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Abstract. We consider Anderson acceleration (AA) applied to two nonlinear solvers
for the stationary Gross-Pitaevskii equation: a Picard type nonlinear iterative solver
and a normalized gradient flow method. We formulate the solvers as fixed point prob-
lems and show that they both fit into the recently developed AA analysis framework.
This allows us to prove that both methods’ linear convergence rates are improved by
a factor (less than one) from the gain of the AA optimization problem at each step.
Numerical tests for finding ground state solutions in 1D and 2D show that AA signifi-
cantly improves convergence behavior in both solvers, and additionally some compar-
isons between the solvers are drawn. A local convergence analysis for both methods
are also provided.
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1 Introduction

We consider numerical solvers for the following nonlinear eigenvalue problem,

µφ(x)=−1
2

∆φ(x)+V(x)φ(x)+β|φ(x)|2φ(x), x∈Ω, (1.1a)

φ(x)=0, x∈∂Ω, (1.1b)∫
Ω
|φ(x)|2 dx=1, (1.1c)

where V is a given trapping potential of the form

V(x)=
1
2
(γ2

1x2
1+···+γ2

dx2
d)
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with γi >0, ∀i, real parameter β, with φ being the unknown and the eigenvalue µ can be
calculated as

µ=
∫

Ω

(
1
2
|∇φ|2+V|φ|2+β|φ|4

)
dx. (1.2)

This system describes stationary solutions of the nonlinear Schrödinger (NLS) equa-
tion, which is also known as the the non-rotational Gross-Pitaevskii equation (GPE) in
the context of Bose-Einstein condensates (BEC) [7, 25, 27]; in the GPE setting φ repre-
sents the macroscopic wave function of the condensate. The parameter β being posi-
tive/negative represents defocusing/focusing in NLS, and attraction/repulsion of the
condensate atoms in GPE. Following [7, 9], we will assume β≥0 for simplicity, although
a more technical analysis would allow for our results to hold with β taking small nega-
tive values. Herein we assume a solution φ∈H1

0(Ω) exists to (1.1a)-(1.1c) that is locally
unique; see [9] for more on this assumption and conditions for its validity.

Solutions of (1.1a)-(1.1c) represent local minima of the Gross-Pitaevskii energy

Eβ(φ)=
∫

Ω

(
1
2
|∇φ|2+V|φ|2+ β

2
|φ|4

)
dx,

and are used to numerically create initial conditions for real time dynamics of BEC, and
to consider experimentally observed physical features through direct investigation [36].
Solutions to (1.1a)-(1.1c) that globally minimize energy are called ground state solutions,
and it is stated in 2004 in [7] that ”One of the fundamental problems in numerical simu-
lation of BEC lies in computing the ground state solution”. Existing methods include the
normalized gradient flow (or gradient flow with discrete normalization) [3, 6, 7], which
is most well-known, optimization methods such as steepest descent (without precon-
ditioning) [36], preconditioned steepest descent (PSD, which is also effective in related
problems [11, 14–16, 23]) and conjugate gradient (PCG) [4], and regularized Newton’s
method [33], as well as specialized non-optimization methods such as nonlinear inverse
iterations [20], self-consistent field iteration [5], and implicit algorithms based on inex-
act Newton’s method [21]. While normalized gradient flow methods have been widely
used in the literature to find solutions of (1.1a)-(1.1c), improving the convergence and
robustness of these methods remains an important problem and is the purpose of this
paper.

We consider herein Anderson acceleration (AA) applied to two nonlinear solvers for
(1.1a)-(1.1c). AA was originally developed in 1965 by D.G Anderson [2] as an extrapola-
tion technique which forms the next iterate in a nonlinear fixed point iteration from an (in
a sense) optimal linear combination of previous iterates. AA has increased in popularity
since the work of [37], which showed how to implement it efficiently as a post-processor
for a fixed point iteration and that it could be used successfully on a variety of application
problems. Theoretical justification for how AA works was proved in [12], building on the
theory from [13, 24, 34], and then sharpened and generalized to the case of noncontrac-
tive operators in [30]. AA has been used in a wide variety of applications including e.g.,
computing nearest correlation matrices in [19], geometry optimization [26], electronic
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structure computations [13], radiation diffusion and nuclear physics [1, 35], molecular
interaction [32], and fluid mechanics [28,29]. This paper extends the AA methodology to
improve solvers for the ground state solution of GPE.

The first solver we consider, which we call the Picard-projection iteration, takes the
form Picard-projection

Step 1 Find φ̂k+1 satisfying

− 1
2

∆φ̂k+1+Vφ̂k+1+β|φk|2φ̂k+1=φk,

φ̂k+1|∂Ω =0.

Step 2 Calculate φk+1 by

φk+1=
φ̂k+1

‖φ̂k+1‖L2
.

We note that µ is scaled out of the iteration, but can be recovered after convergence via
(1.2). This iteration is considered a Picard-projection scheme since Step 1 consists of a
linearization created by lagging part of the nonlinear term in the iteration, followed by
Step 2 which projects the solution from Step 1 back to the unit sphere.

The second solver is a type of normalized gradient flow (NGF) studied in [7], where
pseudo-timestepping is employed to find the steady solution of the time dependent sys-
tem

φt =
1
2

∆φ−Vφ−β|φ|2φ,

φ∂Ω =0,∫
Ω
|φ|2 dx=1.

We use the two-step backward Euler (BE) based method proposed in [7], which leads to
the ”time-stepping” iteration below.

BENGF Step 1 Find φ̂k+1 satisfying

φ̂k+1−φk

∆t
=

1
2

∆φ̂k+1−Vφ̂k+1−β|φk|2φ̂k+1, (1.3a)

φ̂k+1|∂Ω =0. (1.3b)

BENGF Step 2 Calculate φk+1 by

φk+1=
φ̂k+1

‖φ̂k+1‖L2
.
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In Step 1, the time step size ∆t is a user defined parameter, often taken large e.g.,O(0.1) or
larger [7]. Note that as ∆t→∞, BENGF becomes formally equivalent to Picard-projection,
making the methods strongly related. Note that BENGF Step 1 can be rearranged as

−1
2

∆
(
∆tφ̂k+1

)
+
(

V+
1

∆t

)(
∆tφ̂k+1

)
+β|φk|2

(
∆tφ̂k+1

)
=φk,

which reveals that as ∆t→∞, V+ 1
∆t→V, and therefore ∆tφ̂k+1 obtained from BENGF

Step 1 would finally be identical in direction to φ̂k+1 computed from Picard-projection
Step 1.

We analyze and test AA applied to both the Picard-projection and BENGF solvers.
For each, we formulate them as fixed point iterations together with a finite element spa-
tial discretization. We then prove that both methods fit in the AA analysis framework
recently developed in [30], and thus that their linear convergence rate will be improved
at each iteration by a scaling factor (less than 1) associated with the gain of the AA op-
timization problem. Numerical experiments are then presented that show a significant
improvement in the convergence of both methods, often cutting the number of iterations
required for convergence by more than half. Comparisons between the methods are also
given, and in fact we show that given a small β>0, for smaller time step sizes, the BENGF
method tends to be slower than Picard-projection method but for larger time step sizes
has similar convergence behavior. While we consider just these two particular solvers
herein, based on our results we expect that AA will also provide improvement to other
solvers for (1.1a)-(1.1c).

We remark that this PDE takes a form similar to the Allen-Cahn and Cahn-Hilliard
equations, and energy stable numerical schemes have been developed for these systems,
e.g., [10, 17, 18, 22, 31, 38, 39] and references therein. Extending those methods to work
for this system and using AA, or applying AA to those systems are interesting ideas the
authors will explore in future work.

This paper is arranged as follows. In Section 2, mathematical preliminaries are given
as well as some notation and definitions. Section 3 analyzes AA applied to the two
solvers, and Section 4 gives results of the associated numerical tests. Section 5 provides
local convergence analysis of the methods, and finally conclusions are drawn in Section
6.

2 Background and preliminaries

We consider a domain Ω⊂Rd, d = 1,2,3. The L2(Ω) norm and inner product will be
denoted by ‖·‖ and (·,·) respectively. All other norms will be labeled with subscripts.

Define the space X=H1
0(Ω), and recall the Poincare inequality, which guarantees that

for all φ∈X there exists a constant CP depending only on Ω such that

‖φ‖≤CP‖∇φ‖.

Hence for functions in X, the H1 and ‖∇·‖ norms are equivalent.
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2.1 Discretization details

Let τh(Ω) be a regular conforming mesh of Ω, with maximum element width h. Define
Xh=X∩Pk(τh), where Pk(τh) denotes degree k polynomials over each element of the mesh
τh. We assume the mesh is sufficiently regular for the following inverse inequalities to
hold [8]: there exists a constant CI that is independent of h such that for every v∈Xh,

‖∇v‖Lp≤CIh
d
2

2−p
p ‖∇v‖, ‖∇v‖Lp≤CIh−1‖v‖Lp .

Lastly, we define Yh ={v∈Xh, ‖v‖=1} to be the subset of Xh on the unit sphere.

2.2 Anderson acceleration

Anderson acceleration is an extrapolation technique which is used to improve the conver-
gence of fixed-point iterations. It may be stated as follows [34,37], for a given fixed-point
operator g :Y→Y, where Y is any normed vector space:

Algorithm 2.1. Anderson acceleration with depth m≥0 and damping factors 0<ηk≤1.

Step 0 Choose x0∈Y.

Step 1 Calculate w1= g(x0)−x0. Set x1= x0+w1.

Step k For k=2,3,···. Set mk =min{k−1,m}.

a. Calculate wk = g(xk−1)−xk−1.

b. Solve the minimization problem for parameters {αk
j }

k−1
k−mk

min

∥∥∥∥∥
(

1−
k−1

∑
j=k−mk

αk
j

)
wk+

k−1

∑
j=k−mk

wj

∥∥∥∥∥
Y

. (2.1)

c. For damping factor 0<ηk≤1, set

xk =
(

1−
k−1

∑
j=k−mk

αk
j

)
xk−1+

k−1

∑
j=k−mk

αk
j xj−1

+ηk

((
1−

k−1

∑
j=k−mk

αk
j

)
wk+

k−1

∑
j=k−mk

αk
j wj

)
, (2.2)

In the AA algorithm, wj = g(xj−1)−xj−1 is referred to as the nonlinear residual. The
goal of AA is to accelerate convergence compared to the original fixed point iteration
xk+1= g(xk), and we note that m=0 returns exactly this original fixed point iteration.
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For implementation with depth m>0, it is helpful to write the algorithm in terms of
an unconstrained optimization problem [13,30,37]. Define the matrices Ek and Fk, whose
columns are the consecutive differences between iterates and residuals, respectively:

Ek−1 :=
(

ek−1 ek−2 ··· ek−mk

)
, ej = xj−xj−1, (2.3a)

Fk :=
(
(wk−wk−1) (wk−1−wk−2) ··· (wk−mk+1−wk−mk)

)
. (2.3b)

Then defining
γk =argminγ∈Rm ‖wk−Fkγ‖Y ,

we can write the update step (2.2) as

xk = xk−1+ηkwk−(Ek−1+ηkFk)γ
k = xα

k−1+ηkwα
k , (2.4)

where wα
k =wk−Fkγk and xα

k−1=xk−1−Ek−1γk. The optimization gain factor ξk is defined
by

‖wα
k‖Y = ξk‖wk‖Y, (2.5)

and this gain factor ξk plays a critical role in the convergence theory to follow. Specifi-
cally, AA reduces the contribution from the first-order residual term by a factor of ξk, but
introduces higher-order terms into the residual expansion.

The next two assumptions are sufficient conditions on the fixed point operator g for
the AA convergence results developed in [12, 30] to hold.

Assumption 2.1. Assume g ∈ C1(Y) has a fixed point x∗ in Y, and there are positive
constants c0 and c1 with

1. ‖g′(x)‖≤ c0 for all x∈Y, and

2. ‖g′(x)−g′(y)‖≤ c1‖x−y‖ for all x,y∈Y.

Note that for the AA theory below, it is not required that c0<1, or even that ‖g′(x∗)‖<
1.

Assumption 2.2. Assume there is a constant σ > 0 for which the differences between
consecutive residuals and iterates satisfy

‖wk+1−wk‖Y≥σ‖xk−xk−1‖Y, k≥1.

For contractive g, such a σ can be automatically found [30]; if g is non-contractive,
existence of such σ’s is related to the Jacobian of the function f (x)= x−g(x) being non-
singular [30].

Under Assumptions 2.1 and 2.2, the following result summarized from [30] produces
a one-step bound on the residual ‖wk+1‖ in terms of the previous residual ‖wk‖.
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Theorem 2.1 (Pollock, Rebholz, 2020). Consider Algorithm 2.1 with depth mk. Suppose As-
sumptions 2.1 and 2.2 hold, and the direction sines between columns of Fj defined by (2.3b) are
bounded below by a constant cs >0, for j= k−mk,··· ,k−1. Then the residual wk+1= g(xk)−xk
satisfies the following bound:

‖wk+1‖≤‖wk‖
(

ξk((1−ηk)+c0ηk)+
Cc1

√
1−θ2

k

2

(
‖wk‖h(ξk)

+2
k−1

∑
n=k−mk+1

(k−n)‖wn‖h(ξn)+mk
∥∥wk−mk

∥∥h(ξk−mk)

))
, (2.6)

where h(ξ j)≤C
√

1−ξ2
j +ηjξ j, and C depends on cs and the implied upper bound on the direction

cosines.

Remark 2.1. As discussed in [30], the assumption that cs>0 enforces that the columns of
Fj are linearly independent. This is necessary for solving the minimization problem, and
moreover the constant C in (2.6) blows up as cs→0. This criteria can be easily enforced in
practice and on the fly, by calculating cs and reducing mk accordingly so that cs is always
bounded above a certain tolerance (in tests in [30], a tolerance of 0.1 worked well).

The one-step estimate (2.6) shows how the gain factor ξk from the optimization prob-
lem scales the linear convergence rate, and also the summation shows how increasing
the depth mk adds higher order terms to the residual expansion. Hence the improvement
in the linear convergence rate comes at a cost if recent residuals are not small. If there is
no gain from the optimization problem, then since the higher order terms are scaled by√

1−ξ2
k the usual fixed point residual estimate is recovered. The theorem suggests that

greater depths in the early iterations may slow or prevent convergence in many cases,
while alternating between small mk for early iterations and increasing it in later itera-
tions when the residual is small may be more effective; indeed, in [29] this is shown to be
an effective strategy for choosing the depth.

3 Anderson accelerated iterations for solving GPE

In this section we prove that the Anderson accelerated Picard-projection and BENGF iter-
ations, once discretized with the finite element method (FEM), fit the AA analysis frame-
work developed in [30]. This allows us to prove that AA improves the linear convergence
rate for both iterations.

3.1 Anderson acceleration Picard-projection iteration

We consider here AA applied to a FEM discretization of the Picard-projection iteration,
which we call PPh. It is defined as follows:
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PPh Step 1 Given φk∈Yh, find φ̂k+1∈Xh satisfying

1
2
(∇φ̂k+1,∇χ)+(Vφ̂k+1,χ)+β(|φk|2φ̂k+1,χ)=(φk,χ).

PPh Step 2 Calculate

φk+1=
φ̂k+1

‖φ̂k+1‖
.

We establish next the well-posedness of PPh, which allows us to define the solution op-
erator g :Yh→Yh for each PPh iteration so that it can be written as

φk+1= g(φk)=(p◦ f )(φk),

where f represents the Step 1 solution operator, and p represents the Step 2 projection.

Lemma 3.1. For any given mesh sufficiently regular for the inverse inequality to hold, the PPh
iteration is well-posed.

Proof. Given u∈Vh, define the bilinear form au(·,·) : Xh×Xh→R by

au(v,χ)=
1
2
(∇v,∇χ)+(Vv,χ)+β(|u|2v,χ).

Since β≥0 and V(x)≥0 for all x, au is observed to be continuous and coercive: choosing
χ=v gives

au(v,v)=
1
2
‖∇v‖2+‖V1/2v‖2+β

∫
Ω
|u|2|v|2 dx≥ 1

2
‖∇v‖2,

and Cauchy-Schwarz, Hölder, and Sobolev inequalities provide

|au(v,χ)|≤1
2
‖∇v‖‖∇χ‖+‖V‖L∞‖v‖‖χ‖+β‖|u|2‖L3/2‖v‖L6‖χ‖L6

≤1
2
‖∇v‖‖∇χ‖+‖V‖L∞ C2

P‖∇v‖‖∇χ‖+Cβ‖u‖2
L3‖∇v‖‖∇χ‖

≤
(

1
2
+‖V‖L∞ C2

P+Cβ‖u‖2
L3

)
‖∇v‖‖∇χ‖

≤
(

1
2
+‖V‖L∞ C2

P+CβCIh−d/3
)
‖∇v‖‖∇χ‖,

with the last step thanks to the inverse inequality and ‖u‖= 1. We note that in 1D, an
improved Agmon inequality will allow for the dependence on h to be removed using

β(|u|2v,χ)≤β‖u‖2
L2‖v‖L∞‖χ‖L∞≤Cβ‖∇v‖‖∇χ‖.
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Define Fu : Xh→R by

Fu(χ)=(u,χ),

and F is easily seen to be continuous using Cauchy-Schwarz and Poincare via

|Fu(χ)|≤‖u‖‖χ‖≤CP‖∇χ‖.

Now by Lax-Milgram, the problem:

Given u∈Vh, find v∈Xh satisfying au(v,χ)=Fu(χ) for all χ∈Xh

is well-posed. Since φk∈Vh⊂Xh, this well-posedness implies that PPh Step 1 is well posed,
and that the continuity and coercivity constants are independent of k.

Next, since φk∈Yh in PPh Step 1, we have that φk 6=0 and thus from the coercivity of
aφk , we obtain φ̂k+1 6=0. This makes the Step 2 projection well-defined, and thus we have
established that the PPh iteration is well-posed.

The well-posedness result above (in particular the use of the Lax-Milgram theorem)
is sufficient to also establish Lipschitz continuity of g: for all u,v∈Yh, there exists Cg <∞
satisfying

‖∇(g(u)−g(v))‖≤Cg‖∇(u−v)‖.

Despite the potential inverse dependence of Cg on the mesh width in the above theory,
we argue that near the solution Cg may not, at least for a small β> 0. Notice that each
iteration of PPh can be considered as one step of an inverse power method using the
finite element coefficient matrix Ak arising from the PPh Step 1. This is an important
point when discussing convergence of PPh and comparing it to BENGF below. Denoting
this matrix by

Ak =

(
−1

2
∆+V+β|φk|2

)
h
,

and A=(− 1
2 ∆+V+β|φ|2)h (where φ solves (1.1a)-(1.1c) as the unique minimum eigen-

value) then for a good enough initial guess it is reasonable to expect that PPh defines a
contractive iteration that will converge to the minimum eigenvalue of A and its associ-
ated eigenvector, for a sufficiently small β > 0. A more detailed discussion of the local
convergence is given in section 5, but for now this suggests that Cg should be at most
O(1) if near a root with a small β, since in any vector norm the associated Lipschitz con-
stant would be bounded above by 1.

While the PPh scheme is simple, converges locally with a small β (see Section 5), and
has no parameters to choose, it can suffer from slow convergence if the smallest and sec-
ond smallest eigenvalues of A are close. We consider now PPh enhanced with AA, with
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depth mk and relaxation parameters ηk: this is defined simply by the AA algorithm of Sec-
tion 2 with the fixed point function g above. We will refer to it as Anderson accelerated
PPh (AAPPh). As discussed in Section 2, a theoretical framework was recently developed
in [12, 30] that proves an increase in the linear convergence rate of a fixed point iteration
by AA in the vicinity of a root, provided several assumptions on the underlying fixed
point function. This subsection is dedicated to showing that the PPh fixed point operator
g satisfies the AA theory assumptions from [30], which yields the following result.

Theorem 3.1. For AAPPh under the assumption that the direction sines between columns of Fj
defined by (2.3b) are bounded below by a constant cs>0, for j=k−mk,··· ,k−1, and Assumption
2.3 holds for g and the previous mk iterates, then wk+1= g(φk)−φk satisfies

‖wk+1‖≤‖wk‖
(

ξk((1−ηk)+Cgηk)+C
√

1−θ2
k

( k−1

∑
n=k−mk

‖wn‖h(ξn)

))
. (3.1)

Remark 3.1. The theorem reveals an improvement in the linear convergence rate from
the use of AA since the gain factor ξk∈ [0,1] of the AA optimization problem is reduced
as mk is increased. However, the theorem also shows that as mk is increased, more higher
order terms are introduced into the upper bound. The additional higher order terms that
are added can be enough to prevent convergence especially early in an iteration when the
residual is large. This phenomena of mk being too large is illustrated for AAPPh in the
first numerical test in Section 4.1. As discussed in [29, 30], a good strategy for choosing
mk is to choose it small when the residual is large, and choose it large when the residual
is small.

Remark 3.2. Regarding the assumptions of the theorem: Remark 2.1 above discusses how
cs > tol>0 can be satisfied in practice by reducing mk if necessary. Assumption 2.3 holds
for g and the previous mk iterates, for example, when g is contractive in a neighborhood
of the root (which can be checked by running PPh and monitoring convergence, given an
initial guess in the neighborhood) and the previous mk iterates all lie in the contractive
region. It is discussed in [30] how Assumption 2.3 can be satisfied if g is not contractive at
the root. While the analysis below guarantees an upper bound on Cg, it is not sufficiently
refined to produce usable criteria for where g is contractive near a root.

This theorem will be proved in the following series of lemmas, which show that g
satisfies Assumptions 2.1-2.2. Once this is established, we are able to invoke Theorem
2.1, which provides the above result for 1 iteration of AAPPh.

To begin our analysis, consider the FEM problem representing
Step 1 Given u∈Xh and β>0, find v∈Xh satisfying

1
2
(∇v,∇χ)+(Vv,χ)+β(|u|2v,χ)=(u,χ), ∀χ∈Xh. (3.2)

It is shown above that the solution operator f : Xh→Xh given by v= f (u) associated with
(3.2) is well-defined.
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Next, define the set S={u∈Xh, ‖u‖≤K0}, where K0 can be any constant larger than
1, and note that Yh⊂S. We now prove an a priori solution bound for v= f (u) with u∈S.

Lemma 3.2. For any β>0 and u∈S, the solution v= f (u)∈Xh satisfies

‖∇v‖≤Cmin{2CPK0,β−1/2(vol(Ω))1/2}=: C1,

where C is a constant dependent only on Ω.

Proof. Taking χ=v in (3.2) yields

1
2
‖∇v‖2+‖V1/2v‖2+β‖|u|v‖2=(u,v).

Thanks to Cauchy-Schwarz and Poincare inequalities and u∈ S, we have that the right
hand side term is bounded by

(u,v)≤‖u‖‖v‖≤CP‖u‖‖∇v‖≤CPK0‖∇v‖,

and so

1
2
‖∇v‖2≤CPK0‖∇v‖ =⇒ ‖∇v‖≤2CPK0.

One could alternatively majorize the right hand side using Cauchy-Schwarz and Young’s
inequalities via

(u,v)=
∫

Ω
(uv)·1 dx≤‖|u|v‖‖1‖≤ β

2
‖|u|v‖2+

1
2β
‖1‖2,

which gives

‖∇v‖2+β‖|u|v‖2≤β−1vol(Ω),

and finishes the proof.

Lemma 3.3. Suppose u1,u2∈S. Then there exists a constant C f =
(
8(C4

P+8Cβ2K2
0C2

1)
)1/2 such

that

‖∇( f (u1)− f (u2))‖=‖∇(v1−v2)‖≤C f ‖∇(u1−u2)‖.

Proof. Let v1= f (u1) and v2= f (u2). Then from the definition of f , we have that

1
2
(∇v1,∇χ)+(Vv1,χ)+β(|u1|2v1,χ)=(u1,χ), ∀χ∈Xh,

1
2
(∇v2,∇χ)+(Vv2,χ)+β(|u2|2v2,χ)=(u2,χ), ∀χ∈Xh.
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Subtracting then yields

1
2
(∇(v1−v2),∇χ)+(V(v1−v2),χ)+β(|u1|2v1−|u2|2u2,χ)=(u1−u2,χ), ∀χ∈Xh,

and choosing χ=v1−v2 implies that

1
2
‖∇(v1−v2)‖2+‖V1/2(v1−v2)‖2

+β
∫

Ω
(|u1|2v1−|u2|2v2)(v1−v2)dx

=(u1−u2,v1−v2). (3.3)

The right hand side term can be majorized with Cauchy-Schwarz and Young inequalities
as

(u1−u2,v1−v2)≤‖u1−u2‖H−1‖∇(v1−v2)‖≤‖u1−u2‖2
H−1+

1
4
‖∇(v1−v2)‖2,

and using the expansion

|u1|2v1−|u2|2v2=(|u1|2−|u2|2)v2+|u1|2(v1−v2)

=(|u1|+|u2|)(|u1|−|u2|)v2+|u1|2(v1−v2),

we have from (3.3) that

1
4
‖∇(v1−v2)‖2+‖V1/2(v1−v2)‖2+β

∫
Ω
|u1|2|v1−v2|2 dx

≤‖u1−u2‖2
H−1+β

∣∣∣∫
Ω
(|u1|+|u2|)(|u1|−|u2|)v2(v1−v2) dx

∣∣∣. (3.4)

Using Hölder’s inequality (L2−L6−L6−L6) on the right hand side, the embedding of L6

into H1, the triangle inequality, and Lemma 3.2, we obtain the bound∣∣∣∫
Ω
(|u1|+|u2|)(|u1|−|u2|)v2(v1−v2) dx

∣∣∣
≤‖u1+u2‖‖∇(u1−u2)‖‖∇v2‖‖∇(v1−v2)‖
≤2CK0C1‖∇(u1−u2)‖‖∇(v1−v2)‖.

Combining with the bound (3.4), we now have

1
4
‖∇(v1−v2)‖2≤‖u1−u2‖2

H−1+2CβK0C1‖∇(u1−u2)‖‖∇(v1−v2)‖. (3.5)

Young’s inequality and Poincare now provide

‖∇(v1−v2)‖2≤8(C4
P+8Cβ2K2

0C2
1)‖∇(u1−u2)‖2, (3.6)

which finishes the proof.
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Lemma 3.4. The solution operator f is Frechet differentiable on S, and its Frechet derivative is
Lipschitz continuous.

Proof. From the definition of f , we have for u∈S, δ∈S, and u+δ∈S,

1
2
(∇( f (u+δ)),∇χ)+(V f (u+δ),χ)+β(|u+δ|2 f (u+δ),χ)=(u+δ,χ),

1
2
(∇( f (u)),∇χ)+(V f (u),χ)+β(|u|2 f (u),χ)=(u,χ).

Subtracting gives

1
2
(∇( f (u+δ)− f (u)),∇χ)+(V( f (u+δ)− f (u)),χ)

+β((|u+δ|2−|u|2) f (u)),χ)+β(|u+δ|2( f (u+δ)− f (u)),χ)
=(δ,χ). (3.7)

Define the operator Au =Au(δ) by: find Au∈Xh satisfying

1
2
(∇Au,∇χ)+(VAu,χ)+β(|u|2Au,χ)+2β(uδ f (u),χ)=(δ,χ), ∀χ∈Xh. (3.8)

Since u,δ∈S, and with the a priori bounds established in Lemma 3.2, Au is well-defined
thanks to the Lax-Milgram theorem. Further, choosing χ = Au, dropping positive left
hand side terms, and using Sobolev inequalities yields the bound

1
2
‖∇Au‖2≤2β‖ f (u)‖L6‖Au‖L6‖u‖L2‖δ‖L6+‖δ‖‖Au‖

≤CβC1K0‖∇Au‖‖∇δ‖+C2
P‖∇δ‖‖∇Au‖,

and thus
‖∇Au‖≤ (CβC1K0+C2

P)‖∇δ‖. (3.9)

Writing e= f (u+δ)− f (u)−Au after subtracting (3.8) from (3.7) provides

1
2
(∇e,∇χ)+(Ve,χ)+β(|u|2e,χ)

=−β(|δ|2 f (u),χ)−β((2uδ+δ2)( f (u+δ)− f (u)),χ). (3.10)

Choosing χ=e, we obtain using Hölder (L2−L6−L6−L6), Sobolev and Poincare inequal-
ities along with Lemma 3.2 that

1
2
‖∇e‖2+‖V1/2e‖2+β‖|u|e‖2

=−β(|δ|2 f (u),e)−β((2uδ+δ2)( f (u+δ)− f (u)),e)

≤CCPβ‖∇δ‖2‖∇ f (u)‖‖∇e‖+Cβ‖∇e‖‖∇( f (u+δ)− f (u))‖‖∇δ‖(‖δ‖+‖u‖)
≤CCPC1β‖∇δ‖2‖‖∇e‖+CCPK0β‖∇e‖‖∇( f (u+δ)− f (u))‖‖∇δ‖. (3.11)
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Using Lemma 3.3 and reducing gives

‖∇e‖≤CCPβ
(
C1+K0C f

)
‖∇δ‖2. (3.12)

This proves that Au is the Frechet derivative of f at u.
The bound (3.9) with the assumption that u∈S implies continuity of Au, and Lipschitz

continuity of the Frechet derivative of f on S since the bound depends only on global
constants.

We have now established that f is Lipshitz continuously Frechet differentiable on S,
and that

‖∇( f (u)− f (v))‖≤C f ‖∇(u−v)‖ for u,v∈S.

Next, we show that the function p(ψ)=ψ/‖ψ‖ is Lipschitz continuously Frechet differ-
entiable on bounded sets that are bounded away from 0.

Define the space Yh={v∈Xh, ‖v‖=1}, and consider now the function p: f (Xh\{0})→
Yh defined by

p(ψ)=
ψ

‖ψ‖ .

In fact, for any given ψ∈Xh\{0} and a δψ∈Xh\{0} sufficiently small in norm,

p(ψ+δψ)−p(ψ)=
ψ+δψ

‖ψ+δψ‖−
ψ

‖ψ‖

=
ψ+δψ(

(ψ,ψ)+(ψ,δψ)+(δψ,ψ)+(δψ,δψ)
) 1

2
− ψ

‖ψ‖

=
ψ+δψ

‖ψ‖
(
1+(ψ,ψ)−1((ψ,δψ)+(δψ,ψ)+(δψ,δψ))

) 1
2
− ψ

‖ψ‖

=
ψ+δψ

‖ψ‖

(
1− 1

2
(ψ,ψ)−1((ψ,δψ)+(δψ,ψ)+(δψ,δψ))

)
− ψ

‖ψ‖+O(δψ2)

=
1
‖ψ‖

(
δψ− 1

2
(ψ,ψ)−1((ψ,δψ)+(δψ,ψ))ψ

)
+O(δψ2)

=
1
‖ψ‖

(
δψ− (p(ψ),δψ)+(δψ,p(ψ))

2
p(ψ)

)
+O(δψ2). (3.13)

In other words, the Frechet derivative of p : ψ→ ψ
‖ψ‖ is given by the linear mapping

Dp(ψ) : δψ→ 1
‖ψ‖

(
δψ− (p(ψ),δψ)+(δψ,p(ψ))

2
p(ψ)

)
, (3.14)



D. Forbes, L. G. Rebholz and F. Xue / Adv. Appl. Math. Mech., xx (2021), pp. 1-30 15

which is obviously continuous with respect to ψ bounded away from 0. Also, it follows
that

‖Dp(ψ)‖= sup
‖δψ‖6=0

1
‖ψ‖

∥∥∥∥δψ− (p(ψ),δψ)+(δψ,p(ψ))
2

p(ψ)
∥∥∥∥/‖δψ‖

≤ 1
‖ψ‖ sup

δψ 6=0

(
1+‖p(ψ)‖2)‖δψ‖/‖δψ‖= 2

‖ψ‖ . (3.15)

The analysis above can be summarized into the following conclusion:

Lemma 3.5. The function g : Yh→ Yh defined by g = p◦ f is Lipschitz continuously Frechet
differentiable, which completes the proof of Theorem 3.1.

Proof. Taking K0 = 2, we have that Yh⊂ S. This is sufficient for Lemmas 3.2-3.4 to hold,
making f Lipschitz continuously Frechet differentiable on Yh. The function f :u→v maps
u∈Yh to v∈Xh\{0} bounded away from 0. The coercivity of the symmetric bilinear form
representing the left side of (3.2), which is established in Lemma 3.1, together with the
domain of f being Yh (all elements lie on unit sphere in L2 norm) is sufficient to guarantee
a positive lower bound on ‖∇ f (u)‖. Hence p operates only on f (Yh), which is bounded
away from 0, and so p is Lipschitz continuously Frechet differentiable on f (Yh) and maps
into Yh. Since g= p◦ f , g must then also be Lipschitz continuously Frechet differentiable
on Yh.

3.2 Anderson accelerated BENGF iteration

We consider now AA applied to a FEM discretization of BENGF iteration (1.3a)-(1.3b).
While [7] considers BENGF as a pseudo time-stepping method looking for a steady state,
we consider it as a fixed point iteration to which we can apply AA.

We now define BENGFh, which is the BENGF iteration equipped with a finite element
discretization.

BENGFh Step 1 Given φk∈Yh, find φ̂k+1∈Xh satisfying

∆t
2
(∇φ̂k+1,∇χ)+((1+V∆t)φ̂k+1,χ)+β∆t(|φk|2φ̂k+1,χ)=(φk,χ).

BENGFh Step 2 Calculate

φk+1=
φ̂k+1

‖φ̂k+1‖
.

Just as for PPh, we will consider improvements offered by AA to BENGFh.
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Define the solution operator for the BENGFh iteration to be g̃ : Yh→Yh, so that BENGFh
can be written as: φk+1 = g̃(φk). Since BENGFh takes the exact same form as PPh, except
has different left hand side coefficients in Step 1 that are still the same sign as in PPh,
the theory that proves PPh is well-posed and that its solution operator g is well defined
also applies here, and thus BENGFh is well posed and g̃ is well defined. The Ander-
son accelerated BENGFh is then defined by using the AA algorithm with the fixed point
function g̃, and we call the resulting method AABENGFh. By the same reasoning as above
for BENGFh well-posedness, we can also invoke the PPh theory to prove that g̃ satisfies
Assumptions 2.1-2.2. Thus, calling Cg̃ the BENGFh Lipschitz constant, repeating the PPh
theory establishes the following theorem for AABENGFh. Remark 3.2 applies in the same
way to Theorem 3.2 as it does to Theorem 3.1 with regard to the theorem assumptions.
Also similar to Theorem 3.1, the theorem below reveals an improvement in the linear
convergence rate from AA through reducing ξk by increasing mk, but with the tradeoff of
more higher order terms being introduced into the upper bound.

Theorem 3.2. For AABENGFh under the assumption that the direction sines between columns
of Fj defined by (2.3b) are bounded below by a constant cs > 0, for j= k−mk,··· ,k−1, and As-
sumption 2.3 holds for g and the previous mk iterates, the residual wk+1= g̃(φk)−φk satisfies the
following bound.

‖wk+1‖≤‖wk‖
(

ξk((1−ηk)+Cg̃ηk)+C
√

1−θ2
k

( k−1

∑
n=k−mk

‖wn‖h(ξn)

))
. (3.16)

4 Numerical tests

We now test the impact of AA on the PPh and BENGFh iterations for computing the
ground state solution of several GPE problems in 1D and 2D. Overall we find for both
iterations that AA significantly reduces the number of iterations needed for convergence.
No relaxation is used, since the methods appeared to be contractive (or at least not grow-
ing) in all tests.

4.1 1D tests

We first compare PPh, BENGFh, and their AA accelerated variants on an example problem
from [7] in 1D with a harmonic oscillator potential. Specifically, this problem has

V(x)=
x2

2
, φ0(x)=

1
π1/4 e−

x2
2 , Ω=[−20,20].

We discretize using N=214 equispaced elements (subintervals), and piecewise linear el-
ements. Mass lumping is used, and so this FEM discretization is equivalent to a second
order finite difference discretization in space. The stopping criterion of each method is
that ‖φk+1−φk‖<10−8.
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Figure 1: Solution to the 1D GPE with different values of β.

Solutions are computed by PPh, BENGFh, with and without AA, and with varying
β. Table 1 shows the energy and chemical potential of the solutions corresponding to
different values of β, and Fig. 1 plots the ground state solutions φ.

The performance of PPh and AAPPh is summarized and illustrated in Fig. 2 and Ta-
ble 2. For example, Table 2 shows that PPh (m=0) takes 16 iterations to converge for the
GPE with β = 3.1371, and AAPPh with depth m = 1 needs 37 iterations to converge for
β= 31.371. The best performance (lowest iteration counts) is shown in bold numbers in
the table. Note that m=3 is the best depth of AA for the two smaller values of β, but for
the two larger β, m=2 is the best whereas m=3 leads to failure of convergence. The fail-

Table 1: The energy and chemical potential (lowest eigenvalue) found for the 1D GPE test problem. The

same values were found with PPh and BENGFh, with and without AA. These values obtained with N=213 and
N=214 subintervals agreed to at least 5 digits.

β Eβ(φ) µg =µβ(φ)
3.1371 1.0441 1.5266
31.371 3.9810 6.5527
313.71 18.171 30.259
3137.1 84.249 140.41
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Figure 2: Convergence of Picard-projection and Anderson accelerated Picard-projection for the 1D GPE with
different values of β.

ure for larger m is consistent with the convergence analysis, as increasing m introduces
extra higher order terms into the right hand side of the residual bound; see Theorem 3.1
and Remark 3.1. We shall see a similar pattern for the 2D test later.

The performance of BENGFh with different time step size ∆t is shown in Table 3. For
instance, BENGFh with ∆t=0.01 takes 588 iterations to converge for β=3.1371. We note in
particular that for β=3.1371, the performance of BENGFh improves monotonically with
increasing ∆t, and PPh outperforms BENGFh with any ∆t≤10. This is consistent with the
local convergence analysis of the methods from section 5 on the potential advantage of
Picard-projection for small β. For larger β, it is interesting to note that the (near-)optimal

Table 2: Iteration counts of Picard-projection (m=0) and AA accelerated Picard-projection with different depth
m≥1 for the GPE 1D test problem.

β m=0 m=1 m=2 m=3
3.1371 16 11 11 9
31.371 44 37 25 22
313.71 230 111 72 ∞
3137.1 1118 285 212 ∞
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Figure 3: Convergence of BENGFh and AABENGFh with time step ∆t=1 for the 1D GPE with different values
of β.

∆t (with which fewest iterations are needed) seems to be inversely proportional to β; with
the optimal ∆t, BENGFh converges more rapidly than PPh. However, it is not clear how
to find the optimal ∆t without repeated experiments.

Finally, the performance of BENGFh and AABENGFh is shown in Fig. 3 and Table 4.
For example, Table 4 shows that BENGFh (m=0) and AABENGFh with depth m=1 need
16 and 11 iterations, respectively, to find the solution for β=3.1371 and ∆t=100. Again,
the lowest iteration counts are shown in bold numbers. As in the AAPPh test above, for
larger β the larger choices of m do not allow convergence, which is consistent with the
convergence analysis; see Theorem 3.2 and Remark 3.1.

Table 3: Iteration counts of BENGFh with different time step size ∆t for the GPE 1D test problem. The
(near-)optimal time step ∆t for BENGFh seems to be inversely proportional to β.

β ∆t=0.01 ∆t=0.1 ∆t=1 ∆t=10 ∆t=100 ∆t=∞ (PPh)
3.1371 588 82 23 17 16 16
31.371 492 88 44 42 44 44
313.71 434 142 126 213 228 230
3137.1 550 338 594 1027 1109 1118
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Table 4: Iteration counts of BENGFh (m=0) and AA accelerated BENGFh with depth m≥1 for the GPE 1D
test problem. The (near-)optimal time step ∆t is used with each value of β.

(β,∆t) m=0 m=1 m=2 m=3
(3.1371,100) 16 11 11 9
(31.371,10) 42 38 25 22
(313.71,1) 126 111 72 −
(3137.1,0.1) 338 263 − −

In comparison with Table 2, it is worth noting that the best performance of AAPPh and
AABENGFh are exactly the same for β = 3.1371,31.371 and 313.71, whereas the former
needs fewer iterations for β = 3137.1. Since the AAPPh does not need ∆t, it is a robust
algorithm that depends less on the choice of parameters and reliably outperforms PPh
and BENGFh (with optimal ∆t) for this test problem.

4.2 2D tests

We consider now a test from [7] in 2D for a harmonic oscillator potential together with a
potential from a stirrer corresponding to a far-blue detuned Gaussian laser beam, i.e.,

V(x,y)=
1
2
(

x2+y2)+4e−((x−1)2+y2).

We compute solutions with the Picard-projection iteration and BENGFh, with and with-
out AA, and for several choices of β. For the initial guess for PPh and initial condition for
BENGFh, we use

φ0(x,y)=
1

π1/2 e−(x2+y2)/2.

For spatial discretizations of the domain Ω=[−8,8]2, we use uniform meshes (with vary-
ing h) and continuous piecewise quadratic elements. Three different meshes were used,
h= 1

32 , 1
128 , 1

256 , and all convergence behavior was found to be mesh independent (up to
±1 iteration for each instance). Plots of the solution to the steady GPE system are shown
in Fig. 4 as surface plots, and Table 5 shows the energy and eigenvalues associated with
the converged solution to the discrete system.

Table 5: Shown above are the energy and eigenvalues found for the varying β in the 2D GPE test problem. The

values for h= 1
128 and h= 1

256 agreed to at least 5 digits for each value in the table.

β Eβ(φ) µg =µβ(φ)
1 1.684 1.7245

400 5.851 8.3150
10000 26.84 40.587
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β=1 β=400 β=10,000

Figure 4: Shown above is are surface plots of the converged ground state solution on the finest mesh, for varying
β.

For AAPPh, we computed solutions with constant m= 0,1,2,3 and also an adaptive
depth chosen so that

mk =


1, ‖φk−1−φk−2‖≥10−2,
2, 10−3≤‖φk−1−φk−2‖<10−2,
10, ‖φk−1−φk−2‖<10−3.

This adaptive depth is made based on the convergence results in Theorems 3.1 and 3.2,
which show that smaller m early in the iteration will decrease the linear convergence rate
and introduce less error from higher order terms, whereas once the residual is smaller
the higher order terms will be negligible and it is advantageous for the depth to be taken
larger.

Convergence results for AAPPh and PPh (m= 0) are displayed in Fig. 5, and we ob-
serve that AAPPh offers considerable improvement over PPh provided m is not taken too
large, reducing the number of iterations substantially, especially for larger β. The best
results for AAPPh came from using the adaptive choice of m, but using constant m still
offered a significant improvement over PPh (m= 0). Using AAPPh with constant m> 3
did not offer any improvement over the m=3 results for this problem.

For the AABENGFh method, we used the same parameters as above for AAPPh.
Convergence behavior is shown in Fig. 6, and we observe that AABENGFh makes a
big improvement in BENGFh, and is best when the adaptive m is chosen. Results for
AABENGFh with adaptive m are very similar to those above for AAPPh with adaptive
m. As with the 1D tests, we observed sensitivity in (AA)BENGFh to the time step size
∆t. Shown in Table 6 are iteration counts for BENGFh (i.e., m=0) and AABENGFh with
adaptive m, for varying ∆t, and we observe somewhat less sensitivity in choosing the
time step size when AA with adaptive m is used.
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Figure 5: Shown above is convergence behavior for AAPPh with varying m.
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Figure 6: Shown above is convergence behavior for BENGFh with ∆t=1 and Anderson acceleration with varying
m.

Table 6: Shown above are the number of iterations to reach convergence for BENGFh using β=400, m=0 and
adaptive m, for varying ∆t.

∆t AABENGFh BENGFh
w/ adaptive m (m=0)

0.01 45 314
0.05 23 92
0.1 18 62
1 16 34
10 16 31

100 16 31

5 Local convergence of Picard-projection and BENGF

Lastly, we provide a local convergence analysis of the Picard-projection and BENGF iter-
ations, which appears to be absent in the literature. In the previous sections, the Picard-
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projection and BENGF iterations are studied and tested under a finite element discretiza-
tion (and then called PPh and BENGFh, respectively) since this readily allowed for analy-
sis. In this section, for simplicity, we will assume a finite difference discretization. Mod-
ifications can be made to the proof to make it work also for FEM, but require additional
notation and technical details. While we do not consider AA in this section, the results
here are relevant to the theory above since they give bounds on the Lipschitz constants
Cg and Cg̃ (at least locally) which appear in the convergence theorems. We will slightly
abuse notation in this section, with vectors φk+1 and φ̂k+1 representing finite difference
solutions at iteration k+1. We will use ‖·‖lp to denote lp vector norms in this section.

For a given mesh/discretization, in matrix form the scheme reads

Step 1 : Solve Akφ̂k+1=φk for φ̂k+1, i.e., φ̂k+1=A−1
k φk, (5.1a)

Step 2 : φk+1= φ̂k+1/‖φ̂k+1‖l2 , (5.1b)

with the change of norm from L2 to l2 expected to be negligible on a sufficiently fine
mesh. Here,

Ak =−
1
2

L+diag(V)+βdiag(|φk|2)

is symmetric and positive definite with β≥ 0, where L is the discrete Laplacian matrix,
and diag(V) and diag(|φk|2) denote the diagonal matrices with diagonal entries being
the values of V(x) and the squares of the values of φk(x) on mesh nodes.

Assume that φ is the (finite difference representation of) the eigenvector of the alge-
braic nonlinear eigenvalue problem

Aφ :=
(
−1

2
L+diag(V)+βdiag(|φ|2)

)
φ=µφ (5.2)

normalized in `2 norm corresponding to the ground state solution of the GPE. For our
subsequent analysis based on linear algebra, however, it is more convenient to rescale φ
so that is instead normalized in the vector 2-norm. Let the original φ=cφ̃, where ‖φ‖`2=1
and ‖φ̃‖2=1. We have c=‖φ‖`2 /‖φ̃‖`2 =‖φ̃‖2/‖φ̃‖`2 , and (5.2) can be written as

Aφ̃ :=

(
−1

2
L+diag(V)+β

‖φ̃‖2
2

‖φ̃‖2
`2

diag(|φ̃|2)
)

φ̃=µφ̃.

For a given mesh/discretization and any vector φ 6= 0, ‖φ̃‖2
2/‖φ̃‖2

`2 is a fixed constant.
Therefore, by letting β̃= β‖φ̃‖2

2/‖φ̃‖2
`2 , we have a new equation in exactly the same form

as (5.2), with φ and β replaced with φ̃ (normalized in vector 2-norm) and β̃ (proportional
to β but independent of φ), respectively. To simplify the notation for our analysis, we still
work with the original equation (5.2), with φ normalized in vector 2-norm.

Note that A is entirely determined by the desired unknown φ. As A is symmetric
and positive definite with β≥ 0, any eigenvalue of A is positive. It is clear that (5.1) is
simply a variant of the well-known inverse power method for computing the eigenvalue
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of smallest modulus. Define the matrix Dk=βdiag(|φk|2−|φ|2) (a diagonal matrix whose
diagonal entries are the entries of the vector β(|φk|2−|φ|2)) such that

‖Dk‖=β
∥∥|φk|2−|φ|2

∥∥
∞≤β‖|φk|+|φ|‖∞‖|φk|−|φ|‖∞

≤2β‖|φk|−|φ|‖∞≤2β‖φk−φ‖=4βsin
∠(φk,φ)

2
. (5.3)

Suppose that sin∠(φk,φ) is sufficiently small, so that ‖A−1Dk‖≤‖A−1‖‖Dk‖< 1. It fol-
lows that

(A+Dk)
−1=

(
(I+Dk A−1)A

)−1
=A−1(I+Dk A−1)−1

=A−1
(

I−Dk A−1(I+Dk A−1)−1
)

, (5.4)

where

‖Dk A−1(I+Dk A−1)−1‖≤‖Dk‖‖A−1‖‖(I+Dk A−1)−1‖

≤ ‖A−1‖‖Dk‖
1−‖A−1‖‖Dk‖

.
2β

λ1
sin∠(φk,φ).

From (5.4), Step 1 of Picard-projection (5.1) can be written as

φ̂k+1=A−1
k φk =(A+Dk)

−1 φk

=A−1
(

φk−Dk A−1(I+Dk A−1)−1φk

)
. (5.5)

This shows that (5.1) is a perturbed inverse power method based on the limit matrix A,
with a small perturbation vector Dk A−1(I+Dk A−1)−1φk subtracted from φk before the
action of A−1. This observation helps us establish a one-step local convergence of Picard-
projection closely related to that of the standard inverse power method involving A.

Theorem 5.1. Consider the algebraic GPE

Aφ=

(
−1

2
L+diag(V)+βdiag(|φ|2)

)
φ=µφ,

where V ≥ 0 and β≥ 0. Let (µ,φ) = (λ1,v1) be the eigenpair representing the GPE ground
state solution. Let λ2 be the second smallest eigenvalue of A, and assume that λ1 <λ2. Let φk
be an approximation to φ, with ‖φk‖= 1 and sin∠(φk,φ) sufficiently small, and define Dk =
βdiag(|φk|2−|φ|2). Then the new iterate φk+1 computed by Picard-projection (5.1) satisfies

tan∠(φk+1,φ)≤ λ1+2βsin∠(v1,Dkv1)

λ2
tan∠(φk,φ)+O

(
sin2∠(φk,φ)

)
. (5.6)
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Proof. Let (λi,vi) be the eigenpairs of A, with 0<λ1<λ2≤···≤λn, and ‖vi‖=1. Recall that
λ1=µ and v1=φ are the eigenvalue and eigenvector of the algebraic nonlinear eigenvalue
problem (GPE) corresponding to the ground state, and (vi,vj) = 0 for i 6= j since A is
symmetric. Let

φk =
n

∑
i=1

civi,

with

‖φk‖=
(

n

∑
i=1

c2
i

) 1
2

=1, where
( n

∑
i=2

c2
i

) 1
2
=sin∠(φk,v1)

is assumed to be sufficiently small, and c1=(φk,v1)=cos∠(φk,v1)≈1. Let us define

qk :=Dk A−1(I+Dk A−1)−1φk =Dk A−1φk−
(

Dk A−1
)2

φk+
(

Dk A−1
)3

φk−··· ,

where ∥∥∥∥(Dk A−1
)`∥∥∥∥≤‖Dk‖`‖A−1‖`≤

(4βsin ∠(φk ,φ)
2

λ1

)`
→0

exponentially with ` because sin∠(φk,v1) is sufficiently small. Therefore qk can be simply
written as

qk =Dk A−1φk+O
(
sin2∠(φk,φ)

)
. (5.7)

Substitute φk =∑n
i=1 civi into (5.7). Since ‖Dk‖,|ci|≤O(sin∠(φk,φ)) (2≤ i≤n), we have

qk =
c1

λ1
Dkv1+Dk

n

∑
i=2

ci

λi
vi+O

(
sin2∠(φk,φ)

)
=

c1

λ1
Dkv1+O

(
sin2∠(φk,φ)

)
. (5.8)

Now let qk =∑n
i=1 divi, such that for each i,

di =(vi,qk)=
c1

λ1
(vi,Dkv1)+O

(
sin2∠(φk,φ)

)
≤ c1

λ1
‖Dk‖cos∠(vi,Dkv1)+O

(
sin2∠(φk,φ)

)
.

It follows that( n

∑
i=2

d2
i

) 1
2 ≤ c1

λ1
‖Dk‖

( n

∑
i=2

cos2∠(vi,Dkv1)
) 1

2
+O

(
sin2∠(φk,φ)

)
=

c1

λ1
‖Dk‖sin∠(v1,Dkv1)+O

(
sin2∠(φk,φ)

)
. (5.9)

With the work above, (5.5) leads to

φ̂k+1=A−1(φk−qk)=
c1−d1

λ1
v1+

n

∑
i=2

ci−di

λi
vi.
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Recall that c1=cos∠(φk,φ), and note that

2c1sin
∠(φk,φ)

2
≤2cos

∠(φk,φ)
2

sin
∠(φk,φ)

2
=sin∠(φk,φ).

Therefore,

tan∠(φ̂k+1,φ)=

(
∑n

i=2

(
ci−di

λi

)2
) 1

2

c1−d1
λ1

≤

(
∑n

i=2

(
ci
λi

)2
) 1

2

+

(
∑n

i=2

(
di
λi

)2
) 1

2

c1−d1
λ1

≤
1

λ2

(
∑n

i=2 c2
i
) 1

2 + 1
λ2

(
∑n

i=2 d2
i
) 1

2

c1−d1
λ1

≤ λ1

λ2

sin∠(φk,φ)+2βλ−1
1 sin∠(v1,Dkv1)

(
2c1sin ∠(φk ,φ)

2

)
c1−d1

≤λ1+2βsin∠(v1,Dkv1)

λ2
tan∠(φk,φ)+O

(
sin2∠(φk,φ)

)
. (5.10)

Finally, since φk+1= φ̂k+1/‖φ̂k+1‖, the conclusion is established as

∠(φ̂k+1,φ)=∠(φk+1,φ).

Thus, we complete the proof.

We consider now the local convergence of BENGF. Similar to Picard-projection, the
local convergence of BENGF can also be analyzed from the perspective of a shift-invert
power method. In matrix form, this method reads

Step 1: Solve(I+∆tAk)φ̂k+1=φk forφ̂k+1, (i.e., φ̂k+1=(I+∆tAk)
−1φk), (5.11a)

Step 2: φk+1= φ̂k+1/‖φ̂k+1‖. (5.11b)

with Ak defined the same as above for Picard-projection.
The local convergence analysis closely follows that of Picard-projection. Specifically,

we can write Step 1 of BENGF as

φ̂k+1=(I+∆tA+∆tDk)
−1φk,

where Dk =βdiag(|φk|2−|φ|2). Using the inverse of matrix addition (5.4), we have

φ̂k+1=(I+∆tA)−1
(

φk−∆tDk(I+∆tA)−1
(

I+∆tDk(I+∆tA)−1
)−1

φk

)
, (5.12)

which is a perturbed shift-invert power method based on the limit matrix A, with a small
perturbation vector subtracted from the standard result. In fact, (5.12) is obtained by
simply replacing A and Dk with I+∆tA and ∆tDk, respectively, in (5.5). Thus, to derive
the one-step local convergence, we need only replace Dk with ∆tDk in (5.9), and replace
λ1 and λ2 with 1+∆tλ1 and 1+∆tλ2, respectively, in (5.10). Then we have the following
convergence result for BENGF.
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Theorem 5.2. Consider the algebraic GPE

Aφ=

(
−1

2
L+diag(V)+βdiag(|φ|2)

)
φ=µφ,

where V ≥ 0 and β≥ 0. Let (µ,φ) = (λ1,v1) be the eigenpair representing the GPE ground
state solution. Let λ2 be the second smallest eigenvalue of A, and assume that λ1 <λ2. Let φk
be an approximation to φ, with ‖φk‖= 1 and sin∠(φk,φ) sufficiently small, and define Dk =
βdiag(|φk|2−|φ|2). Then the new iterate φk+1 computed by BENGFh (5.11) satisfies

tan∠(φk+1,φ)≤ 1+∆t(λ1+2βsin∠(v1,Dkv1))

1+∆tλ2
tan∠(φk,φ)+O

(
sin2∠(φk,φ)

)
.

We comment on the connection between Picard-projection and BENGF. First, we pointed
earlier that Picard-projection is equivalent to BENGF as ∆t→∞. In terms of the local con-
vergence rate, if βsin∠(v1,Dkv1) is sufficiently small such that

λ1+2βsin∠(v1,Dkv1)<λ2,

then the bound on BENGF convergence factor

1+∆t(λ1+2βsin∠(v1,Dkv1))

1+∆tλ2

achieves its minimum

λ1+2βsin∠(v1,Dkv1)

λ2
as ∆t→∞,

which is exactly the result (5.6) for Picard-projection. This suggests that for small β,
BENGF may converge more rapidly with larger step size ∆t, and Picard-projection is
likely to outperform BENGF asymptotically. This has been verified numerically in our
1D test for β=3.1371; see Table 3. On the other hand, if βsin∠(v1,Dkv1) is large such that
λ1+2βsin∠(v1,Dkv1)>λ2, then we would not get a bound on the convergence factor that
is less than 1 for either method. The relative merit of the two methods for GPE with large
β deserves further exploration, though numerically, Table 3 suggests that BENGF with
optimal step size ∆t outperforms Picard-projection.

6 Conclusions

We have considered analytically and numerically the effect of AA on Picard-projection
and backward Euler normalized gradient flow iterations for solving the stationary GPE.
Under a finite element discretization, we proved that both of the iterations fit into the AA
analysis framework from [30], which allowed us to prove that AA improves the linear
convergence rates of the methods by a multiplicative factor representing the gain of the
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AA optimization problem, but adds additional higher order terms to the residual expan-
sion. Numerical tests show substantial improvement provided by AA for both methods,
especially for larger β. Finally, a local convergence analysis of both methods is given.
There are two main conclusions from this paper: First, AA provides significant improve-
ment in both methods. Second, although there are differences between Picard-projection
and BENGF iterations, when AA is used with a larger time step size they behave very
similar. This second result is important since BENGF has a parameter ∆t, and it seems
that by using AA Picard-projection one does not need this parameter. Future directions
include extending this work to the important case of rotational GPE.
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