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ABSTRACT 
Li1.5Al0.5Ge1.5(PO4)3 (LAGP) is a solid-state electrolyte with high ionic conductivity and air stability but poor chemical stability and 
high interfacial impedance when directly contacted with Li metal. In this work, we develop an inorganic/polymer hybrid interlayer 
composed of Li bis(trifluoromethylsulfonyl)imide/poly(vinylene carbonate) polymer electrolyte and SiO2 submicrospheres to 
stabilize the Li/LAGP interface. The polymeric component renders high ionic conductance and low interfacial resistance, whereas 
the inorganic component imparts flame retardancy and a physical barrier to the known Li-LAGP side reaction, together enabling 
stable Li stripping/plating for more than 1,500 h at room temperature. With this interlayer at both electrodes, all-solid-state 
Li||LiFePO4 full cells with stable cycling performance are also demonstrated.  
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Solid-state electrolytes are receiving extensive attention in 
battery applications because of their better safety compared to 
the conventional organic liquid electrolytes [1, 2]. Inorganic 
ceramics, such as NASICON-type [3–7], sulfide [8–11], perovskite- 
type [12, 13], and garnet-type [14–17] materials, with high 
ionic conductivity and mechanical strength, are promising solid- 
state electrolytes for safe and high-energy-density Li batteries. 
However, these electrolytes face issues including high solid/ 
solid interfacial resistance and poor chemical stability in 
contact with electrode materials [18–20], which limit the 
development of solid-state batteries. For example, NASICON- 
type Li1.4Al0.4Ti1.6(PO4)3 (LATP) [21–23] and Li1.5Al0.5Ge1.5(PO4)3 
(LAGP) [24–32] have good ionic conductivity (10–4–10–3 S·cm–1) 
and air stability, but are chemically unstable against Li metal, 
which cause poor cycling stability. Studies have shown that the 
degradation mechanism of LAGP involves its reduction by Li 
resulting in high interfacial resistance and cracking/pulverization 
of the electrolyte [30–34]. 

Because of the side reactions, Li|LAGP|Li cells without 
interfacial modification can only be cycled for less than 150 h 
at 0.1 mA·cm–2 with a high overpotential (> 300 mV) [30, 31, 
33, 35]. Constructing an interlayer between Li and LAGP has 
emerged as a simple yet effective strategy for mitigating this 
problem. Both inorganic and polymeric materials have been 
used as interlayers [32, 36–42]. For example, a Ge thin film 
was sputtered on LAGP surface to suppress reduction of LAGP 
and improve its wettability for Li metal [38]. The resulting 
symmetrical cell could be cycled for 200 h at 0.1 mA·cm–2 

before the Ge protective layer was consumed. Some studies 
introduced gel polymer electrolytes as interlayers between 
LAGP and Li [25–27, 29, 43, 44]. While these polymer 

interlayers are effective in extending battery cycle life, they 
compromise safety because of their thermal instability and even 
flammability. In order to further improve LAGP-based solid- 
state Li metal batteries, it is important to explore alternative 
interface protection methods. 

In this work, we developed a composite interlayer consisting 
of SiO2 submicrospheres embedded in a polymer electrolyte of 
Li bis(trifluoromethylsulfonyl)imide/poly(vinylene carbonate) 
(LiTFSI/PVCA) for LAGP-based solid-state Li batteries. In 
the composite structure, the polymer electrolyte component 
reduces the solid/solid interfacial resistance between the LAGP 
electrolyte and the Li metal electrode, and builds up ionically 
conductive channels between them (Fig. 1). The SiO2 component 
physically separates LAGP from Li to prevent direct reaction 
of the solid electrolyte. As an inorganic filler, the SiO2 sub-
microspheres also reduce the amount of polymer electrolyte 
necessary for forming an effective interlayer and enhance  

 
Figure 1  Design principle of PVCA–SiO2 interlayer for stabilizing Li/LAGP 
interface. 
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flame retardancy of the composite interlayer (Fig. 1), which 
could benefit battery safety. With the cooperation of these two 
components, this interlayer enables Li|LAGP|Li cells with an 
initial overpotential of 102 mV at 0.1 mA·cm–2 and can be stably 
cycled for over 1,500 h. 

LAGP was synthesized via a solid-state reaction (see the 
Electronic Supplementary Material (ESM) for details) [38]. The 
resulting powder was then pressed and sintered into dense pellets 
with a thickness of 400–500 μm. Both the powder (Fig. S1 in 
the ESM) and pellet (Fig. S2 in the ESM) have a well-defined 
LiGe2(PO4)3 crystal structure (PDF #: 80-1923) as revealed by 
X-ray diffraction (XRD). Li|LAGP|Li coin cells were assembled 
without using any interlayer at the electrode/electrolyte interfaces. 
Charged and discharged to a capacity of 0.1 mA·h·cm–2 at a 
constant current density of 0.1 mA·cm–2, the cell maintained an 
overpotential of 300 mV for 100 h before the voltage hysteresis 
surged (Fig. 2(a)). The cycled LAGP pellet was found to be 
fractured and even partially pulverized with black species 
covering the surface (Fig. 2(b)). Scanning electron microscopy 
(SEM) images of the LAGP pellet revealed formation of 
metallic Li in the electrolyte bulk (Fig. 2(c)) and side reaction 
products on the surface (Fig. S3(a) in the ESM). X-ray photo-
electron spectroscopy (XPS) measurement showed that at least 
part of the Ge (IV) on the electrolyte surface had been 
reduced to Ge (III) (Fig. 2(d)). The peak area ratio of Ge (III)/ 
Ge (IV) is about 33%. The XRD pattern of the cycled pellet 
(Fig. S4(a) in the ESM) shows additional peaks in the range of 
20°–26° (Fig. S4(b) in the ESM), which correspond to possible  

 
Figure 2  (a) Cycling performance of Li|LAGP|Li symmetric cell at   
0.1 mA·cm–2 (current density)-0.1 mA·h·cm–2 (capacity). (b) Photograph 
and (c) low-magnification cross section SEM image of the LAGP pellet 
from the Li|LAGP|Li cell after 200 h of cycling at 0.1 mA·cm–2 (current 
density)-0.1 mA·h·cm–2 (capacity). The dark areas in (c) correspond to 
deposited Li in the LAGP pellet, with the inset showing a magnified area. 
(d) Ge 3d XPS of the surface of the cycled LAGP pellet. (e) Schematic 
illustration of side reactions and Li dendrite formation at direct-contact 
Li/LAGP interface.  

decomposition products, such as LiAlGe2O6, Li3AlGeO5, Li3PO4, 
and AlPO4 [34, 45, 46]. Taken together, these results suggest 
that substantial side reactions take place at the direct-contact 
interface of LAGP and Li, which forms an interphase of high 
resistance to ionic transport and leads to Li penetration into 
the electrolyte bulk fracturing the pellet (Fig. 2(e)). 

To protect LAGP against Li and simultaneously ensure a good 
ionic contact between them, we first studied a PVCA polymer 
electrolyte as an interlayer (Fig. S5(a) in the ESM). The 
polymer electrolyte was prepared from LiTFSI and vinylene 
carbonate (VC) following a two-step polymerization process 
[47] and sandwiched between Li and LAGP with an amount 
of 17 μL·cm–2. Charged and discharged under 0.1 mA·cm–2 
(current density)-0.1 mA·h·cm–2 (capacity) conditions, the 
Li|PVCA|LAGP|PVCA|Li cell displayed a decreased initial over-
potential of 115 mV compared to the Li|LAGP|Li cell (Fig. 3(a)). 
The cycle life was also extended to 500 h with the overpotential 
gradually increased to 405 mV at the end of cycling (Fig. 3(a)). 
The cycled LAGP pellet was fractured with black species 
observed on the surface and broken cross sections (Fig. 3(b)), 
which was also confirmed by SEM images (Fig. 3(c) and Fig. S3(b) 
in the ESM). XPS results showed that part of the Ge (IV) on 
the surface was reduced (Fig. 3(d)). The area ratio of Ge (III)/ 
Ge (IV) is about 21%, lower than what was observed for the 
cycled Li|LAGP|Li cell. Based on these results, we conclude 
that the PVCA interlayer is effective in reducing the interfacial 
resistance between Li and LAGP but is not sufficient to prevent 
the side reactions between them (Fig. 3(e)). Consistently, 
Li||Li cells using LiTFSI/PVCA as electrolyte (without LAGP) 

 
Figure 3  (a) Cycling performance of Li|PVCA|LAGP|PVCA|Li symmetric 
cell at 0.1 mA·cm–2 (current density)-0.1 mA·h·cm–2 (capacity). (b) Photograph 
of the LAGP pellet from the Li|PVCA|LAGP|PVCA|Li cell after 500 h of 
cycling at 0.1 mA·cm–2 (current density)-0.1 mA·h·cm–2 (capacity). (c) Low- 
magnification and (inset) magnified SEM images of a cross section of 
the cycled pellet. (d) Ge 3d XPS of the surface of the cycled LAGP pellet. 
(e) Schematic illustration of alleviated side reactions between Li and LAGP 
with PVCA interlayer. 
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showed an overpotential of 100 mV under 0.1 mA·cm–2 (current 
density)-0.1 mA·h·cm–2 (capacity) cycling conditions but short- 
circuited after only 80 h (Fig. S6 in the ESM). 

To solve the remaining problem, we synthesized SiO2 sub-
microspheres with a well-controlled diameter of about 800 nm 
(Fig. S7 in the ESM) [48] and blended them into the PVCA 
polymer electrolyte to prepare a new interlayer (Fig. S5(b) in the 
ESM). Charged and discharged under 0.1 mA·cm–2 (current 
density)-0.1 mA·h·cm–2 (capacity) conditions, the Li|PVCA–SiO2| 
LAGP|PVCA–SiO2|Li cell showed an initial overpotential of 
102 mV and an excellent cycling stability for 1,500 h with a 
moderate increase of overpotential to 250 mV (Fig. 4(a)). This 
is among the best cycling performance ever achieved for 
Li|LAGP|Li cells with various electrode/electrolyte interlayers 
operating at room temperature (Table S1 in the ESM). The 
LAGP pellet cycled for 1,600 h remained intact with a clean and 
smooth surface (Fig. 4(b)). The SEM images show no signs of 
metallic Li or side reaction products (Fig. 4(c) and Fig. S3(c) in 
the ESM). Neither XPS (Fig. 4(d)) nor XRD (Fig. S8 in the ESM) 
detected any change in surface oxidation state or crystal phase. 

The high performance of this hybrid interlayer is a direct 
result of its composition. The LiTFSI/PVCA polymer electrolyte 
effectively reduces the interfacial resistance between Li and 
LAGP, but is not sufficient to prevent the side reaction from 
developing during cycling. The incorporation of SiO2 fillers in 
the hybrid interlayer improves chemical stability on top of 
the good ionic conductivity and mechanical flexibility of the 
polymer electrolyte. The chemically inert SiO2 submicrospheres  

 
Figure 4  (a) Cycling performance of Li|PVCA–SiO2|LAGP|PVCA–SiO2|Li 
symmetric cell at 0.1 mA·cm–2 (current density)-0.1 mA·h·cm–2 (capacity). 
(b) Photograph of the LAGP pellet from the Li|PVCA–SiO2|LAGP| 
PVCA–SiO2|Li cell after 1,600 h of cycling at 0.1 mA·cm–2 (current density)- 
0.1 mA·h·cm–2 (capacity). (c) Low-magnification and (inset) magnified 
SEM images of a cross section of the cycled pellet. (d) Ge 3d XPS of the 
surface of the cycled LAGP pellet. (e) Schematic illustration of PVCA–SiO2 
interlayer stabilizing Li/LAGP interface. 

create a physical barrier between Li and LAGP and successfully 
avoid electrical contact (Fig. 4(e)). The SiO2 component may 
also alleviate Li dendrite formation because of its mechanical 
strength [49, 50]. In addition, the use of SiO2 significantly 
lowers the amount of polymer electrolytes needed to form 
an interlayer and therefore improves its thermal stability. A 
polymer electrolyte interlayer often requires about 17 μL·cm–2 
of gel polymer to wet the Li/ceramic interface [51] and more 
to ensure a good dendrite suppression capability [44]. The 
existence of a large amount of gel polymer electrolyte can com-
promise battery safety due to its thermal instability or even 
flammability. As an inert additive, the SiO2 submicrospheres 
not only occupy space in the polymer matrix and reduce the 
polymer concentration, but can also form a protective barrier 
during combustion to increase char-forming ability and isolate 
the polymer from oxygen and heat through a “tortuous path” 
effect [52], which improves flame retardancy. We tested the 
stability of PVCA–SiO2, PVCA, and VC (with LiTFSI) in flame 
for a few seconds. Expectedly, liquid VC is highly combustible 
(Figs. S9(a) and S9(b) and Movie ESM1, Part S1 in the ESM). 
PVCA did not catch fire (Figs. S9(c) and S9(d) and Movie ESM1, 
Part S2 in the ESM), but shrank and deformed significantly 
(Fig. S9(e) in the ESM). PVCA–SiO2 is neither flammable 
(Figs. S9(f) and S9(g) and Movie ESM1, Part S3 in the ESM) 
nor easily deformable (Fig. S9(h) in the ESM), making it a 
desirable interlayer for all-solid-state batteries.  

Our PVCA–SiO2 hybrid interlayer can also function well 
at the cathode/electrolyte interface to enable all-solid-state 
full-cell batteries. To demonstrate this, we used LiFePO4 (LFP) 
as the cathode material and constructed a Li|PVCA–SiO2| 
LAGP|PVCA–SiO2|LFP cell (Fig. S10(a) in the ESM). Cycled 
at 0.075 mA·cm–2 (25 mA·g–1 for LFP), the cell exhibited an 
initial discharge capacity of 153 mA·h·g–1 (for LFP) and relatively 
stable charging and discharging for 100 cycles (Fig. 5). The 
overpotential is about 125 mV, of which about 50 mV is 
contributed by the anode and the rest is from the cathode. No 
obvious increase in overpotential was observed for the first 
20 cycles (Fig. S10(b) in the ESM), again confirming that the 
PVCA–SiO2 interlayer provides a stable electrode/electrolyte 
interface. In comparison, the Li|PVCA|LAGP|PVCA|LFP cell 
with the PVCA polymer electrolyte as interlayers showed an 
initial capacity of 144 mA·h·g–1 and the capacity started to 
rapidly decay after approximately 65 cycles (Fig. 5). The LFP| 
LAGP|Li cell (with a tiny amount of carbonate electrolyte 
wetting the LAGP/LFP interface and with no interlayer at the 
Li/LAGP interface) showed an even lower initial capacity of  
91 mA·h·g–1 and a short life of only 20 cycles (Fig. 5). 

In conclusion, we have developed a LiTFSI/PVCA–SiO2 
inorganic/polymer hybrid interlayer for LAGP-based all-solid- 
state Li metal batteries. With high ionic conductivity, low 
interfacial resistance, mechanical strength, and flame retardancy, 
this interlayer enables 1,500 h of Li plating/stripping at room 
temperature.  

 
Figure 5  Cycling performance of Li|PVCA–SiO2|LAGP|PVCA–SiO2|LFP, 
Li|PVCA|LAGP| PVCA|LFP, and Li|LAGP|LFP batteries at 0.075 mA·cm–2. 
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