2) by choosing n
sufficiently large we can ensure for the same arbitrary €; > 0 chosen for (B.16), that, in addition to
(B.16), there holds

1 —

I —¢
N

Now consider the smallest local extremum w;_, of the function Pflojck) (cosa) for a € [0, ] that is
larger than cr; ., i.e.,

o > (B.18)

(0,2k)

Mg := min {a e[0,7]]9,P,"; (cosa) = Oand o > O‘Z—k}

which by (B.18) is guaranteed to fall within [c¢/n,m — ¢/n]. For any n > N, by (B.15), (B.16) and
(B.18), we have

1+ cos s  \*
2

2 1 C
PO (cosup_y)| = 2 - (14—
T fen i nsin gy .

[ 2 1 C
Sy— 1+ —
T fdn o, nsino,
[2 1 ( c )
<,/ —- 1+ —
mn )a:;fk n (1 — 61) A,

(1—¢

1 2 C
T —q)n%/;(1 M —q)zﬁ)'

The same inequality holds if we replace ) , with any other extremum of the function o +>

flo_’ik) (cosw) in @ € [c/n,m — c/n]. In particular, this implies that for all sufficiently large n we have

(recalling that A = 1 — cos &)

1 (1 k 1
3,20 () = 3,0P (1 — cosa) < = (ﬂ) 020 (cosa)| < 7 foralla e lc/n.m —c/nl

2 2
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The rest of the proof follows easily from the proof of [38, Theorem 4): let a, € (0, ) be such that

1 /1 k 1
328y = 0,20 (1= cosa) = 5 (%) [1 = (k+ 1) (1 = cosa)] > 7

for all @ < « and sufficiently large n; the remaining finitely cases can be verified directly as claimed
in [38, Section A.2.1, pp. 612). Note that such a value o, exists because whena = 0 (i.e.,h = 1)

k
A, (1) == >

N =
e

As argued in [38, Section A.2, pp. 611), we set z, = cos and hgk) = h;k) = 1 + g, which ensures

I (2) < 91| (2) forall z € [—1, 7o), and furthermore AL (h) < A{)| (h), for all n > k + 1. This
proves (2) of Lemma B.1 and completes the entire proof of Lemma B.1. 0

LEMMA B.2
1. There exists ka) > 0 such that kf,k) (h) < A,Ek) (h) for every n > Nl(k) and s € [hgk), 2].

2. There exists Nék) > 0 such that kf,k) (h) < )L,(ck) (h) for every n > Nék) and s € [hgk), 1/ (k+ 1]

Proof of Lemma B.2. First note, on the one hand, that the Schatten 2-norm of T}(lk) can be easily
computed: By [55, Theorem VI1.23),

2
HT}EI‘) H :/ / ‘T}(lk) (x,y)’zdxdy:/ /
2 SO@3)./S0(3) SO(3)J/B(y.a)

®* sin ¥ 1 —cos? h
- / dxdy = dyp=——>2 =2
S0B3)J By o 2 2 2

where the last equality follows from 42 = 1 — cos «. On the other hand,

1017 23" @a+ 1) (L)
h 2_z(n+)<">
n=k

which gives the same bound as [38, formula (A.4)):

T ()| 2 drdy

Since by (B.7) we have

& k+1
k+1 - k+1

1
2O (hy = forall e [n{",2],

it is straightforward to verify by direct computation that there exists N fk) > 0 such that /h//4n + 2 <
k,(ck) (h) foreveryn > N fk) and h € [hik), 2]. This proves (1) of Lemma B.2. Furthermore, by (B.8)

k+2 k+1
2Oy = — k .1—(1—h/2)+ +2k+1 h 1_@
k+1 k+1 k+2 k+1 \2 2
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a direct computation for the derivative of the left-hand side with respect to & gives
® 1 n\*
8hkk+1(h)=§[1—(k+l)h] 1—5

from which it is easy to directly verify that 4 — )‘l(clil (h) achieves its maximum at 7 = 1/ (k+ 1) over
h € [0,2], and A,(Q () > Oforall h € [0,1/(k+ 1)]. It is then easy to verify by direct computation

that there exists Nék) such that \/ﬁ/ Van+2 < )»,((121 (h) for every n > Nék) and h € [h;k), 1/ (k+ 1)].

This proves (2) of Lemma B.2. ]
Proof of Theorem 4.2. Direct computation using (B.7) and (B.8) establishes (4.11):

=1 =R/ @k+ D — (1= h/2)k!
G(k)(h):)‘l(ck)(h)_)‘l(ﬁl(h): ( /2) ( )1 —( /2" h

k+1 k+1
2k + (A = (A =/ 21— h/2)* ((k+ Dh+2)
B k+2 - k+2) '

Unsurprisingly, the spectral gap depends on the ‘frequency channel’ parameter k € N. The rest of
the proof follows verbatim the proof of [38, Theorem 4): by Lemma B.1 and Lemma B.2, we have

)\ﬁ,k) < A,(ck) (k) for every n > ka) and h € [0,2], as well as )\ﬁ,k) < )‘1(21 (k) for every n > Nék) and

h € [0,1/(k+ 1)]. We then verify directly both kflk) < )»,(ck) (h) over h € [0,2] and k;,k) < )L,(ﬁl (h) over
h € [0, 1/ (k + 2)] for the finitely many cases left (k < n < ka) andk+1<n<N (k), respectively).[]

B.3  Proof of Theorem 4.3

Our proof extends the arguments in the proof of [38, Theorem 5). A key observation is that the top
eigenvector H (A,(ck) (h)) coincides with the isotypic subspace H; _; (see Section 4.1). Consider the

morphism o := /1/ 2k + 1) - 7 : C***1 — ¥ defined as
om0 =(59) 0.

Part 1: T is an isomorphism between C**1 and Hy - We first show that Im (@) C H; _, namely, for
any x € SO(3), v € C?**1 and g € SO(2) there holds

(5%) 0 = p () (5%) . (B.19)

To this end, note that for any z € C we have

<(3)(fk<)18)* 2 ’Z><C - <v’ 8)525’ (Z)>(C3 - <V’ ZD{C’_" (< g)>C3
@ <v, Pk (8_1) D{(,—k (x)>C3 = <v, 2P; (8) Dﬁ_k (x)>(c3
= </0k (g_l) v, ZD{(,_k (JC)>(C3 = </Ok (g_l) v, 5)51() (Z)>C3
<

() (5) 03]
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which proves (B.19). Next, we show that w is a morphism of SO(3) representations, namely, for any
x € SO(3), v e C**! and g € SO(3) there holds

(5%)" (0" @) = (590,,) 0. (B.20)

To this end, again for any arbitrary z € C

(62 (0 00), =0 0 ) = et 0],
:<v,sz( )Dk_k (x)> 22 <v D k(g_l l>x)>(c3

o] = () 0,

which proves (B.20). It now follows immediately that the morphism o maps C**! isomorphically, as
a unitary representation of SO(3), onto H, _,, the unique isotypical component in H_; (by (B.19)) of
unitary irreducible SO(3)-representation of dimension 2k + 1. This in turn implies that @ (and thus 7)
is an isomorphism between Hermitian vector spaces. It remains to determine the suitable normalization
constant; we show that Tr (t* o 7) = 2k + 1. Indeed,

Tr (r*ot)=(2k+1)Tr (w*ow)=(2k+1)/ (a)*oa)(v),v)H dv:(2k—|—1)/ (), w((v))qy dv
CS2k CS2k

= Qk+1) /(C " /s OG)((@Q‘))*(W,(5§k>)*(v)>(c dxdv
- (2k+1)/<(152k /50(3)<(ka @) v, (D (x))*v>c dxdv

:(2k+1)/ /1dxdv=2k+l
CSs?% J(3)

where CS? is the (4k 4 1)-dimensional unit sphere in C%**! and dv is the unique normalized Haar
measure on CS%.

* *

Part 2: Proof of (4.14). By (B.19), we have (ev, | W®)ow = (S,Ek)) , which is equivalent to (%E")) o
k

Sﬁk)) . The conclusion now follows from the straightforward computation as in the proof of [38,

Theorem 5):

((p)gk)) oT = (S)Ek)) ((p)gk)) (‘L' o 1:*) = (S)Ek)) ottt = ((p)gk)) (S)Ek)) ot* =10 S)Ek) = go)Ek).

This completes the entire proof.

B.4  Proof of Theorem 4.4

By Theorem 4.3, T is a morphism between Hermitian inner product spaces C**! and W® and (4.14)
holds, thus by the same argument in the last step of the proof of [38, Theorem 6) it suffices to prove that
for any unit-norm complex numbers v, u € C there holds

k
(6 .60 o) | = (<”<x>,n2(y>>+1) |

(B.21)

C2k+1
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This boils down to the following straightforward computation:

‘<8’(‘k) @) ’Sy(k) (v)>(czk+l =M (D{ifk (x)>T (D{c,fk (y))* V| = ‘Dkfk,fk (xily)‘
R o e I

where ¢ (x*1 y) is the Euler angle 9 of x~'y € SO(3). Recall from (A.1) that cos (xfl y) is exactly the
(3,3)-entry of the 3-by-3 matrix form of x~'y € SO(3), which is exactly identical to the inner product
of the third columns of the matrix forms of x and y, i.e.,

cos (x_ly) = (r (x),7 ().

Plugging this back into the rightmost term of (B.22) completes the entire proof.



