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ABSTRACT The recovery of metagenome-assembled genomes (MAGs) from metage-
nomic data has recently become a common task for microbial studies. The strengths
and limitations of the underlying bioinformatics algorithms are well appreciated by
now based on performance tests with mock data sets of known composition.
However, these mock data sets do not capture the complexity and diversity often
observed within natural populations, since their construction typically relies on only
a single genome of a given organism. Further, it remains unclear if MAGs can
recover population-variable genes (those shared by >10% but <90% of the mem-
bers of the population) as efficiently as core genes (those shared by >90% of the
members). To address these issues, we compared the gene variabilities of patho-
genic Escherichia coli isolates from eight diarrheal samples, for which the isolate
was the causative agent, against their corresponding MAGs recovered from the
companion metagenomic data set. Our analysis revealed that MAGs with com-
pleteness estimates near 95% captured only 77% of the population core genes
and 50% of the variable genes, on average. Further, about 5% of the genes of
these MAGs were conservatively identified as missing in the isolate and were of
different (non-Enterobacteriaceae) taxonomic origin, suggesting errors at the ge-
nome-binning step, even though contamination estimates based on commonly
used pipelines were only 1.5%. Therefore, the quality of MAGs may often be
worse than estimated, and we offer examples of how to recognize and improve
such MAGs to sufficient quality by (for instance) employing only contigs longer
than 1,000 bp for binning.

IMPORTANCE Metagenome assembly and the recovery of metagenome-assembled
genomes (MAGs) have recently become common tasks for microbiome studies across
environmental and clinical settings. However, the extent to which MAGs can capture
the genes of the population they represent remains speculative. Current approaches
to evaluating MAG quality are limited to the recovery and copy number of universal
housekeeping genes, which represent a small fraction of the total genome, leaving
the majority of the genome essentially inaccessible. If MAG quality in reality is lower
than these approaches would estimate, this could have dramatic consequences for
all downstream analyses and interpretations. In this study, we evaluated this issue
using an approach that employed comparisons of the gene contents of MAGs to the
gene contents of isolate genomes derived from the same sample. Further, our
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samples originated from a diarrhea case-control study, and thus, our results are rele-
vant for recovering the virulence factors of pathogens from metagenomic data sets.

KEYWORDS genome recovery, genome completeness, metagenomes, assembly, gene
abundance, metagenomics

he recovery of complete or nearly complete genomes from metagenomes, or ge-

nome binning, is still a challenging bioinformatics task influenced by several factors
such as microbial community diversity, sequencing effort, sequence read length, intra-
population sequence and gene diversity, and the assembly and binning algorithms
used. Several studies have successfully recovered metagenome-assembled genomes
(MAGs) from metagenomic data sets (1-4), while other studies have cited high intrapo-
pulation strain heterogeneity as the cause of failure to recover MAGs (2, 5-7). High (tar-
get) population abundance relative to the rest of the microbial community has also
been identified as one reason for poor MAG recovery (7, 8). The recovery of reliable and
complete or nearly-complete MAGs provides key data for several downstream analyses
and research objectives, including the quantification of intrapopulation diversity (9).
Intrapopulation diversity has been attributed to various genetic and evolutionary
mechanisms, such as horizontal gene transfer (HGT) (2), lack of recent genome-wide
and gene-specific sweeps (1), and neutral mutations (6). Reliable detection of such
genetic events within a population based on—for instance—(metagenomic) read
recruitment plots of MAGs (10) can provide new quantitative insights into the dynamics
of intrapopulation gene diversity and identify the ecological and genetic mechanisms
responsible for the diversity patterns observed. Therefore, it is important to further
understand the limitations and strengths of genome binning and MAGs in assessing
intrapopulation diversity.

Several pipelines have recently been developed to deal with these issues and to
recover population genomes from metagenomic data sets with relatively high intrapo-
pulation heterogeneity, and these pipelines have even allowed the reconstruction of
individual strains (or genotypes) from such data sets (11, 12). For example, ConStrains
(11) used single-nucleotide polymorphism (SNP) patterns in a set of universal genes to
infer levels of intrapopulation diversity. DESMAN (12), on the other hand, identified
core genes within MAGs or groups of MAGs of the same species and subsequently cal-
culated variant positions within these genes to identify different strains and their rela-
tive abundances. Both of these pipelines were tested with mock and real (field) sam-
ples; typically, they performed better with the former and with low-diversity data sets
(11, 12). Thus, how reliably SNPs and genes can be assigned to specific reference strains
(genomes) by using these and other tools, especially with actual experimental data
sets, remains speculative.

Mock data sets of known composition, such as those developed as part of the
Critical Assessment of Metagenome Interpretation (CAMI) challenge (13), are not ideal
for assessing the effects of intrapopulation heterogeneity, because only a single (or, at
best, only a few) strain per species has typically been included during the DNA
sequencing step or used to simulate data in these mock data sets. Hence, how well the
results based on mock data sets translate to real, more-diverse data sets often remains
unclear. Nonetheless, the results of the CAMI challenge provide valuable insights into
the strengths and limitations of different software for specific research questions and
tasks. Most notable, for genome binning, is the fact that different algorithms showed
variable performances depending on the complexity of the data set and the presence
or absence of closely related strains and populations (13, 14); no binning algorithm per-
formed the best for all types of samples. However, in most comparisons, MaxBin 2.0
performed reliably and often outperformed other binning algorithms.

Our recent study of natural populations described a method to statistically identify
genes of MAGs that are absent (i.e., none or <10% of the members of the population
carry the gene) or variable (i.e., carried by some members of the population but not all)
based on the sequence coverage of these genes by metagenomic short reads that
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TABLE 1 Properties of isolate genomes analyzed and metagenome-assembled genomes®

Applied and Environmental Microbiology

Completeness

Contamination

No. of genes (%) (%) Quality (%)
Isolate Metagenome Group Isol MAG Isol MAG Isol MAG Isol MAG
E158 MG24 DAEC 49310 6,158.0 94.6 88.3 0.0 0.9 90.1 83.8
E124 MG23 DAEC 5,026.0 4,611.0 95.5 95.5 0.0 0.9 91.0 91.0
Q51 MG31 DAEC 5,040.0 8,607.0 94.6 81.1 0.0 7.2 90.1 45.1
B45 MG6 ETEC 4,747.0 4,378.0 94.6 95.5 0.0 0.9 90.1 91.0
E184 MG19 ETEC 4,864.0 5,205.0 95.5 95.5 0.0 2.7 91.0 82.0
E230 MG25 DAEC 6,990.0 5,025.0 91.0 95.5 0.0 0.9 86.5 91.0
B200 MG15 ETEC 4,659.0 4,838.0 95.5 97.2 0.0 2.7 91.0 829
Q196 MG32 DAEC 5,052.0 5,831.0 94.6 92.8 0.0 3.6 90.1 74.8

9lsol, isolate genome; MAG, metagenome-assembled genome; ETEC, enterotoxigenic E. coli; DAEC, diffusely adhering E. coli. Completeness, contamination, and quality
values are expressed as percentages.

represent the natural population under study relative to the core genes (carried by all
or almost all members of the population, i.e., >90% of total members) (2). That is, our
study provided an approach to quantify gene-level diversity within a population based
on read recruitment of a reference genome that represents the population. This study
also determined the reference genome/MAG sequence coverage needed in order to
reliably detect such variable genes (as opposed to missing them by chance due to low
sequence coverage) at about 7x or more, which agreed with the results of the CAMI
challenge for reliably recovering target genes in a metagenomic assembly. Here, we
employed this method and these thresholds for detecting isolate-specific and popula-

tion-variable genes based on metagenomic read coverage.

In this paper, we aimed to advance the metagenomic workflow for assessing intra-
population gene-level diversity and to provide an independent assessment of MAG
quality that does not rely on the common practice of detecting the presence or ab-
sence and copy number of (a rather small number of) universal protein-coding genes
or clade-specific core genes (15, 16). To this end, we focused on all the genes that were
recovered (or not) by pathogenic Escherichia coli MAGs based on whole-genome com-
parisons of MAGs against their corresponding isolate genomes recovered from the
same diarrheal stool sample. We also assessed the number of population-variable and
core genes that were identified based on a read recruitment plot of an isolate genome
but were not captured by the corresponding MAG. Therefore, we assessed the quality
of the MAG based on the true- and false-positive gene recovery rates by using the iso-
late genomes as a reference, in addition to the common tools available for this pur-
pose. The metagenomic data sets used in the study were previously reported as part of
our survey of diarrheal cases in Ecuador and our typing of the etiological agents (17).
Here, we used a small subset of these data sets in which the E. coli isolate available rep-
resented the etiological agent of diarrhea and was abundant enough in the corre-
sponding data set to not limit assembly and genome binning (>10x coverage; see
Table S1 in the supplemental material). Hence, our study also represents a relevant
case for public health, because it assesses the limitations in recovering the full gene
content of the etiological agent of diarrheal disease using metagenomics and genome

binning.

RESULTS

Identification and quality of MAGs and isolate genomes. In total, eight isolate-
MAG pairs were analyzed from eight distinct human fecal samples (Tables 1 and 2;
Fig. 1). The estimated completeness of the genomes based on the Microbial Genomes
Atlas (MiGA) workflow ranged from 91% to 95.5% (average, 94.5%) for the isolates and
from 81.1% to 95.5% (average, 92%) for the MAGs (Table 1). Contamination estimates
were 0.0% for all isolate genomes (as expected for pure isolate DNA sequencing) and
ranged from 0.9% to 7.2% for the MAGs. The high level of estimated completeness of
all isolates was also consistent with the high sequencing depth of their genomes
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TABLE 2 Sizes of metagenomes, genome isolates analyzed, and metagenome-assembled
genomes, and numbers of contigs®

No. of
Size (bp) N, (bp) contigs
Isolate Metagenome mg Isol MAG Isol MAG Isol MAG
E158 MG24 1,597,930,096 5,203,137 3,664,797 77,037 3,676 202 2,270
E124 MG23 2,493,980,240 5,105,242 4,690,531 86,732 30,442 204 359
Q51 MG31 208,405,856 5,198,049 5,768,476 55381 1,800 252 4,256
B45 MG6 2,672,086,384 4,846,694 4,574,698 30,625 49,234 315 236
E184 MG19 1,407,813,248 5,043,927 4,808941 88,848 10,996 182 1,019
E230 MG25 1,979,172,096 5,883,307 5,126,380 5,050 75456 1,630 308
B200 MG15 2,805,315,248 4,801,347 4,554,119 42,883 8,615 243 1,020
Q196 MG32 230,287,984 5,188,961 5,196,245 34,191 13,450 309 1,071

9lsol, genome isolate; mg, metagenome; MAG, metagenome-assembled genome.

obtained by the genome reads (average, 22x) (Tables 1 and 2; Fig. 2). MAGs were
recovered from the same sample as the isolate (no coassembly was performed), using
the large contigs of the assembly (longer than 500 bp) and MaxBin 2.0 with default set-
tings (see Materials and Methods for details). Genome-aggregate average nucleotide
identity (ANI) within all isolate-MAG pairs was 98.9% or above, with an average of
99.77%, indicating that the MAGs obtained belonged to the same population as the
isolates and were members of E. coli, with the exceptions of samples Q196 (97.63%

Isolation
4 Whole-Genome Ll
Shotgun Identity > 90%
Isolate Sequencing Assembly Coverage > 90%

Culture

& Binning

Sequencing Distant match

& Assembly

Non-shared No match
Identity < 70%
Coverage < 70%

Same definitions

High coverage (p = 0.01) 5 » Core complet Potential contamination
Core i \ 4
BLAST Core + Variable | Upper-boundary <—
completeness | contamination
Core genes Quality Estimates
Medium coverage missed by MAG
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i el Process or data flow
oW coverage Variable genes
(< 10% average) missed b?/ MAG - = = =) Additional Input
¥ S = Definition or decision
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FIG 1 Schematic of the pipeline followed in this study to identify isolate and population genes captured by MAGs recovered from the same fecal sample.
E. coli isolates were recovered and sequenced, after testing positive for the presence of virulence factors by PCR, resulting in draft genomes, while
metagenomes from the same samples were assembled and binned in order to recover MAGs belonging to the same species (ANI, >95%). Metagenomic
reads were mapped on isolate contigs and genes in order to identify population core and variable genes and isolate (strain)-specific genes based on their
coverage patterns as shown in the recruitment plot (see the text for exact definitions). These sets of genes were subsequently searched against the
assembled MAG sequences in order to assess how well the MAG represented the population gene content.
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FIG 2 Completeness estimations and true-positive recovery rates of MAGs. Using the isolate genome as a
reference, population “core genes” (circles) and “core and variable genes” (triangles) represent the ratios of total
core genes and core and variable genes recovered by the MAGs, respectively (true-positive recovery rates).
Squares and diamonds represent MiGA and CheckM completeness estimates for the same MAGs, respectively.

ANI) and Q51 (96.99% ANI) (Table 3), in which the MAGs apparently represented a
strain(s) of the population distinct from the isolate.

The number of isolate genes shared with the corresponding (paired) MAG recovered
from the same sample ranged from 2,118 in Q51 to 4,371 in E230, representing, on av-
erage, 74% of the isolate genes, with the exception of Q51, in which they represented
only 42% of the genes (Table 3). Similarly, MAG genes shared with the isolate repre-
sented, on average, 75% of total MAG genes, with the exception of Q51, where they
represented only 24%. The variation in these values correlated well with the ANI
between the isolate genome and its corresponding MAG; genome pairs showing rela-
tively low ANI values also shared fewer genes. For instance, the isolate and MAG origi-
nating from Q51 showed 96.99% ANI. E230 was a different case in that a high number
of genes (6,990) was recovered in the isolate genome compared to the average number
of genes in E. coli genomes or the MAGs studied here (average, 4,902; standard devia-
tion [SD], 154) (Tables 1 and 2), suggesting that there was a coculture of two strains,
which would explain the low ratio of shared genes (ANI between the isolate and the
MAG was 99.84%). Sample E158 was also an exception to the above-mentioned rule
(high ANI; high percentage of shared genes) because the low ratio of shared genes was
presumably due to low MAG completeness (<90%).

The rest of the MAG genes (nonshared) either had a distant match or did not match
with isolate population genes (MAG specific) (Fig. 1) and could be considered the result

TABLE 3 Fractions of isolate variable and isolate-specific genes and of variable and strain-specific genes not recovered by MAGs®

% of the following isolate genes/total

. % of isolate variabl
isolate genes: % of isolate variable

ANI (isolate % of isolate core genes missed by

vs MAG) Isolate % of isolate genes genes missed by MAGs/variable
MAG/isol (%) Core Variable specific shared with MAGs MAGs/core genes genes
MG24-MAG/E158  99.990 98.925 (4,878)  0.932 (46) 0.142 (7) 64.875 (3,199) 34.706 (1,693) 69.56 (32)
MG23-MAG/E124  99.990 97.532(4,902)  2.009 (101)  0.457 (23) 84.779 (4,261) 13.851 (679) 62.37 (63)
MG31-MAG/Q51 96.990 97.421 (4,910)  2.24(113) 0.337 (17) 42.023(2,118) 57.617 (2,829) 67.25 (76)
MG6-MAG/B45 99.990 98.504 (4,676) 1.390 (66) 0.105 (5) 88.561 (4,204) 11.313 (529) 13.63 (9)
MG19-MAG/E184  99.970 98.540 (4,793)  1.398 (68) 0.062 (3) 76.356 (3,714) 23.158(1,110) 54.41 (37)
MG25-MAG/E230  99.840 86.680 (6,059)  0.000 13.319(931) 62.532(4,371) 27.859 (1,688) 0.000
MG15-MAG/B200  98.890 92.187 (4,295)  0.000 7.812(364) 69.027 (3,216) 25.122(1,079) 0.000
MG32-MAG/Q196 97.630 97.18 (4,910) 0.000 2.810(142) 70.269 (3,550) 27.698 (1,360) 0.000

“Absolute numbers of genes are given in parentheses.
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of natural variability within the natural population present in the sample or could be
due to assembly or binning errors as shown below. Given the ANI and genome content
results, the Q51 isolate and its corresponding MAG clearly did not represent the same
genotype (or strain) and thus were removed from further analysis. Although Q196 had
a low ANI with its MAG (97.63%), similar to Q51, it was included in further analysis
because the number of genes shared between the isolate and the MAG was not that
low, representing 70.26% and 60.88% of the total isolate and MAG genes, respectively.

Frequencies of population core, variable, and isolate-specific genes. Metagenomic
reads were mapped onto the corresponding isolate genome from the same sample in
order to reveal the core genes within the natural E. coli population in the sample and
identify genes that were variable in the population, i.e., those that were carried by
some but not all members of the population, as well as isolate-specific genes (those
with no metagenomic reads mapping onto them) (Fig. 1; Fig. 3, panel 1.2; Fig. S1).
Metagenomic reads were also mapped on the corresponding MAG sequence (Fig. 3,
panel 1.3) in order to assess whether or not the MAG represented the metagenomic
population as well as the isolate did (whether the average nucleotide identity of
mapped reads [ANIr] to the MAG and the ANIr to the isolate sequence were similar).
Indeed, average identity and coverage level values were similar between the MAG and
the isolate, showing <10% difference in most cases (Table S1) except for the E230,
Q51, and Q196 samples, which represented heterogeneous populations of pathogenic
and commensal E. coli, as shown below. In all cases, including the samples with hetero-
geneous populations, the isolate genome was preferred over the MAG as the reference
in the recruitment plot for the analysis of core variable and strain-specific genes
because of the uncertainty about the extent to which the MAG may represent sequen-
ces, including contamination from other taxa.

Variable genes were defined as those with coverage significantly lower than the
mean genome coverage (P<0.01) but >10% of the mean coverage; isolate-specific
genes were defined as those showing =10% of the mean genome coverage, including
no coverage by reads (completely absent). To calculate the level of coverage that pro-
vided a probability (P value) of <0.01 (i.e., that the gene coverage was significantly
lower than the mean genome coverage, with the null hypothesis being that the gene is
present in the population and core), the resulting distribution of coverage values for all
genes of a MAG or an isolate genome based on the recruitment plot with metagenome
reads was fit to a log-normal distribution using the enveomics.R package, v1.4.1 (10).
Core genes were defined as those that showed coverage similar to the average cover-
age of the whole genome (i.e,, P=0.01).

Variable genes were low in frequency, in general, ranging from 0% to 2.24% of the
total isolate genes (average, 0.997%), while isolate-specific genes ranged from 0.10% to
13.31%, with an average of 3.12% (Fig. 4; Table 3). Annotation of population-variable
genes revealed that they were related to glycosyltransferases, membrane transporters,
secretion proteins, transcriptional regulators, and type Il effector proteins that could
be related to increased virulence of the population and/or increased fitness in the gut
(Table S2), implying that variable genes could provide different members of the popu-
lation with different adaptive traits.

Samples B200, E230, and Q196 had the highest numbers of isolate-specific genes,
which accounted for >1% of the total genes in the genome, in contrast to the other
four isolates analyzed (Fig. 4; Table 3). Note that the isolate genome recovered from
sample Q196 is likely to represent an E. coli population other than the abundant ge-
notype present in the sample, as evidenced by a low ANI between the isolate genome
and the MAG (97.6%). Annotation of these isolate-specific genes showed that >30%
represented uncharacterized proteins, even reaching 49% in Q196, while 4.65% to
10.51% of isolate-specific genes were attributable to mobile elements, mainly phage
proteins, transposases, and integrases (Table S3). The relative frequency of uncharacterized
proteins among isolate-specific genes was significantly higher than that in the total isolate
genome (P, 0.04 by the chi-square test). This was not the case for the mobile elements (P,
0.12 by the chi-square test), although ratios for mobile elements in samples B200 and E230
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FIG 3 Read recruitment plots of an E. coli isolate and the corresponding MAG of sample Q196. All
reads of the metagenome (1.2 and 1.3) and isolate (1.1 and 1.4) data sets were searched against all
genes of the isolate and the corresponding MAG. The former search revealed population core and

(Continued on next page)

March 2021 Volume 87 Issue 6 €02593-20

Applied and Environmental Microbiology

aem.asm.org 7

ADO0TONHO3IL 40 LSNI VIO™O03O 1. 1202 ‘9 Arenigad uo /Bio"wse wae//:dpy woly papeojumo(


https://aem.asm.org
http://aem.asm.org/

Meziti et al.

were much higher (>2-fold) among isolate-specific genes than in the whole genome.
However, 20 to 38% of the isolate-specific genes identified were at the edges of contigs
(<100 bp from the edge), in comparison to 5 to 40% for the whole genome, and this could
be problematic for metagenomic read coverage estimation (fewer reads can typically be
mapped at the ends of contigs with high stringency thresholds such as those used here).
Therefore, we did not include isolate-specific genes from the isolates in the quality assess-
ment of the MAGs (Fig. 1); in addition, such genes should not be expected to be captured
by MAGs, since they are carried by only a few cells, or even a single cell, of the total
population.

As also discussed previously with regard to the E230 isolate genome, an unexpect-
edly high number of genes (6,990) was observed compared to the average number of
genes in E. coli isolate genomes and the MAGs studied here (average, 4,902, SD, 154)
(Table 1). Taxonomic profiling of the isolate-specific genes in E230 showed that all
these genes were assignable to E. coli, suggesting that there was a coculture of two
strains that was sequenced, and this presumably accounted for the high numbers of
isolate-specific genes not captured by the metagenome and core genes not detected
by the MAG (Fig. 2 and 4). This was also supported by the high fragmentation of the
E230 genome assembly (1,630 contigs; Ns,, 5,050 bp) (Table 2). Hence, the relatively
lower performance of the MAG in the case of E230 (see below) was most likely due to a
mixed coculture of the isolate genome rather than a low-quality MAG.

Population core and variable genes missed by MAGs (completeness). We next
examined if the population core and variable genes identified by the read recruitment
analysis above using the isolate genome as the reference were captured by the corre-
sponding MAGs from the same sample. Core genes not captured by the MAGs repre-
sented a fraction ranging from 11.31% (B45) to 34.7% (E158) (24.84%, on average) of
the total core genes, while the fraction of variable genes missing in the MAGs was
13.63% to 69.56% (50.17%, on average) (Table 3; Fig. S2). As expected, MAGs missed all
isolate-specific genes in these comparisons; these genes are too rare in-situ to be
assembled, since they are specific to the isolate in question.

A fraction of missed core genes (ranging from 12% to 79%) and variable genes
(from 19% to 39%) in our samples found matching MAG homologs in BLASTN whole-
genome comparisons of isolates with MAGs. However, these matches showed =90%
nucleotide identity or =90% alignment length, indicating that either these genes were
indeed real population-divergent homologs—genes not shared with the isolate—or
they resulted from assembly errors (Fig. S3). The remaining missed core (16% to 71%)
and variable (64% to 71%) population genes that did not find any homolog among the
MAG genes were assembled but binned in other Enterobacteriaceae MAGs from the
same fecal sample (Fig. S3), revealing binning errors when closely related populations
coexist in the same samples. Genes with relatively low sequence identity or align-
ment length and genes binned in other MAGs accounted for >95% of the total core
genes and/or variable genes missed by the MAG. In two of the samples (E230,
Q196), the percentage of genes that had no match with any MAG gene exceeded
30% (Fig. S3). Not surprisingly, these two samples were also among the samples

FIG 3 Legend (Continued)

variable genes, as well as isolate-specific genes (using the isolate as the reference), while the latter
search identified MAG genes not present in the isolate and corroborated whole-genome blastn
comparisons between the MAG and isolate sequences. The main recruitment plot panel shows where
individual metagenomic reads matched to the MAG or isolate (x axes) and the percent identity of the
match (y axes). The position histogram (top left of each panel) displays the average coverage of each
base position for each gene (window). The dark blue histogram represents the coverage by reads
matching >100bp in length and showing >95% nucleotide sequence identity; in light blue are reads
matching below the nucleotide identity threshold used. The peak histogram (top right of each panel)
represents the distribution of the sequencing depth values of each window for the selected threshold.
The identity histogram (bottom right) displays the total number of short-read-derived base positions at
given percent identities. The star in panel 1.2 indicates the small blue lines at the bottom of the
sequence depth (y axis) that represent isolate-specific genes with no recruited reads. Red boxes in
panels 1.3 and 1.4 designate the area of short contigs at the end of the MAG that have variations in
coverage and likely represent chimeric sequences.
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FIG 4 Population gene content diversity as revealed by recruitment plots with isolate genomes. With the isolate
genome as a reference, the bars represent the frequencies of population-variable (dark shading) and isolate-specific
(isp) (light shading) genes based on metagenomic read mapping (left y axis) for each sample studied (x axis). Symbols
represent the corresponding numbers of genes (right y axis) as follows: filled circles, core genes; dark shaded circles,

variable genes; light shaded circles, isolate-specific (isp) genes.

with the highest numbers of isolate-specific genes (Table 3; Fig. 4) while isolate
Q196 also had a low ANI value (<99%) with its corresponding MAG, suggesting the
copresence of different genotypes.

Importantly, assessment of MAG completeness using either MiGA (based on the
presence/absence and single/multiple copy of 111 essential universal genes) or
CheckM (based on 1,173 marker genes conserved in the Enterobacteriaceae family)
showed that all MAGs were of high completeness (86.5% to 91%) based on recently
proposed standards (9), and the estimated completeness was slightly higher by
CheckM than by MiGA (Table 1; Fig. 2). However, when genome completeness was esti-
mated based on true-positive recovery rates for (i) core genes only (recovered popula-
tion core genes/total population core genes, using the isolate as the reference in the
read recruitment plot) and (ii) core and variable genes combined (recovered population
core and variable genes/total core and variable genes), the rates ranged from 65.29%
to 88.68% and 64.95 to 88.65%, respectively (Fig. 2). These rates were lower than the
completeness assessments of MiGA and CheckM, by 16.9% and 20.4%, respectively, on
average (Fig. 2).

Frequency of contamination from non-E. coli sequences in MAGs and
underlying causes. MAG genes that were not shared with the population after whole-
genome comparison to the isolate genes with substantial metagenome coverage (core
and variable population genes), ranged from 3.97% (B45) to 48.05% (E158) (Table 4).
These genes were separated into two categories: (i) genes that had distant matches
showing either >70% but =90% identity or alignment length, or both, with the isolate
genes and (ii) genes with no matches with isolate genes at =70% identity and align-
ment length (Fig. 1), i.e., MAG-specific genes. The first category accounted, in total, for
25.8% to 45.02% of the nonshared MAG genes (Table 4), indicating true gene variability
for cases of lower identities and potential assembly issues for cases of low alignment
length values. The second category accounted for more than half of the nonshared
MAG genes in all cases (Table 4). In the MAG-isolate pairs with low ANI values (Table 3),
some of these MAG-specific genes could represent real population-variable genes not
present in the isolate. However, we posit that this fraction, representing between
2.35% (B45) and 26.41% (E158) of the entire genome (average, 14.42%, excluding
Q196), corresponds, for the most part, to MAG contamination: genome fragments erro-
neously included in the MAG.
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TABLE 4 Fractions of MAG genes not shared with the population, MAG-specific genes, and non-Enterobacteriaceae genes among MAG genes
and MAG-specific genes

% (absolute no.) of the following genes within the indicated group:

Non-Enterobacteriaceae Genes in short
MAG-specific genes genes contigs (<1,000 bp)
MAG-specific non-

MAG genes not Nonshared Total MAG MAG-specific MAG-specific Enterobacteriaceae
MAG/isol shared with isolate MAG genes genes MAG genes genes genes genes
MG24-MAG/E158 48.051 (2,959) 54.98 (1,627) 26.421 4.3 (265) 11.87 (215) 44.75 (810) 10.39 (21)
MG23-MAG/E124 7.590 (350) 66.85 (234) 5.075 242(112) 21.69 (59) 28.52 (83) 13.55(8)
MG6-MAG/B45 3.974(174) 59.19 (103) 2.353 2.32(102) 36.28 (41) 29.41 (50) 63.33 (38)
MG19-MAG/E184 28.645 (1,491) 64.72 (965) 18.540 6.68 (348) 27.59 (298) 33.01(335) 35.78 (107)
MG25-MAG/E230 13.014 (654) 68.65 (449) 8.935 5.63 (283) 46.63 (222) 28.15(134) 36.28 (82)
MG15-MAG/B200 36.543 (1,852) 69.006 (1,278) 25.217 5.14 (261) 16.77 (224) 19.62 (262) 12.22 (28)
MG32-MAG/Q196 39.118(2,281) 74.22 (1,693) 29.034 10.03 (585) 30.32 (545) 35.39 (636) 7.10 (39)

A considerable fraction (20% to 45%; average, 30.6%, excluding Q196) of the MAG-
specific genes were found in contigs shorter than 1,000 bp (Table 4) (reported toward
the end of the MAG sequence file) and usually showed more-variable coverage than
the rest of the genome (higher or lower [examples can be found in Fig. 3]), further cor-
roborating the proposition that these genes represented binning errors. In agreement
with this interpretation, best-match analysis of MAG-specific genes against available ref-
erence genomes showed that a substantial fraction, ranging from 11.87% (E158) to 46.63%
(E230) of these MAG-specific genes or 2.42% to 10.03% of total MAG genes, did not match
Enterobacteriaceae (Table 4); the remaining genes matched Enterobacteriaceae genomes.
Some of the genes not matching Enterobacteriaceae were also parts of short contigs (7% to
36%) (Table 4). Importantly, both CheckM and MiGA failed to estimate MAG contamination
by other bacterial families in most cases, i.e,, their contamination estimates were 0.9% to
3.6%, because these tools are based on universal genes only, and the majority of the extra-
neous genes were not universal or core genes.

The highest numbers of MAG-specific genes were observed in the MAGs recovered
from the E158, B200, Q196, and E184 metagenomes (>20% of total MAG genes).
Overall, these MAGs had high completeness and low contamination (Table 1) but
exhibited the highest numbers of non-Enterobacteriaceae genes, followed by the E230
MAG, which also exhibited 9% MAG-specific genes (Table 4).

Evaluation of the effect of contig length on MAG quality. Our MAGs overall
showed high completeness (>80%) and low contamination (<10%) according to MiGA
(Table 1), and the Ny, values (50% of the assembly is found in contigs longer than the
N, value) varied among the MAGs and were lower than the Ny, values for the isolates
in most cases (Table 2). The importance of contig number and length for retrieving
accurate and complete MAGs has been discussed previously (18), and those studies
suggested that fewer than 10 long contigs should ideally be used as candidates for
complete MAGs (i.e., fully circularized genomes). In agreement with this suggestion, we
found that the number of contigs making up the MAG sequence was positively corre-
lated (R=0.91) with the percentage of genes that were MAG specific in our data set
(Fig. S4), implying that using longer contigs decreases false-positive binning errors. To
more accurately quantify this parameter, we performed binning again, using different
minimum lengths (1 kb, 2kb, and 5kb) for including contigs in the binning step. Our
evaluation using MiGA showed that MAG completeness was not significantly decreased
in this range of contig lengths except for the E158-MAG, while contamination
decreased and quality increased in almost all cases (Table S4). A contig length
of 1,000 bp offered the best compromise between lower contamination and minor
decreases in quality and completeness, which was roughly consistent with what was
reported previously based on different binning algorithms (19). Similarly, the number
of nonshared MAG genes decreased in most cases, as expected (Table S4; Fig. 5), while
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FIG 5 Estimations of MAG completeness and MAG-specific genes obtained by using different minimum contig lengths
for binning (from left to right for each sample, 0.5, 1, 2, and 5 kbp). (Bottom) MiGA completeness estimations for
MAGs (filled bars) and the fraction of isolate genes shared by the corresponding MAG from the same sample (shaded

bars). (Top) Fraction of MAG-specific genes not present in the corresponding isolate genome.

isolate genes captured by the corresponding MAG decreased slightly and even
increased in some cases, indicating that using longer contigs (lower fragmentation)
also allowed for more-reliable binning (Table S4; Fig. 5).

DISCUSSION

Despite the common use of genome binning in recent molecular microbial ecology
studies, investigations of how well MAGs represent the total population by direct com-
parison with isolate genomes from the same sample are lacking. Here, we compared
population core and variable genes detected using genomes of E. coli isolates as the
reference in read recruitment plots versus MAGs originating from the same sample.
Taking into account that our samples were medium-to-high-complexity data sets (17),
our results were consistent with those of the CAMI challenge in that we were able to
recover MAGs with high completeness (>80%) and low contamination (<8%) from
each metagenome using MaxBin 2.1.1 (13). Confoundingly, our study highlighted, in
addition, consistent contamination of sequences from other bacterial families recov-
ered by MAGs that often went unnoticed by the common strategies and tools used for
this purpose.

Overall, MAGs missed 25% and 50% of the population core and variable genes,
respectively, on average, which was substantially higher than the estimate of the qual-
ity-checking pipelines (Table 3; Fig. 4; see also Fig. S2 in the supplemental material).
These findings were consistent with those reported recently based on a comparison of
isolate genomes derived from a low-complexity (enrichment) culture of ~20 bacterial
species with the MAGs recovered from the metagenome of the culture (20), further
highlighting the need for improvements in binning approaches and/or manual curation
of the resulting MAGs (18). Nelson and colleagues reported, in addition, that isolate
genes missed by MAGs were often found in short contigs of atypical tetranucleotide
frequency (20), which was presumably specific to the approach used for binning (a tet-
ranucleotide-based approach). The binner software employed in our study (MaxBin) is
not (as) sensitive to tetranucleotide composition variation but is prone to splitting pop-
ulation genomes in multiple (independent) MAGs in some samples (13), which was also
observed in our samples (E158, Q51) that yielded MAGs of low completeness.
Therefore, different results than those reported here could be obtained depending on
the binning strategy employed and the specific metagenomic data set(s). That said, our
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results should provide a reference guide for the binning of single data sets with no
manual curation of the resulting MAGs. Further, the genes missed by MAGs often
included virulence factors in both our study and the previous study (20), because these
genes are commonly carried by short contigs (after assembly) of atypical coverage and/
or tetranucleotide frequency. Therefore, applications of binning to clinical samples
should examine contigs not binned as part of the (target) MAG for the presence of
(known or suspected) virulence factors as well as applying the recommendations below
for more-reliable MAGs.

The reverse comparison, i.e., population genes identified using the MAG as the refer-
ence that were not recovered by using the isolate genome, revealed even more MAG
genes that were not shared with the isolate (Table 4). These genes are attributable, at
least partly, to the fact that the isolates almost never represent all members of a natural
population. However, our analysis indicated that the majority of these genes were clas-
sified in families other than Enterobacteriaceae (i.e., potential errors in binning), which
would result in an overestimation of population gene variability. Our analysis showed
that our MAGs have, on average, 4.4% (range, 2.3% to 6.7%, excluding Q196) of sequen-
ces not taxonomically classified into Enterobacteriaceae and attributed here to binning
errors. This value is higher than the contamination levels estimated both by MiGA
(0.9% to 2.7%; average, 1.5%, excluding Q196) and by CheckM (0.36% to 7.92%; aver-
age, 2.63%). Therefore, it appears that MAGs recovered using the most frequently used
pipelines and thresholds commonly have a low but substantial frequency of sequences
that belong to taxonomic groups other than the group in question and that this was
not estimated by the best-performing tools for quality assessment, since these tools do
not target the detection of extraneous sequences. Thus, further improvements in ge-
nome quality assessment as well as long-read sequencing technologies are needed for
higher accuracy. For the time being, the recommendations below should help to iden-
tify such problematic cases and/or to obtain MAGs of sufficient quality.

Suggestions for reliable genome binning and MAGs. Our analysis identified key
parameters and metrics, such as the number of contigs and gene taxonomic classifica-
tion, that could be explored for more-reliable genome binning or could help to identify
problematic MAGs. The following suggestions are therefore presented; they typically
result in high-quality MAGs, defined as representing >85% of core and variable popula-
tion genes and showing <3% contamination (i.e., genes of different taxonomic origin).
Notably, this quality level was achieved by default binning settings only for the MAGs
of samples E124 and B45; six out of eight metagenomes produced MAGs of lower qual-
ity. Our suggestions include the following:

e Identify high-quality MAGs based on MiGA or CheckM (>70% quality score) with
>10x coverage in order to obtain homogenous gene coverage. Also, select MAGs
with a low number of contigs (<500) and high N, (>20,000 bp), since these
parameters provide the best assemblies.

Generate metagenomic read recruitment plots of high-quality MAGs as suggested

previously (7). These plots typically reveal uniform coverage across the MAG, with

increased coverage where the rRNA and multicopy mobile genes are located.

Manually inspect, and possibly remove, contigs of unusual coverage compared to

the rest of the genome that do not carry rRNA or (known) multicopy genes. Tools

such as Anvi'o could further facilitate the (manual) identification and removal of

such contigs (21).

e Keep in mind that sequences harboring contamination are more frequently found
in short contigs and are characterized by more-variable coverage patterns than the
average of the genome. Further, the sequence diversity within the population
revealed by the recruitment plot (e.g., mapping patterns of reads showing >90%
nucleotide identity to the MAG) often differs for chimeric contigs relative to the
rest of the genome. To avoid such contigs, it is preferable to select longer contigs
for binning (>1,000 bp).
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e Compare MAGs to their closest relatives (ANI, >93% to 95%) in terms of genome
size and number of genes for expectation of the gene content from the MAG
sequence. Note that taxonomy does not directly follow conservation of genome
length (22). However, genome size deviations of more than 0.5 and 1 Mbp at the
species and genus levels, respectively, could be indicative of problematic binning.

e Obtain the taxonomic profiles of a majority of genes using tools such as MyTaxa,
and examine their in situ coverage by metagenomic reads to detect chimeric
MAGs, even in cases where the tools for quality assessment provide high-quality
values.

Our study is based on a limited number of samples (pairs) analyzed and on a spe-
cific, limited level of complexity, that of the gut microbiome. Another limitation was
the focus on E. coli isolates alone. Future studies should include metagenomes of varied
complexities and isolates of different species in order to verify that our results apply to
other prokaryotic taxa. Further, while we used only one binning tool in this study, our
data set is appropriate for evaluating additional binning tools or strategies that com-
bine the outputs of several tools. The suggestions provided here should facilitate the
identification and removal or manual curation of “suspicious” MAGs not captured by
the available quality-checking tools. Since MAGs are increasingly used in ecological and
diversity/taxonomic studies (23, 24), it is possible that the coassembly of several meta-
genomes containing closely related populations could produce even more-erroneous
MAGs (25). Thus, it is important that such efforts be combined with thorough inspec-
tion of the MAG sequences, especially for the handful of MAGs that are critical for the
study of pathogens and other target organisms or are used to describe new Candidatus
taxa (26).

MATERIALS AND METHODS

Study design, collection of samples, isolates, and sequencing. This study was a part of the
EcoZUR (E. coli en Zonas Urbanas y Rurales) project, a case-control study of diarrhea that was carried out
over 18 months in northern coastal Ecuador (17, 27). One of the objectives of the EcoZUR project was the
identification of diarrheal cases for which E. coli was the causative agent and the evaluation of signatures
in the gut microbiome that might distinguish between infections caused by different E. coli pathotypes.
For this purpose, samples from infected children with an E. coli pathotype, based on culture results and
PCR-based identification of pathotype-specific genes carried by the isolates, and their age-matched con-
trols were analyzed using whole shotgun metagenomic data, isolate genome sequencing, and epidemio-
logical data (Fig. 1). Collection of samples, culturing of E. coli isolates, and metagenome and genome
sequencing, as well as metagenome assembly, have been described previously (17). For the current
study, a subset of EcoZUR samples was used (Tables 1 and 2), for which the isolated E. coli strain was
presumably the causative disease agent based on a combination of data including metagenomic rel-
ative abundance and level of clonality (pathogenic E. coli populations tend to be more clonal than
commensal E. coli), the presence of virulence factors, and epidemiological data
(e.g., the presence of symptoms and the more-frequent association of the isolate with disease than
with healthy samples) (17).

Population genome binning. Contigs longer than 500 bp were binned into genomes using MaxBin
v2.1.1 with default settings (28). Only contigs from the assembly of an individual sample were used for
binning (i.e., no coassembly was performed). CheckM and the MIGA Web server (www.microbial
-genomes.org) were used to estimate the completeness and contamination of each metagenome-
assembled genome (MAG) based on the recovery of single-copy universal bacterial proteins (15, 16).
Recruitment plots were constructed, as described previously (29), for isolates and MAG contigs and genes
using the enveomics.R package, v1.4.1, from the enveomics collection (10).

Taxonomic assignments and functional annotation of predicted genes. Genes were predicted in
all MAGs or isolate genome sequences analyzed using Prodigal (v2.6.1; default parameters) (30).
Taxonomic assignment based on phylogenetic reconstruction of the universal single-copy-number genes
for each MAG was performed using CheckM and MiGA. Assessment of the taxonomic origins of individual
genes and operons was based on MyTaxa (31) as implemented in MiGA. Genome-aggregate average nu-
cleotide identity (ANI) was calculated between all MAGs assigned to Enterobacterales and the respective
isolates using the ani.rb script from the enveomics collection. Functional annotation for each genome
was performed using blastp searches (score, >60 bits; similarity, >40%) against UniProt 2017_11 (32).

Gene conservation in the natural (metagenomic) population. Recruitment of metagenomic reads
to the reference MAG or isolate sequences was used to identify areas of sequence discontinuity for the
corresponding population as described previously (29). For all MAGs, 95% nucleotide identity, the most
commonly used threshold for species demarcation (33), corresponding to an area of sequence disconti-
nuity revealed by the read recruitment plots, was used as the threshold to identify reads representing
the reference population and estimate the coverage of the population (i.e., relative abundance in the
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metagenome) (Table S1; Fig. 2). Reads with <95% identity were assumed to represent distinct (nontar-
get), co-occurring populations and were excluded from further analysis. Read mapping against the MAG
or isolate genomes was performed with BLAT, and only one match (best match) per read was saved (34).
Eight MAG-isolate pairs from disease samples (Fig. 1; Tables 1 and 2) for which the isolate was con-
cluded to be the causative agent and its population was abundant (>7x coverage) in the metagenome
based on our previous study (17) were used in total. Metagenome read mapping was performed for each
isolate to assess the level of gene conservation within the natural sequence-discrete population and to
determine the relative abundance of each gene (Fig. 1). More specifically, metagenome reads were
mapped onto isolate genomes in order to identify variable and core genes, and isolate genes missing (or
less abundant) within the natural population (for exact definitions of these sets of genes, see Results).
Variable and absent genes were calculated only for isolates with 7x or more average coverage across
the genome in order to reduce the impact of spurious results. When population coverage is lower, genes
may be missed due to sequence depth variation and not true absence, resulting in a false-positive signal
(2). This level of coverage (>7x) and the associated P value (<0.01; see also below) ensured a low num-
ber (<1%) of potential false-positive results based on subsampling and simulation experiments per-
formed previously (2). Gene coverage was calculated using the sequencing depth of the corresponding
window in the recruitment plot using the BlastTab.seqdepth.pl script from the enveomics collection (10).
All isolate genes were also searched against MAG genes using BLASTN searches (thresholds for a match:
nucleotide identity, >90%; alignment length, >90%) to determine if the MAG included these genes (Fig.
1). For read mapping, the ANIr against the reference MAG or isolate genome sequence, using all mapped
reads with identities above the selected nucleotide identity threshold (95%), was also calculated in order
to estimate the level of intrapopulation sequence diversity (Table S1).
Data availability. The 32 biosamples used in this study are available in NCBI, under BioProject number

PRINA486009

(BioSample numbers SAMN16296799 to SAMN16296806

and SAMN16453473 to

SAMN16453496; these numbers provide links to the accession numbers of the original metagenomes released
by Pefa-Gonzalez et al. [17] and additional metadata). The MAG sequences recovered in this study are available
under GenBank accession numbers JAEPDT000000000 to JAEPDZ000000000, JAEPEA000000000 to
JAEPEQ000000000, JADDTU000000000 to JADDTZ000000000, and JADDUA000000000 to JADDUB000000000,
as well as through http://enve-omics.ce.gatech.edu/data/ecozur.
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