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ABSTRACT The phylogenetic and functional diversities of microbial communities in tropi-
cal rainforests and how these differ from those of temperate communities remain poorly
described but are directly related to the increased fluxes of greenhouse gases such as ni-
trous oxide (N2O) from the tropics. Toward closing these knowledge gaps, we analyzed
replicated shotgun metagenomes representing distinct life zones and an elevation gradient
from four locations in the Luquillo Experimental Forest (LEF), Puerto Rico. These soils had a
distinct microbial community composition and lower species diversity compared to those of
temperate grasslands or agricultural soils. In contrast to the overall distinct community com-
position, the relative abundances and nucleotide sequences of N2O reductases (nosZ) were
highly similar between tropical forest and temperate soils. However, respiratory NO reduc-
tase (norB) was 2-fold more abundant in the tropical soils, which might be relatable to their
greater N2O emissions. Nitrogen fixation (nifH) also showed higher relative abundance in
rainforest than in temperate soils, i.e., 20% versus 0.1 to 0.3% of bacterial genomes in each
soil type harbored the gene, respectively. Finally, unlike temperate soils, LEF soils showed lit-
tle stratification with depth in the first 0 to 30 cm, with ;45% of community composition
differences explained solely by location. Collectively, these results advance our understand-
ing of spatial diversity and metabolic repertoire of tropical rainforest soil communities and
should facilitate future ecological studies of these ecosystems.

IMPORTANCE Tropical rainforests are the largest terrestrial sinks of atmospheric CO2

and the largest natural source of N2O emissions, two greenhouse gases that are criti-
cal for the climate. The microbial communities of rainforest soils that directly or indi-
rectly, through affecting plant growth, contribute to these fluxes remain poorly
described by cultured-independent methods. To close this knowledge gap, the pres-
ent study applied shotgun metagenomics to samples selected from three distinct life
zones within the Puerto Rico rainforest. The results advance our understanding of
microbial community diversity in rainforest soils and should facilitate future studies
of natural or manipulated perturbations of these critical ecosystems.

KEYWORDS Puerto Rico, diversity, nitrous oxide, nosZ, soil microbial communities

Soil microbiomes are some of the most complex ecosystems owing to microenviron-
ments and steep physicochemical gradients, which can change on a micrometer or

millimeter scale (1–3). Tropical rainforests (“forests” hereafter) are characterized by
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humid and wet climate patterns and account for a large portion of the world’s total for-
est cover (4). These forests have high levels of primary productivity (;30% of the total
global production) due to large amounts of precipitation coupled with year-long warm
temperatures and high levels of light (5). Consequently, high levels of biodiversity are
observed in these forests, above- and belowground. The soil microbial communities of
these forests, in particular, harbor taxa and genes that are exclusive to these habitats/
locations, along with only a few cosmopolitan taxa that are shared with other (non-
tropical forest) habitats (6, 7). Although tropical forest soils are critical ecosystems that
host a plethora of distinct ecological niches, little is known about the metabolic poten-
tial of tropical soils, especially across elevation and depth gradients. Describing this
metabolic diversity is important for studying and monitoring the microbial activities
related to greenhouse gas fluxes, namely, nitrous oxide (N2O) and carbon dioxide
(CO2), from the tropical soils (8).

Notably, tropical forests represent the largest terrestrial sinks of atmospheric CO2

and the largest natural source of N2O emissions (9–12). Natural soils have been
reported to contribute over 43% of the total global N2O emissions, with tropical eco-
systems being the highest contributors, having 2 to 4 times higher contributions than
natural temperate ecosystems (13–16). These soils are also responsible for about 70%
of terrestrial nitrogen fixation, which underlies, at least in part, their high rates of net
primary productivity (8, 17).

Microbially mediated nitrification and denitrification are the biotic processes con-
tributing the most to global soil N2O emissions (60 to 70%) (16, 18, 19), although che-
modenitrification, i.e., ferrous iron generated by ferric iron-reducing bacteria reacting
with nitrite to produce N2O abiotically, is also likely high in iron-rich tropical soils (20).
In soils, N2O is biologically produced as a result of DNRA (dissimilatory nitrite reduction
to ammonium) or denitrification respiratory pathways (19, 21, 22). Respiratory nitric
oxide reductase (nor) is a key contributor to the microbial production of N2O and is
commonly found in the genomes of denitrifying bacteria as well as in that of some
ammonia-oxidizing organisms (19, 23–27).

While both biotic and abiotic processes contribute to N2O production, consumption
of N2O is exclusively mediated by microbial N2O reductase (NosZ) activity (22, 28, 29).
Yet, whether the denitrifying microorganisms in the tropical forest soils differ from
their counterparts in temperate soils and whether their functional genes present in the
community reflect the high nitrogen fluxes remain unanswered questions despite their
apparent importance for better management and modeling of tropical soil ecosystems.
It has also been demonstrated that tropical forests have significantly higher rates of
nitrogen fixation (;70% of total terrestrial nitrogen fixation) than other ecosystems,
significantly affecting the nitrogen budgets in these ecosystems (3, 30–32). How these
ecosystem rates translate to the nitrogen-fixing microbial (sub)community diversity
and gene relative abundance remains unclear.

The Luquillo Experimental Forest (LEF), also known as the El Yunque National Forest
in Puerto Rico (PR), has been a long-term ecological research (LTER) site since 1988.
The site is dedicated to the assessment of the effects of climate drivers on the biota
and biogeochemistry. The forest has been subjected to several disturbance regimes
over the last few decades, mostly natural and, to a smaller extent, anthropogenic, such
as tourism and experimental manipulations (33, 34). This site encompasses distinct “life
zones” characterized by sharp environmental gradients even across small spatial scales
(33, 35, 36). The broad life zones based on the Holdridge classification system include
the rain forest, wet forest, lower montane wet forest, and lower montane rain forest.
These life zones are distinguished by elevation and temperature and rainfall patterns,
in addition to other edaphic factors (37–40). The elevation and rainfall patterns also
tend to influence oxygen availability, redox potential, nutrient uptake, and organic
decomposition rates (37, 40, 41). The dynamic interplay of existing physicochemical
gradients and climatic factors gives rise to a complex mosaic of biodiversity patterns
observed in this forest (38). Hence, LEF represents an ideal environment to study
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tropical microbial community diversity patterns and their effect on carbon and nitro-
gen cycling. The four sampling sites of this study (see below) were chosen to represent
the distinct vegetation and life zones within the LEF.

Previous studies in the LEF, and in similar forest regions, have mostly focused on
the effects of redox dynamics, litter decomposition, nitrogen (N), and other nutrient
fertilization on microbial community activity through enzyme assays and biochemical
process rate measurements. Few studies have examined microbial diversity patterns
across an elevation gradient, and those were based only on low-resolution techniques
such as terminal restriction fragment length polymorphism analysis (4, 10, 11, 42–44).
Furthermore, studies linking marker-gene abundances (related to nitrogen cycling)
with in situ flux measurements have been met with mixed success in the forest soils,
despite the high N2O fluxes often measured in these ecosystems (45). A possible
underlying reason for this mixed success could be that the commonly used nosZ pri-
mers target only the clade I (typical) nosZ sequences and miss the often numerically
more dominant clade II (atypical) sequences (46), a bias that can be circumvented by
employing metagenomic analyses (47).

With recent developments in next-generation DNA sequencing and associated bio-
informatics genome binning algorithms, nearly complete metagenome-assembled
genomes (MAGs) can be recovered without cultivation (48, 49), opening new windows
into studying soil microbial communities. Here, shotgun metagenomes originating
from soils from the four different locations/life zones and three different depths in the
LEF were analyzed to describe the microbial community diversity, biogeographical pat-
terns, and metabolic potential differences across samples. Furthermore, the metage-
nomic data obtained from these soils were compared to similar data from temperate
grasslands in Oklahoma (OK) (50) and agricultural soils from Illinois (IL), USA (49) previ-
ously obtained by our team. By analyzing nearly complete MAGs, we show that the
most abundant microbial populations (based on number of reads recruited) at each of
the sampling locations represent sequence-discrete populations, similar to those
observed in other habitats (45). Using such sequence-discrete populations as the fun-
damental unit of microbial communities, we subsequently assess the population distri-
bution at high resolution across the sampling sites (biogeography) and the gene con-
tent they carry, with a focus on nitrogen metabolism.

RESULTS
Sampling sites. Soil samples were collected on February 2016 from four locations/

sites across the LEF (18.39 N, 65.809 W). The four sites, namely, Sabana, El Verde field sta-
tion, Palm Nido, and Pico del Este, each located at different elevations from the mean
sea level, i.e., 265, 434, 634, and 953 m, respectively, were chosen due to their unique
landscapes and rainfall patterns, thereby creating distinct ecological niches (Fig. 1A).

The El Yunque forest is categorized into four distinct vegetation zones, namely, the
Tabonuco, Palo Colorado, Sierra Palm, and Dwarf/Elfin forests. Sites Sabana and El
Verde, which are located at the lowest elevation among the four sites within the LEF, fall
under the Tabonuco forest category in terms of vegetation, dominated by the tree species
Dacryodes excelsa (native to Puerto Rico). They are characterized by canopy cover and low
light intensities at the ground level which account for the sparsely vegetated forest floor.
However, these sites still harbor the richest flora of all sites (51). Palm Nido is characterized
by unstable, wetter soils, steeper slopes, and vegetation that is dominated by the Sierra
Palm (Prestoea montana). The site at the highest elevation, Pico del Este (dwarf forest ecosys-
tem or “elfin woodlands”) is characterized by higher winds, lower temperatures, and vegeta-
tion that is enveloped by clouds (34, 52), and its main vegetation is comprised of moss and
epiphytes. Furthermore, highly acidic soil and continuously water-saturated soils deficient in
oxygen are some major characteristics of this ecosystem, with most mineral inputs for plants
being dissolved in the rain and fog.

Three adjacent soil profiles were taken from each of the four LEF sites (4 sites
encompassing 3 life zones; Palo Colorado was not sampled). For each profile, individual
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soil cores were taken at each depth (0 to 5 cm, 5 to 20 cm, 20 to 30 cm) using a 3-cm
diameter by 15-cm length soil corer (AMS Inc, ID) that was decontaminated between sam-
plings by washing with 70% ethanol. The three cores at each sampling depth were pooled
for community DNA extraction, producing a total of 12 samples across the four sites.

FIG 1 Sampling location map and microbial community diversity among the study sites. (A) Map of the four sampling sites within the Luquillo
Experimental Forest (LEF). (B) Principal coordinate analysis (PCoA) plots based on Mash distances, colored by sampling site. (C) Nonmetric multidimensional
scaling (NMDS) plot with the soil physicochemical parameters incorporated. The arrow lengths are proportional to the strength of the correlations obtained
between measured soil physicochemical parameters and each ordination axis. The coordinates for the Luquillo Experimental Forest (LEF) were obtained
from DEIMS-SDR (Dynamic Ecological Information Management System, site and dataset registry; https://deims.org/bd0b5bcf-4f2e-4038-8275-629ffa5bf2aa)
and visualized using the terrain feature in Google Maps. The map was refined and annotated in Adobe Illustrator.
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Diversity of forest microbial communities. The LEF soil communities were com-
pared to those of intensively studied ecosystems, namely, the Oklahoma temperate
grassland (OK) (1, 50) and Illinois agricultural soils (IL) (49), which were previously char-
acterized with similar shotgun metagenomics approaches. Shotgun metagenomic
sequencing recovered a total of 370 million reads across the 4 sites (see Table S2 in the
supplemental material). Nonpareil 2.0 (53) was used to estimate sequence coverage,
i.e., what fraction of the total extracted community DNA was sequenced. Nonpareil
analysis of community diversity (Fig. S1) showed that the agricultural Urbana (IL) site
had the highest diversity of all the soils compared (Nd diversity 24.02; note that Nd val-
ues are given in log scale) and consequently the lowest sequence coverage at (only)
37.23%. El Verde and Pico del Este (20 to 30 cm) were the least diverse or most com-
pletely sequenced with 87.1% and 73.4% coverage, respectively (Nonpareil diversity of
19.6 and 20.6, respectively, or about 2 to 3 orders of magnitude less diverse). Overall,
OK and IL soils appear to be more diverse than the PR soils by about 2 orders of magni-
tude, on average, with an average Nonpareil value of 22.75 6 0.37. Nearly complete
coverage for El Verde and Pico del Este (20 to 30 cm samples) would require
2.402e109 bp and 8.735e109 bp, respectively, and for the same level of coverage, the
more complex communities in Urbana (IL) would require a substantially higher
sequencing effort of 1.282e112 bp. The OK soils had an estimated sequencing depth
of 2.063e111 6 1.436e111 bp.

Community composition variation across the forest sites based on 16S rRNA
gene sequences. The number of total 16S rRNA gene-based OTUs (operational taxo-
nomic units) observed in each metagenome and the Chao1 estimate of total OTUs
present reflected the degree of undersampling at each site (Fig. S1 and S2) and were
also consistent with the Nonpareil coverage estimates (Fig. 1). When Puerto Rico (PR)
tropical soils were compared with the agricultural and grassland soils from the United
States at the phylum level, Proteobacteria, Acidobacteria, and Actinobacteria were the
most abundant taxa across all ecosystems. However, in the forest soils, a few highly
abundant OTUs dominated the entire soil community, whereas in the OK and IL soils,
OTUs were more evenly distributed (Fig. S2), consistent with the Nonpareil diversity
results. Only 1.28% of the total detected OTUs (out of a total 8,019, non-singleton
OTUs) were shared among all PR samples, while 49.95% of OTUs were exclusive to a
particular sampling site in PR, partly reflecting the undersampling of the extant diver-
sity by sequencing. Only 0.37% of the OTUs (out of a total 13,760, non-singleton OTUs)
were shared among all the sites across all 3 ecosystems, all of which were assignable
to Alphaproteobacteria, Acidobacteria, Verrucomicrobia, and Actinobacteria.

It is important to note that the above-mentioned data sets were obtained based on
different DNA extraction methods and at different time points and laboratories. To test
for the possible effect of the DNA extraction method on the derived results, we applied
four additional DNA extraction methods on a selected subset of our PR samples,
including two manual phenol-chloroform-based methods that are often advantageous
for iron-rich soils like those in tropical forests. Our results revealed comparable levels
of diversity among the different methods tested, showing that the method used here
for extraction performed comparably to if not better than non-kit-based (manual)
extraction methods. For example, Nd values for soils from the four sampling sites
ranged between 19 and 22, and the MP Bio FastDNA SPIN kit method used for the sam-
ples reported herein provided among the highest diversity values, especially for mid-
and high-altitude samples (Fig. S3). Hence, the diversity patterns reported here are pre-
sumably independent of the DNA extraction method used. We would also like to note
that given the differences in the soil compositions across the different sampling
regions in PR soils alone, a single/uniform extraction protocol would have some inher-
ent biases (i.e., some soils had higher clay/iron content than others in the same forest).

Factors driving community diversity in the forest soils: multidimensional
scaling analysis of beta diversity. The principal coordinate analysis (PCoA) plots, con-
structed based on the Mash distances among whole metagenomes, showed a cluster-
ing pattern that was primarily governed by site/location. Accordingly, site explained
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45.22% of the total diversity (Fig. 1B). The nonmetric multidimensional scaling (NMDS)
analysis of the data revealed only site, pH, and soil moisture to be statistically
significant physicochemical parameters in explaining the observed community diver-
sity (Fig. 1C; Table S3). Analysis of similarity (ANOSIM) values also indicated site to be a
more important factor than depth, with P values of 0.001 and 0.94, respectively. Based
on the distance-based redundancy analysis (dbRDA), site was the most significant fac-
tor, even when the interplay between site and sampling depth was accounted for
(Table S4). Table 1 shows the partitioning of the variance between the proportion that
is explained by constrained axes (i.e., environmental variables measured) and the pro-
portion explained by unconstrained axes (i.e., variance not explained by environmental
variables measured). The total variance explained by all (measured) environmental vari-
ables was 80.2% (Table 1), which is remarkably high for a soil ecosystem (54).

Major N-cycling pathways. Genes encoding proteins involved in denitrification
and nitrogen fixation were the most abundant nitrogen (N) cycling pathway genes
detected at different sites. Overall, the forest soils harbored an ;2- to 3-fold higher
abundance of denitrification genes, i.e., narG, nirK, and norB (catalyzing the reduction
of nitrate, nitrite, and nitric oxide, respectively), than the grassland and agricultural
soils (Fig. 2A). For instance, the norB gene abundance was found to be at the highest
abundance among the denitrification genes, with ;37% (standard deviation [SD]
9.5%) of the genomes in the PR soils predicted to carry a norB gene, compared to
;17% (SD 4%) and ;14% (SD 1.3%) at IL and OK, respectively. Similarly, narG showed
a 3-fold higher abundance in the PR soils than in IL and OK soils (Fig. 2B). While denitri-
fication gene abundances appeared higher in the tropical soils, the relative abundance
of nosZ gene (i.e., 11.6% [SD 3%] of the total genomes across the four locations in the
LEF were predicted to carry nosZ) was similar to nosZ relative abundance in IL and OK
soils, i.e., 11.75% (SD 5%) and 11.08% (SD 3%), respectively (not statistically significant
at P=0.05). Similar to those of nosZ, DNRA gene abundances (namely, nrfA) were com-
parable across all sites studied herein (9%, SD 1.9%).

Predominant nosZ clades are shared among soil ecosystems. Placing nosZ-carry-
ing reads to a reference nosZ phylogenetic tree revealed that clade II nosZ, affiliated
predominantly with Opitutus, Anaeromyxobacter, and other closely related genera,
dominated the nosZ gene pool in the tropical forests (Fig. 3; Figs. S4 to S7). In contrast,
a very small fraction of reads (,10% of total nosZ reads) were recruited to clade I nosZ.
Members belonging to the clade II nosZ dominated the nosZ gene pool in OK and IL
soils as well, with IL agricultural soils showing the greatest nosZ sequence diversity
among the three regions. Notably, Opitutus terrae-affiliated sequences represented the
most abundant subclade (nosZ OTUs/subclades were defined at the 95% nucleotide
sequence identity level) in all regions. Furthermore, most of the O. terrae-affiliated
reads in the forest soil data set appeared to be assigned to a single subclade, while
their counterparts in the OK and IL soils appeared to be more evenly distributed
among several closely related nosZ subclades, i.e., showing higher sequence diversity
(Fig. 3; Fig. S4 to S7). O. terrae (strain DSM 11246/PB90-1) nosZ reads at .95% identity
made up between 20% and 60% of the total nosZ reads recovered from the El Verde
site and, together with the second most abundant subclade from Anaeromyxobacter
sp., contributed over 30% of the total nosZ reads across all four PR locations (Fig. 3).
Despite the significant taxonomic diversity observed in these soils (Fig. S2), the soils
from PR shared several abundant nosZ gene sequences/subclades at .95% nucleotide

TABLE 1 Proportion of total microbial community diversity explained by measured soil
environmental factorsa

Axis type Inertia Proportion Rank
Constrained 0.0876 0.8021 6
Unconstrained 0.02161 0.1978 5

Total 0.1092 1
aSite, sampling depth, pH, total nitrogen, total carbon, and moisture data were considered in the analysis.
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FIG 2 Abundance of N-cycling genes and their distribution across soil ecosystems. (A) Abundance of hallmark genes for denitrification, DNRA, and nitrogen
fixation pathways, represented as genome equivalents (% of total bacterial genomes sampled that carry the gene) in the metagenomes studied (see figure
key). (B) Frequency of genomes carrying the respective denitrifying gene across the three ecosystems studied. Genes denoted by the same letter are not
statistically significantly different between ecosystems (analysis of variance [ANOVA] Tukey test). Statistical significance reported at P, 0.05. Note that
nitrification genes were not detected in any of the Puerto Rico sites.

Metagenomic Characterization of the Luquillo Forest Applied and Environmental Microbiology

June 2021 Volume 87 Issue 12 e00546-21 aem.asm.org 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/a
em

 o
n 

26
 M

ay
 2

02
1 

by
 7

0.
25

1.
21

0.
24

6.

https://aem.asm.org


FIG 3 Phylogenetic diversity of nosZ-carrying metagenomic reads recovered in each soil ecosystem. nosZ sequences were
identified by the ROCker pipeline and placed in a reference nosZ phylogeny as described in Materials and Methods. The radii

(Continued on next page)
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FIG 3 (Continued)

Metagenomic Characterization of the Luquillo Forest Applied and Environmental Microbiology

June 2021 Volume 87 Issue 12 e00546-21 aem.asm.org 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.a

sm
.o

rg
/jo

ur
na

l/a
em

 o
n 

26
 M

ay
 2

02
1 

by
 7

0.
25

1.
21

0.
24

6.

https://aem.asm.org


identity with soils in OK and IL (Fig. 3). Furthermore, in order to compare the predomi-
nant nosZ sequence variants across the samples shown here, a new phylogenetic refer-
ence tree was constructed based on almost-full-length sequences obtained from the
assemblies/MAGs obtained from the metagenomes studied here (namely, PR, OK, IL).
The short reads identified as nosZ from the PR soils were placed on this tree and show
that the majority of these reads are recruited by the nosZ sequences obtained from
these assemblies/MAGs, indicating that the nosZ sequences across the ecosystems
studied here are similar (Fig. S8.)

Nitrogen fixation potential. The nitrogen fixation genes (mainly nifH) were present
at a much lower abundance in the lower altitude forest samples. For instance, only 1 to
3% of all genomes in the lower altitude samples were predicted to carry nifH,
compared to ;20% of the genomes in the higher-elevation samples (Pico del Este)
(Fig. 2A), and almost none of the reads from IL and OK metagenomes appeared to
carry nifH (,0.1%). Therefore, nitrogen fixation gene abundance patterns indicated a
much stronger selection for nitrogen fixation in the tropical forest relative to that in
temperate agricultural or natural prairie soils, especially at higher elevations.
Furthermore, no ammonia-oxidizing genes (amoA) were detected in any of the soils
except for Urbana soils (IL), which had a history of fertilizer (N) input.

Recovery of metagenome-assembled genomes (MAGs) representative of each
site. In order to test the prevalence of taxa and genes across our sampling sites, the
distribution of abundant MAGs recovered from each PR sampling site (assembly and
MAG statistics provided in Table S6) was assessed across the sites using read-recruit-
ment plots (55). Taxonomic assignment using the Microbial Genomes Atlas, or MiGA
(56), revealed that the most abundant MAG was at site El Verde (lowest elevation), rep-
resenting 4.39% of the total metagenome, and was affiliated with an unclassified
Verrucomicrobia. The second most abundant (1.8% of total) was likely a member of the
genus Candidatus Koribacter (Acidobacteria) followed by an unclassified member of
Acidobacteria (1.45% of total). The Verrucomicrobium MAG was found at an abundance
of 1.03% of the total population at Sabana and at 0.07% and 0.03% in Palm Nido and
Pico del Este (highest elevation), respectively. Uneven coverage across the length of
the reference sequence and nucleotide sequence identities were observed in the
recruitment of short reads from Palm Nido and Pico del Este as well as with all OK data
sets, indicating that the related populations in the latter samples were divergent from
the reference MAG (Fig. S10). Therefore, at least this abundant low-elevation verruco-
microbial population did not appear to be widespread in the other samples analyzed
here (Fig. S10). Similarly, the other abundant MAGs from other sites in the forest soils
were unique to the corresponding sites (elevation) from which they were recovered.
Almost all MAGs used in the analyses were assignable to a novel family, if not a higher
taxonomic rank, according to MiGA analysis (compared to 11,566 classified isolate
genomes available in the NCBI prokaryotic genome database), underscoring the large
unexplored diversity harbored by the PR tropical rainforest soils. The sequence diver-
sity/complexity as well as sequencing depth limited large-scale recovery of high-qual-
ity MAGS.

Functional gene content of the MAGs. The genome sequences of the most abun-
dant MAGs from each location (n=6) were analyzed in more detail to assess the
functions they encoded, especially with respect to N-cycling pathways (Fig. 4). MAGs
from Pico del Este (highest elevation) showed a high abundance of N metabolism
related genes compared to MAGs from other sites (Fig. 4). Most notably, genes related
to nitrogen fixation were found only in the Pico del Este MAG, which was consistent

FIG 3 Legend (Continued)
of the pie charts are proportional to the number of reads assigned to each subclade and the colors represent the sampling
sites from each ecosystem (see figure key). Subclades highlighted in gray indicate the most abundant subclades across all
three ecosystems, whereas the ones highlighted in blue were abundant only in agricultural soils (IL). (A) nosZ reads from
every sampling site recruiting to clade II clades. (B) nosZ reads recruiting to clade I clades. Inset shows the most abundant
subclade (Opitutus terrae) from panel A and its distribution across all sites. Note that in all three ecosystems most of the
reads recruit to clade II subclades. Fig. S7 shows the distribution of the reads among the most abundant subclades in detail.
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with the short read analysis data sets showing greater relative abundance of nifH at
this site. Nitrification (ammonia oxidation related genes) gene clusters were not
detected in any of the recovered MAGs. norB and nosZ genes were found in three out
of the six abundant MAGs analyzed. The most abundant El Verde MAG, most closely
related to O. terrae (average amino acid identity [AAI] = 40%), possessed a nosZ gene,
which was congruent with the nosZ phylogeny described above (i.e., ;60% of the
nosZ-encoded reads from El Verde had a closest match to O. terrae nosZ sequences).

FIG 4 Functions encoded by the recovered population MAGs. Heatmap showing the relative abundance of genes encoding the major metabolic functions
(level 1 of the SEED subsystem category) for each MAG recovered from the four sites in Puerto Rico. The taxonomic classification of each MAG based on
MiGA is shown on the bottom left. The symbols at the bottom of the heatmap denote the presence (or absence) of specific N-cycling genes, namely,
denitrification and nitrogen fixation. No genes involved in nitrification were detected in any of the bins.
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DISCUSSION

The present study reported the taxonomic and gene content diversities of poorly
characterized tropical rainforest soils by using whole-community, shotgun metage-
nomic sequencing of samples from the Luquillo Experimental Forest (LEF), Puerto Rico.
The recovered nearly complete MAGs represented several abundant and widespread
organisms within this ecosystem that could serve as model organisms for future stud-
ies. Furthermore, since the LEF is subjected to various natural and experimental (e.g.,
warming, phosphorus fertilization) perturbations, our study could also provide a base-
line for these perturbations and future soil microbial studies at LEF. Our results
revealed that the LEF soils harbor distinct microbial communities at sites with elevation
distinct from sea level. In contrast, and unlike several other soil ecosystems, sampling
depth did not have a substantial impact on structuring community diversity (Fig. 1B
and C), revealing no depth stratification in the LEF soils, at least for the depths sampled
here (5 to 30 cm). This is most likely due to the lack of distinct soil horizons within the
first 30 cm of the sampling sites and indicates that the soil formation and/or physico-
chemical properties in these ecosystems could differ markedly from those in their tem-
perate counterparts (37).

A recent study examining the dominant bacterial (16S rRNA gene-based) phylo-
types across the globe found that the predominant phylotypes were widespread
across ecosystems. The only exception to this pattern was the forest tropical soils
which harbor distinct phylotypes (7). Consistent with these conclusions, the majority of
MAGs recovered from each LEF site appeared to be site-specific (e.g., see Fig. S10 in
the supplemental material) and represented at least novel species and genera, further
underlining the undertapped microbial diversity harbored by tropical forest soils.
Currently, the environmental factors driving these diversity patterns remain poorly
understood for tropical forest soils (7), but our study provided several new insights
into this issue.

In particular, sites El Verde and Sabana (lowest elevation sites) had community
structure and diversity similar to those of the two higher-elevation sampling sites, with
certain MAGs being present at both sites but not in any of the other (higher-elevation)
sites examined. This is presumably attributable to both sites having similar climate and
vegetation patterns (i.e., Tabonuco forest). On the other hand, Pico del Este was the
highest-elevation site and experiences almost continuous cloud cover as well as hori-
zontal precipitation. The unique topology of Pico del Este was reflected in distinct and
deeply novel MAGs and gene content, which differed markedly from those of the other
three sampling sites within the LEF (PCoA plots, Fig. 2B). The high water content of the
Pico del Este soils gives rise to a unique ecosystem dominated by epiphytes (e.g.,
moss) among other plant species (57). The epiphytic community has presumably sig-
nificant effects on nutrient (e.g., nitrogen) cycling (58) and influences the water input
to the soil, thereby shaping a unique habitat/niche for the soil microbes. Free-living
microbes have been shown to be one of the highest contributors to biological N fixa-
tion in these forests, with high rates of nitrogenase activity associated with the pres-
ence of moss/epiphytes (44, 59). Furthermore, lower N-cycling rates and high water
content in soils of cloud-immersed forests have been shown to be responsible for the
overall low nitrogen levels in these (nitrogen-limited) ecosystems (60).

Consistent with these previous results and interpretations, the Pico del Este showed
a high potential for nitrogen fixation, i.e., it was estimated that 1/5 of the total bacterial
genomes sampled possessed genes for N fixation, which is at least 10 times greater
nitrogenase gene/DNA abundance than that of any other site evaluated herein.
Accordingly, we found that site (location) alone explained about half (45%) of the beta
diversity differences observed among the four sampling sites, which reached ;80%
when a few physicochemical parameters, namely, pH and moisture, were also included
in the analyses (Fig. 2B; Table 1). This is a notably high fraction of beta diversity
explained by measured parameters for a soil ecosystem (54) and likely reflected that
location and the physical properties that characterized different locations within LEF
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structured diversity are much stronger than those in other soil ecosystems. Tropical
forests have also been shown to have significantly higher rates of nitrogen fixation
than other ecosystems, which can exceed the N retention capacity of the soil resulting
in large N loss as N2O (61). The findings reported here on denitrification gene abundan-
ces were generally consistent with these previous observations as well.

Links between soil community structure and nitrogen cycling can help close the
knowledge gaps on how the forest ecosystems affect the release and mitigation of cer-
tain highly potent greenhouse gases such as N2O. The gene abundances observed
here, e.g., more than 2-fold higher abundance of norB (associated with NO reduction
to N2O) and similar nosZ (N2O consumption) abundances in tropical soils relative to
those in temperate soils, were consistent with higher N2O emissions observed previ-
ously from the tropics. Further, in acidic soils such as the tropical forest soils evaluated
in this study, with the possible exception of the cloud-immersed site, lack of N limita-
tion can suppress complete denitrification, thereby leading to higher N2O release com-
pared to that of other soil ecosystems (30). These interpretations were consistent with
our observation that the PR soils harbored a relatively high abundance of respiratory
(related to denitrification) norB genes as well. Previous studies have also suggested
that many denitrifying bacterial genomes possess the genes required to reduce nitrate
to nitrous oxide but do not possess the gene responsible for the last step, i.e., N2O
reduction to N2, leading to the release of N2O gas (62), consistent with the findings of
our study. Alternatively, the higher relative abundance of norB relative to that of nosZ
or other denitrification pathway genes may be associated, at least partly, with detoxifi-
cation of NO and/or dismutation of NO to N2 and O2 and not energy-yielding NO
reduction to N2O (reviewed in reference 62). However, this explanation is less likely,
because we specifically focused on the respiratory reductase (cnorB), not its detoxifying
homolog (qnorB), in our analysis (see Materials and Methods for further details).

It has been established that tropical forest soils are the single highest contributor of
natural N2O emissions. While several abiotic and microbial processes can contribute to
soil N2O, N2O consumption is an exclusively microbial process, catalyzed by the
enzyme product of the nosZ genes (29). Based on the assessment of the nosZ gene
phylogeny, it appears that almost all of the nosZ genes from the tropical forest soils
studied here belong to a previously overlooked clade II nosZ (29, 63). This clade con-
sists mainly of nondenitrifying N2O reducers (i.e., organisms possessing N2O reductases
but lacking all or some of the other reductases in the denitrification pathway). Despite
the unique phylogenetic species- and gene-level diversity harbored by tropical soils in
general, the nosZ gene sequence diversity appears to be shared between temperate
and agricultural soils (Fig. 4). These findings imply strong selection pressure for conser-
vation of nitrous oxide reductase sequences across tropical and temperate soil ecosys-
tems that may not necessarily be applicable to other N-cycling genes and pathways,
which warrants further attention in the future.

It would also be interesting to assess how the findings reported here for the LEF
apply (or not) to other tropical forests especially because our study is based on a relatively
small sample size. Despite the relatively small sample size, however, our results showed stat-
istically significant differences along the elevation gradient sampled at the LEF that are inde-
pendent of DNA extraction (Fig. S3) or sequencing methods and consistent with our meta-
data (Fig. 2) and previous process rate measurements. While the diversity in the Puerto Rico
soils appears to be lower than that in temperate grassland and agricultural soils and different
DNA extraction methods, including phenol-chloroform- and kit-based, provided similar
results with our LEF samples (Fig. S3), it is important to note that the DNA of the temperate
soil data sets used in our comparisons was extracted using different methods by the original
studies (e.g., OK soils were extracted using the PowerSoil kit). Therefore, it would be impor-
tant to confirm the preliminary findings in terms of a-diversity reported by our study by
using the exact same DNA extraction and sequencing procedures in all soils.

Integration of functional (e.g., gene expression) data with in situ rate measurements
will provide a more complete picture of the composition and functioning in tropical
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forest soils. The identification of certain biomarker genes such as nosZ sequences in
our study could facilitate future investigations on biogeochemical N-cycling and green-
house gas emissions. For instance, the assembled MAGs and gene sequences provided
here could be useful for the design of specific PCR assays for assessing transcript levels
(activity), allowing potential linking of carbon dioxide, methane, nitrogen, and soil or-
ganic matter (SOM) turnover to the activity of individual populations and/or their
genes. As the gradients at the LEF also provide a natural setting to interpret the poten-
tial ramifications of climate change scenarios such as altered precipitation patterns, the
DNA sequences provided here could facilitate future manipulation experiments with
an emphasis on understanding and predicting the effects of climate change on micro-
bial community dynamics along the elevation gradient.

MATERIALS ANDMETHODS
Physicochemical analysis of soil samples. Soil samples were stored in sterile Whirl-Pak bags and

kept on ice during transport and until storage at 280°C. Soil pH was determined using an automated
LabFit AS-3000 pH analyzer, and soil extractable P, K, Ca, Mg, Mn, and Zn were extracted using the
Mehlich-1 method and measured using an inductively coupled plasma spectrograph at the University of
Georgia Agricultural and Environmental Services Laboratories (Athens, GA, USA). Soil extractable P using
this method is interpreted as the bioavailable fraction of P. NH4-N and NO3-N were measured by first
extracting them from soil samples with 0.1 N KCl, followed by the colorimetric phenate method for
NH4

1 and the cadmium reduction method for NO3. The physicochemical conditions at the sites during
the time of sampling are provided in Table S1.

Community DNA extraction and sequencing. Total DNA from soil was extracted using the
FastDNA SPIN kit (MP Biomedicals, Solon, OH) following the manufacturer’s procedure with the follow-
ing modifications (64). Soils were air dried under aseptic conditions followed by grinding with a mortar
and pestle. Cells were lysed by bead beating and DNA was eluted in 50ml of sterile H2O. DNA sequenc-
ing libraries were prepared using the Illumina Nextera XT DNA library prep kit according to the manufac-
turer’s instructions, except the protocol was terminated after isolation of cleaned double-stranded libraries.
Library concentrations were determined by fluorescent quantification using a Qubit HS DNA kit and Qubit
2.0 fluorometer (ThermoFisher Scientific), and samples were run on a high sensitivity DNA chip using the
Bioanalyzer 2100 instrument (Agilent) to determine library insert sizes. An equimolar pool of the sequenc-
ing libraries was sequenced on an Illumina HiSeq 2500 instrument (located in the School of Biological
Sciences, Georgia Institute of Technology) using the HiSeq Rapid PE cluster kit v2 and HiSeq Rapid SBS kit
v2 (Illumina) for 300 cycles (2by150bp paired end). Adapter trimming and demultiplexing of sequenced
samples was carried out by the HiSeq instrument. In total, 12 metagenomic data sets were generated (3
per site for the three depths), and statistic details on each data set are provided in Table S2.

In order to test for any DNA extraction biases of the kit used above, especially for the high iron/clay
content that characterizes tropical forest soils and is known to affect the extraction step, four additional
DNA extraction methods were performed in parallel on a small subset of samples collected in 2018 from
the same sites (6 samples per extraction method for 5 extraction methods covering the 4 sites). The
methods included two manual (as opposed to kit-based) phenol-chloroform-based methods (65, 66) as
well as two other kit-based methods, namely, DNeasy PowerSoil and DNeasy PowerSoil Pro (Qiagen
Inc.). For this evaluation, the soils were first homogenized and subsequently divided into five subsam-
ples to use with each method (including the FastDNA SPIN kit-based method mentioned above). The
libraries were constructed and sequenced the same way as described above for the FastDNA SPIN kit
method.

Bioinformatics analysis of metagenomic reads and MAGs. The paired end reads were trimmed
and quality checked using the SolexaQA (67) package with a cutoff at a Phred Q value of.20 ($99% ac-
curacy per base-position) and a minimum trimmed length of 50 bp.

Assembly and population genome binning. Coassembly of the short reads from the same location
was performed using IDBA-UD (68), and only resulting contigs longer than 500bp in length were used for
downstream analysis (e.g., functional annotation and MyTaxa classification). Genes were predicted on the
coassembled contigs using MetaGeneMark (69) and the predicted protein-coding regions were searched
against the NCBI All Genome database using BLASTP (70). Since the assembly of individual data sets
resulted mostly in short contigs (data not shown), the contigs from the coassembly (combining metage-
nomes from the three sampling depths, for each site) were used for population genome binning. Contigs
longer than 1 kbp were binned using MaxBin (71) to recover individual MAGs (default settings). The result-
ing bins were quality checked for contamination and completeness using CheckM (72) and were further
evaluated for their intrapopulation diversity and sequence discreteness using fragment recruitment analy-
sis scripts as part of the Enveomics collection (55) essentially as previously described (73).

Functional annotation of MAGs. Genes were predicted for each MAG using MetaGeneMark and
the predicted protein-coding regions were searched against the curated Swiss-Prot (74) protein data-
base using BLASTP (70). Matches with a bitscore higher than 60 or amino acid identity higher than 40%
were used in subsequent analysis. The Swiss-Prot database identifiers were mapped to their correspond-
ing metabolic function based on the hierarchical classification subsystems of the SEED subsystem cate-
gory (level 1) (75). The relative abundance of genes mapping to each function was calculated based on
the number of predicted genes from each MAG assigned to the function (for read-based assessment,
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see below). Relative abundance data were plotted in R using the “superheat” package (https://arxiv.org/
abs/1512.01524). Individual biomarker genes for each step of the nitrogen-cycling pathway were man-
ually verified by visually checking the alignment of the identified sequences by the pipeline outlined
above against verified reference sequences.

Functional annotation of short reads. Protein-coding sequences present in short reads were predicted
using FragGeneScan (76) using the 1% Illumina error model. The predicted genes were then searched against
the Swiss-Prot database using BLASTP (best match). Low-quality matches (bitscore, 60) were excluded, and
relative abundance of genes mapping to each function was determined as described in the previous section.

Community diversity estimation. (i) Nonpareil. Nonpareil (53) was used to estimate sequence cov-
erage, i.e., what fraction of the total extracted community DNA was sequenced, and predict the
sequencing effort required to achieve “nearly complete coverage” ($95%). The default parameters in
Nonpareil were used for all data sets. Only one of the two paired reads (forward) for each data set was
used to avoid dependency of the paired reads, which can bias Nonpareil estimates (53).

(ii) Mash and multidimensional scaling. Mash, a tool employing the MinHash dimensionality
reduction technique to compare sample-to-sample sequence composition based on k-mers (77), was
used to compute pairwise distances between whole metagenomic data sets and construct the distance
matrix to be used in multidimensional scaling. Pairwise Mash distances between the metagenomic data
sets were computed from the size-reduced sketches (default parameters). PCoA and NMDS were
employed to visualize the distance matrix and evaluate the physicochemical parameters driving commu-
nity diversity, respectively. Furthermore, dbRDA (distance-based redundancy analysis) was used to
obtain a finer resolution on the observed compositional variation. All of the above statistical analyses
were performed using the vegan package in R (78), with default settings.

16S rRNA gene fragments recovered from shotgun metagenomes. 16S ribosomal rRNA (16S)
gene fragments were extracted from the metagenomic data sets using Parallel-META (79). 16S-carrying
reads were classified taxonomically using the GreenGenes database.

Recovered 16S fragments were clustered (“closed-reference OTU picking” strategy using UCLUST
[80]) and taxonomically classified based on their best match in the GreenGenes database (81) at an ID of
$97% in QIIME (82, 83). The relative abundances of the OTUs were calculated based on the number of
reads assigned to each OTU. Community composition was assessed based on OTU taxonomic assign-
ments at the genus and the phylum ranks and was compared between the sites based on the relative
abundance of OTUs at each site.

Identification of N-cycling genes using ROCker. ROCker (84) was employed for a precise identifica-
tion and quantification of nosZ (encoding nitrous oxide reductase), norB (encoding respiratory nitric ox-
ide reductase, cytochrome bc complex associated), nirK (encoding nitrite reductase), narG (encoding ni-
trate reductase), nrfA (encoding nitrite reductase, DNRA related), amoA (encoding ammonia
monooxygenase), and nifH (encoding nitrogenase) encoding metagenomic reads (http://enve-omics.ce
.gatech.edu/rocker/models). Briefly, the short-read nucleotide sequences were searched (using BLASTX)
against a training set for each above-mentioned protein; training sets were manually curated to encom-
pass experimentally verified reference sequences as suggested previously (84). The resulting matching
sequences were then filtered using the ROCker compiled model (model for 150 bp-long reads for PR and
OK soils and 100bp model for IL soils). Protein abundances (based on the number of reads assigned to
the protein) were normalized by calculating genome equivalents. For the latter, the ROCker-filtered read
counts were normalized by the median length of the sequences of each protein reference, and the cor-
responding genome equivalents were calculated as the ratio of NosZ (or another protein of interest)
read counts to the read counts of RNA polymerase subunit B (rpoB), a universal single copy marker.

NosZ phylogenetic analysis. The NosZ reference protein sequences were aligned using CLUSTAL
Omega (85) and a maximum likelihood reference tree was created using RAxML v8.0.19 (86) with a gen-
eral time reversible model option, gamma parameter optimization, and “-f a” for the algorithm. The
ROCker identified NosZ-encoding reads were extracted from all data sets, translated into protein
sequences using FragGeneScan, and then added to the reference alignment using Mafft (87). The reads
were placed in the phylogenetic tree using RAxML EPA algorithm and visualized using iTOL (88).

Intrapopulation diversity assessment based on recovered MAGs. The taxonomic affiliation of
individual contig sequences of a MAG was evaluated based on MyTaxa, a homology-based classification
tool (89). The MiGA (Microbial Genomes Atlas, www.microbial-genomes.org) webserver was used for the
taxonomic classification of the whole MAG using the average nucleotide identity/amino acid identity
(ANI/AAI) concept. To assess intrapopulation diversity and sequence discreteness, each target popula-
tion MAG was searched against all the reads from each location by BLASTN (only contigs longer than 2
kbp were used). Fragment recruitment plots were constructed based on the BLASTN matches (threshold
values: nucleotide identity of $75% and alignment length of $80bp) using the Enveomics collection of
scripts (55). The evenness of coverage and sequence diversity of the reads across the length of the refer-
ence genome sequence were used to evaluate the presence and discreteness of the population in the
chosen data set.

Data availability. All metagenomic data sets were deposited in the European Nucleotide Archive
(ENA) under project PRJEB26500. Additional data are available at http://enve-omics.ce.gatech.edu/data/
prsoils.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 1.8 MB.
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