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We introduce maximum likelihood fragment tomography (MLFT) as an improved 

circuit cutting technique for running clustered quantum circuits on quantum devices 

with a limited number of qubits. In addition to minimizing the classical computing 

overhead of circuit cutting methods, MLFT finds the most likely probability distri­

bution for the output of a quantum circuit, given the measurement data obtained 

from the circuit’s fragments. We demonstrate the benefits of MLFT for accurately 

estimating the output of a fragmented quantum circuit with numerical experiments 

on random unitary circuits. Finally, we show that circuit cutting can estimate the 

output of a clustered circuit with higher fidelity than full circuit execution, thereby 

motivating the use of circuit cutting as a standard tool for running clustered circuits 

on quantum hardware.
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INTRODUCTION

The advent of noisy intermediate-scale quantum (NISQ) technologies [ ] makes quantum 

processors with increasing numbers of qubits available to the quantum computing community 

for experimentation. The rapid progress in the development and manufacturing of these 

devices is remarkable, with state-of-the-art superconducting quantum processors reaching 

~ 50 qubits with percent-level gate and readout errors [2-4]. Advances on the hardware 

front have been matched by the theoretical development of suitable hardware benchmarks [ ], 

which have in turn enabled proof-of-principle demonstrations of a computational advantage 

over classical computing systems [ ].

Despite tremendous progress, existing devices still lack the number and quality of qubits 

required for practical NISQ-era applications such as digital quantum simulation [ , ], quan­

tum optimization [ - ] and quantum machine learning [ 1, 12]. Without error correction, 

these applications are severely limited by the accumulation of errors that will only com­

pound as devices scale up to more qubits and deeper circuits. Bridging the gap between 

the requirements of NISQ-era quantum algorithms and the capabilities of NISQ devices will 

require error mitigation techniques [11,1 ] and problem decompositions that trade quantum 

and classical computing resources [ .5, If ].

One decomposition, inspired by the fragmentation methods used for quantum molecular 

cluster simulations [ .7-19], applies fragmentation to the execution of quantum circuits [ 16]. 

This decomposition consists of first ‘cutting’ a quantum circuit into smaller subcircuits, or 

‘fragments’, that can be executed on processors with fewer qubits, and then reconstructing 

the probability distribution over measurement outcomes for the original quantum circuit 

from probability distributions associated with its fragments. The severed quantum connec­

tions between circuit fragments are simulated by classical post-processing of fragment data, 

which leads to a classical computing overhead that grows exponentially with the number of 

cuts that are made to a circuit. This approach is therefore suitable for simulating circuits 

that are decomposable into clusters of gates with a small number of inter-cluster interac­

tions. Such circuits can make appearances in the context of Hamiltonian simulation [ 16], as 

well as near-term applications based on a variational ansatz that allows for some freedom in 

choosing circuit structure, such as the quantum approximate optimization algorithm (also 

the quantum alternating operator ansatz, QAOA) [8, 9, 20, 21] and variational quantum
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eigensolvers (VQE) [16, 2 ].

Due to the presence of fundamental shot noise (equivalently, finite sampling error), an 

unavoidable feature of the original fragment recombination method in Ref. [ ] is that the 

distribution over measurement outcomes obtained by characterizing and recombining cir­

cuit fragments does not generally satisfy central axioms of probability theory, namely that 

a probability distribution must be non-negative and normalized. A naive fix to this prob­

lem would be to simply remove all negative probabilities and normalize the reconstructed 

distribution in question. In the spirit of maximum likelihood state tomography (MLST) 

[23], however, one would like to determine the ‘most likely’ probability distribution that is 

consistent with available fragment data.

In this work, we find this ‘most likely’ probability distribution by generalizing MLST and 

introducing maximum likelihood fragment tomography (MLFT), the use of which guarantees 

that reconstructed probability distributions are non-negative and normalized. We discuss 

how MLFT minimizes the classical computing resources necessary to characterize circuit 

fragments, and provide a tensor-network-based method for fragment recombination. We 

test our methods in numerical experiments with random unitary circuits, and demonstrate 

that MLFT estimates the probability distribution at the output of a fragmented quantum 

circuit with higher fidelity than the naive method of removing negative probabilities and 

normalizing. These benefits come at no cost to the computational complexity of circuit 

cutting, as they are achieved by post-processing fragment data in a manner that has a 

smaller computational cost than that of recombining fragment data to reconstruct a circuit 

output. As an added bonus, for a fixed number of queries to quantum hardware (known 

as ‘shots’ or ‘trials’ in e.g. Qiskit [ ] or pyQuil [25]) we show that circuit cutting methods 

can outperform direct execution and sampling of a clustered circuit in order to estimate 

its associated probability distribution. We provide theoretical arguments to support this 

finding, which motivates the use of circuit cutting as a standard tool for evaluating clustered 

circuits on quantum hardware, even when all hardware requirements for full circuit execution 

are satisfied.

In the remainder of this section, we provide a basic overview and discussion of the circuit 

cutting procedure first introduced in Ref. [ ], and establish terminology that we will use 

throughout the rest of this work. We note that our overview of circuit cutting will use the 

language of quantum states and channels, rather than the language of tensor networks that
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was used in Ref. [If ]. These two formalisms are mathematically equivalent, but the former 

will allow for a more seamless integration with the material in the following section.

Given an arbitrary quantum state \4’} of N qubits, a straightforward resolution of the 

identity operator I = ^6€{0,i} l&X&l 011 qubit n implies that

IV') = A, IV')- l&)o„(&IV'), (1)
6E{0,1}

where In denotes the action of I on qubit n; the relation ~ denotes equality up to a per­

mutation of tensor factors (i.e. qubit order); and n(b \ 4’} is a sub-normalized state of N — 1 

qubits acquired by projecting \4’} onto state |6) of qubit n. If the structure of a quantum 

circuit that prepares \4’} allows, a similar resolution of the identity operator I can be used 

to ‘cut’ the circuit by inserting / at a location that splits the circuit into two disjoint sub­

circuits. For example, if \4’} = V23U12 |000), where UV2 and V23 are the two-qubit gates U 

and V acting on qubits 1, 2 and 2, 3, then by inserting the identity operator I2 (on qubit 2) 

between UV2 and V23 we find that

IV') - IV'i (())) O IV'2 (6)), (2)
6E{0,1}

where the factors

|^(6)) = ,(6|[/|00), |^(6)) = y|W) (3)

are (generally sub-normalized) ‘conditional’ states prepared by projecting onto |6) or prepar­

ing 16), as appropriate. The identity in Eq. (2) is visualized in Figure 1, albeit with the use 

of density operators that we discuss below.

The above splitting method relies on the capability to project qubit n onto state |6) while 

preserving phase information. Such capability is possible when running classical simulations 

of a circuit, but is not possible on quantum computing hardware. This limitation can be 

overcome by representing quantum states \4’} with density operators p = |V’)(V’I> whose 

diagonal entries in a given measurement basis define a classical probability distribution 

over measurement outcomes in that basis. For ease of language, we will at times blur 

the distinction between a state p and the probability distribution defined by its diagonal 

entries in a fixed computational basis. In the remainder of this work, we will discuss circuit 

splitting and reconstruction in way that is compatible with circuit execution on quantum
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computing hardware. Nonetheless, our methods can be applied just as well to classical 

state simulation, with minor simplifying modifications to account for the added capability 

of performing deterministic, phase-preserving qubit projections.

The identity analogous to Eq. (1) for density operators p reads

P - ^ M O tr» (M,p), (4)
w Mes

where B is a basis of self-adjoint 2x2 matrices with normalization tr = 28 ij for

M^\M^ 6 B: trn denotes a partial trace with respect to qubit n; and Mn with n 6 7Ln 

denotes an operator that acts with M on qubit n and trivially (i.e. with the identity I) on 

all other qubits. To be concrete, we will use the set of Pauli operators together with the 

singe-qubit identity operator, B = {X, Y, Z,I}, as our basis. The identity in Eq. (4) implies 

that the state prepared by the action of a three-qubit circuit V23U12 on the trivial state 

|0)(0|u3 can be decomposed as

^ ^ E Pi M O # M ' (5)
w Mes

where now the factors

Pi (M) = t:2 10x01°' ^ (M) = y (M o |oxo|) yt, (6)

have no straightforward interpretation as ‘conditional’ states, as with |X’i (b)} and |X’2 (&)) 

in Eq. (2). In order to decompose p into conditional states, we can expand each M 6 B in 

its eigenbasis:

p - i E ^ pi ° ps
MeB

r,aEA(M)

where A (M) denotes the spectrum of M, i.e. A (X) = A (Y) = A (Z) = (+1,-1) and 

A (I) = (1,1); and Ms = \MS)(MS\ with s 6 A (M) is a projector onto an eigenstate of |Ms) 

of M with eigenvalue s. Note that the choice of eigenstates for the identity operator I is 

arbitrary as long as these two states are orthogonal, so we can reuse the eigenstates from 

one of the other operators.

The decomposition in Eq. (7) allows interpreting each pf (Ms) as a conditional state, 

obtained either by post-selecting onto the measurement of a qubit in state |Ms), or by 

preparing a qubit in state | Ms), as appropriate (see Figure 1). This decomposition thus
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corresponds to the following procedure for circuit cutting and reconstruction: after cut­

ting a circuit into (say) two fragments, characterize the classical probability distributions 

Pf (Mg) over measurement outcomes by running the corresponding sub-circuit and either 

post-selecting on measurement outcomes Ms or preparing states MS1 as appropriate. Note 

that post-selected probability distributions are generally sub-normalized, and the normal­

ization tr pi (Ms) is equal to the probability of getting outcome Ms when measuring in the 

diagonal basis of M. After characterizing the conditional distributions pf (Ms) for each of 

/ 6 {1,2}, M 6 {X,Y,Z}, and s 6 {+!,—!}, combine these distributions according to 

Eq. (7). This scenario is illustrated in Figure 1, which cuts a 3-qubit GHZ circuit preparing 

the state |V’) oc |000) + 1111) into two 2-qubit fragments.

In practice, recombining circuit fragments as prescribed by Eq. (7) is inefficient in two 

ways. First, the tensor products in Eq. (7) are a computational bottleneck for fragment 

recombination. It is therefore faster to post-process conditional distributions by first (i) for 

each fragment /, combining the six independent distributions pf (Ms) into four distributions: 

Pf (M) = pf (M+i) — pf (M_i) for each M e {X, Y, Z} and pf (I) = pf (M+i)+pf (M_i) for 

any M 6 {X, Y, Z}, and then (ii) combining the fragment distributions pf (M) according to 

Eq. (5). In a circuit with K cuts, this post-processing reduces the number of tensor products 

that must be computed during recombination from 16A to 4A, which is an exponential 

reduction (in K) of the number of floating-point operations required to recombine fragment 

data. Note that the recombination procedure in Ref. [16] involves 8A tensor products, 

rather than 16A, because it consolidates ‘measurement’ conditions, but not ‘preparation’ 

conditions, which is equivalent to collapsing the sum over r in Eq. (7) but leaving the sum 

over s.

Second, the recombination formula in Eq. (7) nominally requires, for each fragment / 

incident on Kf cuts, characterizing K® probability distributions. This characterization is 

overcomplete, because the Kj distributions are not all linearly independent. In the case of 

a fragment with a single incident cut, for example, we can use the fact that X+ + AT = 

Z+ + Z_ = / to decompose

P/ (^-) = P/ (-%+) + P/ (-%-) - P/ (^+) - (8)

In fact, a fragment with Kf incident cuts can be completely characterized by Kj distri­

butions, which can be deduced from the fact that the space of operators on the Hilbert
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space of a qubit has real dimension four. The symmetric, informationally complete, positive 

operator-valued measure (SIC-POVM) {ll®IG : j e Z4J (consisting of projectors I1®IG onto 

the states represented by the four corners of a regular tetrahedron inscribed in a Bloch 

sphere), for example, form a mutually unbiased basis for the space of single-qubit operators. 
Given any single-qubit operator M, we can therefore expand p/ (M) = ^DjPf (H®IG)

with real coefficients

Finally, characterizing fragments is a noisy process, due to both (i) hardware errors that 

are unavoidable without error correction, as in all NISQ devices, and (ii) statistical sampling 

(shot) noise. As a result, the ‘experimentally inferred’ distributions p/ (Ms) approximating 

the ‘true’ distributions pf (Ms) will generally contain errors, and will fail to satisfy self- 

consistency conditions such as Eq. (8). When combining these distributions according to 

Eqs. (5) and (7) there is similarly no guarantee that the reconstructed probability distribu­

tion will satisfy conditions required of a probability distribution, such as non-negativity and 

normalization.

To address these shortcomings, in the following section we recast the task of characterizing 

conditional distributions into the task of performing fragment tomography, treating the 

fragments p/, rather than distributions p/ (Ms), as first-class objects. In addition to being 

automatically efficient in terms of the classical memory footprint of characterizing each 

fragment, performing fragment tomography allows us to adapt the method of maximum 

likelihood tomography [21 ] to construct a model for each fragment that is, by construction, 

guaranteed to satisfy all appropriate self-consistency conditions. Fragment recombination is 

then similarly guaranteed to yield a probability distribution that is both non-negative and 

normalized. Finally, we show how the fragment models constructed via fragment tomography 

naturally admit a tensor-network-based method for recombination.

RESULTS

Maximum likelihood fragment tomography

Once a circuit has been cut into fragments p/, rather than characterizing conditional 

distributions p/ (Ms) we can perform a more systematic maximum likelihood fragment to­

mography (MLFT) procedure to characterize these fragments. The purpose of MLFT is to
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perform a ‘maximum likelihood’ characterization, similar to the characterization of quantum 

states in Ref. [23], which guarantees that any probability distribution associated with these 

fragments will be (i) the ‘most likely’ distribution consistent with available fragment data, 

while (ii) satisfying all necessary constraints for a valid (i.e. non-negative and normalized) 

probability distribution. MLFT is a type of quantum process tomography, which generalizes 

maximum likelihood state tomography (MLST) [ 13] to the case of channels (processes) with 

mixed (quantum/classical) inputs and outputs.

Any given fragment, nominally a unitary circuit on Q qubits, will generally have Q; ‘quan­

tum input’ and Qa ‘quantum output’ qubits at the locations of cuts. We refer to these inputs 

and outputs as ‘quantum’ because characterizing the fragment for circuit reconstruction will 

require performing full quantum tomography on the corresponding degrees of freedom. In 

contrast, the remaining C\ = Q — Q\ ‘classical input’ qubits are always initialized in the triv­
ial state 10); = |0)uCi, and the remaining C0 = Q — Qa ‘classical output’ qubits are always 

measured in a fixed computational basis. For definiteness, we can first think of a fragment 

as a quantum channel 8a on the state of Q qubits. The channel-state duality [ -2t ] implies 

that this channel is uniquely determined by a 4-partite state (density operator) of the form

A = ^ ] Ak£;mn;pq;rs | A )(f| O |'/7?.)('/?.| O |p)((?| O \t)(s| , (9)

P,9,r,s

where the bitstrings k,£ (m.,n; p,q; r,s) index states in the Hilbert space of the quantum 

input (classical input; quantum output; classical output) qubits of the fragment, and are 
implicitly summed over Z^1 (Z(p; Z^°; Z^°). Specifically, the channel 8a maps a bipartite 

input state

p O |0i)(0i| = |A:)(l| O |0i)(0i| (10)
k/

at its input to the bipartite state

8a (P O |0;)(0i|) = 'y ] A-k£;0,0;pq;rsPk£ |iP)(tZ| O |^)(s| (H)

at its output. To account for the fact that classical outputs are only ever measured in 

a fixed computational basis, we can remove all parts of 8a (p) that are off-diagonal with 

respect to the measurement basis of the corresponding qubits. In total, we therefore need
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only characterize the channel E~k defined by

where

£A (p) — 'y y A-k£;pq;sPk£ |p)((?l O |s)(s| , (12)

A-k£;pq;s — ^-k£;0,0;pq;ss ■ (13)

The task of performing MLFT thus reduces to performing tomography on the tri-partite 

block-diagonal state

A= ^AM;pg;a|&Xf|0|pXg|0|sXs| = ^Aa0|sXs|, (14)

where Eq. (14) implicitly defines the blocks As. In words, the reduced state A is acquired 

from the full state A by conditioning on (i.e. fixing) a trivial state |0i)(0i| on its classical 

inputs, and the block As is acquired from A by conditioning on measurement of the bitstring 

s on its classical outputs. The relationship between A, A, and As is sketched out in Figure 

2.

In a nutshell, MLFT is performed by providing a variety of quantum inputs to £k, and 

measuring its quantum outputs in a variety of bases. The blocks As are inferred by least- 

squares fitting to a linear operator that maps quantum inputs to quantum outputs, using all 

available data from experiments in which bitstring s was observed on the classical outputs 

of a fragment. This procedure yields an experimental ansatz state A* that approximates 

A, but that generally does not have the properties required of a density operator, such as 

a non-negative spectrum. The last step in MLFT is therefore to convert the ansatz state 

Aa into a ‘maximum likelihood’ state Aml by using an algorithm borrowed from MLST in 

Ref. [23]. We describe MLFT in more detail below.

MLFT (and MLST) begins by collecting measurement data to characterize the quantum 

state under consideration. In the case of the block-diagonal state A, one needs to characterize 

the expectation values

(cq O Q = tr A (cq O (To O Zc) (15)

for some complete basis of operators {cq O cr0 O zc} on the target Hilbert space of A, where 

cq, (To, and zc are respectively operators on the quantum input, quantum output, and classi­

cal output of the fragment in question, with zc strictly diagonal in the computational basis.
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MLST [ !3] collects data by performing informationally complete measurements of A, for 
example by choosing operators <7ii0 from the set of all Pauli strings {I,X,Y, Z}uQi’°, and 

choosing zc from the set of diagonal Pauli strings {/, Z}'jCo. In the case of fragment tomog­

raphy, however, we do not have direct access to the state A, and instead have access to the 

channel 8k. It is therefore not possible to directly measure the degrees of freedom in A that 

are associated with inputs to the channel. Instead, MLFT characterizes the quantum input 

degrees of freedom in A by preparing an informationally complete set of states, making use 

of the fact that

tr A (>i O (To O To) = tr (rr,T) (rr0 O tc)] = (a0 O To)£„(oT) (16)

where cr? denotes the transpose of Whereas the operators aQ and zc may still be chosen 

from the set of Pauli strings, the input state crj is restricted to satisfy tr aT = 1. This 

restriction excludes the possibility of choosing crj from an orthogonal basis for the space 

of the space of Qi-qubit operators (such as the set of Pauli strings), but any complete ba­

sis will suffice. For example, one can choose input states from the basis of pure states 
{10) , |1) , |0) + |1) , |0) + i |l)}u<5i. For an unbiased basis, one can take tensor products of 

symmetric informationally complete (SIC) states of a single qubit, or even consider bases of 

multi-qubit SIC states. The practical advantages of using these bases, however, generally 

depend on the fidelity with which one can prepare SIC states. Similar considerations apply 

for the choice of measurement basis for quantum outputs [ ]. Overall, in order to charac­

terize a fragment with Q; quantum inputs and Qa quantum outputs one must prepare each 

of 4Qi input states, and measure outputs in each of 3®° possible bases (for each quantum 

output qubit, the diagonal bases of X,Y,Z), so fragment tomography requires O (4'5i3'5°) 

experiments.

After collecting an informationally complete set of data on the state A, a straightforward 

least-squares fitting procedure yields an empirical ansatz A* for A, which is the MLFT ana­

logue of the ‘experimentally noisy’ matrix p, described in the original MLST work [ ]. The 

block diagonal structure of A = AsO |s)(s| implies that the least-squares fitting procedure 

can be performed independently for each block As of size 2'5i+'5° x 2'5i+'5°. Specifically, As 

is obtained by fitting to

tr Aa ((7; Q (To) = Pa O , (17)
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where ps is the probability of observing bitstring s on the classical output of a fragment, and 

((7; O cr0)Zc=s is the expectation value of <r0 (on the quantum outputs) when preparing the 

state <7? (on the quantum inputs) and observing bitstring s (on the classical outputs) of the 

fragment. Because the ansatz state A* ~ A is constructed from a fit to noisy measurement 

data, Aa will generally have negative eigenvalues, which is not allowed for density operators. 

The final step in both MLST and MLFT is therefore to find the closest state to Aa that has 

no negative eigenvalues. To this end, MLFT borrows the ‘fast algorithm for subproblem F 

in Ref. [ 23], which

(i) diagonalizes Aa,

(ii) eliminates the most negative eigenvalue (setting it to zero),

(iii) adds an equal amount to all other eigenvalues to enforce tr Aa = 1, and

(iv) repeats steps (ii,iii) until there are no more negative eigenvalues.

As proven in Ref. [ ], this algorithm finds the closest positive semidehnite state Aml to

Aa with respect to the metric induced by the 2-norm ||A||2 = \/tr (AtA). In this sense, 

Aml is the ‘most likely’ state consistent with Aa- The only additional consideration for this 

algorithm when performing MLFT has to do with making use of block diagonal structure to 

diagonalize Aa: each block of size 2Qi+Qo x 2Qi+Qo can be diagonalized independently. The 

overall serial runtime of the algorithm to find AML from Aa is therefore O (23^'5i+'5o^) Atc), 

where Nc < 2Co is the number of blocks in Aa, or equivalently the number of distinct 

bitstrings observed on the classical output of the fragment throughout tomography. As we 

will see, the maximum-likelihood corrections to Aa are responsible for the benefits of MLFT 

in estimating a circuit’s output. Moreover, the cost of computing these corrections is smaller 

than the unavoidable cost of fragment recombination, so the benefits of MLFT are free as 

far as the computational complexity of circuit cutting is concerned.

The treatment of fragments and their dual states A as first-class objects in MLFT en­

ables a straightforward tensor-network-based circuit reconstruction method. Rather than 

explicitly computing and summing over each term of the fragment recombination formula 

in Eq. (4), the basic idea is to think of the entire sum as a contraction of two tensors. We 

sketch out this idea in Figure 3, making use of the relationship between fragment states 

A, their reductions A, and diagonal blocks As. In total, the full probability distribution
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over measurement outcomes for a reconstructed circuit can be acquired by a tensor network 

contraction of reduced states A, and the individual probabilities of measuring any given bit­

string at the output of a circuit can be acquired by a similar contraction of diagonal blocks 

As-
If a circuit has K cuts and F fragments, and distinct bitstrings were observed on 

the classical output of fragment / 6 {1,2,--- , F} throughout fragment tomography, then 

reconstructing the circuit’s output requires contracting Ylf tensor networks, each of 

which nominally involves summing over 4A terms. Whereas the 4A cost to contract a single 

tensor network g can be reduced to where cc(g) is the contraction complexity of
g [ ], the overall multiplicative cost in Nc^ is unavoidable. In comparison, performing 

maximum-likelihood corrections to fragment models comes at a cost that is additive in N^\ 

For this reason, fragment recombination is generally the computational bottleneck of circuit 

cutting, and maximum-likelihood corrections add no significant overhead.

Numerical experiments

In order to test the benefits of MLFT in an application-agnostic setting, we run classical 

simulations of random unitary circuits (RUCs). Because the cost of circuit cutting scales 

exponentially with the number of cuts made to a circuit, we construct RUCs with a structure 

that makes them amenable to circuit cutting (see Figure 4). We then vary the number of 

qubits and clusters in our RUCs, as well as the total number of samples (known as ‘shots’ 

in Qiskit [ ] or ‘trials’ in pyQuil [25]) in a simulation, where the result of each sample is 

a single bitstring representing one measurement outcome. In this way, we compare three 

methods to estimate the probability distribution over measurement outcomes at the end of 

a clustered RUC.

First, as a standard benchmark, we consider sampling an entire circuit S times without 

any circuit cutting, which we refer to as the method of ‘full’ circuit execution. Second, we 

consider cutting a circuit into fragments, with each fragment corresponding to a cluster as 

shown in Figure 4, and reconstructing these fragments as prescribed by the original circuit 

cutting work [16], namely without maximum likelihood corrections. We refer to this second 

method as the ‘direct’ method of circuit cutting and reconstruction. A fragment with Q; 

quantum inputs and Qa quantum outputs has 4Qi x 3®° variants that must be simulated for
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circuit reconstruction, where each variant corresponds to a choice of state preparations and 

measurement bases on the quantum inputs and outputs of the fragment. We therefore divide 

the budget of S samples evenly among all fragment variants. Finally, we consider the full 

MLFT and recombination procedure, which we refer to as the ‘MLFT’ method. The direct 

and MLFT methods only differ in the classical post-processing of fragment simulation results. 

Specifically, the differences between the final outputs of the direct and MLFT methods are 

entirely due to the application (or non-application) of maximum-likelihood corrections to 

fragment models.

To compare the efficacy of the full, direct, and MLFT methods, we compute the fidelity 

of reconstructed probability distributions over measurement outcomes, pestimate, with the 

actual probability distribution pactual that is determined by exact classical simulations of a 

circuit:

T =
2

^ ] \/Pactual (s) Pestimate ('‘0 ,

. s

(18)

where pactual (s), pestimate (s) are, respectively, the probabilities of measuring the iV-qubit 

state (bitstring) s 6 according to the distributions pactual,Pestimate- The fidelity T is an 
analogue of the quantum state overlap |(0|%)|2 for classical probability distributions. The 

only caveat in our calculation of fidelities is that they are only well defined when dealing 

with valid (non-negative and normalized) probability distributions, whereas the direct circuit 

cutting method generally yields an unnormalized distribution that may have negative entries. 

We therefore convert the distribution yielded by the direct method into a valid probability 

distribution by eliminating all negative entries (setting them to zero), and normalizing the 

distribution.

Figure 5 shows the infidelities X = 1 — T of the probability distributions yielded by each 

simulation method. To ensure that results are not sensitive to the specific choice of random 

gates, these infidelities are averaged over 100 instances of each clustered RUC, although in 

practice we find that these infidelities vary by only ~ 1-10% of their mean value (see the 

Supplementary Information [SO]). Figure 5 also shows analytical estimates of infidelity for 

the full and direct simulation methods, derived in the Supplementary Information.

An immediate takeaway from Figure 5 is that the MLFT method introduced in this 

work always outperforms the direct method: MLFT infidelities are always lower than direct 

infidelities. This result is consistent with theoretical arguments that MLFT finds the ‘most
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likely’ fragment model consistent with noisy measurement data. Although we only consider 

shot noise in this work, it would be interesting to see how the benefits of MLFT change with 

the introduction of additional noise such as measurement and gate errors. We defer a study 

of the effect of such errors to future work.

Figure 5 also shows that the infidelity X for all simulation methods scales more or less 

identically with the sample number S, namely X ~ 1/5 for large S. Though some of the 

numerical data in Figure 5 may better be fit by X oc l/S'd+D for some )] yt 0, the deviation 

from )] = 0 are minor, and may be an artifact of small circuit sizes, ft is worth noting that 

the original circuit cutting work [ ] proved that a reconstructed circuit output (probability

distribution) can be estimated to an accuracy of e with S = 0(l/e2) samples, which by 

dimensional analysis suggests that X ~ e2 ~ 1/5 in all cases.

Though scaling with sample number does not strongly distinguish these methods, it is 

clear that the direct and MLFT methods scale much more favorably with circuit size: the 

full method has an infidelity X ~ for Q qubits, whereas cutting a circuit into F fragments 

results in X ~ S/=i 2C°, where Cl ~ Q/F is the number of classical outputs on fragment 

/ and Cl = Q. The more favorable scaling for circuit cutting methods is surprising 

at first glance, as these methods require strictly fewer quantum computing resources: their 

sample budget is spent on executing smaller circuits (namely, fragment variants). The 

better performance of the circuit cutting methods can be understood by the fact that they 

use their sample budget in a targeted manner that exploits circuit structure, rather than 

blindly sampling the entire circuit. However, when circuits are sufficiently small for the fixed 

number of samples to explore the sample space of the entire circuit, full circuit sampling 

performs better than circuit cutting because it does not waste resources on characterizing 

numerous variants of nearly identical fragments.

Deferring a detailed derivation of expected infidelities to the Supplementary Information 

[ 0], we can make the above intuition more quantitative by considering the difficulty of 

estimating a probability distribution defined by a Q-qubit RUC by (i) sampling the full 

circuit directly, versus (ii) sampling all fragment variants for circuit reconstruction. The 

first task requires, in principle, exploring a sample space of size with S samples, so one 

might reasonably expect (as is indeed the case) that X ~ 2Q/S. If a circuit is cut into F 

fragments, meanwhile, then each fragment will have ~ Q/F qubits, and if the number of 

qubits is independent of the number of fragments, then the overall sample space volume is
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reduced from 2Q to 2CW/U_ Indeed, this argument agrees with the estimate of infidelity for 

the direct method of circuit cutting in Figure 5, where we show that I~Fx 2 Q/F/n with 

n = S/V the number of samples devoted to each of V total fragment variants.

DISCUSSION

Circuit cutting is a promising technique for reducing the qubit requirements of running 

clustered quantum circuits. We have introduced improved circuit cutting methods by mini­

mizing associated classical computing costs (with an exponential improvement over previous 

methods), and by using MLFT to reconstruct the ‘most likely’ probability distribution de­

fined by a quantum circuit, given the measurement data obtained from its fragments. To 

test our ideas in an application-agnostic setting, we ran classical simulations of random uni­

tary circuits, which demonstrate the advantages of MLFT compared to the original circuit 

cutting method. Moreover, we also show that circuit cutting has advantages as a stan­

dard technique for running clustered circuits on quantum hardware, even when full circuit 

execution is possible.

Our work opens several avenues for the improvement and application of circuit cutting 

techniques. For example, MLFT guarantees that fragment models satisfy appropriate self- 

consistency conditions, but MLFT makes no use of the fact that each fragment corresponds 

to a unitary quantum channel. Furthermore, our present work neglects the effects of hard­

ware errors that are important to consider in the context of NISQ devices. Because MLFT 

has the capability to mitigate shot noise, we expect the advantages of MLFT over full circuit 

execution to be enhanced when additionally considering the effects of hardware errors. We 

likewise expect unitarity constraints to provide additional benefits for mitigating sources of 

noise. Our work thus complements ongoing efforts that study the benefits of circuit cutting 

in the presence of hardware errors, which have generally found that circuit cutting helps 

mitigate the effects of noise [ ]. Having framed fragment characterization as a tomography 

task, it would also be interesting to adapt and apply different quantum process tomography 

techniques [ ] to the task of circuit cutting, and compare their performance and cost to

that of MLFT.

As a final point, we note that circuit cutting in its current form estimates a probability 

distribution associated with a given circuit. Ideally, one would like to sample this probability

15



distribution (defined over an exponentially large space of possible measurement outcomes) 

without having to reconstruct it in full. To this end, our work makes important progress 

in understanding the mechanics of circuit cutting, by providing a convenient and efficient 

framework for thinking about individual circuit fragments. We hope that this framework 

will help in achieving the ultimate the goal of sampling a quantum circuit by sampling its 

fragments.
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FIGURE LEGENDS

Figure 1

Circuit cutting example. A 3-qubit GHZ circuit can be cut into two 2-qubit fragments 

by inserting an identity operator. Here B = {X, Y, Z,I} is the set of Pauli operators X, Y, Z 

and the identity /, which together form an orthogonal basis for the space of single-qubit 

operators; A (M) denotes the spectrum of M; and Ms = |MS)(MS\ is the projector onto an 

eigenstate \MS) of M with eigenvalue s. Green (red) boxes labeled by the state Ms (Mr) 

correspond to preparations (projections) of a qubit in the corresponding state. After cutting 

a circuit, the resulting fragments can be simulated independently, and an appropriate post­

processing of simulation results recovers the output of the original (pre-cut) circuit.
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Figure 2

Block-diagonalizing circuit fragments. Each circuit fragment can be identified with 

a density operator A on the joint Hilbert space of its input (left) and output (right) qubits. 

Classical inputs and outputs of a fragment (gray) correspond to qubits that are either 

prepared in the trivial state |0) (labeled ‘0’) or measured in a fixed computational basis 

(labeled '0/E). Quantum inputs (left, green) and outputs (right, red) correspond to qubits 

associated with cuts in a circuit. Due to the presence of trivial inputs, we only need to 

characterize a reduced state A on the Hilbert space of the quantum inputs and all outputs. 

Classical outputs give this reduced state a block-diagonal structure: A = As O |s)(s|, 

where the block As is associated with the measurement of bitstring s on the classical outputs 

of the fragment.

Figure 3

Fragment recombination as a tensor network contraction problem. The full

probability distribution over measurement outcomes for a circuit reconstructed from frag­

ments A,B,C can be represented by a tensor contraction of the reduced states A,B,C, 

obtained by performing MEET on the fragments. The probability to measure a given bit­

string kAmn (i.e. a concatenation of k, t, m, n 6 Z2) on the output of the fragment is given by 

the contraction of the diagonal blocks Ak,Bfm, Cn. The lack of classical inputs to fragment 

B implies that B = B.

Figure 4

Random unitary circuit (RUC) of ten qubits split into three clusters. Qubits 

are first split among clusters as evenly as possible, and each cluster is prepared in a random 

state by the application of a Haar-random unitary gate [ , ]. Adjacent clusters are then

entangled with random two-qubit gates, before again applying a layer of random unitaries on 

all clusters. A clustered RUC is cut into fragments (labeled A,B,C) by cutting the bottom 

legs (shown in red) of every inter-cluster entangling gate.
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Figure 5

Infidelity in reconstructed circuit outputs. The infidelity X = 1 — T as a function of 

sample number S (a, b, c) or qubit number Q (d, e, f) for clustered random unitary circuits 

(RUCs) with F = 2 (a, d), 3 (b, e) or 4 (c, f) fragments. Open markers correspond to 

simulations of the full circuit (‘full’), or simulations via circuit cutting before (‘direct’) and 

after (‘MLFT’) maximum likelihood corrections to fragment models. The last two markers 

in the legend correspond to analytical estimates of infidelity: 2Q/S for the full method, and 

2c° /n for the direct method, where Cl is the number of classical outputs on fragment 

/ and n = S/V is the number of samples devoted to each of V total fragment variants. 

Whereas the estimates for the full method are quantitatively accurate, the estimates for the 

direct method are provided only to highlight approximate scaling relationships [3( ]. Results 

for each data point are averaged over 100 instances of a clustered RUC.
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SUPPLEMENTARY METHODS

In this document, we derive (i) the expected infidelity of a circuit output estimated 

using the ‘full’ method in the main text (i.e. full circuit execution and sampling), and 

(ii) an asymptotic bound on the expected infidelity of a circuit output estimated using the 

‘direct’ method in the main text (i.e. with circuit cutting, but without maximum-likelihood 

corrections to fragment models). In practice, when comparing with numerical experiments 

we find that our asymptotic bound for the ‘direct’ method is overly pessimistic in its scaling 

with the total number of cuts K in a fragmented circuit. Nonetheless, this upper bound 

provides a scaling with fragment size that agrees with numerical results.
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Multinomial distribution sampling error

Let p be a classical probability distribution over a discrete (and finite) set of measurement 

outcomes {b}, and let pb be the probability of outcome b. We denote an empirical estimate 

of pb by pb, and denote the error in this estimate by eb = pb — pb. If we take n samples of 

p and set each pb to the fraction of times that we observed outcome b, then the statistical 

means and covariances of the errors eb are

w = 0, «»a =pb ^ pc), (1)

where {{X)) denotes the expected value of X after averaging over attempts to estimate p 

from n samples; and 5bc = 1 if b = c and zero otherwise.

Sampling infidelity

Let pb be the probability of observing bitstring b at the end of a circuit, and pb = pb + eb 

an empirical estimate of pb. The infidelity of the estimated probability distribution is

=1
-I 2

1
2

EW i+pb (2)

where we tentatively assume that all pb = 0. Expanding the square root as V1 + x

1 + x/2 — x2/8 + O(x3), up to O (e3) corrections we find that
n 2r_ / 1 ^ 1 e?\\

X ph 1 — 1 + 2 pb— 81 

1 — £ p»pd 1 + 2 pb— 81
b,c

1 + 1a — 1d
2 pc 8 p2

1 - pbpc
b,c

1 / eb , eA , 1 e&ec 1 / e2
1 + X l I l+T2 pb pc

___i -A + dc
4 p&pc ^ p2 p2

e

1 1 eb2
pb

Eeb—ebec+4E

(3)

(4)

(5)

(6)
b,c

Infidelity for full circuit execution

Let pb be the probability of observing bitstring b at the end of the circuit, and pb = pb + eb 

an empirical estimate of pb. If we sample the probability distribution n times and set each

2



pb to the fraction of times that we observed bitstring s, then the estimates pb of pb are 

normalized with J2bpb = 1, so

= ^2 (Pb ~ Pb) = ^2'Pb ~ ^Pb = 0. (7)
b b b b

Up to 0(C) corrections, the expected infidelity ((X)) is then
1
E

1^1-% 2^-1 2^ 
4^ _ ~ _ ro\

4 ^ pb 4 ^ n 4 n 4 n ’

where 2Q = J2b 1 is the total number of bitstrings that can be measured at the output of Q 

qubits.

A few comments concerning the result in Eq. (8) are in order. First, the restriction that 

X 6 [0,1] implies that Eq. (8) can only hold for 4n >2^ — 1, and that if 4n is comparable 

to then the 0(C) contributions to X must become relevant. Second, if any pb = 0, 

then the factor 2^ should be replaced by the sample space volume \{b : pb Q}\- This 

second observation in particular suggests that Eq. (8) can only hold for sufficiently ‘generic’ 

probability distributions, as large separations of scale in the probabilities pb should reduce 

2q to some smaller ‘effective’ sample space volume, likely determined by the output entropy 

S(p) = — J2bPb l°gPb- Finally, we point out that Eq. (8) also describes the infidelity with 

which n samples estimate the conditional probability distributions associated with a single 

fragment of a cut-up circuit. Unfortunately, the presence of quantum correlations between 

circuit fragments implies that the infidelity of a reconstructed circuit output is not additive 

in the infidelities of the fragments. Nonetheless, we show in the following section that the 

infidelity of a reconstructed circuit still scales inversely with the number of fragment samples, 

and exponentially in fragment size, i.e.

m (9)

where now n is the number of samples used to estimate each variant of each fragment, / 

indexes a single fragment, and Cl is the number of classical output bits on fragment /.

One cut, two fragments

We now attempt to compute the expected infidelity of a circuit output estimated from 

fragment data. We first work out the relatively simple case of one cut and two fragments, 

which we will subsequently generalize to the case of arbitrary cuts and fragments.
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In order to evaluate the expected infidelity ((%)), we first need to construct an estimator 

p of p. We can take the diagonal elements of Eqs. (5) and (7) in the main text (in the 

computational basis) to expand the probability distribution

p =1 ^ p1 (M) ® p2 (M) p^ (M)= ^ rp^ (Mr), (10)
M GB rGA(M)

where pf (Mr) is the probability distribution at the output of fragment f conditional on 

measuring or initializing Mr, as appropriate. We will assume without loss of generality that 

the first fragment is measured and that the second fragment is initialized at the cut, in 

which case p1 (Mr) is normalized to the probability of getting outcome Mr when measuring 

the appropriate qubit in the diagonal basis of M. To deal with this normalization properly, 

we expand

pf (Mr)= (Mr) qf (Mr), (11)

where af (Mr) = bpf (Mr) is the normalization of pf (Mr) (which is equal to 1 for initial­

ization conditions), and qf (Mr) = pf (Mr) /af (Mr) is a normalized probability distribution.

We construct estimators pf (Mr) of pf (Mr) as follows. For measurement conditions, the 

estimator af (Mr) % af (Mr) is set to the fraction of times that we observe outcome Mr when 

measuring in the appropriate basis; for initialization conditions, af (Mr) = af (Mr) = 1. 

Each entry af (Mr) of the probability distribution qf (Mr) % qf (Mr) is set to the fraction 

of times that we observe bitstring b on the classical output of fragment f when conditioned 

on Mr. For any argument Mr of af, qf, etc., we can then define the errors = af — af and 

Yf = qf — qf and expand

pf = af af = p^ + qf + af Yf + ^ fYf, (12)

and define, for all symbols X E {pf , af , qf ,p)f ,af ,af , ,^f ,Y^,

X (M)= ^ sX (Ms), (13)
sGA(M)

which allows us to construct the estimator

^=2 ^p1 (M) ®p)2 (M)= p + e, (14)
2 M GB
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where

e = ^ [e^ (M) O p2 (M) + p^ (M) O e2 (M) + (M) O e2 (M)] . (15)
w Mes

Strictly speaking, the definition of estimators and errors X (/) are ambiguous as presented, 

as there is not a unique decomposition of I for the sum in Eq. (13). In practice, our 

implementations of circuit cutting algorithms set

A' (/) = t V A'(A/,). (16)
MEgY.y.Z}

rEA(M)

Whereas the errors e* (M) and e* (AT) for M, M' 6 {X, Y, Z} are uncorrelated unless M = 

AT, the decomposition in Eq. (16) implies that e* (/) is correlated with e* (M) for all M 6 B. 

For simplicity, however, we will assume that the estimators p* (M) and p* (M') with M yt M' 

are built from independent experimental data, such that their corresponding errors (M) 

and {M') are uncorrelated. Crucially, this assumption does not affect the general structure 

of our calculations, and therefore leaves our main conclusions (namely, how reconstruction 

infidelity {{I}} scales with different fragment parameters) in tact.

In order to compute the expected infidelity of p, we now need to determine the statistical 

means ((q>)), covariances ((e6ec)), and variances {{el)). The means {{eb)) = 0 because all con­

tributions to eb are either (i) proportional to a single error in the estimate of a multinomially 

distributed random variable, which is mean-zero, or (ii) a product of multiple independent 

(uncorrelated) errors, which is also mean-zero.

Ccwmifmcea

To compute the covariance {{ebec)), we note that are only working to second order in error 

variables, whereas the contributions to ((q>ec)) from the ~ e1 Oe2 terms of Eq. (15) are either 

fourth order or zero; we are therefore free to neglect these terms. Additionally throwing out 

terms that vanish because they are the product of uncorrelated random variables, we find 

that

M « - E«< iM> < (V)» pI, (M) d, (A/). (17)
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where / G {1,2} and / ^ /, i.e. such that {/, /} = {1, 2}; and bf, c.f are the substrings of 

b, c associated with fragment /. We now expand

((4 (A/) 4 (M)» M v rs ((f)/ (Mr) 3< (M,))) q> (A/,) g> (A/,)
r,aEA(M)

+ V r8 V (A/,) a' (Al.) {(7if (A/,) 7' (Al,))), (18)
r,aGA(M)

where we again throw out terms that are zero or fourth order in error variables. The 

normalization errors ^ (Mr) ,j3f (Ms) are zero for initialization conditions, and are always 

correlated for measurement conditions because they are errors in mutually exclusive mea­
surement outcomes. The probability distribution errors 7[ (Mr) ,7/ (Ms), meanwhile, are 

independent unless Mr = Ms. The covariances between these errors are determined by 

multinomial distribution sampling errors, so

«y (Mr) 3' (M3)) = i a< (Mr) 7, - a< (A/,)] (l - , (19)

((4 (Mr) g (Mg))) = gl (,/_.) _ gl (M,)] , (20)

where n is the number of times that we sample fragment each variant of each fragment 

(i.e. each choice of initialization conditions and measurement bases on a fragment), (Mr) n 

is the expected number of times that we sample fragment / with condition Mr, Q[ is the 

number of quantum outputs (i.e. or measurement conditions) on fragment /.

If 5gf o = 0, then the ~ (Mr) 5rs contributions from Eq. (19) cancel out with the 

~ q[ (Mr) qfc (Mr) contributions from Eq. (20) when substituting these results into Eq. (18). 

Meanwhile, if SQf 0 = 1 then cJ (Mr) = 1, so

n ((4 (M) 4 (A/))) « ibcpl (/) - (1 - P'l (M) p{ (M) - S^YrPl (Mr) p{ (Mr).
r

(21)

Altogether,

1
4 n E Ed,(A/)4(Af)

1
4n E

/.M
(7) - (1 - ^ (M):

(22)

(23)
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Substituting

(7) = 1, (M) = 2^MJ, = 4,2, 1 - ^Q/,o = 4,1, (24)

we thus find that

= O' (24
b,c

The infidelity ((%)) is therefore determined entirely by the variances ((el)).

Vmifmcea

We now consider the variances

«a>«\ <m)2» d, (-V)2 (26)
/,M

where from Eq. (21) we know that

" «4 (V)2» = d rn - d (V)2 (l - sQl0) - sqL„ Y. 4 (Mr? ■ (27)
r

In principle, we have to simplify

P))dEw' pb=\Yd(M)ll_(M)- (28)
b ^ M

but this calculation is intractable due to the sum over M 6 B in the denominator. We 

therefore settle for trying to find an upper bound on this sum, to which end we observe that

»((^)) ^ ^ E ^4 (4 K (^ < E ^4 (4 ^ (4^ - (29)
/,M /

Rather than the factors p[ (/), we can express this bound in terms of the mean probability 

(pbf) to get bitstring bf on fragment /, averaged over all possible conditions. This mean 
probability is (p[f) = p[ (/) /2'5f, where Q{ is the number of quantum inputs (initialization 

conditions) on fragment /, so

n ((^)) < 2^^ (p^) 4^ (p^)^ = 4 (p&J (p^) -L (p^). (30)
/ y 2 i
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Ill turn, we can bound

The factor (p^) (p^) jpb is a measure of the quantum correlation between two fragments: it 

is equal to I if there is no correlation, and is smaller (greater) than I if quantum correlations 

cause constructive (destructive) interference for measurement outcome b on the combined 

circuit. In principle, this factor can be made arbitrarily large, but that requires hue tuning, 

and generally speaking we would expect (p^) (p^) jpb ~ 0(1) for random circuits. We 

therefore expect that

« <>) =°(^ 2C-Qf) • <32>

The general case

We now estimate an upper bound on expected infidelity for the general case of K cuts 

and F fragments. Defining the projectors

% U {Mr:re A(M)}, (33)
MSB

a fragment with K/ incident cuts is nominally characterized by the conditional distributions

p' (AT) = (AT) / (AT), (34)

where AT 6 Vgf, af (AT) = YhbPb {M) is the normalization of pf (AT), and qf (AT) is a 

normalized probability distribution. Similarly to before, the estimator 5/ (AT) % cF (AT) 

is set to the fraction of times that we observe the measurement conditions in AT when 

measuring the corresponding qubits in the appropriate bases and preparing the initialization 

conditions in AT. Each entry q[ (AT) of the probability distribution q[ (AT) % q[ (AT) is 

set to the fraction of times that we observe bitstring b on the classical output of fragment / 

with conditions AT. The estimator p* and errors j3f, 7^, fJ are defined just as before, and all 

appropriate objects are are defined for ‘conditions’ AT 6 BKf by summing over the spectrum 

of each condition similarly to Eq. (13). Altogether, we have the estimator

f>=W E ®P'{M')=p + C, (35)
MesK f
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where Mf C M denotes the conditions in M that are incident on fragment f, and the 

distribution error e has components

9 « T EE eff (M f) n pf (M g), (36)

f 9=/

where we neglect terms that are second order or higher in the fragment errors ef.

Covariances

By the same argument as before, the mean ((eb)) = 0, so we turn to considering the 

covariance

«e»ec)) « R E E ((ef, (Mf) ef (Mf))) n p, (M9) P. (M9), (37)

f 9=/

which leads us to expand

((ef (Mf) ef (Mf))

« E || (f)> (mR) 0f (mR)))qf (mR) qf (mR)
R,SGA(M f )

+ E IIRIIIISW af (mR) af (mR) (R (mR) 7f (mR))) , (38)
R,SGA(Mf )

where R = (ri, r2, ■ ■ ■ , rKf) E A (M f) is a choice of eigenvalue r E A (M) for each condition 
M in Mf, MR is the corresponding list of (projectors onto) eigenvectors, and ||R|| r€R r.

The covariances between 0f and 7f are determined by the multinomial distributions

((0f (mR) 0f (mR 

((7/ (mR) yR (mR

which as before implies that

— x af
n

MR

— 5RS
n af (MR)

#RR — af

x (MR

MR l- 5QO ,0
5bc — q/ (yMR^ ,

(39)

(40)

(Mf) ef (Mf)

5bcpf (If) — (— — 5Qf,0) pf (Mf) pf (Mf) — 5QO,0 Epf (MR) pf (MR), (4l)
R
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where If = (/,/, ■ ■ ■) is a constant list of length K/. Altogether,

E((ebeb))
b,c

i EE(eff (Mf) e/, (Mfnpf, (M9)pf, (M9)
n f,M b,c

(42)

l
4K n

9=f
E k l1 f) — (l — 5QfJ af (M f )2 — 2Kf 5Qf J II a9 (M9 )2. (43)
f,M

Qf ,0' 1 1 a 
9=f

Though unsure how to evaluate this quantity, we can use the fact that af (M< af (I2 < 

4Kf to bound

4K ^]af (Mg2 a9 (M9)2 < ^%a9 (19)2 < 4KF
9f,M 9=f

and similarly

—

4 b,c 4n

(44)

4K^2 2K^I a9 (M9 )2 2Kf a9 (19 )2 2Kf 4K, < 4K F, (45)
f,M 9=f f 9=f f 9=f

which implies that the contribution to ((I)) from the covariances ((ebeb)) satisfies

l xx 4KF
/ X(ebeb)) < (46)

Valances

As in the case of one cut and two fragments, we now bound

n «eD) 5 4K E pf, (If )n p9, (M9 )2
f,M g=f

< Epf, 5 f)II pb, (19 )2
f 9=f

Lp'“
h
n < (i ' En p9, (i 9)

-I / 9=/

n 2Qh (pi;) EII'2Q? k,)
-I / 9=/

n «)
hf

e 2-q( n <ph,).
9=/

The contribution to infidelity ((I)) from the variances ((e2)) is then

— ((e2)) < 4K
4 pb < 4n ^

Hh R)
pb E2-Qi n (ph,)~ A -E24^ 2cf-Qf

f 9=f f

(47)

(48)

(49)

(50)

(51)

(52)

—

—0



so altogether

«I» ~ o —y. 2c- (53)

In practice, we find this asymptotic bound to be overly pessimistic with regards to the 

scaling with K. There are other ways in which this bound is too optimistic: by assuming 

that fragments are weakly correlated and ^ ^ (p^) ~ 0(1), this bound does not capture 

the effect of errors due to noisy virtual teleportation of qubits across cuts between fragments, 

at their quantum inputs and outputs. Nonetheless, the bound in Eq. (53) demonstrates 

~ ^ 2C° scaling with shot number n and fragment size C£, which (all else equal) are not

affected by these considerations.

SUPPLEMENTARY FIGURES

Figure 5 of the main text shows infidelities ((%)) of reconstructed outputs for clustered 

random unitary circuits (RUCs). To provide a sense of the robustness of X to circuit varia­
tions, Supplementary Figure 1 shows the standard deviation a (X) = \J(((X — ((X)))2)) in the 

same simulations. Generally speaking, a (X) is orders of magnitude smaller than the ((X)).

F = 2 F = 3 X = 4
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Supplementary Figure 1. Standard deviation of the infidelities shown in Figure 5.
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