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Fig. 1. The set of reduced words for 42153.

and s? is the identity. We call (1) a commutation relation and (2) a Yang-Baxter relation.
Given any permutation w € &,,, a reduced word for w is a sequence p = (py(pys - - -, P1)

such that w = s - 8,,, where £(w) is the length of w given by the number of pairs

£(w
(i < j) such tha‘f q(ul) > wj.

Tits [10] studied the graph with vertex set the reduced words and an edge connect-
ing two words that differ by a single Coxeter relation and showed that the subgraph
on reduced words for a given permutation is connected. There has been much research
on this graph, in particular for reduced words for the longest permutation wé") of &,,.
In this paper, we add additional structure to this graph, making it into a ranked poset
with canonical maximal element. From this we derive an explicit inversion statistic on
reduced words for the same permutation that precisely gives the minimum number of
Coxeter relations needed to transform one into another, along with how many are com-
mutations and how many Yang-Baxter moves. Dehornoy and Autord [4] considered a
similar question, phrased as computing the diameter of the graph on reduced words for
uf[(,n). They used techniques in group theory to give a series of bounds and asymptotics,
results which can be made explicit with this new statistic.

Edelman and Greene [5] introduced balanced tableaux to prove bijectively a result of
Stanley [9] equating reduced words for w[()") with standard Young tableaux of staircase
shape. The poset structure and inversion statistic extend naturally to balanced labellings
of any Rothe diagram, where the constructions simplify greatly. We use this simplified
statistic on balanced labellings to give a new, elementary proof of a result of Reiner and

Roichman [8] computing the diameter of the graph on reduced words for w[(]n).

2. Reduced words

Let R(w) denote the set of reduced words for w, indexed from right to left to mirror
the action of s; as a function on permutations.

Example A (Reduced words). Take w to be the permutation 42153. Then the word
(5, P4y P3, P2, 1) = (1,4,2,3,1) is a reduced word for w since

51545298381 = 5184528351 - 12345
= 518545253 - 21345

= 5185452 - 21435
= 5184 - 24135
=5 - 24153

42153

The 11 reduced words in R(42153) are shown in Fig. 1.
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Remark 2.1. A pair of indices (i < j) such that w; > w; is called an inversion of w, and
the number of such pairs the inversion number of w. We avoid this terminology here,
instead referring to the latter as the length of the permutation, to avoid confusion with
the definition of inversions for reduced words.

Definition 2.2. The run decomposition of p, denoted by (p*)| - --|p1)), partitions p into
decreasing sequences (read from right to left) of maximal length.

Example B (Run decomposition). The word p = (5,6,3,4,5,7,3,1,4,2,3,6), a reduced
word for the permutation w = 41758236, has run decomposition

pt) pd) p ' pth)

Y N et St N S -ardany
(5,6 |3,4,5,7| 731,142,360

The following definition for super-Yamanouchi words first appears in [2], where it is
shown that the reduced word contributing the unique leading term to a Schubert polyno-
mial is precisely this super-Yamanouchi word. The terminology derives from Yamanouchi
words, which capture the unique leading terms for Schur polynomials.

Definition 2.3. A reduced word p with run decomposition (p®|.--[p™)) is super-
Yamanouchi if each p( is an interval and min(p®)) > - .. > min(p(").

Example C (Super- Yamanouchi). The word p = (5,6,3,4,5,7,3,1,4,2,3,6) from Exam-
ple B is not super-Yamanouchi since none of p(4, p® p(M) is an interval or since neither
min(p®) > min(p®)) nor min(p?) > min(p™) holds.

In contrast, the word p = (5,6,7,4,5,3,4,5,6,1,2,3), another reduced word for the
same permutation, is super-Yamanouchi, with run decomposition

since each run is an interval and min(p™) > min(p®) > min(p®) > min(p*)).

Proposition 2.4. For any w, there exists a unique super- Yamanouchi reduced word m €

R(w).

Proof. Given w € &,, construct m, recursively as follows. For w the identity, 7, is the
empty word. Otherwise, find the final descent of w, say at position 7, and then find the
smallest index j > 4 for which w; < w; or take j = n + 1 if no such index exists. Then
Tw =i(i+1)---(j — 2)my, where v is the permutation s;_a - - - sjp18;w.

To see this is well-defined, referring to Algorithm 1, the set in line 5 is nonempty
whenever £(v) > 0, the set in line 6 is nonempty by construction, and line 8 removes
precisely (7—2)—i+1 = j—i—1 > 1 inversions from v, ensuring that algorithm terminates.
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Line 8 also ensures that the resulting word 7 will be a word for w and will be reduced
since (j —2) —i + 1 inversions are removed when appending (j — 2) —i + 1 letters to 7.
Each pass through line 7 appends an interval to m, so to check the super-Yamanouchi
condition, we need only check that a subsequent pass chooses a smaller index at line 5.
If i is chosen in line 5, then after line 8 » has no inversions weakly beyond index 1,
ensuring that the maximum in line 5 of the next iteration is strictly less than i. Thus
Ty is well-defined and is a super-Yamanouchi reduced word for w.

Now suppose that p # 7 is another super-Yamanouchi reduced word for w. Let @
be the maximum index for which m; # p;. Clearly removing the prefix or suffix of
a reduced word does not change that it is reduced. Moreover, this also preserves the
super-Yamanouchi property since runs must still form intervals and only the leftmost
run can have a changed minimum, which necessarily gets weakly larger. Furthermore,
removing the same prefix or suffix for two reduced words for the same permutation results
again in (shorter) reduced words for the new permutation. Therefore by removing the
suffix meme_1 -+ 41 from both 7 and p, we may assume i = £.

The interval condition for super-Yamanouchi words ensures that a letter in position
i of w is moved by success si’s to some position j > i, and the decreasing minimum
condition ensures that the subsequent letter moved is strictly left of position . In order
to be a reduced word, we must have w,, > wp, 1. Since 7 is constructed by choosing
the maximum ¢ such that w; > w;+;, we must have m;, > py. Since p first selects an
index p; < 7y, and since each run of p either fixes the position of the final descent or
moves it one position to the left, based on whether or not that run crosses over the
descent, there is no way to begin a new run with the final descent without violating the
super-Yamanouchi condition. Thus 7 is the unique super-Yamanouchi word for w. O

Algorithm 1 Super-Yamanouchi reduced word

1: procedure SUPER(w)

U= w

T ()

while £(v) > 0 do
i+ max{k | wp > wri1}
j+ min{{k|w; <wr}U{n+1}}
o (md, i+ 1,...,5—2
V&= 8528418V

end while

10: return T

11: end procedure

e AN

©

Example D (Super-Yamanouchi word). We construct the super-Yamanouchi reduced
word for the permutation w = 41758236 by Algorithm 1 as illustrated in Fig. 2. We
initialize with v = 41758236 and 7 = (), and then

loop 11] i=5,j=8+1=9, and so m = (5,6,7) and v = 41752368;
loop 2:] i =4, j =7, and so 7 = (5,6,7,4,5) and v = 41723568;
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1,2,3

L @1235678 —2% 12345678

3.4,5,6,

4175@236 251 41752368 22 41723568 2220

Fig. 2. An illustration of Algorithm 1 for the permutation 41758236.

(2,4,1,2,3) (4,1,2,1,3)
G- [ ~a
(21 1747273) (1541 27 1}3) (47 11 27 37 1)
2 N
(2,1,2,4,3) (1,2,4,1,3) (1,4,2,3,1)
Q €2~ 1 3
(1,2,1,4,3) (1,2,4,3,1)

Fig. 3. An illustration of the Coxeter moves on R(42153).

loop 3:] i=3, j =8 and so m = (5,6,7.4,!
=1,7 4

5,3,4,5,6) and v = 41235678;
[loop 4:] i 5,3,4,5

6. 1,2,3) and v = 12345678,

5,and so ™= (5,6,7,4,5,3,4,5

Having reached the identity, we terminate. Thus the unique super-Yamanouchi reduced
word for w = 41758236 is 7 = (5,6,7,4,5,3,4,5,6, 1,2, 3).

We define two involutions on reduced words for a given permutation based on the
Coxeter relations for the simple transpositions.

Definition 2.5. Given w and 1 < i < f(w), ¢; acts on p € R(w) by commuting p; and
pir1 whenever |p; — piy1| > 1 and the identity otherwise.

Definition 2.6. Given w and 1 < i < {(w), b; acts on p € R(w) by braiding pi—1pipi+1
to pipiz1p; whenever p;_1 = pi41 = p; £ 1 and the identity otherwise.

We refer to ¢; as a commutation, to b; as a Yang—Baxter move, and to either as a
Coxeter move. For examples of Coxeter moves on reduced words, see Fig. 3.

It follows from classical work of Tits [10] that the maps ¢; and b; are well-defined invo-
lutions on R(w) and that the graph on R(w) with edges given by ¢; and b; is connected.
Pushing this further, Fig. 3 suggests a ranked poset structure on reduced words for w
with unique maximal element equal to the super-Yamanouchi reduced word for w. The
following definition measures the minimum number of commutations and Yang—Baxter
moves needed to get from a given reduced word to the super-Yamanouchi one.

Definition 2.7. Given p € R(w), define the inversion number of p by

inv(p) = €(u(p) = 3 (mi = pi). (2.1)

i
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where 7 € R(w) is super-Yamanouchi and v(p) € &y, is the permutation of p con-
structed as follows: for ¢ from £(w) to 1, set k = m; and for j from £(w) to 1 if p; is already
paired then increment j to j + 1: otherwise if p; = k then pair p; and 7;; otherwise if
pj = k —1 then decrement k to k — 1 and increment j to j + 1; otherwise increment j to
J + 1. Set v; = j whenever m; is paired with p;.

Algorithm 2 Permutation of a reduced word

1: procedure PERM(p)
2 7 +— super- Yamanouchi reduced word for w

3 perm < identity permutation of Syu)

4 for i from #(w) to 1 by —1 do

5: k <+ m;

6: for j from #(w) to 1 by —1 do

7 if p; = k and is not already paired then
8 pair p; with m;

9: perm,; < J

10: break

11: else if p; = k — 1 and is not already paired then
12: k+— k-1

13: end if

14: end for

15: end for

16: return perm

17: end procedure

Example E (Inversions of reduced words). Let p = (5,6,3,4,5,7,3,1,4,2,3,6). The
super-Yamanouchi reduced word is 7 = (5,6,7,4,5,3,4,5,6,1,2,3). Following Algo-
rithm 2, the first three iterations of the for loop on line 4 (i = 12,11, 10) will be satisfied
by the if condition of line 7, resulting in w2 = 5, 711 = 6, 19 = 7 paired with p1o = 5,
p11 = 6, p7 = T, respectively.

On the fourth iteration of the for loop on line 4 (i = 9), we set k = m9 =4 on line 5,
and on the third iteration of the for loop on line 6 (j = 10), the else if condition on line
11 is met, and we decrement k& = 3. Then, on the seventh iteration of the for loop on line
6 (j = 6), the if condition of line 7 is met and we pair mg = 4 with pg = 3. Continuing
thus, we pair values of 7 from left to right with values of p as illustrated in Fig. 4.

Therefore perm(p) =2351891046711 12 and so inv(p) = 13 — 2 = 11. Note

p=crcgegcycpbgbgcregcacy,
which is a sequence of 11 involutions, exactly 2 of which are Yang Baxter moves.

Theorem 2.8. For p € R(w), inv(p) is a well-defined non-negative integer. Moreover,
there exists a sequence f = fiuy(p)--- f1 of Coxeter moves, i.e. fj = ¢; or bi, such that
f(p) is super-Yamanouchi, and for any sequence g = gy, --- g1 of Cozeter moves such
that g(p) is super- Yamanouchi, we have m > inv(p).
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ﬂ:T 7.4.5.3 4 .5 6.1 3
P 5

3745773 1’4 2 376

Fig. 4. An illustration of the pairings in Algorithm 2 for the reduced word p = (5,6,3,4,5,7,3,1,4,2,3,6).

Proof. We claim the theorem holds for p if and only if it holds for ¢;(p). This is vacuously
true if ¢; acts trivially on p. Otherwise, ¢;(p) will have permutation s;perm(p), and, since
the letters of p and ¢;(p) are the same, we have

inv(c;p) = imv(siperm(p) — Y () — (€ip))

= inv(perm(p)) £ 1 — Z (mj — pj) =inv(p) £ L.

Furthermore, inv(c;p) = inv(p) + 1 precisely when 7 is left of ¢ 4+ 1 in perm(p).

Next we claim the theorem holds for p if and only if it holds for by(p). If b; acts trivially
on p, the claim is vacuously true. Otherwise, b;(p) will have permutation s;s;—1perm(p)
or s;_1s;perm(p), the former when p;11 = p; + 1 and the latter when p;11 = p; — 1.
Assuming the former, we have

inv(b;p) = inv(s;—1s;perm(p)) — Z (5 — (bip);)
= inv(perm(p)) + 2 — (Z (mj —pj)+1) =inv(p) + 1,

and, by the same computation, inv(b;p) = inv(p) — 1 in the latter case.

Recall from earlier that any two reduced words for w can be transformed into one
another by a sequence of Coxeter moves. Let m be the minimum number of Coxeter
moves needed to transform p into the super-Yamanouchi reduced word. If m = 0, then p
is super-Yamanouchi, in which case the permutation for p is the identity and inv(p) = 0,
so the theorem holds. Assume, for induction, that the theorem holds for any n < m, and
suppose p = fy, --- fim, where 7 is super-Yamanouchi and f; is ¢; or b; for some i. By
induction, the result holds for fp,—i--- fim = fmp, and so, by the claims, it holds for p
as well. O

Thus we may define the inversion poset for reduced words as follows.

Corollary 2.9. For w a permutation, the partial order on R(w) given by the transitive
closure of covering relations

o p>epifinviep) =inv(p) + 1, and
o p>bip if inv(bip) = inv(p) + 1

makes R(w) into a ranked partially ordered set with unique mazimal element.
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pr1 2 1 3 2 1 = 12 1 3 2 1

—— e

™ 3 2 3 1 2 3

S =

c:1 3 2 1 3 2 = 1 3 2 1 3 2

Fig. 5. An illustration of the permutation of a pair of reduced words for w = 42153. Note this does not
measure distance.

Note the ranking is the co-inversion number, making the super-Yamanouchi word the
unique mazimal element in line with Schubert calculus.

From the proof of Theorem 2.8, one can count the minimum number of Yang Baxter
moves on any shortest path from a reduced word to the super-Yamanouchi word by
considering the offset between the length of the permutation of p and the inversion
number of p. More generally, we have the following.

Corollary 2.10. For p,oc € R(w), and f = fi---fi any minimal length sequence of
Coxeter moves, i.e. f; = ¢; or by, such that f(p) = o, the number of Cozeter moves that
are Yang-Baxter moves is given by

#{j | f; = b; for some i} = Z |pi — U(perm(g)perm(p)—l)i{ . (2.2)

While one can hope to define an explicit metric on reduced words analogous to
Kendall’s 7 metric on permutations [7] by

inv(p,a) = {(perm(p,a)) — Z i — Operm(p,o)s | (2.3)
i

where perm(p, @) = perm(a)perm(p)~!, this does not always give the correct minimum
distance between arbitrary reduced words.

Example F (Barrier to a metric on reduced words). Let p = (1,2,1,3,2,1) and ¢ =
(1,3,2,1,3,2), both reduced words for the long permutation wgl) = 4321. Then © =
(3,2,3,1,2,3) is the super-Yamanouchi word, and following Algorithm 2, we have the two
pairings indicated on the left side of Fig. 5. Composing the diagram gives perm(p, o) =
51234, and so we have

inv(p,0) =£(51234) — 1 1| —[2—-2| -1 —1| - [3-3| - 22| -1 - 3| =4 -2=2.

Observe, from Fig. 6, any shortest path from p to ¢ has length 4 and uses exactly 2
Yang—Baxter moves. Thus the naive inversion number for arbitrary pairs does not work
to give the correct minimum distance.

3. Balanced labellings

The calculation of the inversion number for a reduced word is admittedly complicated,
made more so by the requirement that one first compute the super-Yamanouchi word.
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3,2,3,1,2,3)
LN
(2,3,2,1,2,3)  (3,2,1,3,2,3)

5 &

(2,3,1,2,1,3) (3,2,1,2,3,2)
NN N
(213311213:1) (2:1737271:3) (3713271:372)
N o
(2,1,3,2,3,1) (1,3,2,1,3,2)  (3,1,2,3,1,2)
(2317233?211) %7372333172)

bs
\ }/
(1,2,1,3,2,1)  (1,2,3,2,1,2)
G fy

(17 2?37 1! 27 1)

Fig. 6. An illustration of the Coxeter moves on R(4321).

By shifting our paradigm to another model for reduced words, this statistic becomes
more natural and much simpler to compute.

The Rothe diagram (also called the inversion diagram) of a permutation w, denoted
by D(w), is the following subset of cells in the first quadrant,

D(w) = {(i,w;) | i < j and w; > w;} CZT x ZT. (3.1)
The Rothe diagram of w gives a graphical representation of the inversion pairs of w. In
particular, the number of cells in D(w) is simply £(w).

Example G (Rothe diagram). To draw the Rothe diagram for w = 41758236, write w
vertically along the y-axis with w; at height 4, and label the cells horizontally along the
x-axis with positive integers, as illustrated in Fig. 7. When computing the cells in row
3. for instance, consider ws = 7 and place cells in columns 5, 2, 3, 6 since these occur to
the right of and are smaller than 7.

The Rothe diagram of w provides an alternative method from that described in Propo-
sition 2.4 for computing the super-Yamanouchi reduced word for w.

Definition 3.1. For w a permutation, the row-interval filling of D(w) is the integer filling
with entries ¢,7+ 1,7+ 2,... in row ¢, from left to right.

Example H (Row-interval filling). The row-interval filling for D(41758236) is shown in
Fig. 8. Comparing with Ex. C, notice that the row reading word of this filling, i.e. the
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[J
L]

w;

W = =1 O 00N W

12345678
— —

i

Fig. 7. The Rothe diagram D(w) for w = 41758236.

516
15
34| [5]6]

1[2]3]

Fig. 8. The row-interval filling of D(41758236).

word obtained by reading the rows from left to right beginning with the highest, is
precisely the super-Yamanouchi word for w.

Proposition 3.2. The row reading word of the row-interval filling for w is precisely the
super- Yamanouchi reduced word for w.

Proof. Following the procedure for computing w in Algorithm 1, the last descent of w
corresponds to the highest occupied row of D(w), and the mumber of positions the letter
at that position must move to the right is precisely the number of entries in that row.
Thus removing the final descent corresponds to removing the highest occupied row, and
the same values are recorded for both. O

While this construction applies equally well to any diagram, for a Rothe diagram the
columns will be integer intervals as well.

Proposition 3.3. The columns of the row-interval filling of a Rothe diagram of a permu-
tation form increasing intervals from bottom to top, beginning with i at the bottom of
column i.

Proof. From (3.1), the Rothe diagram for w=" is the transpose of the Rothe diagram for
w. Moreover, transposing the row-interval filling for w results in the row-interval filling
for w™', so the columns must form intervals as well. O

Stanley [9] introduced a new family of symmetric functions indexed by permutations
in order to enumerate reduced words. Edelman and Greene [5] introduced balanced
labellings of Rothe diagrams in order to prove Stanley’s conjecture that his symmetric

functions are Schur positive and to give a precise enumeration of reduced words. We
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O O (4] |

w )

5}

5[2] L] 2]

2] [] 5[2]

Fig. 9. Checking the balanced condition for a standard labellings.

3]5]2] 4]5]2] 3[5]1] 4]5]1] 4]5]1]

Fig. 10. The standard balanced labellings for 42153.

review balanced labellings here, but give independent, elementary proofs of their bijection
with reduced words using the ranked poset structure.

Definition 3.4 (/5]). A standard balanced labelling is a bijective filling of a Rothe diagram
with entries from {1,2,...,n} such that for every entry of the diagram, the number of
entries to its right that are greater is equal to the number of entries above it that are
smaller.

Denote the set of standard balanced labellings on D(w) by SBT(w).

Example I (Balanced labellings). For w = 42153, the filling of D(w) on the left of Fig. 9
is balanced since for each cell (indicated in bold), the cells above and to the right have
the same number of entries above that are greater (indicated in circles) as entries to the
right that are smaller (also indicated in circles).

The 11 balanced labellings in SBT(42153) are shown in Fig. 10,

To prove standard balanced labellings are in bijection with reduced words, first observe
there is a canonical super-Yamanouchi standard balanced labelling.

Definition 3.5. A standard balanced labelling R is super-Yamanouchi if its reverse row
reading word (right to left from bottom to top) is the identity.

The balanced condition is immediate for the super-Yamanouchi labelling since entries
increase in columns from bottom to top and in rows from left to right. For example, the
super-Yamanouchi balanced labelling for 41758236 is shown in Fig. 11.

We next define simple analogs of the Coxeter moves for balanced labellings, where the
commutations involve two consecutive values and the Yang—Baxter moves involve three
consecutive values. Both act only in certain circumstances.
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1211
918
76| [5]4]
3[2[1]
Fig. 11. The super-Yamanouchi balanced labelling for D(w).
4]
V 3 2|1|w
5] 2]
¢ 3]2]1] s 3 4|1\&
5] 2] 1]
y42|1| V35|1|& V34|2\
5] 2] [1]
43|1\% ¢ 451'& ¢ 3]5]2]
4]5]1] 4]5]2]

Fig. 12. An illustration of the Coxeter moves on SBT(42153).

Definition 3.6. Given w and 1 < { < inv(w), ¢; acts on SBT(w) by exchanging ¢ and i +1
if they are not in the same row or column and by the identity otherwise.

Definition 3.7, Given w and 1 < i < inv(w), b; acts on SBT(w) by exchanging i — 1 and
i+ 1 if one is in the same column and above 7 and the other is in the same row and right
of i and by the identity otherwise.

For examples of Coxeter moves on balanced labellings, see Fig. 12. Comparing this
with Fig. 3 suggests a poset-preserving bijection hetween reduced words and balanced
labellings, and indeed we will demonstrate this bijection below.

Lemma 3.8. The maps ¢; and b; are well-defined involutions on SBT (w).

Proof. For R € SBT(w), if ¢ and ¢ + 1 are not in the same row or same column, then
interchanging them cannot unbalance the labelling since all other entries compare the
same with 4 and with i +1. Thus ¢;(R) € SBT(w). If ¢£1 is in the same row as ¢ and i 1
is in the same column, then swapping them maintains the balance since, again, every j
less than 7 — 1 or greater than i + 1 compares with same with both, the two cannot be
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i (7.9) (1,8 (7,10
58] D] Iy = { (6:8) (610

(4, 5) (4, 9) (4, 10)
(1,5) (1,3) (1,2)

Fig. 13. The inversion pairs for a standard balanced labelling.

in the same row or same column as one another, and 7 has traded the two to maintain
its balance. 0O

Remark 3.9. When w is a permutation with a unique descent, D(w) has the form of the
Young diagram (in English notation) for a partition, and standard balanced labellings
for w are precisely the standard reverse Young tableaux. In this case, the poset structure
on SBT(w) where we consider only the Cozeter—Knuth relations coincides with the dual
equivalence graph [1] on standard reverse Young tableaux. For details on this connection
and its combinatorial consequences, see [3].

Parallel to the case of reduced words, we introduce a simple statistic on standard
balanced labellings that gives the minimum distance from a standard balanced labelling
to the super-Yamanouchi one.

Definition 3.10. For R € SBT(w), the inversion number of R is
inv(R) = #{(i < j) | i lies in strictly higher row, different column than j}.
We call such a pair an inversion of R.

Example J (Inversion number of balanced labellings). The standard balanced labelling
in Fig. 13 has 11 inversion pairs as listed to the right. Notice that (6,9) and (4,8) are
not inversions since these pairs occur in the same column.

Theorem 3.11. Let P, € SBT(w) be the unique super-Yamanouchi labelling. Then for
any R € SBT(w), there exists a sequence f = finw(r)--- f1 of Coreter moves such that
f(Pyw) = R, and, for any sequence g = gm, --- g1 of Cozeter moves with g(Py) = R, we
have m > inv(R).

Proof. We proceed by induction on inv(R). Clearly inv(P,) = 0 since it is the unique
balanced filling such that all larger entries occur weakly above smaller entries, and the
result holds for this case. Moreover, if I? has some 7 < j with ¢ above j and in the same
column, then the balanced condition ensures that there is some k£ > j in the same row
as j, and so ¢ < k with ¢ and & not in the same column. In particular, inv(R) > 0 for
R +# P,,. This establishes the base case.

Let R € SBT(w) with inv(R) > 0. We claim that there is a pair (i,7+ 1) with ¢ above
i+ 1. If not, then for any pair (i < j) with i above j (such a pair exists since inv(R) > 0),
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Fig. 14. Constructing the permutation of a standard balanced labelling.

there exists k with ¢ < k < j and neither (i < k) nor (k < j) has the smaller strictly
above the larger. Thus k is weakly above i and weakly below j, an impossibility since i
is strictly above j. Therefore we may take i such that ¢ + 1 lies in a strictly lower row.

If i and i+ 1 are not in the same column, then ¢; acts non-trivially on R. Furthermore,
inv(e;(R)) = inv(R) — 1 since the pair (7,7 + 1) is removed from the set of inversions and
all other pairs remain but with ¢ and i 4+ 1 interchanged. By induction, the result holds
for ¢;(R), and so, too, for R.

If i and ¢ + 1 are in the same column for every pair with ¢ above i + 1, then take
maximal among all such pairs. We claim that i + 2 must lie in the same row and to the
right of i + 1. If not, then i + 2 must lie strictly above ¢+ 1, and, by the choice of ¢, k+1
must lie weakly above k for all k& > i + 2. However, this would mean no larger entry was
in the row of i + 1, contracting the balanced condition since i is in the same column and
above it. Therefore i 4+ 2 does lie in the same row as i + 1, and so b;+1 acts non-trivially
on R by interchanging i and i+ 2. Furthermore, inv(b;+1(R)) = inv(R) — 1 since the pair
(1,14 2) is removed from the set of inversions and all other pairs remain but with i and
i+ 2 interchanged. By induction, the result holds for b;1(R), and so for R. O

Parallel to Corollary 2.10, we can refine inversion to count only the number of Yang—
Baxter moves by considering column inversions.

Corollary 3.12. For R € SBT(w) and f = fr---f1 any minimal length sequence of
Coxeter moves, i.e. f; = ¢; or b; for some i, such that f(R) is super-Yamanouchi, the
number of Coxeter moves that are Yang—Bazter moves is equal to the number of column
inversions of R, i.e.

#{j | fi = bi some i} = #{(i < j) | i in higher row, same column as j}.
Computing the permutation of a balanced labelling is also far simpler.

Definition 3.13. Given R € SBT(w), define the permutation of I?, denoted by perm(R),
by sorting the rows of R to be decreasing (read lett to right) and taking the reverse row
reading word of the result.

Example K (Permutation of balanced labellings). Letting R be the balanced labelling in
Fig. 14, we have perm(R) =2351891046 711 12.

Note that while R has 11 inversions, its associated permutation has length 13. The
difference is precisely the number of steps needed to sort the rows of the labelling.
Moreover, letting P be the super-Yamanouchi filling, we have
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R =c7cgcgcqcgbgbgercrcacy P
which is a sequence of 11 involutions, exactly 2 of which are YangBaxter moves.

Theorem 3.14. For R € SBT(w), we have

inv(R) = ¢(perm(R)) — Z coinv(row,(R)), (3.2)

where coinv(row,.(R)) is the number of entries i < j with i left of j in row r.

Proof. Let I be defined by the right hand side of (3.2). Let R € SBT(w) and suppose ¢;
acts non-trivially on R. Then ¢ and i+ 1 lie in different rows and different columns in R,
so sort(R) and sort(e; R) differ exactly in that ¢ and 4 + 1 have been exchanged, and so
perm(¢; R) = s;perm(R). Further, since all letters other than ¢,7 + 1 compare the same
with ¢ and i + 1, R and ¢; R have the same number of row (co)inversions. In particular,
we have

[(¢;R) = €(s;perm(R)) — Zcoinv(rowr(R)) =I(R)+1,

and, moreover, I(c;R) = I(R) + 1 precisely when 7 is left of ¢ + 1 in v.

Next suppose that b; acts non-trivially on R, exchanging ¢ — 1 and ¢ + 1 when ¢ lies
directly below the one and directly left of the other. The permutation exchanging i—1 and
i+1is given by s;_18;8;_1 = $;8;_18;, but since i —1 and i+ 1 compare differently with 1.
when the rows are sorted the one in the row of 7 will flip to the other side of it. Therefore
perm(b; ) = s;8,—1perm(R) if i + 1 is above i — 1, and perm(b;R) = s;_1s;perm(R)
otherwise, and in the former case we have

I(b;R) = £(sisi—1perm(R)) — Z (coinv(row,(R)) +1) = I(R) + 1,

™

and, by the same computation, I(b;R) = I(R) — 1 in the latter case.

By Theorem 3.11, inv(R) = 0 if and only if R is super-Yamanouchi, in which case
perm(R) is the identity and R has decreasing rows, thus giving I[(R) = 0 as well. Con-
versely, if we consider © to be the permutation obtained by following Definition 3.13
without first sorting the rows of R, then we have £(9) = ¢(v) + > coinv(row,(R)). In
particular, I(R) = 0 if and only if v is the identity, in which case R is super-Yamanonchi.
Therefore inv(R) = I( R) whenever either is 0. By Theorem 3.11, for any R € SBT(w), we
may write R = finv(r) - - f1(P), where P is super-Yamanouchi and each f; is a Coxeter
move. The result for R now follows from the analysis of Coxeter moves above. 0O

Comparing Theorem 2.8 with Theorem 3.11, one anticipates a bijection between re-
duced words and standard balanced labellings preserving the permutation and inversion
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number. Indeed, given the permutation v, one can recover the rows for the corresponding
balanced labelling, if it exists. The following result shows there is at most one balanced
labelling with the given row entries.

Lemma 3.15. For R, S € SBT(w), if R and S both row sort to 1", then R = 5.

Proof. We will show there is at most one ordering on the rows of a filling 1" such that 1T°
is balanced. Beginning with the top row, we must place entries in decreasing order from
left to right. Assuming all higher rows have been uniquely balanced, begin balancing row
r from left to right. If the available entries for cell z are 1 > --- > x, then let ¢; be the
number of cells above x that are smaller than z;, and let r; =i — 1, which is the number
of entries right of  that will be greater than x; should it be placed into cell . Note that
c1 >+ > ¢, and 7 < -+ < 1. Thus there is at most one index ¢ for which r; = ¢;, i.e.
there is at most one entry that can be placed into cell  for which the resulting labelling
will be balanced. O

We can now establish the following isomorphism of posets.

Theorem 3.16. We have a poset isomorphism ¢ : R(w) = SBT(w) such that o(p) = R
if and only if perm(p) = perm(R).

Proof. Fix a permutation w. Set 7 € R(w) to be the super-Yamanouchi reduced word,
and set P € SBT(w) to be the super-Yamanouchi balanced labelling. In this case both
m and P have inversion number 0 and permutation equal to the identity. Moreover,
since 7 is comprised of runs of intervals, ¢;(m) # 7 if and only if p;11 — p; > 1, and
this happens if and only if i + 1 is at the end of a row of P and ¢ does not lie in the
same column. In particular, ¢;(7) # 7 if and only if ¢;(P) # P. Similarly, b;(7) # 7
if and only if p;41 = p; + 1 since the other Yang-Baxter relation would violate the
super-Yamanouchi condition on the relative order of the minima of the increasing runs.
In the Rothe diagram, this happens if and only if i + 1 is in the column above i with
i — 1 in the same row and right of 7, which is if and only if b;(P) # P. We now proceed
by induction, assuming that ¢ is a perm-preserving poset isomorphism for all elements
up to and including rank k > 0 that intertwines the Coxeter moves on reduced words
and balanced labellings for ranks up to k.

Let p € R(w) be of rank k. Consider some index ¢ for which inv(c;(p)) = k+1. From the
proof of Theorem 2.8, we have perm(¢;p) = s;perm(p). From the proof of Theorem 3.14,
we have perm(e;0(p)) = s;perm(¢(p)), so by the uniqueness of Lemma 3.15, we may set
@ to map ¢;p to ¢;¢(p). Now consider some index i for which inv(b;(p)) = k + 1. From
the proof of Theorem 2.8, we have perm(b;p) = s;s;—1perm(p), and from the proof of
Theorem 3.14, we have perm(b;¢(p)) = sisi—iperm(p(p)). So again by Lemma 3.15, we
may set ¢ to map b;p to b;(p). Thus the isomorphism extends down to rank k+ 1, and
the result follows by connectivity of the poset. O
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Fig. 15. The flip map applied to a standard balanced labelling.

Example L (Poset isomorphism R(w) — SBT(w)). The running examples in R(w)
and SBT(w) for the permutation w = 41758236 hoth have associated permutation
2351891046711 12, and so correspond under the bijection.

As a consequence, we recover the result of Edelman and Greene [5] for the long element
and of Fomin, Greene, Reiner, and Shimozono [6] in general.

Corollary 3.17. The number of reduced words for w is equal to the number of standard
balanced labellings of shape D(w).

4. Involutions and the long permutation

Tt is easy to see that if p is a reduced word for w, then the reversal of p is a reduced
word for w~!. We give the analogous involution on balanced labellings.

Definition 4.1. Define the fHip map ¢ on standard balanced labellings by setting ¢(R)
to be the transpose of R composed with replacing entry ¢ with ¢ — i + 1, where £ is the
number of cells of R.

Example M (Flip map). The flip map applied to R € SBT(41758236) from Exam-
ple J results in ¢(R) € SBT(26714835) shown in Fig. 15. As R corresponds to
p = (5,6,3,4,5,7,3,1,4,2,3,6) in Example E, we may also consider the reversal of
p given by rev(p) = (6,3,2,4,1,3,7,5,4,3,6,5). We compute

perm(p(R)) =814710259113612

from Fig. 15, and less easily compute by Algorithm 2 that this coincides with
perm(rev(p)), indicating that ¢(R) corresponds to rev(p).

Proposition 4.2. The flip map ¢ is a well-defined involution that maps SBT(w) to
SBT(w™1) such that ¢(c;(R)) = co_i(p(R)) and ¢(b;(R)) = be_iy1(¢(R)).

Proof. By (3.1), the Rothe diagram for w1t is the transpose of the Rothe diagram for w,
and so the flip map ¢ is a well-defined into SBT(w’l) if its image is balanced. A filling
R is balanced if and only if for each cell y of R we have

#{z e R|x <yandxabove y} =#{z € R

2 >y and 2 right of y},
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where z is in the same column and z is in the same row as y. Transposing R to RT
results in a filling such that each cell y satisfies

#{x e RT | 2 < y and x right of y} = #{2z € RT | 2 > y and 2 above y},

where z is now in the row of y and z is in the column of y. Replacing 7 with £ — ¢ + 1
reverses the relative order of entries, so that each cell y, we have

#{x € ¢(R) | # > y and x right of y} = #{z € ¢(R) | z < y and z above y},

where z is in the row of y and =z is in the column of y, i.e. ¢(R) is balanced.

Since i and 7+ 1 are not in the row or column in R if and only if /—i+1 and £ —1 are
not in the row or column in p(R), we have ¢(c;(R)) = cr—i(@(R)). Similarly, i —1,4,i+1
form a braid pattern in R if and only if / —i+2,£/ —i+ 1,/ — i form a braid pattern in
o(R), showing ¢(b:(R)) = be_i11(p(R). O

Using the ranked poset structure on reduced words and balanced labellings together
with the observations that rev(c;(p)) = ¢ (rev(p)) and rev(b;(p)) = by_ir1(rev(p)), we
have the following equivalence of involutions.

Corollary 4.3. Given a permutation w, if R € SBT(w) corresponds to p € R(w), then
@(R) € SBT(w™t) corresponds to rev(p) € R(w™!).

While these involutions respect the graph structure on reduced words and balanced
labellings, they do not respect the ranking. When w is particularly nice, or rather, when
the Rothe diagram of w is particularly nice, there is a different involution that respects
the poset structure.

Theorem 4.4. For the longest permutation wén) =mn(n—1)---21 of &, the map

sending an entry i to (”) — i+ 1 is an order-reserving involution on SBT(wg”)). In

2
particular, SBT(wén)) has a unique minimal element B with

inv(B) = (n—2)(n—1)(n)(3n — 5)/24.

Proof. The Rothe diagram ]D('wén)) is the staircase diagram 4,, ;1 of left-justified rows of
lengths 1,2,...,n—1 from top to bottom. Thus every cell y of ]D(*w((,n)) has as many cells
above it as to its right. For y a cell of D(w(()n)), let leg(y) denote the set of cells above y
in the same column and let arm(y) denote the set of cells to the right of y in the same
row. Then

#Hr eleg(y) [z <y} = H#leg(y) — #{z €leg(y) | = >y},
#{zcam(y) | z >y} = #arm(y) — #{z c arm(y) | 2 < y}.
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Fig. 16. An illustration of the Coxeter moves on SBT(4321).

For R € SBT('wén)), since #leg(y) = #arm(y) for every y, this implies

#{xeleg(y) |z >y} = #{z cam(y) | » <y},

from which it follows that ¢)(R) is balanced.

For every pair of cells x, y neither in the same row nor same column, say with x above 1,
the pair (z,y) is an inversion in R if and only if it is not an inversion in ¢)(R). In particular,
every such pair is an inversion only for ¢/(P), where P is the super-Yamanouchi labelling.
To compute the number of such pairs, notice that there are (g) cells above the cell in
the kth row from the top, and we should not have counted k — 1 cells in the first column,

k — 2 in the second, and so on, giving

$1(5)- 5 (3) = (3) - () - 2o ploieno

k=1

where the leftmost summation is the (signless) Stirling numbers of the first kind s(n, n—2)
and the rightmost is the tetrahedral numbers. O

Example N (Minimal element of SBT(w((,”))). The ranked poset on SBT(*w((fI)) is shown
in Fig. 16. Notice that the unique minimal element is given by
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(1]
U — |2]3
' 1] 4[5]6]

and the number of inversions for this minimum is 11 —4 = 7.

BEE
SIS

The graph on reduced words for w(()n) is of particular interest and relates directly to the
balanced tableaux of staircase shape considered by Edelman and Greene [5]. Dehornoy
and Autord [4] proved that the diameter of the graph for 'w[(,n) grows asyvmptotically
like n*. Reiner and Roichman [8] used hyperplane arrangements to prove an exact formula
for the diameter that coincides with inv(B) in Theorem 4.4. We give a new, elementary
proof using the inversion statistic on balanced labellings.

Corollary 4.5. The mazimum distance between two reduced words for wén) is

max  dist(R,S) = (n—2)(n —1)(n)(3n —5) '
P,UER('LUC(]TL)) 24

(4.1)

Proof. Let P denote the super-Yamanouchi balanced tableau for w(g"), and let B = ¢(P).
Given any balanced tableau R & SBT(w[{,n)), there is an inv-increasing path from P to R
and, by considering the reversed poset assured by Theorem 4.4, an inv-decreasing path
from R to B. Therefore we have

dist(P, R) + dist(R, B) = dist(P, B). (4.2)
For R, S ¢ SBT(w((,n)), the triangle inequality gives
dist(R, P) + dist(P, 5) > dist(R, S) < dist(R, B) + dist(B, §).
Combining this with Eq. (4.2) for both R and S, we have
2dist(R, 5) < dist(R, P) + dist(P, S) + dist(R, B) + dist(B, S) = 2dist(P, B).

Thus dist(R,S) < dist(P, B) = inv(B) for all R, S & SBT(w[g")). In particular, the
diameter of the graph is inv(B), so the result follows from Theorem 4.4. O
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