Quantum Circuit Cutting with Maximum Likelihood Tomography

Michael A. Perlin,l1,2, * Zain H. Saleem,3,| Martin Suchara,},* and James C. Osborn2,4A

LJILA, National Institute of Standards and Technology and
Omfersb?/ 0/ Colorado, ~O t/CB, BoWder, Co/orado #0,900,
2A7goaae headers/bp Compabag Facdb?/, Argoaae Aaboaol
Bab6oraton/, 0700 #. Cagg Aacaae, Bemoat, BAaoA 00",90
3Mat/iematic6 aad Comparer #cieace DiaAOa, Argoaae Aaboaol
Baboraton/, 0700 #. Cagg Aacaae, Bemoat, BAaoA 007,90
4Compa(aboaa( #cieace DOibaa, Argcaae Aaboaol
Bat6oraton/, 0700 #. Cagg Aaecaae, Bemoat, BAaoA 007,90
(Dated: 2021-01-31)

We introduce maximum likelihood fragment tomography (MLFT) as an improved
circuit cutting technique for running clustered quantum circuits on quantum devices
with a limited number of qubits. In addition to minimizing the classical computing
overhead of circuit cutting methods, MLFT finds the most likely probability distri-
bution for the output of a quantum circuit, given the measurement data obtained
from the circuit’s fragments. We demonstrate the benefits of MLFT for accurately
estimating the output of a fragmented quantum circuit with numerical experiments
on random unitary circuits. Finally, we show that circuit cutting can estimate the
output of a clustered circuit with higher fidelity than full circuit execution, thereby
motivating the use of circuit cutting as a standard tool for running clustered circuits

on quantum hardware.
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INTRODUCTION

The advent of noisy intermediate-scale quantum (NISQ) technologies | | makes quantum
processors with increasing numbers of qubits available to the quantum computing community
for experimentation. The rapid progress in the development and manufacturing of these
devices is remarkable, with state-of-the-art superconducting quantum processors reaching
~ 50 qubits with percent-level gate and readout errors [2-4]. Advances on the hardware
front have been matched by the theoretical development of suitable hardware benchmarks | |,
which have in turn enabled proof-of-principle demonstrations of a computational advantage

over classical computing systems | ].

Despite tremendous progress, existing devices still lack the number and quality of qubits
required for practical NISQ-era applications such as digital quantum simulation [ , ], quan-
tum optimization [ - | and quantum machine learning | 1, 12]. Without error correction,
these applications are severely limited by the accumulation of errors that will only com-
pound as devices scale up to more qubits and deeper circuits. Bridging the gap between
the requirements of NISQ-era quantum algorithms and the capabilities of NISQ devices will
require error mitigation techniques [11,1 | and problem decompositions that trade quantum

and classical computing resources [ .5, If].

One decomposition, inspired by the fragmentation methods used for quantum molecular
cluster simulations [ .7-19], applies fragmentation to the execution of quantum circuits [ 16].
This decomposition consists of first ‘cutting’ a quantum circuit into smaller subcircuits, or
‘fragments’, that can be executed on processors with fewer qubits, and then reconstructing
the probability distribution over measurement outcomes for the original quantum circuit
from probability distributions associated with its fragments. The severed quantum connec-
tions between circuit fragments are simulated by classical post-processing of fragment data,
which leads to a classical computing overhead that grows exponentially with the number of
cuts that are made to a circuit. This approach is therefore suitable for simulating circuits
that are decomposable into clusters of gates with a small number of inter-cluster interac-
tions. Such circuits can make appearances in the context of Hamiltonian simulation [ 16], as
well as near-term applications based on a variational ansatz that allows for some freedom in
choosing circuit structure, such as the quantum approximate optimization algorithm (also

the quantum alternating operator ansatz, QAOA) [8, 9, 20, 21] and variational quantum



eigensolvers (VQE) [16, 2 |.

Due to the presence of fundamental shot noise (equivalently, finite sampling error), an
unavoidable feature of the original fragment recombination method in Ref. [ ] is that the
distribution over measurement outcomes obtained by characterizing and recombining cir-
cuit fragments does not generally satisfy central axioms of probability theory, namely that
a probability distribution must be non-negative and normalized. A naive fix to this prob-
lem would be to simply remove all negative probabilities and normalize the reconstructed
distribution in question. In the spirit of maximum likelihood state tomography (MLST)
[23], however, one would like to determine the ‘most likely' probability distribution that is
consistent with available fragment data.

In this work, we find this ‘most likely' probability distribution by generalizing MLST and
introducing maximum likelihood fragment tomography (MLFT), the use of which guarantees
that reconstructed probability distributions are non-negative and normalized. We discuss
how MLFT minimizes the classical computing resources necessary to characterize circuit
fragments, and provide a tensor-network-based method for fragment recombination. We
test our methods in numerical experiments with random unitary circuits, and demonstrate
that MLFT estimates the probability distribution at the output of a fragmented quantum
circuit with higher fidelity than the naive method of removing negative probabilities and
normalizing. These benefits come at no cost to the computational complexity of circuit
cutting, as they are achieved by post-processing fragment data in a manner that has a
smaller computational cost than that of recombining fragment data to reconstruct a circuit
output. As an added bonus, for a fixed number of queries to quantum hardware (known
as ‘shots’ or ‘trials’ in e.g. Qiskit [ | or pyQuil [25]) we show that circuit cutting methods
can outperform direct execution and sampling of a clustered circuit in order to estimate
its associated probability distribution. We provide theoretical arguments to support this
finding, which motivates the use of circuit cutting as a standard tool for evaluating clustered
circuits on quantum hardware, even when all hardware requirements for full circuit execution
are satisfied.

In the remainder of this section, we provide a basic overview and discussion of the circuit
cutting procedure first introduced in Ref. [ ], and establish terminology that we will use
throughout the rest of this work. We note that our overview of circuit cutting will use the

language of quantum states and channels, rather than the language of tensor networks that



was used in Ref. [If ]. These two formalisms are mathematically equivalent, but the former
will allow for a more seamless integration with the material in the following section.
Given an arbitrary quantum state 47} of V qubits, a straightforward resolution of the

identity operator 7 = 6€{0,i} 1&X&! 011 qubit » implies that

V) =ATV)-  1&)o,(&IV), (1)
6E{0,1}

where /n denotes the action of 7 on qubit n; the relation ~ denotes equality up to a per-
mutation of tensor factors (i.e. qubit order); and n(b 4’ is a sub-normalized state of NV — |
qubits acquired by projecting |4} onto state |6) of qubit n. If the structure of a quantum
circuit that prepares |47} allows, a similar resolution of the identity operator 7/ can be used
to ‘cut the circuit by inserting / at a location that splits the circuit into two disjoint sub-
circuits. For example, if |4’} = V23UI12 |000), where UJ? and V23 are the two-qubit gates U
and J acting on qubits 1,2 and 2, 3, then by inserting the identity operator 72 (on qubit 2)
between Ul? and V23 we find that

V) - Vi (() O V2 (6)), (2)
6E{0,1}

where the factors

[7(6)) = ,(6][/|00), [7(6)) = yIW) ©)

are (generally sub-normalized) ‘conditional’ states prepared by projecting onto [6) or prepar-
ing 16), as appropriate. The identity in Eq. (2) is visualized in Figure 1, albeit with the use
of density operators that we discuss below.

The above splitting method relies on the capability to project qubit z onto state |6) while
preserving phase information. Such capability is possible when running classical simulations
of a circuit, but is not possible on quantum computing hardware. This limitation can be
overcome by representing quantum states |4} with density operators p = \V’)(V’D whose
diagonal entries in a given measurement basis define a classical probability distribution
over measurement outcomes in that basis. For ease of language, we will at times blur
the distinction between a state p and the probability distribution defined by its diagonal
entries in a fixed computational basis. In the remainder of this work, we will discuss circuit

splitting and reconstruction in way that is compatible with circuit execution on quantum
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computing hardware. Nonetheless, our methods can be applied just as well to classical
state simulation, with minor simplifying modifications to account for the added capability
of performing deterministic, phase-preserving qubit projections.

The identity analogous to Eq. (1) for density operators p reads

p-~ M O tr» (M,p), 4)
w Mes
where B is a basis of self-adjoint 2x2 matrices with normalization tr = 28ij for

MMM 6 B: trn denotes a partial trace with respect to qubit n; and Mn with n 6 7ln
denotes an operator that acts with A on qubit n and trivially (i.e. with the identity /) on
all other qubits. To be concrete, we will use the set of Pauli operators together with the
singe-qubit identity operator, B = {X, Y, Z,1}, as our basis. The identity in Eq. (4) implies
that the state prepared by the action of a three-qubit circuit V23UI} on the trivial state
|0)(O[u3 can be decomposed as

AN AT EPIMO#FM! Q)

w Mes

where now the factors
Pi (M) =t:2 10x01°" ~ (M) =y (M o |oxo|) yt, (6)

have no straightforward interpretation as ‘conditional states, as with [X'i ()} and [X? (&))
in Eq. (2). In order to decompose p into conditional states, we can expand each M 6 B in
its eigenbasis:

p—-1 E "p © ps

MeB
r,aEA(M)

where A (M) denotes the spectrum of M, ie. A(X) = A(Y) = A(Z) = (+1,-1) and
Ad) = (1,1); and Ms = \MS)(MS with s 6 A (M) is a projector onto an eigenstate of |Ms)
of M with eigenvalue s. Note that the choice of eigenstates for the identity operator 7 is
arbitrary as long as these two states are orthogonal, so we can reuse the eigenstates from
one of the other operators.

The decomposition in Eq. (7) allows interpreting each pf (Ms) as a conditional state,
obtained either by post-selecting onto the measurement of a qubit in state |Ms), or by

preparing a qubit in state |Ms), as appropriate (see Figure 1). This decomposition thus
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corresponds to the following procedure for circuit cutting and reconstruction: after cut-
ting a circuit into (say) two fragments, characterize the classical probability distributions
Pf(Mg) over measurement outcomes by running the corresponding sub-circuit and either
post-selecting on measurement outcomes Ms or preparing states MS| as appropriate. Note
that post-selected probability distributions are generally sub-normalized, and the normal-
ization trpi (Ms) is equal to the probability of getting outcome Ms when measuring in the
diagonal basis of M. After characterizing the conditional distributions pf (Ms) for each of
/6 {12}, M 6 {X,Y,Z}, and s 6 {+!,—!}, combine these distributions according to
Eq. (7). This scenario is illustrated in Figure 1, which cuts a 3-qubit GHZ circuit preparing
the state [V’) oc |000) + 1111) into two 2-qubit fragments.

In practice, recombining circuit fragments as prescribed by Eq. (7) is inefficient in two
ways. First, the tensor products in Eq. (7) are a computational bottleneck for fragment
recombination. It is therefore faster to post-process conditional distributions by first (i) for
each fragment /, combining the six independent distributions pf (Ms) into four distributions:
Pf (M) = pf (M+1) —pf (M _1) for each M e {X Y, Z} and pf (1) = pf (M+i)+pf (M _1i) for
any M 6 {XY, Z}, and then (ii) combining the fragment distributions pf (M) according to
Eq. (5). In a circuit with K cuts, this post-processing reduces the number of tensor products
that must be computed during recombination from 16A to 4A, which is an exponential
reduction (in K) of the number of floating-point operations required to recombine fragment
data. Note that the recombination procedure in Ref. [16] involves 8A tensor products,
rather than 16A, because it consolidates ‘measurement’ conditions, but not ‘preparation’
conditions, which is equivalent to collapsing the sum over r in Eq. (7) but leaving the sum
OVer s.

Second, the recombination formula in Eq. (7) nominally requires, for each fragment /
incident on Kf cuts, characterizing K® probability distributions. This characterization is
overcomplete, because the Kj distributions are not all linearly independent. In the case of
a fragment with a single incident cut, for example, we can use the fact that X+ + AT =

Z++7Z =/ to decompose

P/ (*-) = P/ (%+) + P/ (%-) — P/ (*+) - (8)

In fact, a fragment with Kf incident cuts can be completely characterized by Kj distri-

butions, which can be deduced from the fact that the space of operators on the Hilbert
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space of a qubit has real dimension four. The symmetric, informationally complete, positive
operator-valued measure (SIC-POVM) {lI®IG : j e Z4J (consisting of projectors II®IG onto
the states represented by the four corners of a regular tetrahedron inscribed in a Bloch
sphere), for example, form a mutually unbiased basis for the space of single-qubit operators.
Given any single-qubit operator M, we can therefore expand p/ (M) = ~DjPf (H®IG)
with real coefficients

Finally, characterizing fragments is a noisy process, due to both (i) hardware errors that
are unavoidable without error correction, as in all NISQ devices, and (ii) statistical sampling
(shot) noise. As a result, the ‘experimentally inferred’ distributions p/ (Ms) approximating
the ‘true’ distributions pf (Ms) will generally contain errors, and will fail to satisfy self-
consistency conditions such as Eq. (8). When combining these distributions according to
Egs. (5) and (7) there is similarly no guarantee that the reconstructed probability distribu-
tion will satisfy conditions required of a probability distribution, such as non-negativity and
normalization.

To address these shortcomings, in the following section we recast the task of characterizing
conditional distributions into the task of performing fragment tomography, treating the
fragments p/, rather than distributions p/ (Ms), as first-class objects. In addition to being
automatically efficient in terms of the classical memory footprint of characterizing each
fragment, performing fragment tomography allows us to adapt the method of maximum
likelihood tomography [21 ] to construct a model for each fragment that is, by construction,
guaranteed to satisfy all appropriate self-consistency conditions. Fragment recombination is
then similarly guaranteed to yield a probability distribution that is both non-negative and
normalized. Finally, we show how the fragment models constructed via fragment tomography

naturally admit a tensor-network-based method for recombination.

RESULTS

Maximum likelihood fragment tomography

Once a circuit has been cut into fragments p/, rather than characterizing conditional
distributions p/ (Ms) we can perform a more systematic maximum likelihood fragment to-

mography (MLFT) procedure to characterize these fragments. The purpose of MLFT is to



perform a ‘maximum likelihood' characterization, similar to the characterization of quantum
states in Ref. [23], which guarantees that any probability distribution associated with these
fragments will be (i) the ‘most likely' distribution consistent with available fragment data,
while (ii) satisfying all necessary constraints for a valid (i.e. non-negative and normalized)
probability distribution. MLFT is a type of quantum process tomography, which generalizes
maximum likelihood state tomography (MLST) [ 13] to the case of channels (processes) with
mixed (quantum/classical) inputs and outputs.

Any given fragment, nominally a unitary circuit on Q qubits, will generally have Q; ‘quan-
tum input and Qu ‘quantum output’ qubits at the locations of cuts. We refer to these inputs
and outputs as ‘quantum’ because characterizing the fragment for circuit reconstruction will
require performing full quantum tomography on the corresponding degrees of freedom. In
contrast, the remaining C| = Q — Q! ‘classical input’ qubits are always initialized in the triv-
ial state 10); = |0)uCi, and the remaining C) = Q — Qu ‘classical output qubits are always
measured in a fixed computational basis. For definiteness, we can first think of a fragment
as a quantum channel 84 on the state of Q qubits. The channel-state duality | -2¢] implies

that this channel is uniquely determined by a 4-partite state (density operator) of the form

A= 771 AkEmnpgrs (M)A O oy O p) (7 O \yes| 9)

PIrs
where the bitstrings k£ (m.,n; p,q; r,s) index states in the Hilbert space of the quantum
input (classical input; quantum output; classical output) qubits of the fragment, and are
implicitly summed over ZN (Z(p; Z"°; Z™°). Specifically, the channel 84 maps a bipartite

input state

p O |0D)(0i| = A1 O Joi)oi| (10)
k/

at its input to the bipartite state

84 (PO |0;)0i)) = 1w | 4-k£:0,0:pqrsPke [IP)Z| O |M)(s| (H)

at its output. To account for the fact that classical outputs are only ever measured in
a fixed computational basis, we can remove all parts of 84 (p) that are off-diagonal with

respect to the measurement basis of the corresponding qubits. In total, we therefore need
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only characterize the channel [k defined by

£A () — vy AkEpgsPrE [p)(1 O [s)(s| , 12)

where
A-kf;pg;s — Nk£;0,0;pg;ss 1 (13)

The task of performing MLFT thus reduces to performing tomography on the tri-partite
block-diagonal state

A= "AM;pg;a|&Xt]0[pXg|0|sXs| = ~"AaO|sXs]|, (14)

where Eq. (14) implicitly defines the blocks As. In words, the reduced state A is acquired
from the full state A by conditioning on (i.e. fixing) a trivial state |0i)(0i| on its classical
inputs, and the block As is acquired from A by conditioning on measurement of the bitstring
s on its classical outputs. The relationship between A, A, and As is sketched out in Figure
2

In a nutshell, MLFT is performed by providing a variety of quantum inputs to £k, and
measuring its quantum outputs in a variety of bases. The blocks As are inferred by least-
squares fitting to a linear operator that maps quantum inputs to quantum outputs, using all
available data from experiments in which bitstring s was observed on the classical outputs
of a fragment. This procedure yields an experimental ansatz state A* that approximates
A, but that generally does not have the properties required of a density operator, such as
a non-negative spectrum. The last step in MLFT is therefore to convert the ansatz state
AA into a ‘maximum likelihood' state AML by using an algorithm borrowed from MLST in
Ref. [23]. We describe MLFT in more detail below.

MLFT (and MLST) begins by collecting measurement data to characterize the quantum
state under consideration. In the case of the block-diagonal state A, one needs to characterize

the expectation values
(cqO Q =tr A(cqO (To O Zc) (15)

for some complete basis of operators {cq O cr) O zc} on the target Hilbert space of A, where
cq, (To, and zc are respectively operators on the quantum input, quantum output, and classi-

cal output of the fragment in question, with zc strictly diagonal in the computational basis.
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MLST [ 3] collects data by performing informationally complete measurements of A, for
example by choosing operators <Ji) from the set of all Pauli strings ¢7,.X,Y, Z}uQi° and
choosing zc from the set of diagonal Pauli strings {/, Z}!jCo. In the case of fragment tomog-
raphy, however, we do not have direct access to the state A, and instead have access to the
channel 84 It is therefore not possible to directly measure the degrees of freedom in A that
are associated with inputs to the channel. Instead, MLFT characterizes the quantum input
degrees of freedom in A by preparing an informationally complete set of states, making use

of the fact that
tr ACIO@ O T0) =tr (r,T) (110 O )1 = (al O To)£..(oT) (16)

where cr? denotes the transpose of =~ Whereas the operators a( and zc may still be chosen
from the set of Pauli strings, the input state crj is restricted to satisfy traT = 1. This
restriction excludes the possibility of choosing crj from an orthogonal basis for the space
of the space of Qi-qubit operators (such as the set of Pauli strings), but any complete ba-
sis will suffice. For example, one can choose input states from the basis of pure states
{10) , [1),10) + [1),]0) +i |I)}u<Si. For an unbiased basis, one can take tensor products of
symmetric informationally complete (SIC) states of a single qubit, or even consider bases of
multi-qubit SIC states. The practical advantages of using these bases, however, generally
depend on the fidelity with which one can prepare SIC states. Similar considerations apply
for the choice of measurement basis for quantum outputs | ]. Overall, in order to charac-
terize a fragment with Q; quantum inputs and Qu quantum outputs one must prepare each
of 4Qi input states, and measure outputs in each of J®° possible bases (for each quantum
output qubit, the diagonal bases of X, Y, Z), so fragment tomography requires O (4'513'5°)
experiments.

After collecting an informationally complete set of data on the state A, a straightforward
least-squares fitting procedure yields an empirical ansatz A* for A, which is the MLFT ana-
logue of the ‘experimentally noisy’ matrix p, described in the original MLST work [ ]. The
block diagonal structure of A = AsO |s)(s| implies that the least-squares fitting procedure
can be performed independently for each block As of size 2'5i+5° x 2'5i+'5°. Specifically, As

is obtained by fitting to
tr Aa(:Q(T) —p, , (17)
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where ps is the probability of observing bitstring s on the classical output of a fragment, and
((7; O cr0)Zc=s is the expectation value of <0 (on the quantum outputs) when preparing the
state (7? (on the quantum inputs) and observing bitstring s (on the classical outputs) of the
fragment. Because the ansatz state A* ~ A is constructed from a fit to noisy measurement
data, AA will generally have negative eigenvalues, which is not allowed for density operators.
The final step in both MLST and MLFT is therefore to find the closest state to AA that has
no negative eigenvalues. To this end, MLFT borrows the ‘fast algorithm for subproblem F

in Ref. [23], which
(i) diagonalizes AA,
(i1) eliminates the most negative eigenvalue (setting it to zero),

(iii) adds an equal amount to all other eigenvalues to enforce tr AA = 1, and

As proven in Ref. [ ], this algorithm finds the closest positive semidehnite state AML to
AA with respect to the metric induced by the 2-norm ||A||2 = Vtr (AtA). In this sense,
AML is the ‘most likely' state consistent with AA- The only additional consideration for this
algorithm when performing MLFT has to do with making use of block diagonal structure to
diagonalize AA: each block of size 20i+Qo x 20Qi+Qo can be diagonalized independently. The
overall serial runtime of the algorithm to find AML from AA is therefore O (23"5i+50]Atc),
where Nc < 2(Co is the number of blocks in AA, or equivalently the number of distinct
bitstrings observed on the classical output of the fragment throughout tomography. As we
will see, the maximum-likelihood corrections to AA are responsible for the benefits of MLFT
in estimating a circuit’s output. Moreover, the cost of computing these corrections is smaller
than the unavoidable cost of fragment recombination, so the benefits of MLFT are free as
far as the computational complexity of circuit cutting is concerned.

The treatment of fragments and their dual states A as first-class objects in MLFT en-
ables a straightforward tensor-network-based circuit reconstruction method. Rather than
explicitly computing and summing over each term of the fragment recombination formula
in Eq. (4), the basic idea is to think of the entire sum as a contraction of two tensors. We
sketch out this idea in Figure 3, making use of the relationship between fragment states

A, their reductions A, and diagonal blocks As. In total, the full probability distribution

11



over measurement outcomes for a reconstructed circuit can be acquired by a tensor network
contraction of reduced states A, and the individual probabilities of measuring any given bit-
string at the output of a circuit can be acquired by a similar contraction of diagonal blocks
As-

If a circuit has K cuts and F fragments, and distinct bitstrings were observed on
the classical output of fragment / 6 {1,2,--- | F}} throughout fragment tomography, then
reconstructing the circuit’s output requires contracting YIf tensor networks, each of
which nominally involves summing over 4A terms. Whereas the 4A cost to contract a single
tensor network g can be reduced to where cc(g) is the contraction complexity of
g [ ], the overall multiplicative cost in Nc¢” is unavoidable. In comparison, performing
maximume-likelihood corrections to fragment models comes at a cost that is additive in V™
For this reason, fragment recombination is generally the computational bottleneck of circuit

cutting, and maximum-likelihood corrections add no significant overhead.

Numerical experiments

In order to test the benefits of MLFT in an application-agnostic setting, we run classical
simulations of random unitary circuits (RUCs). Because the cost of circuit cutting scales
exponentially with the number of cuts made to a circuit, we construct RUCs with a structure
that makes them amenable to circuit cutting (see Figure 4). We then vary the number of
qubits and clusters in our RUCs, as well as the total number of samples (known as ‘shots
in Qiskit [ | or ‘trials’ in pyQuil [25]) in a simulation, where the result of each sample is
a single bitstring representing one measurement outcome. In this way, we compare three
methods to estimate the probability distribution over measurement outcomes at the end of
a clustered RUC.

First, as a standard benchmark, we consider sampling an entire circuit .S times without
any circuit cutting, which we refer to as the method of ‘full circuit execution. Second, we
consider cutting a circuit into fragments, with each fragment corresponding to a cluster as
shown in Figure 4, and reconstructing these fragments as prescribed by the original circuit
cutting work [16], namely without maximum likelihood corrections. We refer to this second
method as the ‘direct method of circuit cutting and reconstruction. A fragment with Q;

quantum inputs and Qu quantum outputs has 4Qi x 3J®° variants that must be simulated for
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circuit reconstruction, where each variant corresponds to a choice of state preparations and
measurement bases on the quantum inputs and outputs of the fragment. We therefore divide
the budget of S samples evenly among all fragment variants. Finally, we consider the full
MLFT and recombination procedure, which we refer to as the ‘MLFT method. The direct
and MLFT methods only differ in the classical post-processing of fragment simulation results.
Specifically, the differences between the final outputs of the direct and MLFT methods are
entirely due to the application (or non-application) of maximum-likelihood corrections to
fragment models.

To compare the efficacy of the full, direct, and MLFT methods, we compute the fidelity
of reconstructed probability distributions over measurement outcomes, pestimate, with the
actual probability distribution pactual that is determined by exact classical simulations of a

circuit:

7=~ ] VPactual (s) Pestimate ("O , (18)

where pactual (), pestimate (s) are, respectively, the probabilities of measuring the 1V-qubit
state (bitstring) s 6 according to the distributions pactual,Pestimate- The fidelity 7" is an
analogue of the quantum state overlap |(0]|%)|2 for classical probability distributions. The
only caveat in our calculation of fidelities is that they are only well defined when dealing
with valid (non-negative and normalized) probability distributions, whereas the direct circuit
cutting method generally yields an unnormalized distribution that may have negative entries.
We therefore convert the distribution yielded by the direct method into a valid probability
distribution by eliminating all negative entries (setting them to zero), and normalizing the
distribution.

Figure 5 shows the infidelities X = | — 7 of the probability distributions yielded by each
simulation method. To ensure that results are not sensitive to the specific choice of random
gates, these infidelities are averaged over 100 instances of each clustered RUC, although in
practice we find that these infidelities vary by only ~ 1-10% of their mean value (see the
Supplementary Information [SO]). Figure 5 also shows analytical estimates of infidelity for
the full and direct simulation methods, derived in the Supplementary Information.

An immediate takeaway from Figure 5 is that the MLFT method introduced in this
work always outperforms the direct method: MLFT infidelities are always lower than direct

infidelities. This result is consistent with theoretical arguments that MLFT finds the ‘most
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likely' fragment model consistent with noisy measurement data. Although we only consider
shot noise in this work, it would be interesting to see how the benefits of MLFT change with
the introduction of additional noise such as measurement and gate errors. We defer a study
of the effect of such errors to future work.

Figure 5 also shows that the infidelity X for all simulation methods scales more or less
identically with the sample number S, namely X ~ 1/5 for large S. Though some of the
numerical data in Figure 5 may better be fit by X oc 1/S'd+D for some )] yt 0, the deviation
from )] = 0 are minor, and may be an artifact of small circuit sizes, ft is worth noting that
the original circuit cutting work [ ] proved that a reconstructed circuit output (probability
distribution) can be estimated to an accuracy of e with § = O(1/e2) samples, which by
dimensional analysis suggests that X ~ e2 ~ 1/5 in all cases.

Though scaling with sample number does not strongly distinguish these methods, it is
clear that the direct and MLFT methods scale much more favorably with circuit size: the
full method has an infidelity X ~  for QO qubits, whereas cutting a circuit into /' fragments
results in X ~ S/=1 2C°, where C! ~ Q/F is the number of classical outputs on fragment
/ and Cl = Q. The more favorable scaling for circuit cutting methods is surprising
at first glance, as these methods require strictly fewer quantum computing resources: their
sample budget is spent on executing smaller circuits (namely, fragment variants). The
better performance of the circuit cutting methods can be understood by the fact that they
use their sample budget in a targeted manner that exploits circuit structure, rather than
blindly sampling the entire circuit. However, when circuits are sufficiently small for the fixed
number of samples to explore the sample space of the entire circuit, full circuit sampling
performs better than circuit cutting because it does not waste resources on characterizing
numerous variants of nearly identical fragments.

Deferring a detailed derivation of expected infidelities to the Supplementary Information
[ 0], we can make the above intuition more quantitative by considering the difficulty of
estimating a probability distribution defined by a Q-qubit RUC by (i) sampling the full
circuit directly, versus (ii) sampling all fragment variants for circuit reconstruction. The
first task requires, in principle, exploring a sample space of size ~ with .S samples, so one
might reasonably expect (as is indeed the case) that X ~ 20/S. If a circuit is cut into F
fragments, meanwhile, then each fragment will have ~ Q/F qubits, and if the number of

qubits is independent of the number of fragments, then the overall sample space volume is
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reduced from 20 to 2CW/U_ Indeed, this argument agrees with the estimate of infidelity for
the direct method of circuit cutting in Figure 5, where we show that I—Fx 20/F/n with

n = S/V the number of samples devoted to each of V" total fragment variants.

DISCUSSION

Circuit cutting is a promising technique for reducing the qubit requirements of running
clustered quantum circuits. We have introduced improved circuit cutting methods by mini-
mizing associated classical computing costs (with an exponential improvement over previous
methods), and by using MLFT to reconstruct the ‘most likely' probability distribution de-
fined by a quantum circuit, given the measurement data obtained from its fragments. To
test our ideas in an application-agnostic setting, we ran classical simulations of random uni-
tary circuits, which demonstrate the advantages of MLFT compared to the original circuit
cutting method. Moreover, we also show that circuit cutting has advantages as a stan-
dard technique for running clustered circuits on quantum hardware, even when full circuit
execution is possible.

Our work opens several avenues for the improvement and application of circuit cutting
techniques. For example, MLFT guarantees that fragment models satisfy appropriate self-
consistency conditions, but MLFT makes no use of the fact that each fragment corresponds
to a unitary quantum channel. Furthermore, our present work neglects the effects of hard-
ware errors that are important to consider in the context of NISQ devices. Because MLFT
has the capability to mitigate shot noise, we expect the advantages of MLFT over full circuit
execution to be enhanced when additionally considering the effects of hardware errors. We
likewise expect unitarity constraints to provide additional benefits for mitigating sources of
noise. Our work thus complements ongoing efforts that study the benefits of circuit cutting
in the presence of hardware errors, which have generally found that circuit cutting helps
mitigate the effects of noise [ ]. Having framed fragment characterization as a tomography
task, it would also be interesting to adapt and apply different quantum process tomography
techniques [ | to the task of circuit cutting, and compare their performance and cost to
that of MLFT.

As a final point, we note that circuit cutting in its current form estimates a probability

distribution associated with a given circuit. Ideally, one would like to sample this probability
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distribution (defined over an exponentially large space of possible measurement outcomes)
without having to reconstruct it in full. To this end, our work makes important progress
in understanding the mechanics of circuit cutting, by providing a convenient and efficient
framework for thinking about individual circuit fragments. We hope that this framework
will help in achieving the ultimate the goal of sampling a quantum circuit by sampling its

fragments.
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FIGURE LEGENDS

Figure |

Circuit cutting example. A 3-qubit GHZ circuit can be cut into two 2-qubit fragments
by inserting an identity operator. Here B = {X, Y, Z,1} is the set of Pauli operators X, Y, Z
and the identity /, which together form an orthogonal basis for the space of single-qubit
operators; A (M) denotes the spectrum of M; and Ms = |[MS)(MS is the projector onto an
eigenstate \MS) of M with eigenvalue s. Green (red) boxes labeled by the state Ms (Mr)
correspond to preparations (projections) of a qubit in the corresponding state. After cutting
a circuit, the resulting fragments can be simulated independently, and an appropriate post-

processing of simulation results recovers the output of the original (pre-cut) circuit.
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Figure 2

Block-diagonalizing circuit fragments. Each circuit fragment can be identified with
a density operator A on the joint Hilbert space of its input (left) and output (right) qubits.
Classical inputs and outputs of a fragment (gray) correspond to qubits that are either
prepared in the trivial state |0) (labeled ‘0’) or measured in a fixed computational basis
(labeled '0/E). Quantum inputs (left, green) and outputs (right, red) correspond to qubits
associated with cuts in a circuit. Due to the presence of trivial inputs, we only need to
characterize a reduced state A on the Hilbert space of the quantum inputs and all outputs.
Classical outputs give this reduced state a block-diagonal structure: A = As O [s)(s|,
where the block As is associated with the measurement of bitstring s on the classical outputs

of the fragment.

Figure 3

Fragment recombination as a tensor network contraction problem. The full
probability distribution over measurement outcomes for a circuit reconstructed from frag-
ments 4,B,C can be represented by a tensor contraction of the reduced states 4,B,C,
obtained by performing MEET on the fragments. The probability to measure a given bit-
string kAmn (i.e. a concatenation of k, t, m, n 6 Z2) on the output of the fragment is given by
the contraction of the diagonal blocks Ak, Bfm, Cn. The lack of classical inputs to fragment
B implies that B = B.

Figure 4

Random unitary circuit (RUC) of ten qubits split into three clusters. Qubits
are first split among clusters as evenly as possible, and each cluster is prepared in a random
state by the application of a Haar-random unitary gate [ , ]. Adjacent clusters are then
entangled with random two-qubit gates, before again applying a layer of random unitaries on
all clusters. A clustered RUC is cut into fragments (labeled 4,B,C) by cutting the bottom

legs (shown in red) of every inter-cluster entangling gate.
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Figure 5

Infidelity in reconstructed circuit outputs. The infidelity X = | — 7" as a function of
sample number S (a, b, ¢) or qubit number QO (d, e, f) for clustered random unitary circuits
(RUCs) with F =2 (a, d), 3 (b, e) or 4 (¢, f) fragments. Open markers correspond to
simulations of the full circuit (‘full’), or simulations via circuit cutting before (‘direct’) and
after (MLFT’) maximum likelihood corrections to fragment models. The last two markers
in the legend correspond to analytical estimates of infidelity: 20/S for the full method, and

2¢° /n for the direct method, where C/ is the number of classical outputs on fragment
/ and n = S/V is the number of samples devoted to each of V" total fragment variants.
Whereas the estimates for the full method are quantitatively accurate, the estimates for the
direct method are provided only to highlight approximate scaling relationships [3(]. Results

for each data point are averaged over 100 instances of a clustered RUC.
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Multinomial distribution sampling error

Let p be a classical probability distribution over a discrete (and finite) set of measurement
outcomes {b}, and let p, be the probability of outcome b. We denote an empirical estimate
of pp by Dy, and denote the error in this estimate by ¢, = D, — pp. If we take n samples of
p and set each p, to the fraction of times that we observed outcome b, then the statistical
means and covariances of the errors ¢, are

) =0, feoee) = Pel0 = Pe) W)

n

where (X)) denotes the expected value of X after averaging over attempts to estimate p

from n samples; and d,. = 1 if b = ¢ and zero otherwise.

Sampling infidelity

Let pp be the probability of observing bitstring b at the end of a circuit, and P, = py + €
an empirical estimate of p,. The infidelity of the estimated probability distribution is

where we tentatively assume that all p, # 0. Expanding the square root as /1 + x =
1+ x/2—22/8 +O(x*), up to O (¢*) corrections we find that

2

, (2)

1e 16% le, 1¢e2
11— N A ) I (R 4
;pbp < e 8p§>< EETY” W
1 (e ec> 1 epee 1<e§ ei)}
~ - N Ry e 5
;pbp { 2 (pb pe)  Appe S \p; P ®)
1 1 €
—_ - . % 6
2o gletydy, (6)

Infidelity for full circuit execution

Let p, be the probability of observing bitstring b at the end of the circuit, and p, = py+ €

an empirical estimate of p. If we sample the probability distribution n times and set each

2



pb to the fraction of times that we observed bitstring s, then the estimates pb of pb are

normalized with J2bpb = 1, so

— A2 (Ph ~Ph) = "2'Pb ~ ~PB = (. (7
b b b b
Up to O(C) corrections, the expected infidelity ((X)) is then
IE 41;\\1—% 27-1 NZA o\
4 pb 4~ n — 4n 4n-

where 20 = J2b 1 is the total number of bitstrings that can be measured at the output of O
qubits.
A few comments concerning the result in Eq. (8) are in order. First, the restriction that
X 6 [0,1] implies that Eq. (8) can only hold for 4n =2~ — 1, and that if 4n is comparable
to then the 0(C) contributions to X must become relevant. Second, if any pb = 0,
then the factor 2" should be replaced by the sample space volume \(b:pb Q}I- This
second observation in particular suggests that Eq. (8) can only hold for sufficiently ‘generic’
probability distributions, as large separations of scale in the probabilities pb should reduce
20 to some smaller ‘effective’ sample space volume, likely determined by the output entropy
S(p) = — J2bPb1°gPb- Finally, we point out that Eq. (8) also describes the infidelity with
which n samples estimate the conditional probability distributions associated with a single
fragment of a cut-up circuit. Unfortunately, the presence of quantum correlations between
circuit fragments implies that the infidelity of a reconstructed circuit output is not additive
in the infidelities of the fragments. Nonetheless, we show in the following section that the
infidelity of a reconstructed circuit still scales inversely with the number of fragment samples,
and exponentially in fragment size, i.e.
1 !
772 O<Ezf:200>, 9)
where now n is the number of samples used to estimate each variant of each fragment, /

indexes a single fragment, and C/ is the number of classical output bits on fragment /.

One cut, two fragments

We now attempt to compute the expected infidelity of a circuit output estimated from
fragment data. We first work out the relatively simple case of one cut and two fragments,

which we will subsequently generalize to the case of arbitrary cuts and fragments.
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In order to evaluate the expected infidelity (Z)), we first need to construct an estimator
p of p. We can take the diagonal elements of Eqs. (5) and (7) in the main text (in the

computational basis) to expand the probability distribution

p=3 30 (M) o p? (M) POn= Y 4, (0)

MeEB reA(M)
where p/ (M,) is the probability distribution at the output of fragment f conditional on
measuring or initializing M,, as appropriate. We will assume without loss of generality that
the first fragment is measured and that the second fragment is initialized at the cut, in
which case p' (M,) is normalized to the probability of getting outcome M, when measuring
the appropriate qubit in the diagonal basis of M. To deal with this normalization properly,

we expand
pf (M,) = o (M,) ¢ (M,), (11)

where af (M,) = 3, pl (M,) is the normalization of p/ (M,) (which is equal to 1 for initial-
ization conditions), and ¢/ (M, ) = p/ (M,) /a’ (M,) is a normalized probability distribution.

We construct estimators p/ (M,) of p’ (M,) as follows. For measurement conditions, the
estimator @’ (M,) ~ a’ (M,) is set to the fraction of times that we observe outcome M, when
measuring in the appropriate basis; for initialization conditions, @’ (M,) = of (M,) = 1.
Each entry ¢/ (M,) of the probability distribution ¢/ (M,) ~ ¢/ (M,) is set to the fraction
of times that we observe bitstring b on the classical output of fragment f when conditioned
on M,. For any argument M, of a’, ¢/, etc., we can then define the errors 37 = @/ — a’ and

v = ¢’ — ¢/ and expand
W —ald = e — B gf v afv 4 BT (12)
and define, for all symbols X € {pf, a’ ¢’ pf al, g, ef,ﬁf,fyf},

X(M)y= > sX(M,), (13)

SENM)

which allows us to construct the estimator



where

e=" "M OpIM) +p* M) Oe2 (M) + (M)Oe2(M)]. (15)

w Mes
Strictly speaking, the definition of estimators and errors X (/) are ambiguous as presented,
as there is not a unique decomposition of 7 for the sum in Eq. (13). In practice, our

implementations of circuit cutting algorithms set

A=t V  AA)). (16)

MEgY.y.Z}
rEA(M)

Whereas the errors e* (M) and e* (AT) for M, M’ 6 {X, Y, Z} are uncorrelated unless M =
AT, the decomposition in Eq. (16) implies that e* (/) is correlated with e* (M) for all M 6 B.
For simplicity, however, we will assume that the estimators p* (M) andp* (M') with M yt M’
are built from independent experimental data, such that their corresponding errors (M)
and {M’) are uncorrelated. Crucially, this assumption does not affect the general structure
of our calculations, and therefore leaves our main conclusions (namely, how reconstruction
infidelity {{I}} scales with different fragment parameters) in tact.

In order to compute the expected infidelity of p, we now need to determine the statistical
means ((¢>)), covariances ((ebec)), and variances {{el)). The means {{eb)) = 0 because all con-
tributions to eb are either (i) proportional to a single error in the estimate of a multinomially
distributed random variable, which is mean-zero, or (ii) a product of multiple independent

(uncorrelated) errors, which is also mean-zero.

Ccwmifmcea

To compute the covariance {{ebec)), we note that are only working to second order in error
variables, whereas the contributions to ((¢>ec)) from the ~ el Oel terms of Eq. (15) are either
fourth order or zero; we are therefore free to neglect these terms. Additionally throwing out
terms that vanish because they are the product of uncorrelated random variables, we find

that

NZ « - E«<iM << (V)»prl, M) d, (A)). (17)



where / G {1,2} and / © /, i.e. such that {/,/} = {1, 2}; and bf, cf are the substrings of

b, ¢ associated with fragment /. We now expand

(4 (A4 M» M~ rs () (Mr) 3< (M) ¢> (A,) g> (A],)
r,aEA(M)
+ V18V (A/,) a' (AL) {(7if (A/,) 7" (Al))), (18)
r,aGA(M)

where we again throw out terms that are zero or fourth order in error variables. The
normalization errors ™ (Mr) ,j3f (Ms) are zero for initialization conditions, and are always
correlated for measurement conditions because they are errors in mutually exclusive mea-
surement outcomes. The probability distribution errors 7/ (Mr) ,7/ (Ms), meanwhile, are
independent unless Mr = Ms. The covariances between these errors are determined by

multinomial distribution sampling errors, so

«y (Mr) 3" (M3)) = ia< (Mr) 7, - a< (A/)] (1 = , (19)

(4 (Mr) g (Mg)) = gl(/)  _glM)], (20)

where 7 is the number of times that we sample fragment each variant of each fragment
(i.e. each choice of initialization conditions and measurement bases on a fragment), (Mr)n
is the expected number of times that we sample fragment / with condition Mr, Qf is the
number of quantum outputs (i.e. or measurement conditions) on fragment /.

If 5gfo = 0, then the ~ (Mr) 5rs contributions from Eq. (19) cancel out with the
~ g/ (Mr) gf (Mr) contributions from Eq. (20) when substituting these results into Eq. (18).
Meanwhile, if SOf0 = | then ¢J (Mr) = 1, so

n ((4 (M) 4 (A)) « ibepl (/) = (1 - PT(M) p{ (M) — S™YrPL (Mr) p{ (Mr).
(21]
Altogether,
. E Ed.(A)4(AD @)
1
7N -a- ~ (M): (23)
4n /]I\E/I



Substituting

(7 =1, (M) = 2"MJ, =42, 1 - Qo =41, (24)

we thus find that

=0 (24

The infidelity ((%)) is therefore determined entirely by the variances ((el)).

Vmifmcea

We now consider the variances

«a>« ) d, (-V) (26)
/M

where from Eq. (21) we know that

"«d (Vr=dm-d V) A -s0Il0) —sqL, Y. & (Mr? (27)
In principle, we have to simplify
PHYY Oy dEwW" pb=\Yd(M)Il (M)- (28)
b N M

but this calculation is intractable due to the sum over M 6 B in the denominator. We
therefore settle for trying to find an upper bound on this sum, to which end we observe that
»() NN EMAK (T <EM@A™ @~ (29)

IM /
Rather than the factors p/ (/), we can express this bound in terms of the mean probability

(pbfJ to get bitstring bf on fragment /, averaged over all possible conditions. This mean
probability is (p[f] = p/[ (/) /2'5t, where Qf is the number of quantum inputs (initialization

conditions) on fragment /, so

n(*) < 2" 4" EH" =4 & (p?)  -L (). (30)
/ y 2 i



Ill turn, we can bound
()~ =3
g b

The factor (p”) (p”) jpb is a measure of the quantum correlation between two fragments: it

() ¢ 1y [l bR 5= L, .
Db n < Db ; 207 Y

is equal to I if there is no correlation, and is smaller (greater) than I if quantum correlations
cause constructive (destructive) interference for measurement outcome b on the combined
circuit. In principle, this factor can be made arbitrarily large, but that requires hue tuning,
and generally speaking we would expect (p) (p”)jpb ~ 0(1) for random circuits. We

therefore expect that

<«< <>) ==~ 20=Qf) . 3D

The general case

We now estimate an upper bound on expected infidelity for the general case of K cuts

and F fragments. Defining the projectors
% U {Mr:re A(M)}, (33)
MSB

a fragment with K/ incident cuts is nominally characterized by the conditional distributions
p' (AT) = (AT) / (AT), (34)

where AT 6 Vgf af (AT) = YhbPb {M) is the normalization of pf'(AT), and gf (AT) is a
normalized probability distribution. Similarly to before, the estimator 5/ (AT) % cF (AT)
is set to the fraction of times that we observe the measurement conditions in AT when
measuring the corresponding qubits in the appropriate bases and preparing the initialization
conditions in AT. Each entry ¢/ (AT) of the probability distribution ¢/ (AT) % ¢/ (AT) is
set to the fraction of times that we observe bitstring b on the classical output of fragment /
with conditions AT. The estimator p* and errors j3f 7", fJ are defined just as before, and all
appropriate objects are are defined for ‘conditions’ AT 6 BKf by summing over the spectrum

of each condition similarly to Eq. (13). Altogether, we have the estimator

B>=W BE ®PYM)=p+( (35)
MesK [



where M/ C M denotes the conditions in M that are incident on fragment f, and the

distribution error ¢ has components

o e 3 S, () [, (o) (36)

MecBK f g#r

where we neglect terms that are second order or higher in the fragment errors ¢/.

Covariances

By the same argument as before, the mean {(¢) = 0, so we turn to considering the

covariance

feee) ~ g0 >0 So{el, (), () W TT oty My, (M), 31)
!

MeBK g#f

which leads us to expand

(e eyl (na7) )
VL (o (nak) 7 (na) o (01 of (na)

R,S€N Mf)
Y RIS (M) of (nad) (5] (ph) f (M) ). (39)
R,se,\(Mf)
where R — (7"1, ro,- - ,rKf) c A (Mf) is a choice of eigenvalue r € A (M) for each condition

M in M/, M}, is the corresponding list of (projectors onto) eigenvectors, and || R| = [Lerr

The covariances between 37 and +/ are determined by the multinomial distributions

(o () (2~ ot (38) o=t (D) (1-5) -
<<’nf (M}Q) v (Mé) >> = % x % x gl (M;;) [61)0 _ (M}Q)} | (10)

which as before implies that

n (e (M7) e (M)

~ bup] (1) = (1= g ) ol (M) L (M) = b, Sl (ME) of (M) (a1
R



where I/ = (I,1,---) is a constant list of length K. Altogether,

S e 4KRZZ<<% (M) <, <Mf>>>szg (M) s, (M) (42)

b,c
~ ﬁ;\; o (1) = (1= bgr,) @ (MF)" = 2506, [ T (). (a3)

g#

Though unsure how to evaluate this quantity, we can use the fact that a’ (M ! ) <al (I ! )2

45+ to bound

4Kza (M) T o (M) < F[[a? (19)° < 45 F, (44)
g#f g

and similarly

s Z 2K T a® (M?)? < Z 2K [ (19)% < Z 2K T] 4k < 45 F, (45)

gtf gtf g#r

which implies that the contribution to {(Z)) from the covariances {(e,cp)) satisfies

4KF
- Z €b€b (46)

Variances

As in the case of one cut and two fragments, we now bound

SR Zpbf () gp a1y (47)
< Zpbf () [ 1 ws, (2%)? (48)
g#rf

| o 1L (9
I g#r

= H 2% <pffh>] S OTT2% ) (50)
L~ I g#f

= 4" [H {py,) ] S oA T k) (51)

g#rf

The contribution to infidelity (Z)) from the variances ((¢2)) is then

Lyl [Hh h) ] S 0! T ) ~ <%;2@_Q5>, 52)

f g#rf
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so altogether
«I»~0 —. 2C-_Qif> . (53)

In practice, we find this asymptotic bound to be overly pessimistic with regards to the
scaling with K. There are other ways in which this bound is too optimistic: by assuming
that fragments are weakly correlated and ™ ™ (p”*) ~ 0(1), this bound does not capture
the effect of errors due to noisy virtual teleportation of qubits across cuts between fragments,
at their quantum inputs and outputs. Nonetheless, the bound in Eq. (53) demonstrates
~ A 2C° scaling with shot number » and fragment size C£, which (all else equal) are not

affected by these considerations.

SUPPLEMENTARY FIGURES

Figure 5 of the main text shows infidelities ((%)) of reconstructed outputs for clustered

random unitary circuits (RUCs). To provide a sense of the robustness of X to circuit varia-
tions, Supplementary Figure | shows the standard deviation a (X) = \J((X— ((X)))2)) in the

same simulations. Generally speaking, a (X) is orders of magnitude smaller than the ((X)).

F=2 F=3 X=4
H
- Q>
o full
[} direct
L eeeeerememnsnenee e A MLFT
0+ |+ O ;O -1 O
H iglﬁ Jo
%
, bo" | 000"
1or nO:OiO -i i i i | ”.70 i OIO i i i ! i i i i i i r
12 16 20 8 12 16 20 8 12 16 20
Q Q Q

Supplementary Figure 1. Standard deviation of the infidelities shown in Figure 5.
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