
International Journal for Uncertainty Quantification, 11(4):1–23 (2021)

LOCALIZED STOCHASTIC GALERKIN METHODS
FOR HELMHOLTZ PROBLEMS CLOSE TO
RESONANCE
Guanjie Wang,

1

Fei Xue,

2

& Qifeng Liao

3,⇤

1School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance,
201209, Shanghai, P. R. China

2Department of Mathematical Sciences, Clemson University, 29631, Clemson SC, USA
3School of Information Science and Technology, ShanghaiTech University, 201209, Shanghai, P.
R. China

*Address all correspondence to: Qifeng Liao, School of Information Science and Technology, ShanghaiTech

University, 201209, Shanghai, P. R. China, E-mail: liaoqf@shanghaitech.edu.cn

Original Manuscript Submitted: mm/dd/yyyy; Final Draft Received: mm/dd/yyyy

Efficiently solving stochastic Helmholtz equations remains an open challenging problem, especially when the corre-
sponding problems are close to resonant frequencies. For widely used stochastic Galerkin methods based on spectral
stochastic finite element approximations, two main computational difficulties exist when solving this kind of problem:
slow convergence rates of spectral approximation methods and efficiency degeneration of preconditioned iterative linear
solvers. To address this issue, we focus on the multi-element generalized polynomial chaos (ME-gPC) for stochastic ap-
proximation and finite element methods for physical approximation. A novel localized stochastic Galerkin scheme based
on the combination of ME-gPC finite element approximation and mean-based preconditioning is proposed and ana-
lyzed in this work. Theoretical analysis shows that the mean-based preconditioner can be efficient in this setting, and
numerical studies demonstrate the overall efficiency of the localized stochastic Galerkin scheme to solve the stochastic
Helmholtz equations close to resonance.

KEY WORDS: Helmholtz equations, uncertainty quantification, multi-element generalized polynomial
chaos, iterative solvers

1. INTRODUCTION

During the last decade there has been a rapid development in numerical methods for stochastic Helmholtz equations.
This explosion in interest has been driven by the need of conducting uncertainty quantification for ocean acoustic,
optic, and electromagnetic problems [1–3]. The uncertainty sources for these problems typically come from lack
of knowledge or measurement of wave numbers, source parameters, and boundary data. In the work of Elman et
al. [4], random forcing functions and boundary conditions are studied, and multigrid solvers for the corresponding
stochastic finite element approximation are developed. Uncertain scattering boundary shapes are studied by [5,6].
For random diffusion parameters and wave numbers, efficient domain decomposition solvers are developed in [7]. In
these sources of uncertainty, uncertainty quantification for random wave numbers is very challenging, especially for
these parameters close to resonant frequencies [8]. They rather lead to loss of coercivity of the Helmholtz operator,
which in turn leads to linear systems with singular matrices to solve. This paper is devoted to stochastic Helmholtz
problems close to resonance.

Among uncertainty quantification approaches, this work focuses on stochastic spectral methods, which have been
shown to be effective in many disciplines [9,10]. Stochastic Galerkin [9,11] and stochastic collocation [10,12–17] are
two kinds of widely used spectral approaches. The stochastic collocation method is studied for Helmholtz equations in
[5,6] and related scalar hyperbolic equations in [16], while the results in [6] show that it remains an open challenging
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problem to develop an effective stochastic collocation procedure for high-frequency acoustic scattering problems. To
efficiently solve stochastic Helmholtz problems close to resonance, it is essential to conduct adaptive refinements for
stochastic approximations. Adaptive strategies have been actively developed for stochastic Galerkin methods, which
include the multi-element generalized polynomial chaos (ME-gPC) method [18] and adaptive refinement processes
based on a posteriori error estimators [19]. As these works have shown great potential in conducting adaptivity
using stochastic Galerkin methods, we focus on ME-gPC [18] and the spectral stochastic finite element methods
[20], which are based on stochastic Galerkin. In addition, we note that the well-posedness and a priori bounds for
the solution of the Helmholtz equation with random coefficients are established in [21], and a stochastic Helmholtz
preconditioning problem is analyzed in [22]. It is known that the overall efficiency of a stochastic Galerkin method
relies on the following two aspects: choosing proper approximation spaces and designing suitable iterative solvers
for the corresponding linear systems. The resonant frequencies cause difficulties for both aspects. First, when the
wave numbers are close to resonant frequencies, variances of solutions become very large, and stochastic spectral
approximation methods can have low convergence rates. Second, again due to large solution variances, the linear
systems arising from spectral stochastic finite element methods can be ill-conditioned, and the efficiency of standard
preconditioned iterative linear solvers can deteriorate.

To result in an overall efficient strategy for solving these Helmholtz problems, a novel localized stochastic
Galerkin framework is proposed and analyzed in this work. We focus on the ME-gPC for stochastic approximation
[18] and finite elements for physical approximation. We show that by dividing a stochastic domain into subdomains,
ME-gPC provides efficient localized stochastic approximations for stochastic Helmholtz problems. At the same time,
we propose and analyze a mean-based preconditioning scheme for the linear systems arising from the ME-gPC finite
element approximations. Since the solution variance on each stochastic element is much smaller than that of the over-
all solution, the mean-based preconditioning is shown to be efficient in this setting. The main novelty of this work
lies on the new combination of ME-gPC finite elements and the mean-based preconditioning scheme. To simplify the
presentation, this paper is restricted to the situation where random inputs have uniform distributions. In Section 2, the
detailed setting of stochastic Helmholtz equations is introduced, and the frameworks of stochastic Galerkin methods
and ME-gPC are discussed. In Section 3, detailed formulations of the linear systems associated with the ME-gPC
finite element approximation are presented, and the corresponding mean-based preconditioning scheme is proposed
and analyzed. Numerical results are discussed in Sections 4 and 5 concludes the paper.

2. THE STOCHASTIC HELMHOLTZ EQUATION AND ITS DISCRETIZATION

Let D ⇢ Rd (d = 2, 3) denote a physical domain that is bounded, connected, with a polygonal boundary @D, and
where x 2 Rd denote a physical variable. Let ⇠ be a vector that collects a finite number of real-valued random
variables, and the dimension of ⇠ is denoted by N . We next write ⇠ = [⇠1, . . . , ⇠N ]

T and assume that the random
variables ⇠1, . . . , ⇠N are independently distributed on the bounded intervals �1, . . . ,�N , respectively. The image of
⇠ is then denoted by � := �1 ⇥ · · ·⇥ �N and the probability density function of ⇠ is denoted by ⇢(⇠). In this paper,
we consider the following stochastic Helmholtz problem: find the unknown function u(x,⇠) satisfying

�r2u(x,⇠)� 2
(x,⇠)u(x,⇠) = f(x,⇠) 8(x,⇠) 2 D ⇥ �, (1)

u(x,⇠) = 0 8(x,⇠) 2 @D ⇥ �. (2)

In Eq. (1), (x,⇠) is the wave number and f(x,⇠) is the forcing term, which are assumed to have the following
forms:

(x,⇠) =
N
X

m=0

m(x)⇠m, f(x,⇠) =
N
X

m=0

fm(x)⇠m, (3)

where {m(x)}Nm=0 and {fm(x)}Nm=0 are real-valued deterministic functions, and we set ⇠0 = 1 for convenience.
Note that only the homogeneous Dirichlet boundary condition [Eq. (2)] is considered in this work for simplicity,
while our approach can be applied in the case of other boundary conditions, like Neumann or transparent boundary
conditions.
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To ensure the well-posedness of the problem, we assume that there exists a constant ✏ > 0, such that all the
eigenvalues associated with deterministic versions of Eqs. (1) and (2) have a modulus greater than ✏. That is, for each
realization of ⇠, considering the following deterministic Helmholtz eigenvalue problem (see [23–25])

�r2u(x,⇠)� 2
(x,⇠)u(x,⇠) = �(⇠)u(x,⇠) (4)

with boundary condition [Eq. (2)], we collect all its eigenvalues [i.e., all values of �(⇠) in Eq. (4)] into a set denoted by
⇤⇠, and assume that |�| > ✏ for all � 2 [⇠2�⇤⇠. Note that (x,⇠) is called a resonant frequency if the corresponding
eigenvalue problem [Eq. (4)] has a zero eigenvalue.

2.1 Variational Formulation

To introduce the variational form of Eqs. (1) and (2), some notations are required. Letting g(⇠) be a function of the
random vector ⇠, which maps � into R, its expectation (mean value) is defined by

E[g(⇠)] :=
Z

�
⇢(⇠)g(⇠) d⇠,

where ⇢(⇠) is the probability density function of ⇠. Next, the Hilbert spaces L2
(D) and L2

⇢(�) are defined as

L2
(D) :=

⇢

v(x) : D ! R
�

�

�

�

Z

D
v2
(x) dx < 1

�

,

L2
⇢(�) :=

⇢

g(⇠) : � ! R
�

�

�

�

Z

�
⇢(⇠)g2

(⇠) d⇠ < 1
�

,

which are equipped with the inner products

(v(x), v̂(x))L2 :=

Z

D
v(x)v̂(x) dx, (5)

(g(⇠), ĝ(⇠))L2
⇢
:=

Z

�
⇢(⇠)g(⇠)ĝ(⇠) d⇠. (6)

Following [26], we define the tensor space of L2
(D) and L2

⇢(�) as

L2
(D)⌦ L2

⇢(�) :=

(

w(x,⇠)

�

�

�

�

w(x,⇠) =
n
X

i=1

vi(x)gi(⇠), vi(x) 2 L2
(D), gi(x) 2 L2

⇢(�), n 2 N+

)

,

which is equipped with the tensor inner product

(w(x,⇠), ŵ(x,⇠))L2⌦L2
⇢
=

X

i,j

(vi(x), v̂j(x))L2(gi(⇠), ĝj(⇠))L2
⇢
,

where it is clear that (w(x,⇠), ŵ(x,⇠))L2⌦L2
⇢
= E

⇥R

D w(x,⇠)ŵ(x,⇠) dx
⇤

. Denoting the trace operator for functions
in L2

(D) by �, we next define the solution and test function space

W := H1
0 (D)⌦ L2

⇢(�) =

⇢

w(x,⇠) 2 L2
(D)⌦ L2

⇢(�)

�

�

�

�

kw(x,⇠)kW < 1 and w|@D⇥� = 0
�

,

where
H1

0 (D) :=

n

v 2 L2
(D)

�

�

�

�(v) = 0, @v/@xi 2 L2
(D), i = 1, . . . , d

o

,
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and the norm k · kW is defined by

kw(x,⇠)k2
W :=

Z

�
⇢(⇠)

Z

D
rw ·rw dx d⇠.

Following [10,20,27], the variational formulation of Eqs. (1) and (2) with respect to the inner product ( · , · )L2⌦L2
⇢

can be written as:

find u(x,⇠) 2 W such that

E


Z

D

�

ru ·rw � 2uw
�

dx

�

= E


Z

D
fw dx

�

, 8w(x,⇠) 2 W. (7)

2.2 Discretization with Generalized Polynomial Chaos Approximations

To obtain the discrete version of Eq. (7), we need to introduce a finite dimensional subspace of L2
(D) ⌦ L2

⇢(�)

and find an approximation located inside. First, the finite element approximation [28] is considered for physical
approximation in this work. The finite element approximation space is denoted by Vh := span{vs(x)}Nh

s=1 ⇢ H1
0 (D),

where {vs(x)}Nh
s=1 are the standard trial (test) functions, h denotes the mesh size, and Nh is the finite element degrees

of freedom. For stochastic approximation, we consider the generalized polynomial chaos (gPC) approximation [29]
(and see [9,30] for polynomial chaos methods). The gPC space is denoted by Sp := span{�i(⇠)}

Np

i=1 ⇢ L2
⇢(�),

where {�i(⇠)}
Np

i=1 includes orthonormal polynomials with respect to the inner product ( · , · )L2
⇢

; that is

(�i(⇠),�j(⇠))L2
⇢
=

Z

�
⇢(⇠)�i(⇠)�j(⇠) d⇠ = �ij ,

where �ij is the Kronecker’s delta. As usual, {�i(⇠)}
Np

i=1 consists of orthonormal polynomials with total degrees up
to p, and p is referred to as the gPC order. The finite dimensional subspaces of W are then defined as

Whp := Vh ⌦ Sp = span{vs(x)�i(⇠)|s = 1, . . . , Nh, i = 1, . . . , Np }.

To obtain the discrete version of Eqs. (1) and (2), we write the overall (gPC finite element) approximation
of u(x,⇠) in Whp as

uhp(x,⇠) :=

Np
X

i=1

u(i)
h (x)�i(⇠) =

Np
X

i=1

Nh
X

s=1

uisvs(x)�i(⇠). (8)

In Eq. (8), the unknown coefficients uis for i = 1, . . . , Np and s = 1, . . . , Nh, are determined by solving the discrete
version of the stochastic Helmholtz problem Eqs. (1) and (2), which is formulated through substituting Eq. (8) into
Eq. (7) and restricting the test functions to the subspace Whp. Details of the corresponding linear system are given in
Section 3.1.

2.3 Multi-Element Generalized Polynomial Chaos Methods

To achieve high stochastic accuracy for the gPC finite element approximation [Eq. (8)], there are two standard strate-
gies. The first is to take a high gPC order p in Eq. (8); the second is to decompose the parameter space � into
subspaces, and construct gPC approximations locally in each subspace with relatively low orders. As discussed in
[18], the second strategy is especially efficient when the exact solution to approximate has discontinuity or singu-
larity with respect to the random inputs. For this purpose, the studies [26,31] develop the stochastic Galerkin finite
element method, and the works [18,32,33] develop the ME-gPC method. Since the stochastic Helmholtz problem
considered in this paper is close to a resonant frequency (that is singularity), we consider the second strategy and
especially focus on the ME-gPC method. We review the ME-gPC method following the presentation in [18,32,33].
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Let {Bk}Mk=1 be a partition of �, where M is the number of elements of the partition; that is, � =

SM
k=1 Bk and

for k1, k2 2 {1, . . . ,M}, Bk1

T

Bk2 = ; if k1 6= k2. Following [18], each element Bk is assumed to be in the form
of Bk = [ a(k)1 , b(k)1 )⇥ [ a(k)2 , b(k)2 )⇥ · · ·⇥ [ a(k)N , b(k)N ], where a(k)i < b(k)i for i = 1, . . . , N and k = 1, . . . ,M .

With the partition {Bk}Mk=1, u(x,⇠) can be represented as

u(x,⇠) =
M
X

k=1

u(x,⇠)|⇠2Bk =

M
X

k=1

Ik(⇠)u(x,⇠),

where

Ik(⇠) =

(

1, ⇠ 2 Bk;

0, ⇠ /2 Bk.
(9)

For convenience, we next define ⇣k := ⇠ for ⇠ 2 Bk, and u(k)
(x, ⇣k) := u(x, ⇣k) = u(x,⇠)|⇠2Bk . It is clear

that the range of ⇣k is Bk, and it can be viewed as a new random variable subject to the probability density function
⇢(k)(⇣k) := ⇢(⇣k)/

R

Bk
⇢(⇠)d⇠. With this probability density function, the restriction of the solution u(x,⇠) to

Bk, that is, u(k)
(x, ⇣k) = u(x,⇠)|⇠2Bk , can be approximated through the standard gPC method. In the following,

u(k)
(x, ⇣k) is also referred to as a local solution on Bk. Similar to Eq. (8), the gPC approximation of u(k)

(x, ⇣k) is
written as

u(k)
(x, ⇣k) ⇡ u(k)

hp (x, ⇣k) :=

N(k)
p

X

i=1

u(k,i)
h (x)�

(k)
i (⇣k) =

N(k)
p

X

i=1

Nh
X

s=1

u(k)
is vs(x)�

(k)
i (⇣k), (10)

where p is the highest total degree of the gPC basis, N (k)
p = (N + p)!/(N !p!) is the number of basis functions on

the random element Bk, {vs(x)}Nh
s=1 is a basis of the physical approximation space Vh, and {�(k)

i (⇣k)}1i=1 is an
orthonormal basis of the following Hilbert space:

L2
⇢(k)(Bk) :=

⇢

g : Bk ! R
�

�

�

�

Z

Bk

⇢(k)(⇣k)g
2
(⇣k) d⇣k < 1

�

,

equipped with the inner product

(�

(k)
i (⇣k),�

(k)
j (⇣k))L2

⇢(k)
:=

Z

Bk

⇢(k)(⇣k)�
(k)
i (⇣k)�

(k)
j (⇣k)d⇣k. (11)

The multi-element gPC approximation of u(x,⇠) can be given by

uMhp(x,⇠) :=
M
X

k=1

Ik(⇠)u
(k)
hp (x,⇠) =

M
X

k=1

Ik(⇠)u
(k)
hp (x, ⇣k), (12)

where Ik(⇠) and u(k)
hp (x, ⇣k) are defined in Eqs. (9) and (10), respectively.

As discussed in [18,32], the partition of the parameter domain � is adaptively constructed; the procedure can
be summarized as follows. The first step is to initialize a partition of �. The second step is to select the important
elements (subdomains of the parameter domain) that need to be split. Third, for each selected element, we find the
sensitive dimensions, and split the element by equally dividing these dimensions in the parameter domain. The second
and the third steps are repeated until no important element can be found for splitting.

To select the important elements, we follow the adaptive criterion developed in [18], which is to assess the local
decay rate of relative errors of gPC approximations in each element k = 1, . . . ,M . While the presentation in [18]
focuses on the case that the gPC coefficients are independent of the physical variable x, we modify the criterion as
follows. Let u(k)

i := [u(k)
i1 , . . . , u(k)

iNh
] 2 RNh denote the vector collecting coefficients to represent u(k,i)

h (x) [see
Eq. (10)]. We define the local decay rate of relative error of gPC approximation on each element k = 1, . . . ,M as
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⌘k :=

�

�

�

�

PN(k)
p

i=N(k)
p�1+1

u

(k)
i � u(k)

i

�

�

�

�

�

�

�

�

PN(k)
p

i=1 u

(k)
i � u(k)

i

�

�

�

�

,

where � denotes the Hadamard product and k · k denotes the standard Euclidean norm. The element Bk is labeled for
splitting if

Pr(⇠ 2 Bk)⌘
↵
k > ✓1, (13)

where 0 < ↵ < 1 and ✓1 is a given threshold and ↵ is a prescribed constant [18].
To select the sensitive dimensions, we compute the sensitivity of each random dimension. Let

u

(k)
j,p :=

h

u(k)
(j,p)1, . . . , u

(k)
(j,p)Nh

iT
2 RNh

denote the vector collecting coefficients to represent u(k,j,p)
h (x), where u(k,j,p)

h (x) denotes the function u(k,i)
h (x) in

Eq. (10) associated with the random dimension ⇠j with polynomial order p. The sensitivity of each random dimension
rj for j = 1, . . . , N is defined as

rj :=

�

�

�

u

(k)
j,p � u(k)

j,p

�

�

�

�

�

�

�

PN(k)
p

s=N(k)
p�1+1

u

(k)
s � u(k)

s

�

�

�

�

. (14)

The sensitive dimensions are then defined by the dimensions j 2 {1, . . . , N} satisfying

rj > ✓2 · maxs=1,··· ,N (rs), (15)

where ✓2 2 (0, 1) is another threshold parameter. For Eq. (15), it is clear that there exists at least one sensitive
dimension for each selected element. After that, we split the element by equally dividing these sensitive dimensions.

3. IMPLEMENTATION AND PRECONDITIONED ITERATIVE SOLVERS

In this section, we first give detailed formulations of the linear systems associated with the ME-gPC finite element
approximation. After that, we propose and analyze the corresponding mean-based preconditioning scheme.

3.1 Linear Systems Associated with GPC and ME-GPC Methods

For the standard gPC finite element approximation as studied in detail in [34], we substitute Eq. (8) to the variational
formulation Eq. (7), let the test function be w(x,⇠) = vs(x)�i(⇠) 2 Whp, and obtain the discretized Helmholtz
equation, that is, the linear system

Au = b, (16)

where

A = G00 ⌦K �
N
X

l=0

N
X

m=0

Glm ⌦Mlm, (17)

b =

N
X

m=0

hm ⌦ f

m
. (18)

In Eqs. (17) and (18), ⌦ denotes the Kronecker tensor product and

K(s, t) =

Z

D
rvs ·rvt dx, (19)
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f

m
(t) =

Z

D
fmvt dx, Mlm(s, t) =

Z

D
lmvsvt dx, (20)

hm(i) = E[⇠m�i(⇠)], Glm(i, j) = E[⇠l⇠m�i(⇠)�j(⇠)], (21)

where l,m = 0, 1, . . . , N ; j, k = 1, . . . , Np, and s, t = 1, . . . , Nh. For a uniformly distributed ⇠ 2 [�1, 1]N , hm

and Glm in Eq. (21) are given analytically in [34].
To obtain the ME-gPC finite element approximation uMhp(x,⇠) in Eq. (12) [note that ⇠ is involved in the

problem through Eq. (3)], approximations of the local solutions u(k)
(x, ⇣k) for k = 1, . . . ,M need to be computed.

The framework for computing each local approximation, u(k)
hp (x, ⇣k) in Eq. (10), is almost the same as that for

computing the standard gPC finite element approximation Eq. (8), except for the following modifications. We denote
the linear system for computing u(k)

hp (x, ⇣k) by

Akuk = bk, (22)

where

Ak = G

(k)
00 ⌦K �

N
X

l=0

N
X

m=0

G

(k)
lm ⌦Mlm, (23)

bk =

N
X

m=0

h

(k)
m ⌦ f

m
. (24)

In Eqs. (23) and (24), K, Mlm, and f

m
are defined in Eqs. (19) and (20), but h(k)

m and G

(k)
lm are modified as

h

(k)
m (i) = E

h

⇣(k)m �

(k)
i (⇣k)

i

, G

(k)
lm (i, j) = E

h

⇣
(k)
l ⇣(k)m �

(k)
i (⇣k)�

(k)
j (⇣k)

i

,

where we note that ⇣k =

h

⇣
(k)
1 , . . . , ⇣(k)N

iT
, and for an arbitrary random function g(⇣k), E[g(⇣k)] :=

R

Bk
⇢(k)(⇣k)

g(⇣k)d⇣k.
When considering independent uniform random inputs ⇠, we can take the advantage of the Legendre-chaos on

every random element Bk to result in efficient implementation, which is discussed in the following. To simplify the
presentation, in this section we set � = [�1, 1]N , ⇢(⇠) = (1/2)N , Bk =

h

a(k)1 , b(k)1

⌘

⇥
h

a(k)2 , b(k)2

⌘

⇥· · ·⇥
h

a(k)N , b(k)N

i

,

ak =

h

a(k)1 , . . . , a(k)N

iT
, bk =

h

b(k)1 , . . . , b(k)N

iT
, and recall that the inner products ( · , · )L2

⇢
and ( · , · )L2

⇢(k)
are

defined in Eqs. (6) and (11), respectively. In this setting, we have the following theorem.

Theorem 1. Assume that ⇠ is uniformly distributed in � = [�1, 1]N . Given an orthonormal basis
n

�

(k)
j (⇣k)

o1

j=1
of

the Hilbert space L2
⇢(k)(Bk),

n

�

(k)
j (gk(⇠))

o1

j=1
forms an orthonormal basis of L2

⇢(�), where gk is a bijection from

� to the closure of Bk and is defined as

gk(⇠) :=
1
2
diag(bk � ak)⇠+

1
2
(bk + ak), 8⇠ 2 �.

Proof. Our proof proceeds through the following two steps: the first is to show that
n

�

(k)
j (gk(⇠))

o1

j=1
is an orthonor-

mal system, and the second is to show that
n

�

(k)
j (gk(⇠))

o1

j=1
is complete.

We first prove the orthogonality of
n

�

(k)
j (gk(⇠))

o1

j=1
. As given,

n

�

(k)
j (⇣k)

o1

j=1
is an orthonormal basis with

respect to the inner product ( · , · )L2
⇢(k)

:
Z

Bk

⇢(k)(⇣k)�
(k)
i (⇣k)�

(k)
j (⇣k)d⇣k = �ij . (25)

Volume 11, Issue 4, 2021



8 Wang, Xue, & Liao

Substituting the coordinate transformation ⇣k = gk(⇠) into Eq. (25), we have

�ij =

Z

Bk

⇢(k)(⇣k)�
(k)
i (⇣k)�

(k)
j (⇣k)d⇣k

=

Z

�
⇢(k)(gk(⇠))�

(k)
i (gk(⇠))�

(k)
j (gk(⇠)) det

✓

@⇣k
@⇠

◆

d⇠.

Since det(@⇣k/@⇠) =
QN

k=1[(bk � ak)/2] and ⇢(k)(⇣k) =
QN

k=1[1/(bk � ak)], we have
Z

�
⇢(⇠)�

(k)
i (gk(⇠))�

(k)
j (gk(⇠)) d⇠ = �ij ,

which means that
n

�

(k)
j (gk(⇠))

o1

j=1
is an orthonormal system in L2

⇢(�).

We next prove the completeness of
n

�

(k)
j (gk(⇠))

o1

j=1
. The Fourier coefficients of f(⇠) 2 L2

⇢(�) are defined as

Cf
⇢(j) := (f(⇠),�(k)

j (gk(⇠)))L2
⇢
j = 1, 2, · · · .

If the Parseval’s identity holds for any f(⇠) 2 L2
⇢(�),

(f(⇠), f(⇠))L2
⇢
=

1
X

j=1

|Cf
⇢(j)|2, (26)

then {�(k)
j (gk(⇠))}1j=1 is complete [35]. By changing variables, ⇠ = g�1

k (⇣k), we have

(f(⇠), f(⇠))L2
⇢
=

Z

�
⇢(⇠)f 2

(⇠) d⇠

=

Z

Bk

⇢(g�1
k (⇣k))f

2
(g�1

k (⇣k))det
✓

@⇠

@⇣k

◆

d⇣k.

As det(@⇠/@⇣k) =
QN

k=1[2/(bk � ak)] and ⇢(⇠) =
QN

k=1[1/2], we then have

(f(⇠), f(⇠))L2
⇢
=

Z

Bk

⇢(k)(⇣k)f
2
(g�1

k (⇣k)) d⇣k

=

�

f
�

g�1
k (⇣k)

�

, f
�

g�1
k (⇣k)

��

L2
⇢(k)

.
(27)

On the other hand, each Fourier coefficient Cf
⇢(j) can be rewritten as

Cf
⇢(j) = (f(⇠),�(k)

j (gk(⇠)))L2
⇢

=

Z

�
⇢(⇠)f(⇠)�(k)

j (gk(⇠)) d⇠

=

Z

Bk

⇢(g�1
k (⇣k))f(g

�1
k (⇣k))�

(k)
j (⇣k)det

✓

@⇠

@⇣k

◆

d⇣k

=

Z

Bk

⇢(k)(⇣k)f(g
�1
k (⇣k))�

(k)
j (⇣k) d⇣k

=

⇣

f(g�1
k (⇣k)),�

(k)
j (⇣k)

⌘

L2
⇢(k)

.
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This means Cf
⇢(j) for j = 1, . . . , are the Fourier coefficients of f(g�1

k (⇣k)) 2 L2
⇢(k)(Bk). It is obvious that

{�(k)
j (⇣k)}1j=1 is complete, since it is an orthonormal basis. By the Parseval’s identity, we have

�

f
�

g�1
k (⇣k)

�

, f
�

g�1
k (⇣k)

��

L2
⇢(k)

=

1
X

j=1

|Cf
⇢(j)|2. (28)

Combining Eqs. (27) and (28) establishes the Parseval’s identity [Eq. (26)], which means that {�(k)
j (gk(⇠))}1j=1 is

complete.

For uniformly distributed random inputs ⇠, using Theorem 1, h(k)
m and G

(k)
lm can be constructed as

h

(k)
0 = h0; (29)

h

(k)
m =

b(k)m � a(k)m

2
hm +

b(k)m + a(k)m

2
h0, m 6= 0; (30)

G

(k)
00 = G00; (31)

G

(k)
0m = G

(k)
m0 =

b(k)m � a(k)m

2
Gm0 +

b(k)m + a(k)m

2
G00, m 6= 0; (32)

G

(k)
lm =

(b(k)m � a(k)m )(b(k)l � a(k)l )

4
Gml +

(b(k)m � a(k)m )(b(k)l + a(k)l )

4
Gm0

+

(b(k)m + a(k)m )(b(k)l � a(k)l )

4
Gl0 +

(b(k)m + a(k)m )(b(k)l + a(k)l )

4
G00, l,m 6= 0, (33)

where hm and Glm are defined in Eq. (21), and their analytic expressions are given in [34].
To summarize the above procedure, when the random inputs ⇠ are independently and uniformly distributed in

� = [�1, 1]N , we can first compute the matrices and vectors defined in Eqs. (20) and (21) for the standard gPC finite
element approximation, and then for each linear system [Eq. (22)] associated with each local random element Bk for
k 2 {1, . . . ,M} in the ME-gPC setting, we can cheaply assemble it using Eqs. (23) and (24) and Eqs. (29)–(33).

3.2 Mean-Based Preconditioning

To obtain the ME-gPC finite element approximation [Eq. (12)], linear systems Akuk = bk for k = 1, . . . ,M need
to be solved. Since these linear systems are large but sparse, we consider iterative methods to solve them, and we in
particular use the induced dimension reduction (IDR(s)) method [36,37]. To result in a small number of iterations,
preconditioners are typically required in iterative methods. That is, instead of solving the original linear system
[Eq. (22)], we solve the following right preconditioned linear system:

AkP
�1
k ˜

uk = bk, with uk = P

�1
k ˜

uk (34)

where the nonsingular matrix Pk is called a preconditioner.
Following the mean-based preconditioning scheme originally proposed for polynomial chaos methods [20,38,

39], we design a mean-based preconditioner for these linear systems arising from the ME-gPC finite element ap-
proximation for stochastic Helmholtz problems. The mean-based preconditioner is constructed through the dis-
crete version of Eqs. (1) and (2) corresponding to the mean of the input. We denote the expectation of ⇣k by ⇣

(0)
k ,

⇣
(0)
k := E[⇣k] =

R

Bk
⇢(k)(⇣k)⇣k d⇣k. Then the mean-based preconditioner is given by

Pk = G00 ⌦ (K �Mpre),

where G00, K are defined in Eqs. (19) and (21), and Mpre is computed through

Mpre(s, t) =

Z

D
2
⇣

x, ⇣(0)
k

⌘

vsvt dx, s, t = 1, . . . , Nh.
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Note that K �Mpre is the coefficient matrix associated with the discrete version of Eqs. (1) and (2) with ⇠ = ⇣
(0)
k .

In addition, Pk is the same as Ak if the variances of the random inputs ⇣k are zeros; detailed analysis of how Pk

approximates Ak is discussed in Section 3.3. In particular, when the random inputs ⇠ are independently and uniformly
distributed in [�1, 1]N , the mean-based preconditioner can be constructed as

Mpre = M00 +

N
X

m=1

(b(k)m + a(k)m )M0m +

N
X

l=1

N
X

m=1

(b(k)l + a(k)l )(b(k)m + a(k)m )

4
Mlm.

In addition, to start the iterative solving procedure, we set an initial guess u(0)
k = P

�1
k bk.

At each iteration step, for the purpose of preconditioning, we solve a linear system of the form

Pk ˆx =

ˆ

y, (35)

where

ˆ

x =

2

6

6

6

4

ˆ

x1
ˆ

x2
...

ˆ

xNp

3

7

7

7

5

, ˆ

y =

2

6

6

6

4

ˆ

y1
ˆ

y2
...

ˆ

yNp

3

7

7

7

5

, where ˆ

xi, ˆyi 2 RNh for i = 1, . . . , Np.

Instead of forming Pk explicitly and solving the linear system [Eq. (35)] directly, we can take advantages of the
structure of Kronecker tensor product. Since G00 is symmetric, solving Eq. (35) is equivalent to solving the following
problem:

(K �Mpre) ˆXG00 =

ˆ

Y , (36)

where
ˆ

X =

⇥

ˆ

x1, . . . , ˆxNp

⇤

and ˆ

Y =

⇥

ˆ

y1, . . . , ˆyNp

⇤

.

To compute the solution of Eq. (36), we only need to solve Np linear systems with size Nh ⇥ Nh, which is much
cheaper than solving Eq. (22) (whose size is NhNp ⇥NhNp). See [20,34] for more details.

3.3 Improved Efficiency of the Iterative Linear Solvers for ME-GPC Systems

As studied in [34], the mean-based preconditioner for the linear system of the gPC discretization [i.e., Eq. (16)]
can become inefficient when the underlying stochastic Helmholtz problem is close to a resonant frequency. This is
because the coefficient matrix of such a linear system, either unpreconditioned or preconditioned, have some rather
small eigenvalues, such that Krylov subspace methods converge slowly. To tackle this difficulty, we show that the
linear systems arising from the ME-gPC discretization are much easier to solve by a Krylov subspace method with
mean-based preconditioning than their counterpart from the standard gPC discretization.

To analyze such a difference, consider the linear system Akuk = bk obtained from the ME-gPC discretization.
Let Ak = Pk + Q⇣k

, where Pk is the “mean” part of Ak used as the mean-based preconditioner, and Q⇣k
is the

“stochastic” part of Ak, which vanishes if all random variables ⇣k take their mean values with probability 1.
Note that the moduli of eigenvalues �(⇠) in Eq. (4) for all ⇠ 2 � are assumed to be greater than ✏, where ✏ > 0

is a constant, and recall that
Pk = G00 ⌦ (K �Mpre), (37)

where K �Mpre is the coefficient matrix associated with the discrete version of Eqs. (1) and (2) with ⇠ = ⇣
(0)
k . For

the eigenvalue problem [Eq. (4)] associated with ⇠ = ⇣
(0)
k , it can be discretized into

(K �Mpre)u = �Bu, (38)

where B(s, t) =

R

D vsvt dx, s, t = 1, . . . , Nh. Since the eigenvalues of Eq. (38) are approximations of Eq. (4)
associated with ⇠ = ⇣

(0)
k , we assume �min

�

B

�1
(K �Mpre)

�

> ✏. With this assumption, our main insight in this
section is stated in the lemma and the theorem in the following.
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Lemma 1. Assume that the eigenvalue problem [Eq. (4)] associated with ⇠ = ⇣
(0)
k is discretized into Eq. (38),

and suppose that �min
�

B

�1
(K �Mpre)

�

> ✏, where �min refers to the smallest singular value of the matrix under
discussion. Let P and Pk be the mean-based preconditioners for the original system Au = b based on standard
gPC and the system Akuk = bk based on ME-gPC, suppose that both of them are nonsingular. Then, there exists a
constant C = �min(P )/(�min(G00)�min(B)✏), such that

�min(P )  C�min(Pk).

Proof. Since Pk is nonsingular and note Eq. (37), the matrix K �Mpre is invertible. Thus, we have

k(K �Mpre)
�1k2 = k(K �Mpre)

�1
BB

�1k2  k(K �Mpre)
�1

Bk2kB�1k2,

where k · k2 is the spectral norm. That is

�min(K �Mpre) � �min
�

B

�1
(K �Mpre)

�

�min(B) > �min(B)✏.

Thus
�min(Pk) = �min(G00)�min(K �Mpre) > �min(G00)�min(B)✏,

and then there exists a constant C > 0 such that

�min(P )  C�min(Pk),

where
C =

�min(P )

�min(G00)�min(B)✏
.

Theorem 2. Under the assumption of Lemma 1, we further assume that each random variable ⇠l obeys a uniform
distribution on �l = [�1, 1] for 1  l  N and consequently ⇣k obeys a uniform distribution on each

h

a(k)l , b(k)l

i

for

1  k  M . For a given k, suppose that the stochastic element Bk is sufficiently small; that is, maxml=1

⇣

b(k)l � a(k)l

⌘

is sufficiently small. Then, kAkP
�1
k � Ik2 < kAP

�1 � Ik2 where k · k2 is the spectral norm.

Proof. For the uniform distribution, from Eqs. (23) and (31)–(33), we have

Ak = G00 ⌦K �G00 ⌦M00 �
N
X

m=1

⇣

b(k)m + a(k)m

⌘

G00 ⌦Mm0 �
N
X

m=1

⇣

b(k)m � a(k)m

⌘

Gm0 ⌦Mm0

�
N
X

l=1

N
X

m=1

⇣

b(k)m � a(k)m

⌘⇣

b(k)l � a(k)l

⌘

4
Gml ⌦Mlm �

N
X

l=1

N
X

m=1

⇣

b(k)m � a(k)m

⌘⇣

b(k)l + a(k)l

⌘

4
Gm0 ⌦Mlm

�
N
X

l=1

N
X

m=1

⇣

b(k)m + a(k)m

⌘⇣

b(k)l � a(k)l

⌘

4
Gl0 ⌦Mlm �

N
X

l=1

N
X

m=1

⇣

b(k)m + a(k)m

⌘⇣

b(k)l + a(k)l

⌘

4
G00 ⌦Mlm

= Pk +Q⇣k
,

where

Q⇣k
= �

N
X

m=1

⇣

b(k)m � a(k)m

⌘

Gm0 ⌦Mm0 �
N
X

l=1

N
X

m=1

⇣

b(k)m � a(k)m

⌘⇣

b(k)l � a(k)l

⌘

4
Gml ⌦Mlm

�
N
X

l=1

N
X

m=1

⇣

b(k)m � a(k)m

⌘⇣

b(k)l + a(k)l

⌘

4
Gm0 ⌦Mlm �

N
X

l=1

N
X

m=1

⇣

b(k)m + a(k)m

⌘⇣

b(k)l � a(k)l

⌘

4
Gl0 ⌦Mlm.
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For a given k, let us denote #1 = maxNm=1

⇣

b(k)m � a(k)m

⌘

, and #2 = maxNm=1

�

�

�

b(k)m + a(k)m

�

�

�

. Note that #2  2maxNm=1

max
n

|a(k)m |, |b(k)m |
o

 2maxN
m=1max{|⇠m| : ⇠m 2 �m} is uniformly bounded for all k.

It follows that

kQ⇣k
k2  #1

N
X

m=1

kGm0 ⌦Mm0k2 +

N
X

l=1

N
X

m=1

#2
1

4
kGml ⌦Mlmk2

+

N
X

l=1

N
X

m=1

#1#2

4
kGm0 ⌦Mlmk2 +

N
X

l=1

N
X

m=1

#1#2

4
kGl0 ⌦Mlmk2

= #1

N
X

m=1

kGm0 ⌦Mm0k2 +
#2

1
4

N
X

l=1

N
X

m=1

kGml ⌦Mlmk2 +
#1#2

2

N
X

l=1

N
X

m=1

kGm0 ⌦Mlmk2,

Since Var
⇣

⇣
(k)
m

⌘

= (bm � am)

2/12, we have kQ⇣k
k2 = O(#1) = O

✓

⇣

maxNi=1Var
⇣

⇣
(k)
m

⌘⌘1/2
◆

, thanks to the

(uniform) boundedness of #2.Therefore, lim|Bk|!0 kQ⇣k
k2 = limVar(⇣k)!0 kQ⇣k

k2 = 0. This pattern also holds for
the linear system Au = b arising from the standard gPC discretization (a special case by setting Bk = �), where
A = P +Q⇠. Since ⇠ 2 � = [M

k=1Bk, we have Var(⇣k) ⌧ Var(⇠) if |Bk| ⌧ |�| and if ⇠ and ⇣k obey the same
type of distribution. Here, we assume that |Bk| is sufficiently small, and the smallest singular value of Q⇠ is bounded
away from zero. Since lim|Bk|!0 kQ⇣k

k2 = 0, for a sufficiently small |Bk|, there is a sufficiently small c > 0, such
that kQ⇣k

k2 = �max(Q⇣k
)  c�min(Q⇠), where �max and �min are the largest and the smallest singular values of the

relevant matrices, respectively.
The preconditioned coefficient matrices associated with the standard and the ME-gPC discretization are

AP

�1
= (P +Q⇠)P

�1
= I +Q⇠P

�1,

and
AkP

�1
k = (Pk +Q⇣k

)P

�1
k = I +Q⇣k

P

�1
k ,

respectively. By Lemma 1, we have �min(P )  C�min(Pk), that is, kP�1
k k2  CkP�1k2, where C = �min(P )

/(�min(G00)�min(B)✏). Thus, we have

kQ⇣k
P

�1
k k2  kQ⇣k

k2kP�1
k k2  CkQ⇣k

k2kP�1k2  cC�min(Q⇠)kP�1k2  cCkQ⇠P
�1k2.

Here, since |Bk| is assumed to be sufficiently small, c is also sufficiently small, such that cC < 1. The theorem is
thus established.

The above theorem states that, under reasonable assumptions, the preconditioned coefficient matrix AkP
�1
k

associated with ME-gPC is closer to the identity matrix than AP

�1 arising from standard gPC, such that Krylov
subspace iterative linear solvers are likely to converge more rapidly for solving AkP

�1
k ˜

uk = bk; see, for example,
[40, Lecture 40]. In the next section, we provide numerical evidence to show that AkP

�1
k is indeed much closer to

identity if |Bk| is sufficiently small.

4. NUMERICAL STUDY

In this section, two test problems are studied. For both test problems, the physical domain considered is [�1, 1]2,
and we discretize in physical space using a bilinear rectangular finite element approximation [28,41] with a uniform
33 ⇥ 33 grid. The results of the ME-gPC finite element approximation [Eq. (12)] are presented in this section, while
results of the standard gPC finite element approximation [Eq. (8)] are also presented for comparison. In the following,
the gPC orders for standard gPC and ME-gPC finite element approximations are referred to as the global gPC order
and the local gPC order, respectively.
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Linear systems resulting from both gPC and ME-gPC are solved by the IDR(1) iterative method with the mean-
based preconditioning scheme. The stopping criterion for the iterative methods is based on the relative residual
kAku

(i)
k �bkk/kbkk, where the superscript i denotes the iteration number. The iteration terminates when the relative

residual is smaller than 10�8.

4.1 One-Dimensional Random Input

In this test problem, the wave number and forcing term are given by

(x, ⇠) = 0(x) + 1(x)⇠, f(x, ⇠) = cos

⇣⇡x1

2

⌘

cos

⇣⇡x2

2

⌘

,

where 0(x) = ⇡/
p

2 + 0.401, 1 = 0.4, and ⇠ is uniformly distributed on � = [�1, 1].
As discussed in Section 2, the stochastic Helmholtz problem Eqs. (1) and (2) is well posed if all eigenvalues of

Eq. (4) are bounded away from zero, while the zero eigenvalue causes resonance. This paper focuses on the cases that
have eigenvalues close to zero. For this test problem, the minimum absolute value of the eigenvalues is very small—
that is, min⇠2[�1,1]|�(⇠)| ⇡ 4.4 ⇥ 10�3. As discussed in our earlier work [34], directly applying the standard gPC
with the mean-based preconditioning scheme is not efficient for this test problem, and in the following we present the
results of ME-gPC combined with the mean-based preconditioning scheme.

To assess the accuracy of the ME-gPC finite element approximation, we define the following quantities to mea-
sure the relative errors in mean and variance function estimates,

Emean := kE[uMhp]� E[uref]kL2

�

kE[uref]kL2 , (39)

Evariance := kVar(uMhp)� Var(uref)kL2

�

kVar(uref)kL2 , (40)

where the reference solution uref is obtained through the global gPC method with total degree p = 700. Moreover,
we also investigate the relative L2 error, which is defined as

EL2 :=

✓

Z

D

Z

�
(uMhp � uref)

2⇢(⇠)dx d⇠
◆1/2

.

✓

Z

D

Z

�
(uref)

2⇢(⇠)dx d⇠
◆1/2

. (41)

The parameter ↵ in Eq. (13) is set to 0.5 for all numerical studies in this paper (note that since the input parameter
is one-dimensional, the threshold ✓2 for selecting dimensions is not involved in this test problem). In the same way,
we assess the errors of the standard gPC through Eqs. (39)–(41) with uMhp replaced by uhp [see Eq. (8)].

The errors in mean and variance function estimates and the relative L2 errors of the ME-gPC finite element
approximation are shown in Fig. 1. It is clear that, for a given local gPC order p, the errors decrease quickly as the
number of stochastic elements M increases (the increasing in M is achieved through decreasing the threshold ✓1). In
addition, for the same number of stochastic elements, it is not surprising that higher local gPC orders result in smaller
errors.

To look more closely at the errors of ME-gPC, we show the mean, the variance, and the relative L2 errors in
Table 1, where different values of the threshold are considered. As shown in Table 1, for a given local gPC order, as
the value of the threshold ✓1 decreases, the number of stochastic elements increases, which leads to the decrease of
errors in mean and variance function estimates and the relative L2 errors.

In Fig. 2, lengths of the stochastic elements generated in ME-gPC are shown by the heights of the rectangles.
Since for ⇠ = �1, the minimum absolute value of the eigenvalues of Eq. (4) is about 4.4 ⇥ 10�3; this small value
leads to the Helmholtz problem close to resonance. It is clear that, there are a large number of stochastic elements
close to ⇠ = �1, and the elements become smaller as ⇠ goes to �1, which are expected for resolving problems close
to resonance. Figure 2 also shows the number of iterations to solve each linear system [Eq. (22)] of ME-gPC using
IDR(1) with mean-based preconditioning. Note that the dark colors near the corner [�1, 0]T in Figs. 2(c)–2(e) are
caused by the dense rectangular boundaries to show the stochastic element sizes. In addition, it is not surprising that
the smaller the threshold ✓1, the finer the partition of the stochastic domain in these pictures.
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FIG. 1: Errors of ME-gPC, one-dimensional random input. (a) Mean errors, (b) variance errors, and (c) relative L2 errors.

TABLE 1: Errors of ME-gPC in mean and variance function estimates and the relative L2 errors, ↵ = 0.5, one-
dimensional random input

✓
1

= 10

–2 ✓
1

= 10

–3 ✓
1

= 10

–4 ✓
1

= 10

–5

M Error M Error M Error M Error

Mean p = 3 7 1.66 ⇥ 10�1 16 2.17 ⇥ 10�2 36 7.71 ⇥ 10�5 77 3.72 ⇥ 10�8

errors p = 6 5 1.35 ⇥ 10�1 8 1.22 ⇥ 10�2 10 2.76 ⇥ 10�4 15 1.71 ⇥ 10�7

p = 9 4 1.37 ⇥ 10�1 7 1.26 ⇥ 10�2 9 2.87 ⇥ 10�4 11 1.47 ⇥ 10�7

Variance p = 3 7 8.47 ⇥ 10�1 16 3.00 ⇥ 10�1 36 2.84 ⇥ 10�3 77 2.72 ⇥ 10�6

errors p = 6 5 7.96 ⇥ 10�1 8 2.03 ⇥ 10�1 10 9.22 ⇥ 10�3 15 1.15 ⇥ 10�5

p = 9 4 8.00 ⇥ 10�1 7 2.08 ⇥ 10�1 9 9.63 ⇥ 10�3 11 1.04 ⇥ 10�5

Relative p = 3 7 1.01 ⇥ 10�1 16 2.00 ⇥ 10�2 36 4.68 ⇥ 10�4 77 9.68 ⇥ 10�6

L2 errors p = 6 5 1.59 ⇥ 10�1 8 2.12 ⇥ 10�2 10 1.60 ⇥ 10�3 15 2.24 ⇥ 10�5

p = 9 4 2.31 ⇥ 10�1 7 3.04 ⇥ 10�2 9 2.27 ⇥ 10�3 11 2.80 ⇥ 10�5

Figure 3 shows the results of standard gPC for this test problem. From Fig. 3(a), to achieve an accuracy with
small mean and variance errors, the standard gPC requires a high global gPC order p. For example, to obtain an
approximation with variance error smaller than 10�7, the standard gPC needs a global gPC order more than 400,
while ME-gPC can also achieve the same accuracy with a local gPC order less than 10 as shown in Fig. 1(b) (although
partitioning of the stochastic domain is required). From Fig. 3(b), the number of iterations for IDR(1) with mean-based
preconditioning typically increases as the global gPC order increases, and for p � 400, more than 400 iterations are
required. On the contrary, the local gPC order in ME-gPC is typically small (we only take at most p = 9 in this test
problem), and the numbers of iterations are much smaller (at most 10 iterations for IDR(1) iterative method). We
have also tested the IDR(1) method without preconditioning, which is referred to as plain IDR. We found that the
relative residual of plain IDR can not research the tolerance 10�8 for 2000 iterations for gPC. For ME-gPC, plain IDR
typically requires hundreds of iterations to reach the stopping criterion. As these numbers of iterations are much larger
than IDR(1) with mean-based preconditioning, we report the results of only the preconditioned method in detail.

Figure 4 shows the six smallest magnitude eigenvalues of the coefficient matrix and the preconditioned coefficient
matrix arising from gPC. It can be seen that the six smallest magnitude eigenvalues of the coefficient matrix become
larger after preconditioning, which is expected for a preconditioned system. However, after preconditioning, the
smallest magnitudes of the eigenvalues are still very small—around 10�4 to 10�2, which implies that the mean-based
preconditioner is not very efficient for the gPC system.
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FIG. 2: Stochastic element sizes for different p and ✓1, where l is the length of the stochastic element and the numbers in the
legend represent the number of iteration steps, one-dimensional random input. The dark colors near the color [�1, 0]T in (c), (d),
and (e) are caused by the dense rectangle boundaries. (a) p = 3, ✓1 = 10�2, (b) p = 3, ✓1 = 10�3, (c) p = 3, ✓1 = 10�4, (d)
p = 3, ✓1 = 10�5, (e) p = 6, ✓1 = 10�5, and (f) p = 9, ✓1 = 10�5
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FIG. 3: Results of the standard gPC finite element approximation, one-dimensional random input. (a) Errors of standard gPC and
(b) preconditioned IDR(1).

For comparison, we consider the eigenvalues of the coefficient matrix arising from ME-gPC. For each random
element k = 1, . . . ,M , the six smallest magnitude eigenvalues are denoted by �

(k)
1 , . . . , �(k)6 with |�(k)1 |  . . . 

|�(k)6 |. Next, the suspicion element is defined to be
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FIG. 4: The six smallest magnitude eigenvalues of the coefficient matrix (left) and the preconditioned coefficient matrix (right)
arising from gPC, one-dimensional random input

k⇤ = argmink

6
X

i=1

|�(k)i |.

Figure 5 shows the six smallest magnitude eigenvalues for this suspicion element k⇤. As we have shown in Section 3.3,
the preconditioned coefficient matrix arising from ME-gPC is closer to identity than that arising from standard gPC.
As a result, the six smallest magnitude eigenvalues of the preconditioned coefficient matrix arising form ME-gPC are
much farther from zero than those associated with standard gPC. This implies the mean-based preconditioned IDR(1)
method can converge in much fewer iterations with ME-gPC (at most 10 iterations) than it does with standard gPC.

To compare overall performances of the standard gPC and the ME-gPC, we consider the CPU times of the imple-
mentations, and our results are obtained in MATLAB on a workstation with 2.10 GHz Intel(R) Xeon(R) Gold 6130
CPU. Figure 6 shows the times of generating the standard gPC and the ME-gPC finite element approximations, with
respect to mean, variance, and relative L2 errors. For the standard gPC, the CPU times considered in this paper refer
to the time of solving the linear system Au = b [i.e., Eq. (16)] using IDR(1) with the mean-based preconditioner;
for ME-gPC, the CPU times are the sum of the times for solving the linear systems Akuk = bk [i.e., Eq. (22)] for
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FIG. 5: The six smallest magnitude eigenvalues of the coefficient matrix arising from ME-gPC associated with the suspicion
element (left) and the corresponding preconditioned coefficient matrix (right), one-dimensional random input
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FIG. 6: Comparison of CPU times for gPC and ME-gPC, one-dimensional random input. (a) CPU times w.r.t. mean errors, (b)
CPU times w.r.t. variance errors, and (c) CPU times w.r.t. relative L2 errors.

k = 1, . . . ,M (also using IDR(1) with the mean-based preconditioner). It is clear that, to achieve the same accuracy
in mean and variance estimates, the CPU times required by ME-gPC are less than those of the standard gPC.

4.2 Two-Dimensional Random Input

In this test problem, the wave number is given by

(x,⇠) = k0(x) + 1(x)⇠1 + 2(x)⇠2,

where 0 = 0.41 and

1(x) = 0.24 ⇥ (1.1 + 0.1 cos(x1)), 2(x) = 0.08 ⇥ (1.1 + 0.1 sin(x2)).

The forcing term is given by
f(x,⇠) = f0(x) + f1(x)⇠1 + f2(x)⇠2, (42)

where f0(x) = 2
�

0.5 � x2
1 � x2

2
�

, and fi(x) = 0.5 ·
p

3f0(x), i = 1, 2. The parameter ↵ in Eq. (13) is set to 0.5 and
the threshold ✓2 in Eq. (15) is set to 0.2 in this test problem. The reference solution is obtained through the global
gPC method with p = 40.

Errors in mean and variance function estimates and the relative L2 error of the ME-gPC finite element approx-
imation are shown in Fig. 7. Similarly to the test problem with one-dimensional random input, for a given local
gPC order, the errors decrease quickly as the number of stochastic elements M increases (the increase in M is also
achieved through decreasing the threshold ✓1). Again, for the same number of stochastic elements, higher local gPC
orders result in smaller errors. To look more closely at the errors of ME-gPC, we show the mean, the variance, and
the relative L2 errors in Table 2, where different values of the threshold ✓1 are considered. As shown in Table 2, for a
given local gPC order, as the value of the threshold ✓1 decreases, the number of stochastic elements increases, which
leads to the decrease of the errors. Compared with the test problem with one-dimensional random input, the number
of random elements for this test problem increases more rapidly as the value of the threshold ✓1 decreases.

Figure 8 shows partitions of the stochastic domain by the ME-gPC method. As expected, as the threshold ✓1
decreases, ME-gPC generates more stochastic elements. It is clear that the sizes of stochastic elements become smaller
as ⇠ goes to the corner (�1,�1)T , which reveals the fact that the solution u(x,⇠) changes rapidly as ⇠ gets close to
(�1,�1)T . In addition, from Fig. 8, there are more partitions in the ⇠1 direction, which implies that the solution is
more sensitive with respect to ⇠1. Figure 8 also shows the numbers of iterations to solve each linear system [Eq. (22)]
of ME-gPC using IDR(1) with mean-based preconditioning. It can be seen that, the numbers of iterations are again
all very small—they are at most eight for different values of the local gPC order p and the threshold ✓1.
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FIG. 7: Errors of ME-gPC with ↵ = 0.5, ✓2 = 0.2, two-dimensional random input. (a) Mean errors, (b) variance errors, and (c)
relative L2 errors.

TABLE 2: Errors of ME-gPC in mean and variance function estimates and the relative L2 errors, ↵ = 0.5,
✓2 = 0.2, two-dimensional random input

✓
1

= 10

–2 ✓
1

= 10

–3 ✓
1

= 10

–4 ✓
1

= 10

–5

M Error M Error M Error M Error

Mean p = 3 11 1.54 ⇥ 10�5 35 3.32 ⇥ 10�7 107 3.26 ⇥ 10�9 335 3.85 ⇥ 10�10

errors p = 6 3 1.64 ⇥ 10�5 6 2.34 ⇥ 10�7 13 6.80 ⇥ 10�10 25 1.23 ⇥ 10�10

p = 9 2 3.32 ⇥ 10�6 3 2.93 ⇥ 10�7 6 3.73 ⇥ 10�10 9 4.05 ⇥ 10�10

Variance p = 3 11 9.00 ⇥ 10�4 35 2.44 ⇥ 10�5 107 2.78 ⇥ 10�7 335 2.37 ⇥ 10�9

errors p = 6 3 1.13 ⇥ 10�3 6 2.31 ⇥ 10�5 13 1.17 ⇥ 10�7 25 2.52 ⇥ 10�10

p = 9 2 2.74 ⇥ 10�4 3 2.96 ⇥ 10�5 6 1.28 ⇥ 10�7 9 2.29 ⇥ 10�10

Relative p = 3 11 2.13 ⇥ 10�3 35 2.41 ⇥ 10�4 107 2.14 ⇥ 10�5 335 2.08 ⇥ 10�6

L2 errors p = 6 3 3.62 ⇥ 10�3 6 2.42 ⇥ 10�4 13 1.12 ⇥ 10�5 25 7.79 ⇥ 10�7

p = 9 2 2.27 ⇥ 10�3 3 4.85 ⇥ 10�4 6 1.43 ⇥ 10�5 9 3.78 ⇥ 10�7

Figure 9 shows the results of standard gPC for this test problem. From Fig. 9(a), to achieve an accuracy with
small mean and variance errors, the standard gPC requires a high global gPC order. For example, to obtain an approx-
imation with variance error smaller than 10�6, the standard gPC needs a global gPC order around 20, while ME-gPC
can also achieve the same accuracy with a local gPC order less than five as shown in Figs. 7(b) and 8 (although
partitioning of the stochastic domain is required). From Fig. 9(b), the number of iterations for IDR(1) with mean-
based preconditioning typically increases as the global gPC order increases, and for p ⇡ 20, around 25 iterations are
required, while the iteration numbers required by ME-gPC are at most 8 as shown in Fig. 8.

In Fig. 10, the six smallest magnitude eigenvalues of the coefficient matrix and the preconditioned coefficient
matrix arising from gPC are shown. From the figure we can see that the six smallest magnitude eigenvalues of the
coefficient matrix become larger after preconditioning.

For comparison, we plot the six smallest magnitude eigenvalues of the coefficient matrix arising from ME-gPC
in Fig. 11. Again, the eigenvalues of the preconditioned coefficient matrix arising from ME-gPC are much farther
from zero than those associated with standard gPC. As a result, the mean-based preconditioned IDR(1) method can
converge in fewer iterations with ME-gPC (according to Fig. 8, at most eight iterations) than it does with standard
gPC.

Finally, we compare the CPU times of the standard gPC and the ME-gPC for this test problem. Again, the CPU
times of the standard gPC refer to the time of solving the linear system [Eq. (16)] using IDR(1) with the mean-based
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FIG. 8: Preconditioned IDR(1) iterations on each stochastic element generated by ME-gPC, two-dimensional random input. The
numbers in the legend represent the number of iteration steps. (a) p = 3, ✓1 = 10�2, (b) p = 3, ✓1 = 10�3, (c) p = 3, ✓1 = 10�4,
(d) p = 3, ✓1 = 10�5, (e) p = 6, ✓1 = 10�5, and (f) p = 9, ✓1 = 10�5.
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FIG. 9: Results of the standard gPC finite element approximation, two-dimensional random input. (a) Errors of standard gPC and
(b) preconditioned IDR(1) iterations.
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arising from gPC, two-dimensional random input.
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FIG. 11: The six smallest magnitude eigenvalues of the coefficient matrix arising from ME-gPC associated to the suspicion
element (left) and the corresponding preconditioned coefficient matrix (right), two-dimensional random input.

preconditioner; for ME-gPC, the CPU times are the sum of the times for solving [Eq. (22)] for k = 1, . . . ,M (also
using IDR(1) with the mean-based preconditioner). Figure 12 shows the times of generating the standard gPC and
the ME-gPC finite element approximations, with respect to mean, variance, and relative L2 errors. It is clear that to
achieve the same accuracy in mean and variance estimates, the CPU times required by ME-gPC are typically less
than those of the standard gPC.

To summarize, by using the ME-gPC method, we turn a problem (typically hard to solve) to subproblems that can
be solved easily. The sizes of the linear systems arising from the subproblems are smaller than those of the original
problem. Besides, the mean-based preconditioner is more efficient for the subproblems than the original problem.
Moreover, the subproblems can be solved simultaneously on different processors.

5. CONCLUSIONS

Conducting adaptive localized procedures is a fundamental concept for solving PDE systems that are close to singu-
lar. For the open problem of stochastic Helmholtz equations close to resonance, in this work we propose and analyze
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FIG. 12: Comparison of CPU times for gPC and ME-gPC, two-dimensional random input. (a) CPU times w.r.t. mean errors, (b)
CPU times w.r.t. variance errors, and (c) CPU times w.r.t. relative L2 errors.

a novel localized stochastic Galerkin framework based on the combination of ME-gPC finite element approximation
and mean-based preconditioning. Through this localized approach, a global solution with large variances is decom-
posed into a union of local solutions with small variances. This reduction in variance results in not only an efficient
stochastic spectral approximation, but also an efficient mean-based preconditioning scheme that is newly proposed
and analyzed in this work for the linear systems arising from the ME-gPC finite element approximation. Our analysis
and numerical results demonstrate that this new combination of ME-gPC and the mean-based preconditioner can
provide an efficient strategy for solving the stochastic Helmholtz equations close to resonance. However, as a limi-
tation of ME-gPC, this new strategy can only be applied to problems with low-dimensional random parameters. For
stochastic Helmholtz problems with high-dimensional parameterization, current efforts are focused on decomposing
high-dimensional random inputs into a combination of low-dimensional inputs, which include the analysis of vari-
ance decomposition [42–47] and dimension reduction based on active subspaces [48]. Implementing such strategies
will be the focus of our future work.
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