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ABSTRACT

Li1 sAlosGe15(PO4)s (LAGP) is a solid-state electrolyte with high ionic conductivity and air stability but poor chemical stability and
high interfacial impedance when directly contacted with Li metal. In this work, we develop an inorganic/polymer hybrid interlayer
composed of Li bis(trifluoromethylsulfonyl)imide/poly(vinylene carbonate) polymer electrolyte and SiO. submicrospheres to
stabilize the Li/LAGP interface. The polymeric component renders high ionic conductance and low interfacial resistance, whereas
the inorganic component imparts flame retardancy and a physical barrier to the known Li-LAGP side reaction, together enabling
stable Li stripping/plating for more than 1,500 h at room temperature. With this interlayer at both electrodes, all-solid-state
Li||LiFePO4 full cells with stable cycling performance are also demonstrated.
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Solid-state electrolytes are receiving extensive attention in
battery applications because of their better safety compared to
the conventional organic liquid electrolytes [1, 2]. Inorganic
ceramics, such as NASICON-type [3-7], sulfide [8-11], perovskite-
type [12, 13], and garnet-type [14-17] materials, with high
ionic conductivity and mechanical strength, are promising solid-
state electrolytes for safe and high-energy-density Li batteries.
However, these electrolytes face issues including high solid/
solid interfacial resistance and poor chemical stability in
contact with electrode materials [18-20], which limit the
development of solid-state batteries. For example, NASICON-
type Li1sAloaTiis(PO4)s (LATP) [21-23] and LiisAlosGe1s(PO4)s
(LAGP) [24-32] have good ionic conductivity (10*-107 S-cm™)
and air stability, but are chemically unstable against Li metal,
which cause poor cycling stability. Studies have shown that the
degradation mechanism of LAGP involves its reduction by Li
resulting in high interfacial resistance and cracking/pulverization
of the electrolyte [30-34].

Because of the side reactions, Li|LAGP|Li cells without
interfacial modification can only be cycled for less than 150 h
at 0.1 mA-cm™ with a high overpotential (> 300 mV) [30, 31,
33, 35]. Constructing an interlayer between Li and LAGP has
emerged as a simple yet effective strategy for mitigating this
problem. Both inorganic and polymeric materials have been
used as interlayers [32, 36-42]. For example, a Ge thin film
was sputtered on LAGP surface to suppress reduction of LAGP
and improve its wettability for Li metal [38]. The resulting
symmetrical cell could be cycled for 200 h at 0.1 mA-cm™
before the Ge protective layer was consumed. Some studies
introduced gel polymer electrolytes as interlayers between
LAGP and Li [25-27, 29, 43, 44]. While these polymer

interlayers are effective in extending battery cycle life, they
compromise safety because of their thermal instability and even
flammability. In order to further improve LAGP-based solid-
state Li metal batteries, it is important to explore alternative
interface protection methods.

In this work, we developed a composite interlayer consisting
of SiO: submicrospheres embedded in a polymer electrolyte of
Li bis(trifluoromethylsulfonyl)imide/poly(vinylene carbonate)
(LiTFSI/PVCA) for LAGP-based solid-state Li batteries. In
the composite structure, the polymer electrolyte component
reduces the solid/solid interfacial resistance between the LAGP
electrolyte and the Li metal electrode, and builds up ionically
conductive channels between them (Fig. 1). The SiO, component
physically separates LAGP from Li to prevent direct reaction
of the solid electrolyte. As an inorganic filler, the SiO» sub-
microspheres also reduce the amount of polymer electrolyte
necessary for forming an effective interlayer and enhance
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Figure 1 Design principle of PVCA-SiO; interlayer for stabilizing Li/LAGP
interface.
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flame retardancy of the composite interlayer (Fig. 1), which
could benefit battery safety. With the cooperation of these two
components, this interlayer enables Li|LAGP|Li cells with an
initial overpotential of 102 mV at 0.1 mA-cm™ and can be stably
cycled for over 1,500 h.

LAGP was synthesized via a solid-state reaction (see the
Electronic Supplementary Material (ESM) for details) [38]. The
resulting powder was then pressed and sintered into dense pellets
with a thickness of 400-500 um. Both the powder (Fig. S1 in
the ESM) and pellet (Fig. S2 in the ESM) have a well-defined
LiGes(PO.)s crystal structure (PDF #: 80-1923) as revealed by
X-ray diffraction (XRD). Li|LAGP|Li coin cells were assembled
without using any interlayer at the electrode/electrolyte interfaces.
Charged and discharged to a capacity of 0.1 mA-h-cm™ at a
constant current density of 0.1 mA-cm™, the cell maintained an
overpotential of 300 mV for 100 h before the voltage hysteresis
surged (Fig. 2(a)). The cycled LAGP pellet was found to be
fractured and even partially pulverized with black species
covering the surface (Fig. 2(b)). Scanning electron microscopy
(SEM) images of the LAGP pellet revealed formation of
metallic Li in the electrolyte bulk (Fig. 2(c)) and side reaction
products on the surface (Fig. S3(a) in the ESM). X-ray photo-
electron spectroscopy (XPS) measurement showed that at least
part of the Ge (IV) on the electrolyte surface had been
reduced to Ge (III) (Fig. 2(d)). The peak area ratio of Ge (III)/
Ge (IV) is about 33%. The XRD pattern of the cycled pellet
(Fig. S4(a) in the ESM) shows additional peaks in the range of
20°-26° (Fig. S4(b) in the ESM), which correspond to possible
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Figure 2 (a) Cycling performance of Li|LAGP|Li symmetric cell at

0.1 mA-cm™ (current density)-0.1 mA-h-cm™ (capacity). (b) Photograph
and (c) low-magnification cross section SEM image of the LAGP pellet
from the Li|LAGP|Li cell after 200 h of cycling at 0.1 mA-cm™ (current
density)-0.1 mA-h-cm™ (capacity). The dark areas in (c) correspond to
deposited Li in the LAGP pellet, with the inset showing a magnified area.
(d) Ge 3d XPS of the surface of the cycled LAGP pellet. (e) Schematic
illustration of side reactions and Li dendrite formation at direct-contact
Li/LAGP interface.
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decomposition products, such as LiAlGe,Os, LizAlGeOs, LisPOs,
and AIPOs [34, 45, 46]. Taken together, these results suggest
that substantial side reactions take place at the direct-contact
interface of LAGP and Li, which forms an interphase of high
resistance to ionic transport and leads to Li penetration into
the electrolyte bulk fracturing the pellet (Fig. 2(e)).

To protect LAGP against Li and simultaneously ensure a good
ionic contact between them, we first studied a PVCA polymer
electrolyte as an interlayer (Fig. S5(a) in the ESM). The
polymer electrolyte was prepared from LiTFSI and vinylene
carbonate (VC) following a two-step polymerization process
[47] and sandwiched between Li and LAGP with an amount
of 17 pL-cm™. Charged and discharged under 0.1 mA-cm™
(current density)-0.1 mA-h-cm™ (capacity) conditions, the
Li|PVCA|LAGP|PVCA|Li cell displayed a decreased initial over-
potential of 115 mV compared to the Li|LAGP|Li cell (Fig. 3(a)).
The cycle life was also extended to 500 h with the overpotential
gradually increased to 405 mV at the end of cycling (Fig. 3(a)).
The cycled LAGP pellet was fractured with black species
observed on the surface and broken cross sections (Fig. 3(b)),
which was also confirmed by SEM images (Fig. 3(c) and Fig. S3(b)
in the ESM). XPS results showed that part of the Ge (IV) on
the surface was reduced (Fig. 3(d)). The area ratio of Ge (IIT)/
Ge (IV) is about 21%, lower than what was observed for the
cycled Li|LAGP|Li cell. Based on these results, we conclude
that the PVCA interlayer is effective in reducing the interfacial
resistance between Li and LAGP but is not sufficient to prevent
the side reactions between them (Fig. 3(e)). Consistently,
Li||Li cells using LiTFSI/PVCA as electrolyte (without LAGP)

0.8

(@)

o
-
L

0.0

Voltage (V)

T L] L] T
0 100 200 300 400 500
Time (h)

LAGP
PVCA

i R |

Intensity (a.u.)

-

38 36 34 32 - -

Binding energy (eV) o
Figure 3 (a) Cycling performance of Li|PVCA[LAGP|PVCA|Li symmetric
cell at 0.1 mA-cm™ (current density)-0.1 mA-h-cm™ (capacity). (b) Photograph
of the LAGP pellet from the Li|PVCA|LAGP|PVCA|Li cell after 500 h of
cycling at 0.1 mA-cm™ (current density)-0.1 mA-h-cm™ (capacity). (c) Low-
magnification and (inset) magnified SEM images of a cross section of
the cycled pellet. (d) Ge 3d XPS of the surface of the cycled LAGP pellet.
(e) Schematic illustration of alleviated side reactions between Li and LAGP
with PVCA interlayer.

30 28 26

www.theNanoResearch.com | www.Springer.com/journal/12274 | Nano Research



3232

showed an overpotential of 100 mV under 0.1 mA-cm™ (current
density)-0.1 mA-h-cm™ (capacity) cycling conditions but short-
circuited after only 80 h (Fig. S6 in the ESM).

To solve the remaining problem, we synthesized SiO. sub-
microspheres with a well-controlled diameter of about 800 nm
(Fig. S7 in the ESM) [48] and blended them into the PVCA
polymer electrolyte to prepare a new interlayer (Fig. S5(b) in the
ESM). Charged and discharged under 0.1 mA-cm™ (current
density)-0.1 mA-h-cm™ (capacity) conditions, the Li|PVCA-SiOs|
LAGP|PVCA-SiOs|Li cell showed an initial overpotential of
102 mV and an excellent cycling stability for 1,500 h with a
moderate increase of overpotential to 250 mV (Fig. 4(a)). This
is among the best cycling performance ever achieved for
Li|LAGP|Li cells with various electrode/electrolyte interlayers
operating at room temperature (Table S1 in the ESM). The
LAGP pellet cycled for 1,600 h remained intact with a clean and
smooth surface (Fig. 4(b)). The SEM images show no signs of
metallic Li or side reaction products (Fig. 4(c) and Fig. S3(c) in
the ESM). Neither XPS (Fig. 4(d)) nor XRD (Fig. S8 in the ESM)
detected any change in surface oxidation state or crystal phase.

The high performance of this hybrid interlayer is a direct
result of its composition. The LiTFSI/PVCA polymer electrolyte
effectively reduces the interfacial resistance between Li and
LAGP, but is not sufficient to prevent the side reaction from
developing during cycling. The incorporation of SiO; fillers in
the hybrid interlayer improves chemical stability on top of
the good ionic conductivity and mechanical flexibility of the
polymer electrolyte. The chemically inert SiO., submicrospheres
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Figure 4 (a) Cycling performance of Li|PVCA-SiO2|LAGP|PVCA-SiOa|Li
symmetric cell at 0.1 mA-cm™ (current density)-0.1 mA-h-cm™ (capacity).
(b) Photograph of the LAGP pellet from the Li|PVCA-SiO;|LAGP|
PVCA-SiOa|Li cell after 1,600 h of cycling at 0.1 mA-cm™ (current density)-
0.1 mA-h-cm™ (capacity). (c) Low-magnification and (inset) magnified
SEM images of a cross section of the cycled pellet. (d) Ge 3d XPS of the
surface of the cycled LAGP pellet. (¢) Schematic illustration of PVCA-SiO:
interlayer stabilizing Li/LAGP interface.
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create a physical barrier between Li and LAGP and successfully
avoid electrical contact (Fig. 4(e)). The SiO, component may
also alleviate Li dendrite formation because of its mechanical
strength [49, 50]. In addition, the use of SiO. significantly
lowers the amount of polymer electrolytes needed to form
an interlayer and therefore improves its thermal stability. A
polymer electrolyte interlayer often requires about 17 pL-cm™
of gel polymer to wet the Li/ceramic interface [51] and more
to ensure a good dendrite suppression capability [44]. The
existence of a large amount of gel polymer electrolyte can com-
promise battery safety due to its thermal instability or even
flammability. As an inert additive, the SiO. submicrospheres
not only occupy space in the polymer matrix and reduce the
polymer concentration, but can also form a protective barrier
during combustion to increase char-forming ability and isolate
the polymer from oxygen and heat through a “tortuous path”
effect [52], which improves flame retardancy. We tested the
stability of PVCA-SiO,, PVCA, and VC (with LiTFSI) in flame
for a few seconds. Expectedly, liquid VC is highly combustible
(Figs. S9(a) and S9(b) and Movie ESM1, Part S1 in the ESM).
PVCA did not catch fire (Figs. S9(c) and S9(d) and Movie ESM1,
Part S2 in the ESM), but shrank and deformed significantly
(Fig. S9(e) in the ESM). PVCA-SiO: is neither flammable
(Figs. S9(f) and S9(g) and Movie ESM1, Part S3 in the ESM)
nor easily deformable (Fig. S9(h) in the ESM), making it a
desirable interlayer for all-solid-state batteries.

Our PVCA-SiO:; hybrid interlayer can also function well
at the cathode/electrolyte interface to enable all-solid-state
full-cell batteries. To demonstrate this, we used LiFePO4 (LFP)
as the cathode material and constructed a Li|PVCA-SiO,
LAGP|PVCA-SiO:|LFP cell (Fig. S10(a) in the ESM). Cycled
at 0.075 mA-cm™ (25 mA-g™' for LFP), the cell exhibited an
initial discharge capacity of 153 mA-h-g" (for LFP) and relatively
stable charging and discharging for 100 cycles (Fig. 5). The
overpotential is about 125 mV, of which about 50 mV is
contributed by the anode and the rest is from the cathode. No
obvious increase in overpotential was observed for the first
20 cycles (Fig. S10(b) in the ESM), again confirming that the
PVCA-SiO:; interlayer provides a stable electrode/electrolyte
interface. In comparison, the Li|PVCA|LAGP|PVCA|LFP cell
with the PVCA polymer electrolyte as interlayers showed an
initial capacity of 144 mA-h-g' and the capacity started to
rapidly decay after approximately 65 cycles (Fig. 5). The LFP|
LAGP|Li cell (with a tiny amount of carbonate electrolyte
wetting the LAGP/LFP interface and with no interlayer at the
Li/LAGP interface) showed an even lower initial capacity of
91 mA-h-g™" and a short life of only 20 cycles (Fig. 5).

In conclusion, we have developed a LiTFSI/PVCA-SiO,
inorganic/polymer hybrid interlayer for LAGP-based all-solid-
state Li metal batteries. With high ionic conductivity, low
interfacial resistance, mechanical strength, and flame retardancy,
this interlayer enables 1,500 h of Li plating/stripping at room
temperature.
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