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Transition to strong coupling regime in hybrid plasmonic systems: Exciton-induced transparency

and Fano interference
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We present a microscopic model describing the transition to strong coupling regime for an emitter resonantly

coupled to a surface plasmon in a metal-dielectric structure. We demonstrate that the shape of scattering spectra

is determined by an interplay of two distinct mechanisms. First is the near-field coupling between the emitter

and the plasmon mode which underpins energy exchange between the system components and gives rise to

exciton-induced transparency minimum in scattering spectra prior the transition to strong coupling regime. The

second mechanism is Fano interference between the plasmon dipole and the plasmon-induced emitter’s dipole

as the system interacts with the radiation field. We show that the Fano interference can strongly affect the

overall shape of scattering spectra, leading to the inversion of spectral asymmetry that was recently reported in

the experiment.

I. INTRODUCTION

Strong coupling between surface plasmons in metal-

dielectric structures and excitons in semiconductors or dye

molecules has recently attracted intense interest driven to a

large extent by possible applications in ultrafast reversible

switching [1–3], quantum computing [4, 5], and light harvest-

ing [6]. In the strong coupling regime, coherent energy ech-

hange between excitons and plasmons [7] leads to the emer-

gence of mixed polaritonic states with energy bands separated

by the anticrossing gap (Rabi splitting) [8]. For excitons cou-

pled to cavity modes in microcavities, the Rabi splitting mag-

nitudes are relatively small on the scale of several meV [9–

11]. However, in hybrid plasmonic systems, where surface

plasmons are coupled to excitons in J-aggregates [12–22], in

various dye molecules [23–27] or in semiconductor nanos-

tructures [28–31], the Rabi splittings can be much greater even

reaching hundreds meV. For single excitons, however, achiev-

ing a strong exciton-plasmon coupling is a challenging task

as it requires extremely small plasmon mode volumes, which

can mainly be achieved in nanogaps [32–34].

At the same time, the scattering spectra of hybrid plasmonic

systems, such as excitons in J-aggregates or colloidal QDs

coupled to gap plasmons in nanoparticle-on-metal (NoM) sys-

tems [35–38] or those in two-dimensional atomic crystals con-

jugated with Ag or Au nanostructures [39–44], exhibit a nar-

row minimum even before reaching the strong coupling tran-

sition point. The emergence of such a minimum in the weak

coupling regime is referred to as exciton-induced transparency

(ExIT) [45–47], in analogy to electromagnetically-induced

transparency (EIT) in pumped three-level atomic systems that

is attributed to Fano interference between different excitation

pathways. Recently, we have shown that, in the linear regime

(i.e., in the absence of pump), the emergence of this minimum

is due to imbalance of energy exchange between the emitter

and plasmon in a narrow frequency interval [48]. Typically,

the plasmon plasmon optical dipole moment significantly (by

∼ 104) exceeds that of an exciton in a semiconductor quantum

dot and so the emitter’s direct interaction with the radiation

field is relatively weak [49]. In this case, the ExIT minimum

in scattering spectra is described, with a reasonably good ac-

curacy, by the dressed plasmon model or by its classical ana-

logue – the coupled oscillators model, in which only the plas-

mon interacts with the radiation field, so that the scattering

spectra show a narrow ExIT minimum on top of a broad plas-

mon band, while the overall spectral weight is tilted towards

the higher frequency range [38, 47, 48].

On the other hand, in hybrid plasmonic systems, the optical

interference between an exciton and a plasmon can arise from

indirect coupling of exciton to the radiation field. Namely, if

the incident light frequency is tuned to the plasmon resonance,

the exciton dipole moment induced by the plasmon near field

is not necessarily small, so that the exciton can substantially

contribute, albeit indirectly, to the system optical transition.

This gives rise to Fano interference between the plasmon and

plasmon-induced exciton dipoles which can significantly af-

fect the overall shape of optical spectra. As we show in this

paper, such Fano interference effects can lead to inversion

of spectral asymmetry, characterized by spectral weight shift

towards lower frequency range, which was observed for exci-

tons coupled to localized plasmon modes [22, 39, 40].

In this paper, we present a microscopic model for linear

optical response of a single exciton resonantly coupled to a

surface plasmon mode in a metal-dielectric structure which

accounts for both ExIT and Fano interference effects as the

system transitions to strong coupling regime. Starting with

the canonical Hamiltonian with microscopic coupling param-

eters [50], we set up the system of Maxwell-Bloch equations

for induced dipole moments which determine scattering spec-

trum of the hybrid plasmonic system. We further show that

while the ExIT minimum results from the energy exchange

imbalance in a narrow frequency interval, the overall spectral

shape of scattering spectra is strongly affected by the Fano

interference between radiating plasmon and plasmon-induced

exciton dipoles. Specifically, we demonstrate that Fano inter-

ference can lead to an inversion of spectral asymmetry, con-

sistent with the experiment [22, 39, 40].

II. THE SYSTEM HAMILTONIAN AND MICROSCOPIC

COUPLING PARAMETERS

We consider a quantum emitter (QE) with dipole moment

µe and excitation frequency ωe situated at a position re near
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a metal-dielectric structure characterized by complex dielec-

tric function ε(ω ,r) = ε ′(ω ,r)+ iε ′′(ω ,r) supporting local-

ized plasmon modes with frequencies ωm interacting with ex-

ternal electromagnetic (EM) field E(t). For monochromatic

EM field of frequency ω , in the rotating wave approximation

(RWA), the system dynamics is described by the Hamiltonian

H =h̄ωmâ†â+ h̄ωeσ̂†σ̂ + h̄g(σ̂†â+ â†σ̂)

−
(

µm·E â†e−iωt +µe·E σ̂†e−iωt +H.c.
)

, (1)

where â†
m and âm are the plasmon creation and annihilation

operators, σ̂† and σ̂ are the raising and lowering operators for

the QE, while the parameters g and µm characterize, respec-

tively, plasmon’s coupling to the QE and EM field.

For plasmonic nanostructures with characteristic size

smaller than the radiation wavelength, the coupling parame-

ters can be obtained microscopically by relating them to sys-

tem geometry and local field [50]. For such systems, the plas-

mon modes are determined by the quasistatic Gauss equation

[51] ∇·[ε ′(ωm,r)∇Φm(r)] = 0, where Φm(r) is the mode

potential that defines the mode field Em(r) = −∇Φm(r),
which we choose to be real. To determine the plasmon dipole

moment for optical transitions, we recast the Gauss’s law as

∇·[Em(r)+ 4πPm(r)] = 0, where Pm(r) = χ ′(ωm,r)Em(r)
is the electric polarization vector and χ = (ε − 1)/4π is the

plasmonic system susceptibility. The plasmon dipole moment

has the form

pm =

∫

dVPm =

∫

dV χ ′(ωm,r)Em(r). (2)

The Gauss’s equation does not determine the overall field nor-

malization [51], but the later can be found by matching the

plasmon radiative decay rate and that of a localized dipole

with excitation energy h̄ωm. The plasmon radiative decay rate

has the form [52] γr
m =W r

m/Um, where

Um =
1

16π

∫

dV
∂ [ωmε ′(ωm,r)]

∂ωm

E2
m(r), (3)

is the plasmon mode energy [53, 54] and

W r
m =

p2
mω4

m

3c3
, (4)

is the radiated power (c is the speed of light) [8]. The normal-

ized modes Ẽm(r) are thus determined by setting

γr
m =

4µ2
mω3

m

3h̄c3
, (5)

where µm is the mode optical transition matrix element. We

then find the normalization relation as

Ẽm(r) =
1

2

√

h̄ωm

Um

Em(r), (6)

where the scaling factor
√

h̄ωm/Um converts the plasmon en-

ergy Um to h̄ωm in order to match the EM field energy (the

factor 1/2 reflects positive-frequency contribution). Accord-

ingly, the plasmon optical transition matrix element in the

Hamiltonian (1) takes the form [compare to Eq. (2)]

µm =

∫

dV χ ′(ωm,r)Ẽm(r). (7)

In a similar way, the plasmon non-radiative decay rate is

γnr
m = W nr

m /Um, where W r
m = 1

8π

∫

dVε ′′(ωm,r)E
2
m(r) is the

power dissipated in the plasmonic structure due to Ohmic

losses. In terms of normalized fields, the non-radiative rate

takes the form

γnr
m =

1

2π h̄ωm

∫

dVε ′′(ωm,r)Ẽ
2
m(r), (8)

and so the plasmon full decay rate is γm = γnr
m + γr

m.

Note that in structures with a single metallic component,

the standard expression [51] for γnr
m is recovered: γnr

m =
2ε ′′(ωm)/[∂ε ′(ωm)/∂ωm]. The optical polarizability tensor

of a plasmonic structure describing its response to the exter-

nal field Ee−iωt has the form

αm(ω) =
1

h̄

µmµm

ωm −ω − i
2
γm

, (9)

where we kept only the resonance term [52].

The QE-plasmon coupling in the Hamiltonian (1) is ex-

pressed via normalized plasmon mode fields as [50]

h̄g =−µe·Ẽm(re). (10)

To present the coupling in a cavity-like form, we use the orig-

inal plasmon mode fields (6) to obtain [7]

g2 =
2πµ2

e ωm

h̄V
,

1

V
=

2[ne·Em(re)]
2

∫

dV [∂ (ωmε ′)/∂ωm]E2
m

, (11)

where V is projected plasmon mode volume characterizing

plasmon field confinement at the emitter position re along its

dipole orientation ne [52, 54, 55]. The plasmon mode volume

defines the Purcell factor characterizing radiation enhance-

ment of a QE near a plasmonic structure:

Fp =
γe→m

γr
e

=
6πc3Qm

ω3
mV

(12)

where Qm = ωm/γm is plasmon quality factor, γr
e =

4µ2
e ω3

m/3h̄c3 is the emitter’s radiative decay rate (at plasmon

resonance frequency) and γe→m is the rate of energy transfer

(ET) from QE to plasmon, given by

γe→m =
8πµ2

e Qm

h̄V
. (13)

Comparing Eqs. (11) and (13), we obtain a relation between

the QE-plasmon coupling and decay rates:

g2 =
1

4
γmγe→m =

Fp

4
γmγr

e . (14)

Thus, all coupling parameters in the Hamiltonian character-

izing plasmon interactions with the QE and EM field are ex-

pressed via system parameters and related to plasmon and QE

decay rates. Below, we employ these microscopic expressions

to elucidate the role of ExIT and Fano interference in scatter-

ing spectra of hybrid plasmonic systems.
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III. OPTICAL DIPOLE MOMENT OF A HYBRID

PLASMONIC SYSTEM

We are interested in the linear response of hybrid plasmonic

system to the external EM field. We assume that there is

only a single excitation in the system and disregard any non-

linear effects. In this case, we can approximate the QE by

bosonic operators to setup Maxwell-Bloch (MB) equations

for non-diagonal elements of density matrix (polarizations)

ρe(t) and ρm(t) related to QE and plasmon induced dipoles

as pe(t) = µeρe(t) and pm(t) = µmρm(t), respectively. Us-

ing the Hamiltonian (1), in the linear approximation, the MB

equations for ρm(t) and ρe(t) are obtained in a standard man-

ner as

iρ̇m = (ωm − iγm/2)ρm+ gρe −µm·E e−iωt ,

iρ̇e = (ωe − iγe/2)ρe + gρm−µe·E e−iωt , (15)

where dot stands for the time-derivative and γe is the QE spec-

tral linewidth assumed much smaller than γm.

In the steady-state case, substituting ρm(t) = ρme−iωt and

ρe(t) = ρee−iωt , we find

ρm =

(

ωe −ω − i
2
γe

)

µm·E− gµe·E
(

ωm −ω − i
2
γm

)(

ωe −ω − i
2
γe

)

− g2
(16)

and

ρe =

(

ωm −ω − i
2
γm

)

µe·E− gµm·E
(

ωm −ω − i
2
γm

)(

ωe −ω − i
2
γe

)

− g2
. (17)

The system’s induced dipole moment is ps = pm + pe =
µmρm +µeρe. To elucidate the processes contributing to ps,

we define QE polarizability tensor (in RWA) as

αe(ω) =
1

h̄

µeµe

ωe −ω − i
2
γe

, (18)

and introduce plasmon-induced QE dipole moment as

qe(ω) =αe(ω)Ẽm(re) =
µe

h̄

µe·Ẽm(re)

ωe −ω − i
2
γe

. (19)

Then, the hybrid system dipole moment can be decomposed

into three contributions:

ps = pd p +pint +pde. (20)

The main contribution comes from the dressed plasmon char-

acterized by induced dipole moment

pd p =
1

h̄

µm(µm·E)

ωm +Σm(ω)−ω − i
2
γm

, (21)

where

Σm(ω) =−
g2

ωe −ω − i
2
γe

=−qe(ω)·Ẽm(re), (22)

is plasmon’s self-energy due to its interactions with the QE.

Specifically, the imaginary part of self-energy determines the

ET rate from the plasmon to QE as

γm→e(ω) =−2Σ′′
m(ω) =

g2γe

(ω −ωe)2 + γ2
e /4

, (23)

which represents a Lorentzian centered at QE frequency ωe

and maximum value γm→e ≡ γm→e(ωe) = 4g2/γe.

The QE-plasmon interference term has the form

pint =
1

h̄

µm(qe·E)+qe(µm·E)

ωm +Σm(ω)−ω − i
2
γm

, (24)

and describes indirect, i.e., mediated by plasmon, interactions

of QE with the EM field. The last term represents dressed QE

contribution,

pde =
1

h̄

µe(µe·E)

ωe +Σe(ω)−ω − i
2
γe

, (25)

where

Σe(ω) =−
g2

ωm −ω − i
2
γm

, (26)

is the QE self-energy, whose imaginary part now determines

the ET rate from the QE to plasmon as

γe→m(ω) =−2Σ′′
e (ω) =

g2γm

(ω −ωm)2 + γ2
m/4

, (27)

which represents a Lorentzian centered at plasmon frequency

ωm and maximum value γe→m ≡ γe→m(ωm) = 4g2/γm, match-

ing Eq. (14). Importantly, in a narrow frequency interval

|ω −ωe| . γe, the reverse plamon-QE ET rate γm→e exceeds

the direct QE-plasmon ET rate γe→m:

γm→e

γe→m

=
γm

γe

≫ 1. (28)

Although the overall ET balance over the entire frequency

range is preserved, the ET imbalance in the frequency interval

∼ γe leads to emergence of the ExIT minimum in the dressed

plasmon spectra [48]. For a typical case µe/µm ≪ 1, the

dressed emitter’s dipole moment (25) is negligible small rela-

tive to dressed plasmon’s dipole moment (21) and can be omit-

ted. While the dressed plasmon approximation, i.e., ps ≈ pd p,

describes, with a reasonable accuracy, the position and mag-

nitude of the ExIT minimum in terms of energy exchange be-

tween the QE and plasmon, it does not account for QE in-

teractions with the EM field. The latter is included indirectly

in the interference term (24) via plasmon-induced QE dipole

moment qe, which, as we show below, gives rise to Fano in-

terference that strongly affects the overall shape of scattering

spectra as the system transitions to strong coupling regime.

IV. EXCITON-INDUCED TRANSPARENCY VS. FANO

INTERFERENCE

The scattering cross-section σ sc
s (ω) of a hybrid plasmonic

system is obtained by normalizing the radiated power Ws =
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(ω4/3c3)|ps(ω)|2 with the incident flux S = (c/8π)E2 [8]. In

the following, we disregard the relatively small direct QE cou-

pling with the EM field but include the indirect coupling via

plasmon-induced dipole moment, so that the induced system

dipole includes the interference term: ps ≈ pd p +pint . The

resulting expression for σ sc
s (ω) is quite cumbersome as it de-

pends sensitively on mutual polarizations of the incident light

E, the plasmon dipole moment µm and the QE dipole mo-

ment µe. Here, to simplify the analysis, we consider the case

when all dipole moments are parallel to the incident field, i.e.

µe ‖ µm ‖ E, so that the coupling between the system com-

ponents and to the EM field is strongest. In this case, the

two terms in the numerator in Eq. (24) are equal, and using

Eqs. (19) and (22), we obtain

σ sc
s (ω) =

8πω4

3h̄2c4

∣

∣

∣

∣

∣

µ2
m

(

ωe +ωF −ω − i
2
γe

)

(

ωm −ω − i
2
γm

)(

ωe −ω − i
2
γe

)

− g2

∣

∣

∣

∣

∣

2

,

(29)

where ωF = −2gµe/µm is QE frequency shift due to Fano

interference between the plasmon and plasmon-induced QE

dipole moments as the system interacts with the EM field. In

fact, this shift is the only difference between the current model

and dressed plasmon model (with ps ≈ p̃m), which does not

include the interference effects [48]. To highlight the role of

Fano interference, we relate the scattering cross-section (29)

to dressed plasmon scattering cross-section σ sc
d p(ω), which is

obtained from (29) by setting ωF = 0, as

σ sc
s (ω) = σ sc

d p(ω)F(ω), (30)

where F(ω) is the Fano function,

F(ω) =
(δ − q)2 + 1

δ 2 + 1
. (31)

Here, δ = 2(ω − ωe)/γe is frequency detuning in units of

linewidth and q is the Fano parameter:

q =
2ωF

γe

=−
4gµe

γeµm

. (32)

The Fano function has asymmetric shape that depends on the

sign of parameter q. Using Eq. (14), the magnitude of q can

be expressed via the Purcell factor as

|q|=
2γr

e

γe

√

Fp

ηm

, (33)

where ηm = γr
m/γm is the plasmon radiation efficiency. Al-

though the ratio γr
e/γe is typically very small (∼ 10−5) due to

the broadening of spectral linewidth γe by phonons or vibrons,

for small nanostructures we have Fp ≫ 1 and ηm ≪ 1, imply-

ing that, in a plasmonic hot spot, the actual value of q can be

appreciable.

To elucidate the interplay between Fano interference and

ExIT, we recall that, in the scattering spectra, the ExIT min-

imum emerges in the weak coupling regime as a narrow dip

on the top of a wide plasmon band. The plasmon scattering

cross-section is obtained by setting g = 0 in Eq. (29) and, for

µm ‖E, has the form

σ sc
m (ω) =

8πω4

3h̄2c4

µ4
m

(ωm −ω)2 + γ2
m/4

. (34)

To trace the emergence of ExIT minimum, we recast

the dressed plasmon scattering cross-section as σ sc
d p(ω) =

σ sc
m (ω)R(ω), where the function

R(ω) =

∣

∣

∣

∣

∣

(

ωm −ω − i
2
γm

)(

ωe −ω − i
2
γe

)

(

ωm −ω − i
2
γm

)(

ωe −ω − i
2
γe

)

− g2

∣

∣

∣

∣

∣

2

(35)

modulates the plasmon band, and so the system scattering

cross-section is factorized as

σ sc
s (ω) = σ sc

m (ω)R(ω)F(ω). (36)

In the frequency interval |ωm −ω |/γm ≪ 1, using the relation

(14), the function R(ω) simplifies to

R(ω) =
δ 2 + 1

δ 2 +(1+ p)2
, (37)

where the parameter

p =
γe→m

γe

=
4g2

γmγe

(38)

characterizes the ExIT minimum depth. The ExIT function

(37) describes the emergence of spectral minimum due to ex-

cessively large plasmon-QE ET in the frequency interval ∼ γe.

Specifically, in the weak coupling regime, the dressed plas-

mon decay rate has the form γd p(ω) = γm + γm→e(ω). Using

Eq. (23) and the relation (14), we obtain

γd p(ω) = γm

(

1+
p

δ 2 + 1

)

, (39)

implying linewidth increase by factor (1+ p) in the frequency

interval |ω −ωe| ∼ γe which, in turn, leads to the ExIT mini-

mum in the dressed plasmon spectrum.

Thus, in the weak coupling regime, the ExIT and Fano in-

terference effects are distinct and described by different fac-

tors in the scattering cross-section (36). While the ExIT factor

R(ω) leads to a narrow minimum at the QE frequency posi-

tion, the Fano factor F(ω) is an asymmetric function of ω that

affects the overall shape of the scattering spectra. Remark-

ably, as we show in numerical calculations below, the Fano

interference effect is most visible for intermediate and strong

QE-plasmon coupling as it shifts the spectral weight between

polaritonic bands resulting in the inversion of spectral asym-

metry.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the results of numerical calcu-

lations for a QE situated at a distance d from the tip of an
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FIG. 1. (a) The ExIT parameter p is plotted against the QE distance

d to the tip of Au nanorod of length 2a = 20 nm placed for different

values of aspect ratio a/b = 1.0, 2.0 and 3.0. (b) The Fano parameter

q is plotted against the distance d at nanorod aspect ratio a/b = 3.0
for different values of nanorod length 2a = 40 nm, 20 nm and 10 nm.

Inset: Schematics of a QE situated at a distance d from the tip of Au

nanorod in water for QE dipole moment oriented along the nanorod

axis.

Au nanorod in water with excitation frequency in resonance

with the surface plasmon frequency, ωe = ωm. The nanorod

was modeled by a prolate spheroid with semi-major and semi-

minor axes a and b, respectively, the QE’s dipole orientation

was chosen along the nanorod symmetry axis, the Au exper-

imental dielectric function was used in all calculations [56],

and the dielectric constant of water was taken as εs = 1.77. We

used the standard spherical harmonics for calculations of the

local fields near prolate spheroid to obtain the plasmon param-

eters µm, γm, ηm, the QE-plasmon coupling g and the Purcell

factor Fp, which determine the ExIT parameter p and Fano

parameter q. The QE spectral linewidth γe was chosen much

smaller than the plasmon decay rate, γe/γm = 0.1, and its ra-

diative decay time was chosen τr
e = 10 ns, which are typical

values for excitons in quantum dots. Note that the QE radia-

tive decay rate γr
e is much smaller that its spectral linewidth:

for our system we have γr
e/γe ∼ 10−5.

In Fig. 1, we plot the calculated ExIT parameter p, given by

Eq. (38), and the Fano parameter q, given by Eq. (32), against
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 /

 s
sc m
(w
m
)

(w - wm)/wm
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FIG. 2. (a) The ExIT function R(ω), given by Eq. (35), and its

asymptotic expression (dotted lines), given by Eq. (37), are shown

for a QE near the tip of Au nanorod with aspect ratio a/b = 3.0 and

length 2a = 20 nm at distances d/a = 0.5, 0.3, and 0.2. (b) Normal-

ized scattering cross-section in the dressed plasmon approximation

is shown for the same system parameters. Dotted line is the plasmon

band. All curves are calculated for ωe = ωm. Inset: Schematics of a

QE situated at a distance d from the tip of Au nanorod in water for

QE dipole moment oriented along the nanorod axis.

the distance to nanorod tip d normalized by a. Fig. 1(a) shows

the ExIT parameter p = Fpγr
e/γe for three different values of

nanorod aspect ratio: a/b = 1.0 (sphere), 2.0 and 3.0. Note

that the Purcell factor near the tip of elongated particle (a/b=
3.0) is much greater that for a nanosphere (a/b = 1), so that

p > 1 in the former case while being negligibly small in the

latter case. In Fig. 1(b), we show distance dependence of the

Fano parameter q for fixed nanorod aspect ratio a/b= 3.0 and

different lengths 2a = 40 nm, 20 nm and 10 nm. The Fano

parameter is largest for the smallest nanorod with 2a = 10 nm

and is significantly reduced for larger nanorods with 2a = 20

nm and 40 nm. Both p and q sharply decrease as the QE

moves away from the hot spot near nanorod tip.

In Fig. 2, in order to illustrate the emergence of ExIT,

we show the evolution of function R(ω), given by Eq. (35),

and of dressed plasmon’s scattering cross-section σ sc
d p(ω) =

σ sc
m (ω)R(ω) (i.e., without Fano interference effect) with de-

creasing QE-nanorod distance for 2a = 20 nm and a/b = 3.0.
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FIG. 3. (a) The Fano function F(ω), given by Eq. (31), is shown for a

QE near the tip of Au nanorod with aspect ratio a/b = 3.0 and length

2a = 20 nm at distances d/a = 0.5, 0.3, and 0.2. (b) Normalized

scattering cross-section, given by Eq. (36), is shown for the same

system parameters. Dotted line is the plasmon band. All curves are

calculated for ωe = ωm. Inset: Schematics of a QE situated at a

distance d from the tip of Au nanorod in water for QE dipole moment

oriented along the nanorod axis.

With decreasing d, the function R(ω) develops a minimum, as

shown in Fig. 2(a), which modulates the plasmon scattering

spectrum, as shown in Fig. 2(b). as discussed in the previous

section, the double-peak structure of σ sc
dp(ω is caused by ET

imbalance between the QE and plasmon in a narrow frequency

interval. In order to highlight the role of ExIT parameter p,

we plot in Fig. 2(a) the asymptotic expression for R(ω), given

by Eq. (37), for each value of QE-nanorod distance d (dotted

lines). Clearly, in the weak coupling regime (small p), the

ExIT function Eq. (37) accurately describes the spectral min-

imum (blue curves), while for larger p (i.e., closer to the tip)

the spectrum develops "wings" outside the minimum region

as the system undergoes strong coupling transition. The onset

of strong coupling transition can be seen in Fig. 2(b) as well,

as for d/a = 0.5 and 0.3, the scattering spectrum develops a

narrow ExIT minimum at QE frequency on top of unchanged

plasmon band, while for d/a = 0.2, the overall spectral width

slightly increases signaling the emergence of Rabi splitting.

We note that the ExIT function Eq. (37) accurately reproduces
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FIG. 4. (a) The Fano function F(ω), given by Eq. (31), is shown for a

QE near the tip of Au nanorod with aspect ratio a/b = 3.0 and length

2a = 10 nm at distances d/a = 0.5, 0.3, and 0.2. (b) Normalized

scattering cross-section, given by Eq. (36), is shown for the same

system parameters. Dotted line is the plasmon band. All curves are

calculated for ωe = ωm. Inset: Schematics of a QE situated at a

distance d from the tip of Au nanorod in water for QE dipole moment

oriented along the nanorod axis.

the central part of ExIT minimum for any distance d.

While the dressed plasmon model describes the position

and depth of ExIT minimum relatively well, it predicts a sus-

tained asymmetry as the spectral weight as the higher fre-

quency region of scattering spectrum carries a larger spectral

weight [see Fig. 2(b)]. In the absence of QE coupling to the

EM field, emission takes place from the plasmonic antenna,

whose power spectrum is ∝ ω4 due to larger radiation rate

at higher frequencies. Therefore, in the presence of double

peak structure due to either ExIT minimum or Rabi splitting

centered at resonance frequency ω = ωm = ωe, the higher fre-

quency peak is enhanced. Note that similar scattering spec-

tra are predicted by the classical model of coupled oscillators

which disregards optical interference effects [38, 47]. Below

we demonstrate that extending the dressed plasmon model to

include Fano interference between the plasmon antenna and

plasmon-induced QE dipole, as described in Eq. (36), can

strongly affect the overall shape of scattering spectra.

In Fig. 3, we plot the Fano function and scattering spec-
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tra for a QE situated at several distances from the tip of Au

nanorod with aspect ratio a/b= 3.0 and overall length 2a= 20

nm. As indicated above, we consider the case of QE’s dipole

moment oriented along the normal to tip surface (see inset in

Fig. 3), so that the Fano parameter q is positive. For nanorod

of this length, q is relative small [see Fig. 1(b)] and so the

Fano function’s variation ranges from about 2% for d = 4 nm

to 15% for d = 1 nm, as the QE-plasmon coupling g increases

close to the tip [see Fig. 3(a)]. Importantly, for q > 0, the

spectral shape of the Fano function, which enters in the scat-

tering cross-section (36), leads to the suppression of higher

frequency region and enhancement of lower frequency region.

As a result, the aforementioned asymmetry of dressed plas-

mon scattering spectra in Fig. 2(b) is largely compensated,

and so the full scattering spectra are now close to symmetric

[see Fig. 3(b)].

In Fig. 4, we show the Fano function and scattering spectra

for a small nanorod of length 10 nm. With decreasing nanos-

tructure size and, hence, the reduction of plasmon mode vol-

ume, the QE-plasmon coupling increases and so does the Fano

parameter q, which now reaches values q ∼ 1 [see Fig. 1(b)].

In this case, the Fano function variation is larger as well,

reaching about 80% close to the nanorod tip [see Fig. 4(a)]. As

a result, the scattering spectra, shown in Fig. 4(b), exhibit in-

version of spectral asymmetry relative to the dressed plasmon

spectra [see Fig. 2(b)], with the lower frequency peak now

substantially higher that the higher frequency peak. Note that

for smallest d, the system has clearly transitioned to strong

coupling regime since the double-peak structure is well be-

yond the plasmon resonance envelope. We stress that although

the mechanisms of ExIT and Fano interference are distinct,

as discussed in the previous section, the two effects are inti-

mately related as Fano interference maifests itself via redis-

tribution of spectral weight across the ExiT minimum in the

scattering spectra.

VI. CONCLUSIONS

In this paper, we developed a model for exciton-induced

transparency (ExIT) and Fano interference in hybrid plas-

monic systems comprised of a single emitter resonantly cou-

pled to a surface plasmon in a metal-dielectric structure. We

have shown that the shape of scattering spectra is determined

by two distinct mechanisms. First is near-field coupling be-

tween the emitter and plasmon that defines the energy spec-

trum of hybrid system. This mechanism relies upon energy

exchange between the system components and gives rise to

the ExIT minimum in scattering spectra and, in the strong cou-

pling regime, to the Rabi splitting of polaritonic bands. The

second mechanism is the Fano interference between the plas-

mon and the plasmon-induced emitter’s dipoles as the system

interacts with the radiation field. Although the Fano interfer-

ence does not significantly affect the position or magnitude of

ExIT minimum, it determines the overall shape of scattering

spectra. Specifically, the Fano interference leads to the inver-

sion of spectral asymmetry that was recently reported in the

experiment [22, 39, 40].
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Foundation Grant Nos. DMR-2000170, DMR-1856515 and

DMR-1826886.
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