

1
2 A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon
3
4 Receptors
5
6
7
8
9

10 Authors: Prarthana Shankar¹, Subham Dasgupta¹, Mark E. Hahn², Robyn L. Tanguay^{1*}
11
12
13
14

15 Affiliations:
16
17 ¹ *Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon*
18 *State University, Corvallis, OR 97331 USA*
19
20
21 ² *Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA*
22
23
24
25
26 * *Correspondence to:*
27
28 Robyn Tanguay, Ph.D. Department of Environmental and Molecular Toxicology, the Sinnhuber Aquatic
29 Research Laboratory 28645 East Highway 34, Oregon State University, Corvallis, OR 97333. Email:
30 Robyn.Tanguay@oregonstate.edu, Telephone: 1-541-737-6514, Fax: 1-541-737-6074.
31
32
33
34
35
36 **ORCID:** P.S.: 0000-0001-6918-0597
37
38 S.D.G: 0000-0001-5996-5948
39
40 M.E.H.: 0000-0003-4358-2082
41
42 R.L.T.: 0000-0001-6190-3682
43
44
45
46
47 **RUNNING HEAD:** Functional roles of zebrafish AHRs
48
49
50 **KEYWORDS:** Zebrafish, aryl hydrocarbon receptor (AHR), polycyclic aromatic hydrocarbons, TCDD,
51
52 cytochrome P450
53
54
55
56
57
58
59
60

44 Abstract

25 Over the last two decades, the zebrafish (*Danio rerio*) has emerged as a stellar model for unraveling molecular signaling
3 events mediated by the Aryl Hydrocarbon Receptor (AHR), an important ligand-activated receptor found in all
4 eumetazoan animals. Zebrafish have three AHRs – AHR1a, AHR1b, and AHR2, and studies have demonstrated the
5 diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first
6 highlight the evolution of the zebrafish *ahr* genes, and the characteristics of the receptors including developmental and
7 adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We
8 then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss
9 their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and
10 other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of
11 the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular
12 techniques. Since much of the research has focused on the functions of AHR2 during development and the mechanism of
13 TCDD toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the
14 mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

38 Introduction

39 Aryl Hydrocarbon Receptor (AHR)

40 The Aryl Hydrocarbon Receptors (AHRs) are ligand-dependent transcription factors that mediate a wide range of
6 biological and toxicological effects in animals (Abel and Haarmann-Stemmann 2010; Barouki et al. 2007; Esser et al.
41 2009; Hankinson 1995; Nguyen et al. 2018; Safe et al. 2013). Although several endogenous ligands have been identified
8 since the discovery of the AHR in 1976 (Poland et al. 1976), the focus has been on characterizing the toxicity of numerous
9 environmental chemicals including the halogenated aromatic hydrocarbons (HAHs) and polycyclic aromatic hydrocarbons
11 (PAHs), many of which cause toxicity via the AHR signaling pathway (Denison and Nagy 2003; Nguyen and Bradfield
12 2008). 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD), an HAH, is the most potent and thoroughly investigated of the
13 known AHR ligands and it elicits many species- and tissue-specific toxicological effects (Couture et al. 1990; Denison
14 and Nagy 2003; Mandal 2005). By virtue of its limited metabolism (Vinopal and Casida 1973), TCDD is typically utilized
15 as the prototypical molecular probe to study the signaling events downstream of AHR activation (Poland and Kende
16 1976), and forms the basis of investigation of many of the AHR-dependent mechanisms reviewed in this paper.
22

23 Canonical signaling for the AHRs, which are part of the basic Helix-Loop-Helix Per-Arnt-Sim (bHLH/PAS) family of
24 proteins, involves the conversion into an active form that can dimerize with another bHLH/PAS protein, the AHR nuclear
25 translocator (ARNT) (Hoffman et al. 1991; Kewley et al. 2004). In their latent and unbound state, the AHRs are found in
26 the cytoplasm and are stably associated with two molecules of the 90kDa molecular chaperone heat shock protein 90
27 (Hsp90), p23, and AHR-interacting protein (AIP/XAP2/Ara9) (Carver and Bradfield 1997; Kazlauskas et al. 1999; Ma
28 and Whitlock 1997; Perdew 1988). Upon ligand binding, the AHR is activated and the AHR/Hsp90 complex translocates
29 to the nucleus where Hsp90 is exchanged for the partner protein, ARNT (Hoffman et al. 1991; Reyes et al. 1992; Swanson
30 2002). The AHR/ARNT heterodimer recognizes and regulates transcription of downstream genes such as the cytochrome
31 P450 family of genes (CYPs) and the aryl hydrocarbon receptor repressor (AHRR) via aryl hydrocarbon response
32 elements (AHREs; also known as DREs or XREs) in their promoter regions (Mimura et al. 1999; Watson and Hankinson
33 1992). The CYPs are amongst the most well-studied AHR gene targets and are involved in both the metabolic activation
34 and detoxification of the various AHR ligands (Nebert et al. 2004). In addition to the CYPs and AHRR, the AHR can also
35 directly or indirectly regulate expression of a large battery of genes, the identities and functions of which are still being
36 discovered (Abel and Haarmann-Stemmann 2010; Beischlag et al. 2008). While our review predominantly focuses on
37 what we know about canonical AHR signaling in zebrafish, we acknowledge that the AHRs have several non-canonical
38 functions as well (Jackson et al. 2015). Some examples include AHR as an E3 ubiquitin ligase in cytosol (Ohtake et al.
39 2007), its interaction with p300, pRb, and E2F (Marlowe et al. 2004; Puga et al. 2000), and as a partner for KLF6 (Wright
40 et al. 2017) and RelB (Vogel et al. 2007).
51

52 Evolution of the AHR in different species

53 The AHR is an ancient protein found in all eumetazoan animals, indicating that it originated more than 600 million years
54 ago (Hahn et al. 2017). A fundamental difference between AHRs in invertebrates and vertebrates is that most of the
55 vertebrate AHR proteins exhibit high-affinity binding of halogenated and non-halogenated aromatic hydrocarbons,
56
57
58
59
60

73 whereas all invertebrate AHRs examined to date lack that ability and appear to have roles primarily in developmental
74 processes (Butler et al. 2001; Hahn 2002). During animal evolution, AHR genes have been duplicated, including in early
75 vertebrate evolution (a tandem duplication and an expansion associated with two early vertebrate, whole-genome
76 duplication events) and in specific vertebrate lineages, especially fish (Hahn et al. 2017). These duplications, coupled with
77 some lineage-specific gene losses, result in the presence of between one and five AHR genes per species.

78 An important difference between AHR signaling in mammals and fishes is that most mammals—including most of those
79 used as models in toxicology research—possess a single AHR gene, whereas most fishes have multiple AHRs. Fish
80 typically possess four AHR genes—two pairs of tandem AHR1-AHR2—although additional gene duplications and losses
81 have led to some variation, including in zebrafish (Hahn et al. 2006). It is not clear why fish have retained multiple AHR
82 genes, including the AHR2 paralogs that have been lost from most mammals, as well as the additional duplicates of
83 AHR1 and AHR2 resulting from a fish-specific whole genome duplication event that occurred ~350 million years ago
84 (Amores et al. 1998; Glasauer and Neuhauss 2014). The maintenance of multiple AHRs in modern fish is notable
85 considering that more than 80% of the gene duplicates formed during the fish-specific whole genome duplication were
86 subsequently lost. The prevailing hypothesis for retention of gene duplicates is that they have become more specialized by
87 partitioning the multiple functions of their common ancestor (subfunctionalization; (Amores et al. 1998; Force et al. 1999;
88 Lynch and Force 2000)). However, they may also evolve new functions (neofunctionalization). Therefore, fish models can
89 serve as an ideal platform to study the role of AHR in both physiology and toxicology.

28 29 Zebrafish as a toxicological model organism

30
31 Zebrafish is a well-established vertebrate model for studying embryonic development and developmental toxicology, and
32 has been used extensively to unravel AHR pathway complexity (Garcia et al. 2016; Sipes et al. 2011; Teraoka et al.
33 2003a). Zebrafish embryos are transparent, and they develop externally and rapidly, with primary organogenesis complete
34 around 48 hours post fertilization (hpf), and the heart, liver, and brain well developed by 120 hpf (Kimmel et al. 1995). To
35 this end, most early stage toxicity studies are conducted with morphological, behavioral, and molecular evaluations
36 occurring within the first 120 hours of development (Nishimura et al. 2016). Zebrafish also possess high genetic
37 relatedness to humans; 76% of human genes have a zebrafish ortholog, and 82% of human genes that cause disease are
38 present in zebrafish, increasing the translational value of the zebrafish model (Howe et al. 2013). Furthermore, zebrafish
39 share similar morphology, physiology, and xenobiotic metabolic pathways with mammals (Diekmann and Hill 2013),
40 possessing direct orthologs of the human CYP1 enzymes like *cyp1a* and *cyp1b1*, in addition to *cyp1c1* and *cyp1c2* that
41 lack human orthologs (Goldstone et al. 2010).

42 The zebrafish AHRs

43 Zebrafish possess three AHR genes (*ahr1a*, *ahr1b*, and *ahr2*) that were named at the time of discovery according to their
44 hypothesized evolutionary relationships to the AHR genes in other fish. Thus, the *ahr1* genes were thought to be most
45 closely related to the *ahr1* genes of other fish and to the mammalian AHR (Andreasen et al. 2002a; Karchner et al. 2005);
46 the designation “a” and “b” reflected the initial conclusion that *ahr1a* and *ahr1b* were paralogs formed during the fish-
47 specific whole genome duplication, and was consistent with the standard zebrafish nomenclature for such paralogs
48 (Karchner et al. 2005). More recent analysis taking into account new AHR sequences from a variety of species, combined
49

109 with analysis of shared synteny between zebrafish and human chromosomes, suggested that zebrafish *ahr1a* is
1 orthologous¹ to the mammalian AHR, rather than a paralog of *ahr1b* resulting from the fish-specific whole genome
11 duplication (Hahn et al. 2017). Zebrafish *ahr2* is orthologous to *ahr2b* genes of other fishes (Karchner et al. 2005;
12 Tanguay et al. 1999).

13 Further insight into the relationships of zebrafish *ahr* genes to AHR genes in other vertebrates can be obtained by
14 additional analyses of shared synteny, which can complement gene phylogenies to help reveal evolutionary relationships
15 (Postlethwait 2007). A comparison of the shared synteny among AHR-containing chromosomes in zebrafish, human,
16 mouse, and chicken using *Genomicus* (Muffato et al. 2010; Nguyen et al. 2018) is illustrative (Fig. 1). The zebrafish
17 *ahr1a* gene is located on chromosome 16 (Andreasen et al. 2002a; Barbazuk et al. 2000; Hahn et al. 2017; Le Beau et al.
18 1994). Zebrafish chromosome 16 exhibits extensive shared synteny with human chromosome 7, mouse chromosome 12,
19 and chicken chromosome 2 – the locations of the canonical *AHR* genes in each of these species (Fig. 1A). This supports
20 the earlier suggestion that *ahr1a* is the ortholog of human *AHR* (Hahn et al. 2017). A reciprocal analysis of shared synteny
21 using the AHR on human chromosome 7 as the reference gene (Fig. 1C) confirms the relationship between AHR-
22 containing human chromosome 7, mouse chromosome 12, chicken chromosome 2, and zebrafish chromosome 16, and
23 also reveals the loss of the predicted paralog of *ahr1a* that would have been expected from the fish-specific whole genome
24 duplication (see chromosome 19). Zebrafish *ahr2* and *ahr1b* are located on chromosome 22 (Karchner et al. 2005;
25 Tanguay et al. 1999; Wang et al. 1998a). This chromosome exhibits extensive shared synteny with chicken chromosome
26 7, the location of two additional chicken *AHR* genes, designated *AHR2* and *AHR1B* (Lee et al. 2013; Yasui et al. 2007)
27 (Fig. 1B). Both zebrafish chromosome 22 and chicken chromosome 7 exhibit shared synteny with human chromosome 2
28 and mouse chromosome 1, which lack the *AHR2*-*AHR1* pair, confirming the loss of these genes in the mammalian
29 lineages leading to human and mouse (Fig. 1B).

30 See Table 1 for more details on the three zebrafish *ahr* genes and their respective translation products.
31
32 The presence of three AHRs in zebrafish is intriguing. Despite the plethora of research that has been conducted, we are
33 only beginning to understand their functional roles in development and in adult tissues, and we do not yet have a clear
34 picture of the extent to which each paralog is involved in endogenous vs. toxicological roles. In this paper, we survey
35 current AHR zebrafish toxicology research, and identify specific knowledge gaps and opportunities for future research.
36 We begin by reviewing the receptor characteristics (Section 1), followed by early stage toxicity (Section 2) and interaction
37 of AHRs with other signaling pathways (Section 3), and conclude with adult toxicity and potential AHR-associated
38 epigenetic effects (Section 4).

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Section 1. Receptor characteristics

53 General characteristics of the zebrafish AHRs, beginning with their baseline and chemically induced expression (Section
54 1.1) and endogenous roles in both developing and adult zebrafish (Section 1.2) are summarized in Table 2. We later

55
56
57 ¹ Orthology refers only to evolutionary relationships, and does not necessarily imply identical functions. Two genes are
58 orthologous if they have descended from the same gene in the most recent common ancestor of the species in which they
59 are found (Fitch WM. 1970. Distinguishing homologous from analogous proteins. Syst Zool. 19(2):99-113).

1 elucidate the inducible roles of the three AHRs along with their known binding partners (Section 1.3), and conclude this
2 section by reviewing homology modeling of the three receptors (Section 1.4).
3

4 Section 1.1. Expression of AHRs in zebrafish 5

6 Transcriptomic, *in situ* hybridization, and immunohistochemical techniques have been used to understand the
7 developmental, tissue-specific, and chemically induced expression of the AHRs. *Ahr2* mRNA is expressed during normal
8 zebrafish development in several regions including the head and the trunk (Andreasen et al. 2002b; Sugden et al. 2017);
9 expression is detected as early as 5 hpf and does not change through 120 hpf (Andreasen et al. 2002b; Tanguay et al.
10 1999). Upon zebrafish embryonic exposure to TCDD, *ahr2* expression increases and is detected in several locations
11 across zebrafish development from 24 to 120 hpf (Andreasen et al. 2002b; Garcia et al. 2018a; Karchner et al. 2005;
12 Tanguay et al. 1999). Other chemicals such as beta-naphthoflavone (BNF), a synthetic flavonoid commonly used as a
13 surrogate model PAH (Poland and Kende 1976; Sugden et al. 2017), cardiosulfa, a sulfonamide drug (Ko et al. 2009), and
14 the polychlorinated biphenyl, PCB-126 (Kubota et al. 2014) induce *ahr2* expression in developing zebrafish. On the other
15 hand, exposure to benzo[a]pyrene (BaP) and some other oxy-PAHs significantly reduce *ahr2* expression suggesting the
16 complexity of AHR regulation by different PAHs (Cunha et al. 2020). In adults, *ahr2* mRNA is detected in the brain,
17 heart, muscle, swim bladder, liver, gill, skin, eye, kidney, fin both in unexposed and TCDD-exposed animals (Andreasen
18 et al. 2002a). An antibody to AHR2 has been used to investigate AHR2 function in zebrafish cell culture (Wentworth et
19 al. 2004) and in a heterologous cell system (Evans et al. 2008), but has not been used successfully *in vivo*.
20

21 *Ahr1a* mRNA is expressed during normal zebrafish development; expression is detected from 24 hpf, increases by 72 hpf,
22 and stays relatively constant through 120 hpf (Andreasen et al. 2002a; Karchner et al. 2005). *Ahr1a* has more restricted
23 expression patterns compared to *ahr2* and is detected weakly in the liver at 52 hpf (Sugden et al. 2017), in a regenerating
24 fin 3 days post amputation (Mathew et al. 2006), and in the adult brain (Webb et al. 2009), liver, heart, swim bladder, and
25 kidney (Andreasen et al. 2002a). Upon embryonic exposure to TCDD, *ahr1a* expression significantly increases at 72 and
26 120 hpf (Andreasen et al. 2002a; Karchner et al. 2005), while BNF slightly induces expression of *ahr1a* in 48 hpf
27 zebrafish (Sugden et al. 2017). There are no published antibodies experimentally shown to detect AHR1a protein
28 expression in zebrafish.
29

30 Like *ahr2* and *ahr1a*, *ahr1b* mRNA is expressed during normal development; expression is detected from 24 hpf and is
31 increased at 48 and 72 hpf (Karchner et al. 2005). *Ahr1b* mRNA is highly expressed in the developing eye (Karchner et al.
32 2017; Sugden et al. 2017). Unlike *ahr2* and *ahr1a*, *ahr1b* expression does not change after exposure to TCDD or BNF
33 (Karchner et al. 2005; Sugden et al. 2017; Ulin et al. 2019). However, BaP exposure increased expression of *ahr1b* in 72
34 hpf zebrafish (Huang et al. 2012), while low level pyrene exposure did not induce expression of any of the three *ahr* genes
35 (Zhang et al. 2012). A rabbit polyclonal antibody targeting the AHR1b protein (Ulin et al. 2019) detected protein
36 expression by western blot in 24-hpf zebrafish. Using this same antibody, Karchner et al. performed
37 immunohistochemical staining of 96-hpf larvae and showed that, like its mRNA, the AHR1b protein is also expressed in
38 the developing eye, including the retinal inner and outer plexiform layers (Karchner et al. 2017). Overall, these studies
39 show that the spatiotemporal expression of the AHRs is dependent on the specific AHR receptor.
40

176 Section 1.2. Endogenous AHR roles in zebrafish

177 To effectively study the endogenous and toxicological roles of the zebrafish AHRs, reverse genetics tools including
178 transient knockdown of translation using morpholino oligonucleotides (Heasman 2002; Timme-Laragy et al. 2012b), and
179 stable and heritable genetic knockout lines have been generated. While both of these tools can greatly enable the
180 understanding of the functions of the zebrafish AHRs, we acknowledge their limitations here. In addition to their specific
181 targets, morpholinos can nonspecifically affect expression of other targets so without rigorous controls it can be
182 challenging to conclude whether an observed morpholino phenotype is due to its specific or off-target effects (Kok et al.,
183 2015; Stainier et al., 2017). On the other hand, heritable mutations—especially those generating premature termination
184 codons and nonsense-mediated decay of the resulting mRNA—can be subject to genetic compensation, where in response
185 to the mutation, cells upregulate related genes that rescue the mutant phenotype (El-Brolosy et al. 2019; Ma et al. 2019;
186 Rossi et al. 2015). Additionally, a mutation presumed to be loss-of-function might be rescued by altered mRNA
187 processing, such as exon-skipping or alternative splicing, that produces a functional or partly functional protein (Anderson
188 et al. 2017). This means that a heritable mutation that produces no phenotype could be a false negative result. It is
189 important to take these drawbacks of both morpholinos and knockout lines into consideration while interpreting the results
190 of the studies presented below.

191 Both splice-blocking and translation-blocking morpholinos have been designed for *ahr1a* (Incardona et al. 2005;
192 Seifinejad et al. 2019), *ahr1b* (Goodale et al. 2012; Ulin et al. 2019), and *ahr2* (Bugel et al. 2013; Prasch et al. 2003;
193 Teraoka et al. 2003b). Morpholino knockdown of *ahr2* does not produce visible phenotypes (Dong et al. 2004; Prasch et
194 al. 2003) likely due to the incomplete and transient receptor knockdown, prompting several groups to generate stable
195 AHR mutant lines. The first functional AHR2 knockout line was established using Targeted Induced Local Lesions in
196 Genomes (TILLING) (Goodale et al. 2012). Later, Transcription Activator-Like Effector Nucleotide (TALEN)-Mediated
197 Mutagenesis was used to generate AHR1a, AHR1b, and AHR2 mutants (Sugden et al. 2017). More recently, two
198 CRISPR-Cas9 AHR2 homozygous mutant lines (Garcia et al. 2018a; Souder and Gorelick 2019) and CRISPR-Cas9
199 AHR1a and AHR1b homozygous mutant lines (Karchner et al. 2017; Souder and Gorelick 2019) have been established.
200 These mutant lines are being intensively used to study both the endogenous and toxicological roles of the AHRs; the
201 endogenous roles are reviewed here while the toxicological roles are examined in later sections.

202 Some studies have suggested that all three AHRs are dispensable specifically for embryonic vascular patterning, and
203 normal larval fin development and jaw growth (Souder and Gorelick 2019; Sugden et al. 2017). However, AHR2-null
204 background zebrafish have fin and craniofacial malformation as adults (Garcia et al. 2018a; Goodale et al. 2012; Souder
205 and Gorelick 2019), and both abnormal larval and adult behavior (Garcia et al. 2018a; Knecht et al. 2017b; Wu et al.
206 2019). AHR2-null zebrafish are also largely infertile and show decreased survival and diminished reproductive health
207 (Garcia et al. 2018a). Loss of AHR2 does not affect basal developmental mRNA expression of *cyp1a*, *ahr1b*, *ahrra*,
208 *ahrrb*, *cyp1b1*, *cyp1c1*, *cyp3a65*, *slincR*, and *sox9B*, all known AHR-regulated genes (Garcia et al. 2018a; Goodale et al.
209 2012; Prasch et al. 2003). On the other hand, AHR2 is important for endogenous *cyp1a* expression specifically in the
210 developing zebrafish eye but not in the trunk or brain (Sugden et al. 2017). Only the lack of all three AHRs caused a
211 complete loss of *cyp1a* mRNA expression (but not *cyp1b1* expression) throughout the developing zebrafish (Sugden et al.
212 2017).
213

212 2017). These studies demonstrate the various possible roles of AHR2 in maintaining normal morphology and
213 development. AHR2 also binds endogenous AHR ligands identified in other systems. Formylindolo[3,2-b]carbazole
214 (FICZ), a tryptophan oxidation product formed upon exposure to UV or visible radiation, binds both AHR2 and AHR1b
215 *in vitro* and induces expression of *cyp1a* and *cyp1b1* in an AHR2-dependent manner (Jonsson et al. 2009). Morpholino
216 knockdown experiments illustrate that FICZ has increased and decreased toxicity in the absence of *cyp1a* and *ahr2*
217 respectively, suggesting that the biological effects of FICZ are AHR2-dependent and regulated by its Cyp1a-mediated
218 metabolism (Wincent et al. 2016). Zebrafish have also been used to define the endogenous roles of 3 α ,5 α -
219 tetrahydrocorticosterone and 3 α ,5 β -tetrahydrocorticosterone (5 α - and 5 β -THB). These neuroactive steroids induce AHR2-
220 dependent *cyp1a*, *mbp*, and *sox10*, the latter two of which are markers for myelinating cells (Wu et al. 2019). 5 α -THB
221 exposure also alters zebrafish larval behavior in an AHR2-dependent manner suggesting the importance of THB-AHR2
222 signaling in normal nervous system development (Wu et al. 2019).

223 There are no identified endogenous roles for **AHR1a** in zebrafish. AHR1a does not seem to play a role in normal
224 development, larval feeding, or endogenous Cyp1a protein expression evidenced from AHR1a mutant fish that appear
225 normal (Sugden et al. 2017). Further, neither AHR1a nor **AHR1b** morphants or mutants display overt phenotypes (Garner
226 et al. 2013; Goodale et al. 2012; Sugden et al. 2017). However, a recent study showed that morpholino knockdown of
227 *ahr1a* led to loss of hypocretin/orexin expression and developmental deformities (Seifinejad et al. 2019). Additionally,
228 another study identified crosstalk between AHR1b and Nrf signaling during zebrafish development (Ulin et al. 2019).
229 Many have suggested that partial overlapping functional redundancy of AHR2 and AHR1b allows for compensatory
230 activity when AHR2 is lost (Prasch et al. 2003; Sugden et al. 2017); however, additional research is needed to clarify this.
231 It is possible that the level of investigation to date has been insufficient to identify and confirm subtle development roles
232 for these orthologs.

233 Section 1.3. Inducible roles of the zebrafish AHRs

234 To understand the inducible roles of the zebrafish AHRs, a combination of *in vitro* binding studies, transactivation assays
235 in COS-7 mammalian cells, and *in vivo* zebrafish developmental studies has been utilized.

236 **AHR2** is a functional receptor whose signaling is modulated not only by its various ligands, but also by its binding
237 partners and downstream genes. Zebrafish have two ARNT genes, *arnt1* and *arnt2*, each present as three splice forms
238 (ARNT1a, 1b, 1c, and ARNT2a, 2b, 2c) (Prasch et al. 2006; Tanguay et al. 2000; Wang et al. 1998b; Wang et al. 2000).
239 AHR2 is capable of binding ARNT1b, ARNT1c, ARNT2b, and ARNT2c *in vitro* but only the complexes of AHR2 with
240 ARNT1b, ARNT1c, or ARNT2b are able to promote transactivation by inducing AHRE-driven transcription with TCDD
241 (Prasch et al. 2006; Tanguay et al. 2000). It was later shown using morpholino studies that both AHR2 and some form of
242 the ARNT1 protein, but not the ARNT2 protein, are required for generating toxic responses to TCDD in developing
243 zebrafish (Antkiewicz et al. 2006; Prasch et al. 2004; Prasch et al. 2006). It is not yet known how the AHR2-ARNT
244 complexes mediate responses induced by other ligands. Furthermore, the functions of the various splice variants of the
245 ARNTs are yet to be elucidated. AHR signaling can also be subjected to down-regulation by proteasomal degradation of
246 AHR2 (Wentworth et al. 2004) as well as by transcriptional repression of its target genes by the aryl hydrocarbon receptor
247 repressor (AHRR). Zebrafish have two distinct AHRRs, AHRRa (originally designated AHRR1) and AHRRb (AHRR2),
248 249 250 251 252 253 254 255 256 257 258 259 260

which are co-orthologs of the mammalian AHR (Evans et al. 2005). Both AHR α and AHR β are induced in an AHR2-dependent manner similar to *cyp1a*, only by compounds that activate the AHR signaling pathway (Evans et al. 2005; Garcia et al. 2018a; Jenny et al. 2009; Timme-Laragy et al. 2007). AHR α blocks AHR2 function by competing for binding to AHREs as well as by a transrepression mechanism that is independent of DNA binding (Evans et al. 2008). Knockdown of AHR α , but not AHR β , using a morpholino in the absence of TCDD exposure, phenocopied TCDD developmental toxicity and caused a large number of gene expression changes compared to wild type fish, while knockdown of either AHR α or AHR β enhanced TCDD-induced pericardial edema (Aluru et al. 2014; Jenny et al. 2009). These results suggest that while AHR α is involved in regulating constitutive AHR signaling, both AHR α and AHR β play a role in modulating TCDD developmental toxicity. The ability of AHR α knockdown to both phenocopy TCDD toxicity (in the absence of TCDD exposure) and enhance TCDD toxicity is consistent with a role for AHR α in controlling constitutive AHR activity (in unexposed embryos), and a role for the AHR2-dependent induction of AHR α after TCDD exposure to limit the AHR-dependent TCDD effects in a negative feedback loop. Further, zebrafish embryos in which AHR β or both AHRs (but not AHR α alone) were knocked down had increased TCDD-induced expression of *cyp1a*, *cyp1b1*, and *cyp1c1* at 72 hpf, suggesting that AHR β may have a role in controlling TCDD-activated AHR signaling (Jenny et al. 2009). To date, we do not know how AHR α or AHR β interact with AHR1a or AHR1b. Future work in single and double mutant lines for the AHRs and AHRs will enhance our understanding of their interactions and functions in zebrafish.

The zebrafish **AHR1a** is a functional receptor *in vivo* (Goodale et al. 2012), but does not bind the canonical exogenous ligand, TCDD, in an *in vitro* heterologous cell system (Andreasen et al. 2002a; Karchner et al. 2005); the receptor is able to bind ARNT2b, can recognize AHREs more weakly compared to AHR2, and lacks transactivation activity with all ARNT2 proteins *in vitro* (Andreasen et al. 2002a). **AHR1b** was identified as a fully functional zebrafish receptor when assessed *in vitro* and in a heterologous cell system (Karchner et al. 2005). TCDD can bind AHR1b which interacts with ARNT2b, and promotes transactivation with efficacy comparable with that of AHR2 but with an 8-fold lower sensitivity (Karchner et al. 2005). It remains unknown to what extent AHR1a and AHR1b are able to interact with the ARNT1 proteins.

Section 1.4. Homology modeling of zebrafish AHRs

Several *in silico*-based modeling studies have investigated the structure and ligand binding properties of the three zebrafish AHRs (Bisson et al. 2009; Fraccalvieri et al. 2013; Zhang et al. 2018a; Zhang et al. 2018b). Using molecular dynamics simulations, it was determined that TCDD and many dioxin-like compounds interact with six amino acid residues in the AHR2 ligand-binding domain (Zhang et al. 2018b). The results supported, for the first time, the finding that polychlorinated diphenylsulfides can bind and activate AHR2 (Zhang et al. 2018b). Similarly, 2,2',4,4'5-penta-BDE (BDE-99) is able to bind to both the zebrafish AHR2 as well as the Pregnane X Receptor (PXR) (Zhang et al. 2018a). While the ligand-binding pocket was more compact in the Bisson model (Bisson et al. 2009) compared to Fraccalvieri (Fraccalvieri et al. 2013), both models predicted that TCDD binds to AHR2 and AHR1b, but not AHR1a. Using site-directed mutagenesis coupled with functional analyses, it was determined that AHR1a was not able to bind TCDD because of differences in three amino acid residues in the ligand binding domain of AHR1a compared to that of AHR2.

(Fraccalvieri et al. 2013). The differences make the AHR1a binding cavity much shorter than that of AHR2 with too limited space for TCDD binding. The Bisson model (Bisson et al. 2009) has also been utilized to predict binding with molecular docking of structurally different AHR ligands to the three zebrafish AHRs, summarized in **Table 3**. The table reveals that in general, xenobiotic ligands bind to more than one zebrafish AHR, making it likely that their overall toxicity is mediated by a combination of the receptors.

Overall, the studies reviewed in this section demonstrate that the three zebrafish AHRs are diverse in their local expression patterns, with only partial overlap in developmental and adult expression indicating cell-type-specific regulation. AHR2 and AHR1a are more widely expressed compared to AHR1b, and while AHR2 has been associated with normal developmental and physiological functions, such roles are not yet apparent for AHR1a and AHR1b. Importantly, all three receptors bind a variety of ligands evidenced by empirical and homology modeling studies. Clearly, the changing levels of expression of all three receptors across development testify to their dynamic nature and allude to the complexity of accurately understanding the AHRs' functional roles at different life stages.

Section 2. Early stage toxicity

In this section, we discuss ligands that produce adverse developmental effects dependent on the presence of each of the zebrafish AHRs. The majority of the research has focused on AHR2 (Section 2.1) and environmental contaminants including PAHs, TCDD, polychlorinated biphenyls (PCBs), and pharmaceuticals. It is noteworthy that several PAHs also activate AHR1a (Section 2.2) and AHR1b (Section 2.3), and below we specifically review the Cyp1a expression patterns dependent on the three AHRs.

Section 2.1. AHR2

Despite much research focused on TCDD, several studies have explored a diversity of xenobiotics and suggest that *in vivo* toxicity may be mediated by more than one zebrafish AHR (Goodale et al. 2012). Majority of the research conducted so far utilizes morpholino knockdown (with regulation of *cyp1a* induction as confirmation for knockdown) to reveal receptor-dependent toxicity effects; however, as groups are beginning to generate stable genetic knockout lines, more AHR2 mutant studies are being conducted. While morpholino knockdown can inform on which of the three receptors are important for mediating toxicity, only mutant studies with complete knockouts can definitively demonstrate toxicologically functional roles for the AHR paralogs. In this section, we focus on the xenobiotics whose toxicity is mediated primarily by AHR2 to collate what we know about AHR2's functionality. We will begin by reviewing the early stage toxicity of PAHs (Section 2.1.1) and other xenobiotics (Section 2.1.2), then we will summarize what we know about TCDD (Section 2.1.3) early stage toxicity in zebrafish. The functional role of AHR2 upon exposure to diverse ligands is summarized in **Table 4**.

Section 2.1.1. Polycyclic Aromatic Hydrocarbons (PAHs)

Many PAHs cause dioxin-like AHR2-dependent phenotypic endpoints including pericardial and yolk sac edemas, bent axes, cardiotoxicity, and eye and jaw malformations. Morpholino knockdown studies suggest that the following PAHs cause developmental toxicity primarily via AHR2: BaP (Cunha et al. 2020; Incardona et al. 2011), retene (Scott et al.

318 2011), benz[a]anthracene (BAA) (Incardona et al. 2006), pyrene (Incardona et al. 2005), and 1,9-benz-10-anthrone
1 (BEZO) and Benz(a)anthracene-7,12-dione (7,12-B[a]AQ) (Goodale et al. 2015). Dozens of different PAH exposures
319 have been associated with altered embryonic and larval behavior (Geier et al. 2018a); however only little is known about
320 AHR2's role in behavioral outcomes. Specifically, BaP-exposed wild type zebrafish exhibit a hyperactive swimming
321 response in the 120-hpf larval photomotor response (LPR) assay while BaP-exposed AHR2 mutants do not display a
322 significantly altered LPR (Knecht et al. 2017b). This suggests that disruption of the AHR2 signaling pathway can lead to
323 detrimental consequences to nervous system development and functioning. Some AHR2 knockdown studies revealed that
324 many PAHs, including phenanthrene, dibenzothiophene, and benzo[k]fluoranthene (BkF), produce adverse developmental
325 outcomes independent of AHR2 (Incardona et al. 2005; Incardona et al. 2011), despite inducing AHR2-dependent Cyp1a
326 protein expression (Incardona et al. 2005; Incardona et al. 2011; Shankar et al. 2019). It is possible that the developmental
327 toxicity produced by these PAHs is mediated by other zebrafish AHRs, or that incomplete morpholino knockdown
328 confounded these studies. One recent morpholino study however, showed that exposure to BkF and three other
329 fluoranthenes produced caudal fin duplication that is AHR2-dependent (Garland et al. 2020). This suggests that AHR2
330 may mediate specific malformations such as the fin duplication, while chemical interaction with other receptors such as
331 AHR1b may mediate other developmental toxicity endpoints. Future studies testing the toxicity of these PAHs in both
332 AHR1b and AHR2-null backgrounds are crucial to verify these results.

333 Both *cyp1a* mRNA and protein expression are frequently used as indicators of AHR activation by PAHs. In general,
334 PAHs that elicit AHR2-dependent toxicity also induce *cyp1a* mRNA expression (Goodale et al. 2015; Knecht et al. 2013).
335 Studies have also demonstrated that the obligate AHR isoforms for PAH toxicity can be inferred by determining the larval
336 Cyp1a protein expression pattern. For example, developmental exposure to oxy-PAHs 7,12-B[a]AQ, BEZO, and BaP
337 produce Cyp1a protein expression in the vasculature that is partially or fully dependent on AHR2 (Goodale et al. 2015;
338 Incardona et al. 2011; Knecht et al. 2013). PAHs such as chrysene, retene, BAA, BkF, 1,6-dinitropyrene,
339 benzo[j]fluoranthene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and benzo[b]fluoranthene (**Table 4**) induce Cyp1a protein
340 in both the skin and the vasculature, among other regions. Vascular Cyp1a expression in response to these latter PAHs is
341 only partially reduced upon AHR2 knockdown; however, Cyp1a expression in the skin is lost, demonstrating its complete
342 AHR2-dependence. Similarly, while the surrogate model PAH, BNF, induces *cyp1a* mRNA expression in the skin and
343 vasculature, only the expression in the skin is completely lost in AHR2 mutants (Sugden et al. 2017). Because of this
344 differential, we recently reported that induction of Cyp1a in the skin is a more robust and reliable biomarker for AHR2
345 activation in developing zebrafish (Shankar et al. 2019). Studies have also identified nitro-PAHs such as 7-
346 nitrobenz[a]anthracene and 3,7-dinitrobenzo[k]fluoranthene that do not cause visible developmental malformations at the
347 tested concentrations but produce AHR2-dependent Cyp1a expression in a variety of organs (Chlebowski et al. 2017).
348 Thus, these chemicals activate AHR2 without causing visible developmental toxicity, indicative of a potential adaptive
349 response by Cyp1a. It is also possible that the absence of developmental toxicity is due to the lack of sustained activation
350 of AHR2 by these chemicals, which has been hypothesized for other AHR agonists such as retene (Billiard et al. 1999).
351 Future work assessing toxicity with Cyp1a inhibition and with daily renewal of the chemical exposure solution will help
352 clarify this hypothesis.

Several studies have investigated the specific functional role of Cyp1a induction in PAH toxicity, and the apparent direct role for Cyp1a in PAH toxicity is chemical substrate-dependent. Typically, studies utilize *cyp1a* morphants, or known Cyp1a competitive inhibitors such as alpha-naphthoflavone (ANF) or fluoranthene. Retene (Scott et al. 2011) and BAA (Incardona et al. 2006) cause AHR2-dependent, but Cyp1a-independent cardiovascular developmental toxicity in zebrafish. On the other hand, *cyp1a* knockdown delays the toxic effects of pyrene, but fails to entirely protect the developing zebrafish from toxicity (Incardona et al. 2005). *Cyp1a* morphants also display enhanced toxic responses to the strong AHR ligand BkF, suggesting a protective role for Cyp1a in BkF toxicity (Incardona et al. 2011). Strong AHR agonists BkF (Garner et al. 2013; Van Tiem and Di Giulio 2011) and BaP (Garner et al. 2013; Jayasundara et al. 2015), and the weak AHR ligand phenanthrene (Brown et al. 2015) were more developmentally toxic when combined with fluoranthene, suggesting that inhibition of Cyp1a-mediated metabolism can enhance toxicity of these PAHs. While the phenanthrene + fluoranthene toxicity was not AHR2-dependent (Brown et al. 2015), AHR2 knockdown offered a protective role against the cardiotoxicity induced by the BkF+ fluoranthene and BaP+ fluoranthene mixtures (Garner et al. 2013). Similarly, the AHR2-dependent toxicity of BNF synergistically increased in combination with either ANF or a *cyp1a* morpholino, further demonstrating that Cyp1a can play an important protective role against PAH toxicity (Billiard et al. 2006). It was later shown that ANF did not act as an AHR antagonist, but rather a Cyp1a enzyme inhibitor, potentially prolonging the time the AHR was being activated, enhancing developmental toxicity (Timme-Laragy et al. 2007). Other than one study demonstrating that *cyp1b1* did not seem to play a role in PAH toxicity (Timme-Laragy et al. 2008), the roles of the other zebrafish *cyp* genes in PAH toxicity are not well understood.

For PAHs whose toxicity is AHR2-dependent based on morpholino studies, there have been a number of corresponding whole-embryonic, genome-wide transcriptomic studies (Fang et al. 2015; Goodale et al. 2015; Hawliczek et al. 2012; Shankar et al. 2019) albeit without comparing gene expression profiles in the presence and absence of AHR2. One study however identified several novel genes and potential mechanisms specifically in the developing zebrafish heart that could mediate cardiotoxicity via AHR2 upon exposure to BaP, fluoranthene, and BaP+ fluoranthene (Jayasundara et al. 2015). It was concluded that AHR2-dependent cardiotoxicity of BaP+ fluoranthene was mediated, at least in part, by perturbations to Ca^{2+} homoeostasis. Genome-wide transcriptomic studies for PAHs known to be primarily AHR2 agonists show that despite activating the same receptor, the transcriptomic changes downstream of AHR2 are ligand-dependent (Goodale et al. 2015; Shankar et al. 2019). We hypothesize that either slight differences in how chemicals bind to the receptor, or the formation of metabolites that can activate their own receptors, or a combination of the two, are contributing to the ligand-dependent gene expression profiles. Future work investigating these hypotheses is needed to illuminate more specific interactions between different ligands and the zebrafish AHRs. Some studies have utilized quantitative PCR to measure expression of specific genes including the *cyps* (mentioned above), and have identified genes that are regulated via AHR2 upon exposures to BAAQ (*cyp1b1*, *wfikkn1*, *gstp2*, *igfbp1a*) (Goodale et al. 2015), BEZO (*gstp2*, *igfbp1a*, *arg2*), and BkF (*cyp1a*, *cyp1b*, *cyp1c*, *gstp2*, *gpx1*, *gclc*) (Van Tiem and Di Giulio 2011). While several of these genes have been identified and well-studied (eg: *gpx1*, *gstp2*, *gclc* are involved in antioxidant responses), elucidation of functions of some genes such as *wfikkn1* is ongoing.

389 Section 2.1.2. Other xenobiotics: mixtures, pharmaceuticals, and halogenated hydrocarbons

390 AHR2 can at least partially mediate toxicity of **cigarette smoke** (Massarsky et al. 2016) and **PAH-containing soil**
391 **extracts** from a gasworks, a former wood preservation site, and a coke oven site (Wincent et al. 2015). A recent study
392 found that the developmental cardiotoxicity effects of both the individual chemicals and the **mixture of BaP and the oxy-**
393 **PAH, 6H-benzo[cd]pyren-6-one** were significantly reduced upon *ahr2* knockdown (Cunha et al. 2020). Unlike these
394 mixtures, **weathered crude oil** consisting of lower molecular weight PAHs, elicits morphological deficits and
395 cardiotoxicity in an AHR2-independent manner, highlighting the potential influence of the structure and size of PAHs
396 (Incardona et al. 2005). One study investigated Cyp1a protein expression induced in 120-hpf zebrafish after exposure to
397 an **environmentally relevant PAH mixture**. Upon *ahr2* knockdown, Cyp1a vascular expression was eliminated, but
398 there was production of Cyp1a protein in the liver attributed to the loss of AHR2 leading to the production of metabolites
399 that had a higher affinity for AHR1a. Independently knocking down AHR1a or AHR1b did not alter Cyp1a protein
400 expression; however, a triple morpholino knockdown of all three AHRs reduced Cyp1a protein expression (Geier et al.
401 2018b). These results reiterate the need for considering the functional roles of all three zebrafish AHRs, especially when
402 studying the mechanisms of toxicity of complex mixtures.
403
404

405 The zebrafish AHR2 mediates developmental toxicity of **other small molecules and pharmaceuticals**. Although all three
406 AHRs can bind leflunomide, an anti-inflammatory drug (Bisson et al. 2009; Goodale et al. 2012), AHR2 mediates the
407 bulk of its Cyp1a vascular expression at 120 hpf (Goodale et al. 2012; O'Donnell et al. 2010). Its metabolite A771726 is
408 not an AHR2 agonist (O'Donnell et al. 2010). The small molecule sulfonamide, cardiosulfa, also produces AHR2-
409 dependent cardiotoxicity in developing zebrafish as seen in *ahr2* morpholino knockdown studies (Ko et al. 2009; Ko and
410 Shin 2012). Similar to TCDD (reviewed below), Cyp1a neither reduces nor exacerbates cardiosulfa toxicity (Ko and Shin
411 2012). As noted above, the indole FICZ can cause developmental toxicity in an AHR2-dependent manner, especially
412 when Cyp1a activity is inhibited or reduced by genetic knock-down (Jonsson et al. 2009; Wincent et al. 2016).
413
414

415 **Other organic compounds** such as phenanthroline (Ellis and Crawford 2016) and two halogenated carbazoles (Fang et
416 al. 2016) are associated with PAH and TCDD-like developmental toxicity respectively, and the fungicide, paclobutrazol
417 (Wang et al. 2015) causes digestive tract toxicity, all of which are AHR2-mediated. Some flame-retardant chemicals
418 appear to buck the trend. For instance, *ahr2* knockdown does not reduce the cardiotoxicity associated with exposure to
419 mono-substituted isopropyl triaryl phosphate (mITP), a major component of Firemaster 550 commercial mixture (Gerlach
420 et al. 2014; McGee et al. 2013). However, *ahr2* knockdown prevents vascular Cyp1a protein expression in response to
421 mITP, suggesting that the mixture does activate AHR2 (Gerlach et al. 2014). An AHR antagonist (CH223191) was able to
422 block heart malformations induced by mITP but it was suggested that CH223191 antagonizes another target in addition to
423 AHR (Gerlach et al. 2014; McGee et al. 2013).
424
425

426 **PCB-126** (3,3',4,4',5-pentachlorobiphenyl) is one of the most potent AHR agonists (Kafafi et al. 1993), and is associated
427 with developmental toxicity in zebrafish (Grimes et al. 2008). *Ahr2* knockdown greatly reduces PCB-126-induced cardiac
428 effects and mortality, but only provides minimal protection against the abnormal inflation of the swim bladder (Garner et
429 al. 2013; Jonsson et al. 2007). A follow-up study showed that, at a lower PCB-126 exposure concentration of 5 nM, *ahr2*
430 gene knockdown prevented the swim bladder phenotype. This suggests that, again, incomplete *ahr2* morpholino
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

425 knockdown was probably operant and thus insufficient to block toxicity at the higher concentration (Jonsson et al. 2012).
426 This pattern was similar to *ahr2* knockdown that partly mitigated cardiotoxicity caused by a lower TCDD exposure
427 concentration of 0.3 ppb, but not at higher concentrations of 0.5 and 1 ppb (Dong et al. 2004). *Ahr2* knockdown also
428 significantly reduces *cyp1a*, *cyp1b1*, *cyp1c1*, and *cyp1c2* mRNA expression, and Cyp1a protein activity produced by
429 PCB-126 exposure (Garner et al. 2013; Jonsson et al. 2007; Jonsson et al. 2012). One recent study determined that PCB-
430 126 exposure not only caused increased expression of few AHR target genes (*ahrra*, *tiparp*, and *nfe2l2b*), but also led to
431 12 their mRNA being hypermethylated (Aluru and Karchner 2020); future work to understand the specific role of this post-
432 12 transcriptional modification is needed. Similar to TCDD, PCB-126 is not metabolized and accumulates in zebrafish,
433 12 which leads to persistent expression of target genes (Garner and Di Giulio 2012; Meyer-Alert et al. 2018). Waits & Nebert
434 14 used a quantitative trait locus (QTL) approach to investigate the genetic basis for zebrafish embryo susceptibility to PCB-
435 15 126-induced developmental cardiotoxicity. Among the top-ranked QTLs was a region on chromosome 22 that includes
436 17 *ahr2* and *ahr1b*, implicating one or both of these receptors in having a role in PCB-126 toxicity (Waits and Nebert 2011).

19 Section 2.1.3. TCDD

438 23 Developmental toxicity

439 25 TCDD is the most studied AHR2 ligand. In experiments using *in vitro*-translated AHR proteins or expression in
440 26 heterologous cells, TCDD does not bind or activate AHR1a, but it binds AHR2 and AHR1b and activates them with
441 28 comparable efficacies (Andreasen et al. 2002a; Karchner et al. 2005). When zebrafish are developmentally exposed to
442 30 TCDD, they display reduced survival, and several phenotypes such as (but not limited to) cardiotoxicity, pericardial and
443 32 yolk sac edemas, and craniofacial malformations (Henry et al. 1997). The various adverse developmental outcomes are
444 34 reviewed in (Carney et al. 2006b). Knockdown and knockout studies have demonstrated the role of AHR2 in mediating
445 36 TCDD-induced pericardial and yolk sac edemas, cardiovascular and craniofacial malformations, decrease in body length,
446 38 and increased apoptosis, in addition to a significant increase in the mRNA levels of *cyp1a*, *cyp1b1*, *cyp1c1*, and *cyp1c2* in
447 40 zebrafish (Carney et al. 2004; Dong et al. 2004; Garcia et al. 2018a; Goodale et al. 2012; Jonsson et al. 2007; Prasch et al.
448 42 2003; Souder and Gorelick 2019; Teraoka et al. 2003b; Yin et al. 2008). One study also demonstrated that the constitutive
449 44 activation of the AHR2 in zebrafish cardiac myocytes not only led to TCDD-like cardiotoxicity, but also other defects in
450 46 craniofacial development and failure to form swim bladders, suggesting the importance of the heart as a target organ
451 48 (Lanham et al. 2014). We note that *ahr2* knockdown, however, was unable to protect against TCDD-induced inhibition of
452 50 swim bladder inflation and mortality; this was attributed to the short half life of morpholinos after injection or a potential
453 52 role of the other zebrafish AHRs (Prasch et al. 2003). Future work clarifying these results in an AHR2-null background
454 54 zebrafish is necessary.

455 49 51 Mechanisms of TCDD developmental toxicity

456 52 The mechanisms of TCDD toxicity in humans and several vertebrate model organisms, including zebrafish, have been
457 54 reviewed in (Carney et al. 2006b; King-Heiden et al. 2012; Yoshioka et al. 2011; Yoshioka and Tohyama 2019). TCDD-
458 56 induced toxicity in zebrafish is associated with an array of transcriptomic changes, including modest changes to
459 58 microRNA expression, in both developing zebrafish and in specific adult organs such as the heart (Alexeyenko et al.
460 60 2010; Carney et al. 2006a; Chen et al. 2008; Garcia et al. 2018b; Handley-Goldstone et al. 2005; Jenny et al. 2012). The

461 gene expression changes may be a function of a) large-scale toxicological phenotypes associated with TCDD, b)
462 downstream effects of the AHR2/ARNT1 complex binding AHREs of various genes, or c) the interaction of the AHR
463 with other pathways or transcription factors (Carney et al. 2006b). Here, we review what is known about the role of
464 AHR2-regulated genes in TCDD-induced developmental malformations in zebrafish.
6

465 Binding of TCDD to AHR2 induces expression of the *cyp1* gene family. Upon exposure to TCDD, *cyp1a* mRNA and
466 protein are expressed early in development in a variety of organs at the different development stages (Andreasen et al.
467 2002b; Kim et al. 2013; Yamazaki et al. 2002; Zodrow et al. 2004). One study noted that the Cyp1a protein is first
468 localized to the skin and the vasculature after which it transitions to the vasculature, kidney, and liver by 120 hpf
469 (Andreasen et al. 2002b). When AHR2-null zebrafish are exposed to TCDD, Cyp1a protein expression at 120 hpf is
470 almost completely prevented (Goodale et al. 2012). It was initially thought that the induction of *cyp1a* is required for
471 TCDD developmental toxicity (Teraoka et al. 2003b); however, a later study demonstrated that, consistent with
472 mammalian literature, TCDD produces developmental toxicity endpoints independent of *cyp1a* (Carney et al. 2004).
473 TCDD also induces expression of *cyp1b1*; however, this does not appear to have a direct role in TCDD-induced
474 pericardial edema and craniofacial malformations (Yin et al. 2008). *Cyp1c1* and *cyp1c2* likely play roles in TCDD-
475 induced circulation failure in the mid-brain but the exact mechanism is unknown (Kubota et al. 2011). Unlike the other
476 zebrafish *cyp1s*, *cyp1d1* does not seem to be transcriptionally activated by TCDD or PCB126 (Goldstone et al. 2009).
26

477 Cyclooxygenase-2 (COX-2) enzymes, a family of heme-containing enzymes thought to be involved in acute inflammatory
478 responses, have been studied in the context of the AHR signaling pathway in zebrafish and other model organisms.
479

480 Zebrafish have two *cox-2* genes, *cox2a* and *cox2b* (Ishikawa et al. 2007); both are induced in an AHR2-dependent manner
481 upon exposure to PCB-126, but future work is needed to identify whether these genes are direct targets of AHR2 (Jonsson
482 et al. 2012). To our knowledge, induction of these genes has not been demonstrated upon TCDD exposure. However, it is
483 suggested that *cox2a*, in combination with the thromboxane receptor and thromboxane A synthase 1 (also known as
484 *cyp5a*), is involved in local circulation failure in the dorsal midbrain of developing zebrafish (Teraoka et al. 2009).
485 Another study discovered the role of the *cox2b*-thromboxane pathway in TCDD-induced AHR2-dependent “precadiac”
486 edema, the increased area of the small cavity between the heart and the body wall (Teraoka et al. 2014). The study
487 demonstrated that knockdown of *cox2b*, but not *cox2a*, prevented formation of the precardiac edema in the TCDD-
488 exposed zebrafish, and also showed the involvement of the thromboxane pathway, concluding that thromboxane release
489 by TCDD probably led to the edema in the developing zebrafish. Additionally, other factors such as oxidative stress are
490 involved, as an antioxidant was able to inhibit both precardiac edema and circulation failure caused by TCDD exposure
491 (Dong et al. 2004).
492

493 The sry box containing 9b (*sox9b*) gene, a critical chondrogenic transcription factor, has been linked to cardiotoxicity
494 caused by TCDD (Hofsteen et al. 2013b). Upon exposure to TCDD, *sox9b* expression is significantly reduced in an
495 AHR2-dependent manner (Garcia et al. 2018a; Xiong et al. 2008), and one study found that *sox9b* knockdown resulted in
496 TCDD-like heart malformations (Hofsteen et al. 2013b). Morpholino knockdown of *sox9b* also caused a phenotype
497 similar to TCDD-induced jaw malformation, and restoration of *sox9b* with mRNA injection prevented craniofacial
498 malformations suggesting *sox9b*’s role in TCDD-induced craniofacial defects (Xiong et al. 2008). A *sox9b* promoter -
499 eGFP transgenic reporter fish (uw101Tg) (Plavicki et al. 2014) was produced and used to identify the TCDD-induced
500

498 repression of *sox9b* in the developing zebrafish heart and brain (Garcia et al. 2017; Hofsteen et al. 2013b). A mechanism
499 for linking activation of AHR2 and *sox9b* repression was recently suggested (Garcia et al. 2017; Garcia et al. 2018b). The
500 *sox9b* long intergenic noncoding RNA (*slincR*) is significantly induced by TCDD in an AHR2-dependent manner and
501 appears to interact with the 5' untranslated region of the *sox9b* gene (Garcia et al. 2017; Garcia et al. 2018b). Exposure of
502 *slincR* morphants to TCDD resulted in altered jaw cartilage structure and reduced incidence of hemorrhaging, suggesting
503 a possible functional role of *slincR* in both TCDD-induced craniofacial malformations and cardiotoxicity (Garcia et al.
504 2018b). The study also highlighted several PAHs that induce *slincR* expression at high levels without causing *sox9b*
505 repression, indicating that *slincR* could not only have tissue-specific effects but could also regulate other genes beyond
506 *sox9b* (Garcia et al. 2018b).

507 A member of the forkhead box family of transcription factors, originally designated *foxq1b* but now known as *foxq1a*, is
508 highly induced by TCDD exposure at a rate faster than *cyp1a* in developing zebrafish, in an AHR2-dependent manner
509 (Planchart and Mattingly 2010). *In situ* hybridization experiments showed that the transcript is expressed in the jaw
510 primordium and is hypothesized to play a role in craniofacial abnormalities (Planchart and Mattingly 2010). TCDD also
511 induces the paralogous gene *foxq1b* in zebrafish (Hahn et al. 2014). More work is needed to identify the functional role of
512 the *foxq1* paralogs in the TCDD toxicity pathway.

513 Section 2.2. AHR1a

514 Initial *in vitro* studies concluded that AHR1a was non-functional because it did not bind TCDD and was transcriptionally
515 inactive when expressed in cells together with ARNT2b (Andreasen et al. 2002a). These results are supported by *in vivo*
516 studies in AHR1a mutant fish, from which it was concluded that AHR1a was not required for TCDD-induced toxicity and
517 Cyp1a activity in zebrafish (Souder and Gorelick 2019). BNF also does not activate AHR1a, and it was suggested that the
518 zebrafish *ahr1a* is a possible pseudogene (Karchner et al. 2005). However, more recent *in vivo* studies demonstrate that
519 AHR1a is functional and can be activated by chemicals including leflunomide (Goodale et al. 2012), the oxy-PAH
520 xanthone (Knecht et al. 2013), several nitro-PAHs like 5-nitroacenaphthalene, 9-nitrophenanthrene, and 7-
521 nitrobenzo[k]fluoranthene (Chlebowski et al. 2017), and the parent PAHs pyrene (Incardona et al. 2006) and chrysene
522 (Incardona et al. 2005). Upon *ahr1a* knockdown and developmental exposure to each of these chemicals, either a
523 reduction of toxicity (Chlebowski et al. 2017; Incardona et al. 2006) or a reduction of induced Cyp1a protein expression
524 (Chlebowski et al. 2017; Goodale et al. 2012; Incardona et al. 2005; Knecht et al. 2013) was confirmed. Furthermore,
525 AHR1a is the dominant receptor involved in regulating induction of larval hepatic Cyp1a; *ahr1a* knockdown reduces
526 Cyp1a liver expression induced by pyrene (Incardona et al. 2006); leflunomide (Goodale et al. 2012), xanthone (Knecht et
527 al. 2013), and the nitro-PAHs, 5-nitroacenaphthalene, 9-nitrophenanthrene, and 7-nitrobenzo[k]fluoranthene (Chlebowski
528 et al. 2017).

529 In contrast to the above-mentioned studies, Garner et al. found that morpholino knockdown of *ahr1a* exacerbated the
530 developmental toxicity caused by both PCB-126 and a mixture of PAHs, BkF and fluoranthene (Garner et al. 2013).
531 Although *ahr1a* knockdown did not affect *cyp1a*, *cyp1b1*, and *cyp1c1* gene expression, Cyp1a protein activity, measured
532 using the ethoxresorufin-O-deethylase (EROD) assay, increased. From this study, the authors hypothesized that AHR1a
533 likely mimics AHRR and consequently, the absence of AHR1a results in excessive AHR2 signaling and enhances the
534

534 cardiotoxicity measured by pericardial edema (Garner et al. 2013). The study also highlights that AHR1a seems to inhibit
535 Cyp1a protein activity, as *ahr1a* knockdown led to increased activity. This was in contrast to AHR2, which mediated an
536 increase in Cyp1a activity (Garner et al. 2013). Another study found that the prevalence of mITP-induced cardiotoxicity,
537 but not its severity, increased when all three *ahrs* were knocked down compared to just *ahr1b/ahr2* knockdown,
538 suggesting that AHR1a may play a role in mITP-induced cardiotoxicity (Gerlach et al. 2014). However, it is noteworthy
539 that *cyp1a* transcript expression was not altered by *ahr1a* knockdown like it was by *ahr1b/ahr2* knockdown, indicating
540 that mITP likely does not activate AHR1a (Gerlach et al. 2014). Overall, AHR1a appears to have relevance and ligand-
541 specific functions that are currently enigmatic. **Table 5** summarizes the effects mediated by AHR1a in developing
542 zebrafish.

543 14 Section 2.3. AHR1b

544 15 Zebrafish morpholino studies reveal that AHR1b does not play a role in early life toxicity caused by PCB-126, a PAH
545 16 mixture of BkF and fluoranthene (Garner et al. 2013), or TCDD (Souder and Gorelick 2019). Although *ahr1b* knockdown
546 17 did not prevent mITP-induced cardiotoxicity in zebrafish, there was a significant decrease in the prevalence of mITP-
547 18 induced pericardial edema in an AHR2 mutant line injected with the *ahr1b* morpholino compared to control morpholino-
548 19 injected AHR2 mutants. This suggests AHR1b's possible role in mediating mITP-induced cardiotoxicity (Gerlach et al.
549 20 2014). Additionally, studies suggest that AHR1b may be involved in not only developmental toxicity, but also adult
550 21 toxicity effects of chemicals like TCDD, some PAHs, and PCB-126 (Garner et al. 2013; Goodale et al. 2012); however, a
551 22 closer look with histopathology or immunohistochemistry may be necessary to reveal possible subtle effects missed in
552 23 gross morphology studies. It was also suggested that AHR1b could be functionally redundant with AHR2, but so far, it
553 24 seems evident that AHR2 has a greater role in regulating the expression of xenobiotic-metabolizing enzymes and
554 25 mediating toxicity compared to AHR1b (Garner et al. 2013).

555 26 While knockdown studies have not definitively shown a role for AHR1b in the developmental toxicity of xenobiotics,
556 27 AHR1b appears to be important for leflunomide-induced Cyp1a protein expression in the vasculature, but not in the liver
557 28 (Goodale et al. 2012). AHR1b may also play a role in Cyp1a protein expression induced by mITP in the vasculature,
558 29 heart, and liver (Gerlach et al. 2014), and by nitro-PAHs like 7-nitrobenzo[k]fluoranthene in the vasculature, skin, and the
559 30 neuromasts (Chlebowski et al. 2017). *Ahr1b* knockdown in mITP-exposed zebrafish also reduced *cyp1a* mRNA levels
560 31 (Gerlach et al. 2014). These studies demonstrate that AHR1b can be activated by various chemicals and they concur with
561 32 earlier studies that showed AHR1b is a fully functional receptor (Karchner et al. 2005) with partially overlapping
562 33 functions with AHR2. Unlike AHR2 and AHR1a, AHR1b does not appear to mediate Cyp1a expression in any specific
563 34 tissue. **Table 6** summarizes the evidence for AHR1b's role in developmental toxicity in zebrafish.

564 35 Overall, AHR2 is predominant in mediating the early stage toxicity of a large variety of ligands. AHR1a and AHR1b can
565 36 also mediate developmental toxicity albeit to a lesser extent, and this supports the idea that the three AHRs have
566 37 partitioned multiple AHR roles. The three AHRs have distinct ligand profiles, and even when different chemicals activate
567 38 the same receptor, the downstream gene expression and developmental toxicity endpoints can be considerably different,
568 39 suggesting ligand-specific activation of the AHRs.

569 Section 3. Interaction between AHR and other pathways 2

570 In addition to the direct AHR-mediated toxicity, the AHRs and AHR-responsive genes can directly or indirectly interact
571 with genes from several different signaling pathways while modulating toxicological responses to a ligand. The
572 developmental zebrafish model provides an ideal platform to study these interactions, since most signaling mechanisms
573 are concurrently and dynamically at play during development. In this section, we focus on studies that have explored the
574 crosstalk between AHR signaling and other pathways using embryonic zebrafish.
10

575 Section 3.1. AHR and oxidative stress 13

576 Oxidative stress - the disruption of redox signaling and control (Jones 2006) - is a well-studied toxicological phenomenon
577 that occurs in response to several classes of chemicals that produce reactive oxygen species (ROS) or disrupt thiol
578 homeostasis (Di Giulio and Hinton 2008; Sies et al. 2017). AHR-mediated oxidative stress (Di Giulio and Hinton 2008)
579 occurs through a variety of mechanisms, including stimulation of inflammatory responses and induction of pro-oxidant
580 enzymes such as xanthine oxidase and CYP-dependent monooxygenases, which can release ROS or generate redox-
581 cycling metabolites (Dalton et al. 2002; Reichard et al. 2006). Developmental exposures to AHR ligands such as PAHs
582 (Van Tiem and Di Giulio 2011), oxy-PAHs (Knecht et al. 2013), heterocyclic and nitro-PAHs (Chlebowski et al. 2017), or
583 PCB-126 (Liu et al. 2016) result in induction of redox-responsive antioxidant genes such as glutathione peroxidase
584 (*gpx1*), glutamate cysteine ligase (*gclc1*), and superoxidase dismutase (*sod1*). In addition, PCB-126 also induces a
585 significant increase in lipid peroxidation, a result of ROS-induced cellular damage (Liu et al. 2016). In fact, AHR
586 activation and antioxidant responses act synchronously in response to toxicant exposures - this was evidenced by the
587 mirroring of the activities of total SOD and Cyp enzymes in whole homogenates of fish exposed to the PAHs,
588 phenanthrene and anthracene (Wang et al. 2018). Taken together, these studies suggest a robust antioxidant response as
589 well as some levels of oxidative damage associated with AHR activation. A number of knockdown studies have also
590 supported these outcomes. For example, *ahr2* knockdown blocks the increased expression of *gpx1*, *gclc1* and *sod1* by the
591 AHR agonist BkF (Van Tiem and Di Giulio 2011). *Ahr2* knockdown also prevents the induction of ROS and 8-OHdG (8-
592 hydroxy-2'-deoxyguanosine, a marker of oxidative DNA damage) by the chlorinated solvent trichloroethylene (TCE) (Jin
593 et al. 2020), although wild type TCE-exposed embryos do not show an induction of *cyp1a1* or *ahr2* transcripts.
594 Nevertheless, these studies confirm the specific role of AHR2 in mediating both oxidative damage and antioxidant
595 responses.
45

596 A major driver for AHR-induced antioxidant responses is the crosstalk between AHR and their prime regulator, Nrf2
597 (Baird and Yamamoto 2020). This mechanism is particularly important for AHR2 ligands such as TCDD, which do not
598 undergo substantial metabolism and hence, redox cycling (Dietrich 2016). Nrf2 (also called Nfe2l2) is a transcription
599 factor that regulates the expression of a number of antioxidant enzymes such as NAD(P)H:quinone oxidoreductase
600 (NQO1) as well as xenobiotic-metabolizing enzymes such as glutathione-S-transferases (GSTs) (Dietrich 2016). In
601 mammals, AHR regulates Nrf2 expression and Nrf2 mediates the AHR-dependent induction of several xenobiotic-
602 metabolizing enzymes by TCDD (Miao et al. 2005; Yeager et al. 2009). Zebrafish have two Nrf2 genes, *nrf2a* and *nrf2b*,
603 both of which contain AHREs within their promoter regions (Timme-Laragy et al. 2012a). A number of chemicals such as
604 TCDD (Hahn et al. 2014; Timme-Laragy et al. 2012a), PAHs (Knecht et al. 2013), and PCBs (Timme-Laragy et al.
605

605 2012a; Timme-Laragy et al. 2015) induce *nrf2a* or *nrf2b* mRNA expression at different life stages, in an AHR2-dependent
606 manner (Timme-Laragy et al. 2012a). For example, embryonic exposures to the oxy-PAH 7,12-B[a]AQ results in
607 increased expression of *nrf2* and *nqo1* in addition to genes associated with the glutathione redox cycle (*gst*, *gpx*, and *sod*
608 families) (Knecht et al. 2013). One study showed that although exposures to PCB-126 in wild type embryos did not elicit
609 any antioxidant responses, an *nrf2a* mutant displayed altered both basal expression and PCB-inducibility of certain *ahr*,
610 *nrf2* and *gst* family genes (Rousseau et al. 2015). Other *nrf2*-family genes and AHR forms may also be involved in this
611 cross-talk; for example, AHR1b regulates the constitutive and TCDD-inducible expression of *nrf2a* as well as other
612 members of the *nrf* gene family, *nrf1a* and *nrf1b* (Ulin et al. 2019). These studies suggest that antioxidant responses to
613 TCDD, PCBs, and PAHs may be driven by a combination of oxidative stress and AHR-Nrf2 crosstalk. Indeed, it is well
614 known that the glutathione and Nrf2 pathways are interdependent, and *nrf2* knockdown can perturb the glutathione redox
615 state (Sant et al. 2017). In contrast, TCDD, a strong inducer of *nrf2* in both zebrafish (Hahn et al. 2014; Ulin et al. 2019),
616 and in mammals (Miao et al. 2005; Yeager et al. 2009), does not induce expression of antioxidant genes such as *sod*, *gst*
617 or *nqo1* (Alexeyenko et al. 2010; Hahn et al. 2014). Overall, these studies provide evidence of the complexity of the role
618 of AHR, the glutathione redox state, and the Nrf2 pathway in trying to maintain oxidative homeostasis in response to
619 xenobiotics.
620

621 Section 3.2. AHR-Wnt crosstalk and tissue regeneration

622 While mammals, including humans, have a limited regenerative capacity restricted to some organs such as liver and skin,
623 other vertebrates possess high regenerative capacity of the heart, liver, limbs, etc (Marques et al. 2019). The process of
624 regeneration involves cellular migration, blastema formation, differentiation, and proliferation that are all regulated by
625 multiple signaling pathways (Akimenko et al. 2003; Santamaria and Becerra 1991), and external stressors can potentially
626 inhibit regeneration (Mathew et al. 2009). Zebrafish, in particular, has been widely used as a model for studying tissue
627 regeneration following surgical amputation of organs (Akimenko et al. 2003). Exposure to AHR ligands such as TCDD
628 and leflunomide (an anti-inflammatory drug) following fin amputation results in a failure of adult and larval fin
629 regeneration (Andreasen et al. 2007; Mathew et al. 2006; O'Donnell et al. 2010; Zodrow and Tanguay 2003). Morpholino
630 knockdown of *ahr2* and *arnt1* results in both unexposed and TCDD-exposed morphants showing normal fin regeneration,
631 indicating that the inhibition of regeneration by TCDD is AHR2 and ARNT1-dependent (Mathew et al. 2006). Following
632 TCDD exposures, adult regenerative tissues also show widespread changes in the transcripts that regulate cellular
633 differentiation, cartilage, collagen, cell growth, tissue regeneration, and extracellular matrix - all important factors
634 involved in tissue regeneration (Andreasen et al. 2007). Specifically, TCDD exposure is associated with both
635 transcriptional activation of R-spondin 1, and a repression of *sox9b* (a transcription factor regulated by AHR2, as
636 discussed previously) in embryos (Mathew et al. 2007). R-spondin 1 is a Wnt/β catenin signaling gene that contains an
637 AHRE in its promoter region. Morphants resulting from partial suppression of both R-spondin 1 and LRP6, a Wnt co-
638 receptor, show normal caudal fin regeneration following TCDD exposure, demonstrating that activation of these Wnt
639 signaling genes is required for TCDD to inhibit regeneration (Mathew et al. 2007). This result is also supported by the
640 induction of a number of other Wnt/β-catenin signaling genes by TCDD in regenerating tissues. In conjunction with
641 transcriptional activation of R-spondin 1, the expression of *sox9b* is repressed within regenerating fin tissues after TCDD
642 exposure (Mathew et al. 2007). Interestingly, although *sox9b* morphants show some levels of regeneration of caudal fins,
643

the regenerative tissue still possesses defective structures, indicating that this process is not completely dependent on *sox9b* (Mathew et al. 2007). In humans, SOX9 is also a Wnt-target gene and is directly regulated by R-spondin 1 (Yano et al. 2005). Furthermore, SOX9 also inhibits expression of β catenin-associated genes and promotes degradation of β catenin (Yano et al. 2005). Therefore, it is likely that the inverse expression patterns between R-spondin1 and *sox9b* observed within regenerative fin tissues results from a crosstalk between the AHR and Wnt signaling mechanisms to regulate tissue regeneration. In addition to the proposed AHR-Wnt crosstalk, other AHR-mediated mechanisms can govern tissue regeneration, depending on the tissue type. For example, one study showed that TCDD exposures of adult zebrafish with partially amputated hearts led to an inhibition of regeneration of myocardial tissues, but there was no impact on *sox9b*, R-spondin 1, or other Wnt signaling genes although, as seen with caudal fin amputation, expression of genes associated with tissue regeneration and extracellular matrix was altered (Hofsteen et al. 2013a). The lack of change in transcript levels of *sox9b* and fin tissue regeneration, while largely governed by similar molecular factors, have some differences; for example: while fin regeneration is co-regulated by Wnt signaling, myocardial regeneration is co-regulated by TGF β and NF κ B pathways (Sehring et al. 2016). Despite these differences, the studies show that only the chemical activation of AHR inhibits tissue regeneration.

Section 3.3. Estrogen receptor (ER)

Both mammalian and zebrafish studies show clear evidence of crosstalk between AHR and ER. In mammals, AHR interactions with estrogen signaling pathways have long been known to occur through a variety of mechanisms (Safe and Wormke 2003; Swedenborg and Pongratz 2010), including the role of AHR as an E3 ubiquitin ligase controlling proteasomal degradation of ER (Ohtake et al. 2007; Ohtake et al. 2003; Wormke et al. 2003). It is not known whether fish AHRs can act in this way, but there is other evidence for AHR-ER crosstalk. In zebrafish, *Cyp3c* can be induced by both AHR and ER ligands, suggesting that there may be a crosstalk between these two receptor mechanisms in regulation of CYP3 (Shaya et al. 2019). The direct interaction between AHR and ER pathways has been shown in other studies where the transcriptional induction of ER-target *cyp19b* or vitellogenin by ER ligands 17 α -ethynodiol and 17 β -estradiol, were reversed by TCDD (Bugel et al. 2013; Cheshenko et al. 2007). In addition, this effect was partially blocked by ANF, an AHR antagonist (Cheshenko et al. 2007). Interestingly, a chemically induced pan-ER inhibition does not block TCDD-induced, AHR2-mediated cardiotoxicity, suggesting that AHR2 is not a constitutive partner of ER (Souder and Gorelick 2019). However, these authors also conclude that an AHR-ER crosstalk may be tissue-dependent. This was supported by another study, where 17 β -estradiol increased *ahr1a* mRNA expression only in the 4-day old zebrafish brain, but not in other organs (Hao et al. 2013). Likewise, an adult zebrafish study showed that TCDD inhibited levels of the genes regulating the estrogen receptor as well as estrogen synthesis and follicular development in the zebrafish ovary (King-Heiden et al. 2008), highlighting the role of the AHR-ER crosstalk in the reproductive system (discussed later). Therefore, interactions between AHR and ER in zebrafish is likely complicated and highly dependent on the specific target tissues.

Section 3.4. Pregnan X receptor (PXR)

AHR displays some levels of crosstalk with the transcription factor PXR, which regulates a number of CYP2 and CYP3 enzymes and is involved in detoxification of an array of xenobiotics, primarily steroids. Embryonic zebrafish exposures to either pregnenolone (a PXR agonist) or PCB-126 (an AHR agonist) result in the increased transcript levels of *pxr*, *ahr2*,

678 *cyp1a* as well as a number of *cyp2* and *cyp3* genes (Kubota et al. 2015). Furthermore, knockdown of *ahr2* reverses the
1 PCB 126-induced transcriptional activation of *cyp1a* and *pxr*, as well as *cyp2* and *cyp3* genes. Taken together, these
2 studies suggest an inevitable crosstalk between AHR and PXR in regulation of *cyp2* and *cyp3* genes.
3

5 681 Section 3.5. Fibroblast growth factor (FGF) 7

8 Studies have explored the interaction between AHR and the FGF pathway in developmental processes. In mammals, the
9 FGF pathway gene, *fgf21*, is a known AHR target gene (Cheng et al. 2014). In zebrafish, similar to AHR, the FGF
10 pathway is known to independently regulate tissue regeneration. However, a study comparing fin regeneration after
11 exposure to TCDD as well as an FGF pathway inhibitor, SU5042, showed that, although both AHR activation and FGF
12 inhibition lead to inhibition of fin regeneration, the phenotypes were morphometrically different and there was no
13 evidence of interaction between the two pathways in the regenerative process (Mathew et al. 2006).
14

15 In summary, we note that much of the work concerning crosstalk with other signaling pathways has focused on AHR2.
16 Although it is evident that the AHR2 signaling pathway interacts with several other transcription factors and signaling
17 pathways, the interactions are highly complex, and we have only begun to understand them in zebrafish.
18

23 24 695 Section 4. Adult toxicity, epigenetics and multigenerational effects 25

26 696 Compared to the many studies assessing the role of AHRs in during development, only a limited number have
27 investigated the role of the zebrafish AHRs in both post-developmental physiology in juveniles and adults, and across
28 generations. To our knowledge, AHR1a- or AHR1b-specific adult and multigenerational toxicity after exposure to
29 xenobiotic chemicals has not been investigated. In this section, we first review the functional roles of AHR2 in TCDD-
30 induced adult toxicity (Section 4.1) of the reproductive (Section 4.1.1) and musculoskeletal (Section 4.1.2) systems, and
31 then describe what is known about the epigenetic effects (Section 4.2) of the ligands TCDD, PCB-126, and BaP, whose
32 toxicity endpoints are mediated primarily by AHR2.
33

38 698 Section 4.1. Adult toxicity 40

41 700 Section 4.1.1. Reproductive System

43 701 AHR plays a modest constitutive role in the reproductive system; a study with AHR mutants showed altered
702 follicular development in ovaries of the AHR2-null zebrafish compared to wild type zebrafish (Garcia et al. 2018a).
44 703 However, more profound effects on reproductive organs have been shown to be triggered by xenobiotic activation of
704 AHR2 by TCDD (King-Heiden et al. 2012) and these impacts are expected due to the crosstalk between AHR and ER as
45 described in the previous section. Indeed, dietary TCDD exposure reduced mRNA levels of genes regulating the estrogen
705 receptor and follicular development in adult zebrafish ovaries, while inducing expression of *cyp1a* (King-Heiden et al.
51 706 2008). Additionally, zebrafish exposed to TCDD at 3- and 7- weeks post fertilization displayed reduced fecundity and
52 707 reduced percentage of fertilized eggs (Baker et al. 2013). Paired spawning also showed that these impacts were
53 708 independent of the sex of the fish. While female fish displayed abnormalities in ovarian structures, the testes of TCDD-
57 709 exposed male fish displayed decreased spermatozoa with increase in spermatogonia, decreased germinal epithelial
58 710

thickness, and altered responses in genes regulating testis development and steroidogenesis (Baker et al. 2016). Interestingly, TCDD-exposed fish also experienced a prevalent shift towards feminization, but a significant percentage of female fish possessed male gonads (Baker et al. 2013). From these studies, it is evident that both AHR knockout (Garcia et al. 2018a) and its activation (other studies) result in reproductive deficiencies, suggesting that any disruption to the normal AHR signaling mechanism can have deleterious effects on reproductive physiology. These effects on the reproductive system may also be mediated through AHR-associated epigenetic mechanisms, discussed in Section 4.2. Taken together, these studies unequivocally highlight the significant role of AHR in reproductive development, sex determination, and reproductive functions.

Section 4.1.2. Musculoskeletal System

TCDD exposures have also been shown to affect musculoskeletal development in adults, with zebrafish exposed to TCDD at 3- and 7- weeks post fertilization displaying skeletal deficits during adulthood, including skeletal kinks, shortened jaw structures, and abnormal operculum and bone structures (Baker et al. 2013). Interestingly, AHR2-null fish also showed similar deficits in skeleton and fins, including defective fins, abnormal dentary, operculum and frontal structures, smaller orbital and supraorbital bones (Baker et al. 2014b; Garcia et al. 2018a; Goodale et al. 2012; Souder and Gorelick 2019). These identical responses both to AHR2 deficiency and AHR2 activation mimic the equivocality of responses on reproductive development and highlight the need for more detailed studies on the role of AHR2 in musculoskeletal development. They also reiterate the sensitive nature of the AHR2 signaling pathway, where any alteration – either its deficiency or activation – can have profound impacts on the musculoskeletal system.

Section 4.2. Epigenetics and multigenerational effects

TCDD exposure results in several transgenerational effects (Baker et al. 2014a; Baker et al. 2014c; King-Heiden et al. 2005; Meyer et al. 2018) which have been reviewed recently (Viluksela and Pohjanvirta 2019). It has been hypothesized that epigenetic mechanisms mediate these effects of TCDD, although specific epigenetic modifications have not been identified as having a causal role in the responses observed in F1 and F2 generations (Baker et al. 2014a). There is increasing evidence in other organisms showing how epigenetic modifications are related to AHR signaling and TCDD toxicity (Patrizi and Siciliani de Cumis 2018; Viluksela and Pohjanvirta 2019). The expression of *cyp1a1* and *cyp1b1* in the F1 generation of a TCDD-exposed zebrafish lineage was significantly higher than in control-lineage F1 animals, suggesting an AHR role (Olsvik et al. 2014). Within the genome region queried, there was no effect of TCDD on the methylation pattern of the *ahr2* promoter in developing zebrafish (Aluru et al. 2015). However, the study found altered promoter methylation of AHR target genes, *ahrra* and *c-fos*. TCDD exposure also altered *dnmt* expression in the F0 generation, and *in vitro* transactivation studies identified that three of the five tested *dnmt* promoters caused transactivation of luciferase reporter by AHR2/ARNT2 in the presence of TCDD (Aluru et al. 2015). A recent study that examined genome-wide changes in DNA methylation in adult testes of zebrafish exposed to TCDD found differential methylation of genes involved in reproductive and epigenetic processes (Akemann et al. 2018) and some of these histological and transcriptomic effects persisted in subsequent F1 and F2 generations (Meyer et al. 2018), suggesting a methylation-dependent transfer of biomarkers across generations. **PCB-126** exposure of adult zebrafish caused extensive alteration in genome-wide DNA methylation patterns in liver and brain, which were not strongly correlated with altered

747 gene expression, suggesting a complex relationship between DNA methylation and gene regulation (Aluru et al. 2018).
748 Taken together, these studies suggest the potential role of methylation-dependent epigenetics in driving TCDD- and PCB-
749 126-induced reproductive outcomes.

750 **BaP** exposure leads to transgenerational effects including alterations to locomotor activity, decreased heartbeat and
751 mitochondrial function, reduced hatch rate, reduced egg production and offspring survival, increased mortality and
752 incidence of malformations up to the F2 generation (Corrales et al. 2014a; Corrales et al. 2014b; Fang et al. 2013; Knecht
753 et al. 2017a). These effects were likely a result of global hypomethylation in conjunction with alterations of expression of
754 developmental and cancer-related genes in BaP-exposed F0 zebrafish (Corrales et al. 2014a; Fang et al. 2013; Knecht et
755 al. 2017a). *Dnmt* expression was generally reduced with BaP exposure, an effect that was further strengthened by AHR2
756 knockdown (Knecht et al. 2017a). This was unexpected and may have been due to a mechanism different from
757 AHR2/ARNT acting via AHREs in the *dnmt* promoters. Another study found that, following BaP exposure, *dnmt1* and
758 *dnmt3a* had increased mRNA expression in 96 hpf larvae and in adult brains; however, the role of the AHRs in mediating
759 the altered expression was not investigated (Gao et al. 2017).

760 In summary, the functional role of AHR2 in mediating adult toxicity and epigenetic perturbation is in the early stages of
761 investigation and more studies are being conducted across several labs to better understand these mechanisms.

762 21 Conclusions and future directions

763 25 The studies conducted so far have demonstrated the vast diversity of both the endogenous and toxicological functional
764 29 roles of the zebrafish AHRs. Research in zebrafish (and other fish models) has enhanced our understanding of AHR
765 33 biology in all its richness, including endogenous and toxicological AHR roles. This research has complemented studies in
766 37 other animal models, and in particular has contributed to knowledge about AHR functions during vertebrate development.
767 41 Additionally, research on the zebrafish AHRs has explored and revealed the heterogeneity of ligands that are able to bind
768 45 to each of the three receptors. The majority of the research so far on all aspects of functionality has focused on AHR2;
769 49 future work concentrating on how AHR1a and AHR1b contribute to normal physiology and toxicity of xenobiotics will
770 53 not only inform us of their roles, but could also reveal unknown functions of the AHR, many of which are conserved
771 57 across vertebrates. Further, understanding the downstream signaling events upon AHR activation has centered on TCDD
772 61 as a ligand. Exploration of the functions of AHR-regulated genes upon exposure to other chemicals will facilitate a gene
773 65 biomarker approach to further characterize and classify xenobiotics that act via AHR. With the remarkable diversity of
774 69 AHR ligands, the wide-ranging downstream AHR-regulated genes, and the crosstalk interactions with other signaling
775 73 pathways, it is clear we must discern how the activation of the AHRs by its various ligands can differentially modulate
776 77 signaling pathways that dictate biological outcomes.

777 51 Acknowledgements

778 55 We would like to thank Dr. Michael Simonich (Tanguay Sinnhuber Aquatic Research Laboratory) for help editing the
779 59 review and Dr. Sibel Karchner (Woods Hole Oceanographic Institution) for advice on the synteny analysis.

780 Preparation of this manuscript was supported in part by National Institute of Environmental Health Sciences (NIEHS)
1 through the Oregon State University (P42 ES016465) and Boston University (P42 ES007381) Superfund Research
2 Programs, and the Woods Hole Center for Oceans and Human Health (NIEHS grant P01 ES028938 and National Science
3 Foundation grant OCE-1840381). The content is solely the responsibility of the authors and does not necessarily represent
4 the official views of the National Institutes of Health.
5
6

785 Conflict of Interest

786 The authors declare no potential conflicts of interest with respect to this article.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

References

- Abel J, Haarmann-Stemmann T. 2010. An introduction to the molecular basics of aryl hydrocarbon receptor biology. *Biol Chem.* 391(11):1235-1248.

Akemann C, Meyer DN, Gurdziel K, Baker TR. 2018. Developmental dioxin exposure alters the methylome of adult male zebrafish gonads. *Front Genet.* 9:719.

Akimenko MA, Mari-Beffa M, Becerra J, Geraudie J. 2003. Old questions, new tools, and some answers to the mystery of fin regeneration. *Dev Dyn.* 226(2):190-201.

Alexeyenko A, Wassenberg DM, Lobenhofer EK, Yen J, Linney E, Sonnhammer EL, Meyer JN. 2010. Dynamic zebrafish interactome reveals transcriptional mechanisms of dioxin toxicity. *PLoS One.* 5(5):e10465.

Aluru N, Jenny MJ, Hahn ME. 2014. Knockdown of a zebrafish aryl hydrocarbon receptor repressor (ahrra) affects expression of genes related to photoreceptor development and hematopoiesis. *Toxicol Sci.* 139(2):381-395.

Aluru N, Karchner SI. 2020. Pcb126 exposure revealed alterations in m6a rna modifications in transcripts associated with ahr activation. *bioRxiv.* 2020.2007.2002.182865.

Aluru N, Karchner SI, Krick KS, Zhu W, Liu J. 2018. Role of DNA methylation in altered gene expression patterns in adult zebrafish (*Danio rerio*) exposed to 3, 3', 4, 4', 5-pentachlorobiphenyl (pcb 126). *Environ Epigenet.* 4(1):dvy005.

Aluru N, Kuo E, Helfrich LW, Karchner SI, Linney EA, Pais JE, Franks DG. 2015. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (*Danio rerio*). *Toxicol Appl Pharmacol.* 284(2):142-151.

Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL et al. 1998. Zebrafish hox clusters and vertebrate genome evolution. *Science.* 282(5394):1711-1714.

Anderson JL, Mulligan TS, Shen MC, Wang H, Scahill CM, Tan FJ, Du SJ, Busch-Nentwich EM, Farber SA. 2017. Mrna processing in mutant zebrafish lines generated by chemical and crispr-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay. *PLoS Genet.* 13(11):e1007105.

Andreasen EA, Hahn ME, Heideman W, Peterson RE, Tanguay RL. 2002a. The zebrafish (*Danio rerio*) aryl hydrocarbon receptor type 1 is a novel vertebrate receptor. *Mol Pharmacol.* 62(2):234-249.

Andreasen EA, Mathew LK, Lohr CV, Hasson R, Tanguay RL. 2007. Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration. *Toxicol Sci.* 95(1):215-226.

Andreasen EA, Spitsbergen JM, Tanguay RL, Stegeman JJ, Heideman W, Peterson RE. 2002b. Tissue-specific expression of ahr2, arnt2, and cyp1a in zebrafish embryos and larvae: Effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. *Toxicol Sci.* 68(2):403-419.

Antkiewicz DS, Peterson RE, Heideman W. 2006. Blocking expression of ahr2 and arnt1 in zebrafish larvae protects against cardiac toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Toxicol Sci.* 94(1):175-182.

Baird L, Yamamoto M. 2020. The molecular mechanisms regulating the keap1-nrf2 pathway. *Mol Cell Biol.* 40(13).

Baker BB, Yee JS, Meyer DN, Yang D, Baker TR. 2016. Histological and transcriptomic changes in male zebrafish testes due to early life exposure to low level 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Zebrafish.* 13(5):413-423.

Baker TR, King-Heiden TC, Peterson RE, Heideman W. 2014a. Dioxin induction of transgenerational inheritance of disease in zebrafish. *Mol Cell Endocrinol.* 398(1-2):36-41.

Baker TR, Peterson RE, Heideman W. 2013. Early dioxin exposure causes toxic effects in adult zebrafish. *Toxicol Sci.* 135(1):241-250.

Baker TR, Peterson RE, Heideman W. 2014b. Adverse effects in adulthood resulting from low-level dioxin exposure in juvenile zebrafish. *Endocr Disruptors (Austin).* 2(1): e28309.

Baker TR, Peterson RE, Heideman W. 2014c. Using zebrafish as a model system for studying the transgenerational effects of dioxin. *Toxicol Sci.* 138(2):403-411.

Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL. 2000. The syntenic relationship of the zebrafish and human genomes. *Genome Res.* 10(9):1351-1358.

Barouki R, Coumoul X, Fernandez-Salguero PM. 2007. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. *FEBS Lett.* 581(19):3608-3615.

Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. 2008. The aryl hydrocarbon receptor complex and the control of gene expression. *Crit Rev Eukaryot Gene Expr.* 18(3):207-250.

Billiard S, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT. 2006. The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. *Toxicol Sci.* 92(2): 526-536.

Billiard SM, Querbach K, Hodson PV. 1999. Toxicity of retene to early life stages of two freshwater fish species. *Environ Toxicol Chem.* 18(9):2070-2077.

- 841 Bisson WH, Koch DC, O'Donnell EF, Khalil SM, Kerkvliet NI, Tanguay RL, Abagyan R, Kolluri SK. 2009. Modeling of
842 the aryl hydrocarbon receptor (ahr) ligand binding domain and its utility in virtual ligand screening to predict new
843 ahr ligands. *J Med Chem.* 52(18):5635-5641.
- 844 Brown DR, Clark BW, Garner LV, Di Giulio RT. 2015. Zebrafish cardiotoxicity: The effects of cyp1a inhibition and ahr2
845 knockdown following exposure to weak aryl hydrocarbon receptor agonists. *Environ Sci Pollut Res Int.*
846 22(11):8329-8338.
- 847 Bugel SM, White LA, Cooper KR. 2013. Inhibition of vitellogenin gene induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin
848 is mediated by aryl hydrocarbon receptor 2 (ahr2) in zebrafish (*Danio rerio*). *Aquat Toxicol.* 126:1-8.
- 849 Butler RA, Kelley ML, Powell WH, Hahn ME, Van Beneden RJ. 2001. An aryl hydrocarbon receptor (ahr) homologue
850 from the soft-shell clam, *mya arenaria*: Evidence that invertebrate ahr homologues lack 2,3,7,8-tetrachlorodibenzo-
851 p-dioxin and beta-naphthoflavone binding. *Gene.* 278(1-2):223-234.
- 852 Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE, Heideman W. 2006a. Aryl hydrocarbon receptor activation
853 produces heart-specific transcriptional and toxic responses in developing zebrafish. *Mol Pharmacol.* 70(2):549-561.
- 854 Carney SA, Peterson RE, Heideman W. 2004. 2,3,7,8-tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon
855 receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a cyp1a-
856 independent mechanism in zebrafish. *Mol Pharmacol.* 66(3):512-521.
- 857 Carney SA, Prasch AL, Heideman W, Peterson RE. 2006b. Understanding dioxin developmental toxicity using the zebrafish
858 model. *Birth Defects Res A Clin Mol Teratol.* 76(1):7-18.
- 859 Carver LA, Bradfield CA. 1997. Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin
860 homolog in vivo. *J Biol Chem.* 272(17):11452-11456.
- 861 Chen J, Carney SA, Peterson RE, Heideman W. 2008. Comparative genomics identifies genes mediating cardiotoxicity in
862 the embryonic zebrafish heart. *Physiol Genomics.* 33(2):148-158.
- 863 Cheng X, Vispute SG, Liu J, Cheng C, Kharitonov A, Klaassen CD. 2014. Fibroblast growth factor (fgf) 21 is a novel
864 target gene of the aryl hydrocarbon receptor (ahr). *Toxicol. Appl. Pharmacol.* 278(1):65-71.
- 865 Cheshenko K, Brion F, Le Page Y, Hinfray N, Pakdel F, Kah O, Segner H, Eggen RI. 2007. Expression of zebra fish
866 aromatase cyp19a and cyp19b genes in response to the ligands of estrogen receptor and aryl hydrocarbon receptor.
867 *Toxicol Sci.* 96(2):255-267.
- 868 Chlebowksi AC, Garcia GR, La Du JK, Bisson WH, Truong L, Massey Simonich SL, Tanguay RL. 2017. Mechanistic
869 investigations into the developmental toxicity of nitrated and heterocyclic pahs. *Toxicol Sci.* 157(1):246-259.
- 870 Corrales J, Fang X, Thornton C, Mei W, Barbazuk WB, Duke M, Scheffler BE, Willett KL. 2014a. Effects on specific
871 promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. *Comp Biochem
872 Physiol C Toxicol Pharmacol.* 163:37-46.
- 873 Corrales J, Thornton C, White M, Willett KL. 2014b. Multigenerational effects of benzo[a]pyrene exposure on survival and
874 developmental deformities in zebrafish larvae. *Aquat Toxicol.* 148:16-26.
- 875 Couture LA, Abbott BD, Birnbaum LS. 1990. A critical review of the developmental toxicity and teratogenicity of 2,3,7,8-
876 tetrachlorodibenzo-p-dioxin: Recent advances toward understanding the mechanism. *Teratology.* 42(6):619-627.
- 877 Cunha V, Vogs C, Le Bihanic F, Dreij K. 2020. Mixture effects of oxygenated pahs and benzo [a] pyrene on cardiovascular
878 development and function in zebrafish embryos. *Environment International.* 143:105913.
- 879 Dalton TP, Puga A, Shertzer HG. 2002. Induction of cellular oxidative stress by aryl hydrocarbon receptor activation. *Chem
880 Biol Interact.* 141(1-2):77-95.
- 881 Denison MS, Nagy SR. 2003. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous
882 chemicals. *Annu Rev Pharmacol Toxicol.* 43:309-334.
- 883 Di Giulio RT, Hinton DE. 2008. The toxicology of fishes. Boca Raton: Crc Press.
- 884 Diekmann H, Hill A. 2013. Admetox in zebrafish. *Drug Discovery Today: Disease Models.* 10(1):e31-e35.
- 885 Dietrich C. 2016. Antioxidant functions of the aryl hydrocarbon receptor. *Stem Cells Int.* 2016:7943495.
- 886 Dong W, Teraoka H, Tsujimoto Y, Stegeman JJ, Hiraga T. 2004. Role of aryl hydrocarbon receptor in mesencephalic
887 circulation failure and apoptosis in zebrafish embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Toxicol Sci.*
888 77(1):109-116.
- 889 El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Gunther S, Fukuda N, Kikhi K, Boezio GLM, Takacs CM, Lai SL et al.
890 2019. Genetic compensation triggered by mutant mrna degradation. *Nature.* 568(7751):193-197.
- 891 Ellis TR, Crawford BD. 2016. Experimental dissection of metalloproteinase inhibition-mediated and toxic effects of
892 phenanthroline on zebrafish development. *Int J Mol Sci.* 17(9):1503.
- 893 Esser C, Rannug A, Stockinger B. 2009. The aryl hydrocarbon receptor in immunity. *Trends Immunol.* 30(9):447-454.
- 894 Evans BR, Karchner SI, Allan LL, Pollenz RS, Tanguay RL, Jenny MJ, Sherr DH, Hahn ME. 2008. Repression of aryl
895 hydrocarbon receptor (ahr) signaling by ahr repressor: Role of DNA binding and competition for ahr nuclear
896 translocator. *Mol Pharmacol.* 73(2):387-398.
- 59
60

- 897 Evans BR, Karchner SI, Franks DG, Hahn ME. 2005. Duplicate aryl hydrocarbon receptor repressor genes (ahrr1 and ahrr2)
898 in the zebrafish *Danio rerio*: Structure, function, evolution, and ahr-dependent regulation in vivo. *Arch Biochem Biophys.* 441(2):151-167.
- 899 Fang M, Guo J, Chen D, Li A, Hinton DE, Dong W. 2016. Halogenated carbazoles induce cardiotoxicity in developing
900 zebrafish (*Danio rerio*) embryos. *Environ Toxicol Chem.* 35(10):2523-2529.
- 901 Fang X, Corrales J, Thornton C, Clerk T, Scheffler BE, Willett KL. 2015. Transcriptomic changes in zebrafish embryos
902 and larvae following benzo[a]pyrene exposure. *Toxicol Sci.* 146(2):395-411.
- 903 Fang X, Thornton C, Scheffler BE, Willett KL. 2013. Benzo[a]pyrene decreases global and gene specific DNA methylation
904 during zebrafish development. *Environ Toxicol Phar.* 36(1):40-50.
- 905 Fitch WM. 1970. Distinguishing homologous from analogous proteins. *Syst Zool.* 19(2):99-113.
- 906 Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. 1999. Preservation of duplicate genes by complementary,
907 degenerative mutations. *Genetics.* 151(4):1531-1545.
- 908 Fraccalvieri D, Soshilov AA, Karchner SI, Franks DG, Pandini A, Bonati L, Hahn ME, Denison MS. 2013. Comparative
909 analysis of homology models of the ah receptor ligand binding domain: Verification of structure-function
910 predictions by site-directed mutagenesis of a nonfunctional receptor. *Biochemistry.* 52(4):714-725.
- 911 Gao D, Wang C, Xi Z, Zhou Y, Wang Y, Zuo Z. 2017. Early-life benzo[a]pyrene exposure causes neurodegenerative
912 syndromes in adult zebrafish (*Danio rerio*) and the mechanism involved. *Toxicol Sci.* 157(1):74-84.
- 913 Garcia GR, Bugel SM, Truong L, Spagnoli S, Tanguay RL. 2018a. Ahr2 required for normal behavioral responses and
914 proper development of the skeletal and reproductive systems in zebrafish. *PLoS One.* 13(3):e0193484.
- 915 Garcia GR, Goodale BC, Wiley MW, La Du JK, Hendrix DA, Tanguay RL. 2017. In vivo characterization of an ahr-
916 dependent long noncoding rna required for proper sox9b expression. *Mol Pharmacol.* 91(6):609-619.
- 917 Garcia GR, Noyes PD, Tanguay RL. 2016. Advancements in zebrafish applications for 21st century toxicology. *Pharmacol
918 Ther.* 161:11-21.
- 919 Garcia GR, Shankar P, Dunham CL, Garcia A, La Du JK, Truong L, Tilton SC, Tanguay RL. 2018b. Signaling events
920 downstream of ahr activation that contribute to toxic responses: The functional role of an ahr-dependent long
921 noncoding rna (slincr) using the zebrafish model. *Environ Health Perspect.* 126(11):117002.
- 922 Garland MA, Geier MC, Bugel SM, Shankar P, Dunham CL, Brown JM, Tilton SC, Tanguay RL. 2020. Aryl hydrocarbon
923 receptor mediates larval zebrafish fin duplication following exposure to benzofluoranthenes. *Toxicol Sci.* 176(1):46-
924 64.
- 925 Garner LV, Brown DR, Di Giulio RT. 2013. Knockdown of ahr1a but not ahr1b exacerbates pah and pcb-126 toxicity in
926 zebrafish (*Danio rerio*) embryos. *Aquat Toxicol.* 142-143:336-346.
- 927 Garner LV, Di Giulio RT. 2012. Glutathione transferase pi class 2 (gstp2) protects against the cardiac deformities caused
928 by exposure to pahs but not pcb-126 in zebrafish embryos. *Comp Biochem Physiol C Toxicol Pharmacol.*
929 155(4):573-579.
- 930 Geier MC, Chlebowski AC, Truong L, Massey Simonich SL, Anderson KA, Tanguay RL. 2018a. Comparative
931 developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. *Arch Toxicol.* 92(2):571-
932 586.
- 933 Geier MC, James Minick D, Truong L, Tilton S, Pande P, Anderson KA, Teeguarden J, Tanguay RL. 2018b. Systematic
934 developmental neurotoxicity assessment of a representative pah superfund mixture using zebrafish. *Toxicol Appl.
935 Pharmacol.* 354:115-125.
- 936 Gerlach CV, Das SR, Volz DC, Bisson WH, Kolluri SK, Tanguay RL. 2014. Mono-substituted isopropylated triaryl
937 phosphate, a major component of firemaster 550, is an ahr agonist that exhibits ahr-independent cardiotoxicity in
938 zebrafish. *Aquat Toxicol.* 154:71-79.
- 939 Glasauer SM, Neuhauss SC. 2014. Whole-genome duplication in teleost fishes and its evolutionary consequences. *Mol
940 Genet Genomics.* 289(6):1045-1060.
- 941 Goldstone J, McArthur A, Kubota A, Zanette J, Parente T, Jonsson M, Nelson D, Stegeman J. 2010. Identification and
942 developmental expression of the full complement of cytochrome p450 genes in zebrafish. *BMC Genomics.*
943 11(1):643.
- 944 Goldstone JV, Jonsson ME, Behrendt L, Woodin BR, Jenny MJ, Nelson DR, Stegeman JJ. 2009. Cytochrome p450 1d1: A
945 novel cyp1a-related gene that is not transcriptionally activated by pcb126 or tcdd. *Arch Biochem Biophys.* 482(1-
946 2):7-16.
- 947 Goodale BC, La Du J, Tilton SC, Sullivan CM, Bisson WH, Waters KM, Tanguay RL. 2015. Ligand-specific transcriptional
948 mechanisms underlie aryl hydrocarbon receptor-mediated developmental toxicity of oxygenated pahs. *Toxicol Sci.*
949 147(2):397-411.
- 950 Goodale BC, La Du JK, Bisson WH, Janszen DB, Waters KM, Tanguay RL. 2012. Ahr2 mutant reveals functional diversity
951 of aryl hydrocarbon receptors in zebrafish. *PLoS One.* 7(1):e29346.
- 952
- 953
- 954
- 955
- 956
- 957
- 958
- 959
- 960

- 953 Grimes AC, Erwin KN, Stadt HA, Hunter GL, Gefroh HA, Tsai HJ, Kirby ML. 2008. Pcb126 exposure disrupts zebrafish
954 ventricular and branchial but not early neural crest development. *Toxicol Sci.* 106(1):193-205.
- 955 Hahn ME. 2002. Aryl hydrocarbon receptors: Diversity and evolution. *Chem Biol Interact.* 141(1-2):131-160.
- 956 Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM. 2006. Unexpected diversity of aryl hydrocarbon
957 receptors in non-mammalian vertebrates: Insights from comparative genomics. *J Exp Zool A Comp Exp Biol.*
958 305(9):693-706.
- 959 Hahn ME, Karchner SI, Merson RR. 2017. Diversity as opportunity: Insights from 600 million years of ahr evolution. *Curr*
960 *Opin Toxicol.* 2:58-71.
- 961 Hahn ME, McArthur AG, Karchner SI, Franks DG, Jenny MJ, Timme-Laragy AR, Stegeman JJ, Woodin BR, Cipriano MJ,
962 Linney E. 2014. The transcriptional response to oxidative stress during vertebrate development: Effects of tert-
963 butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p-dioxin. *PLoS One.* 9(11):e113158.
- 964 Handley-Goldstone HM, Grow MW, Stegeman JJ. 2005. Cardiovascular gene expression profiles of dioxin exposure in
965 zebrafish embryos. *Toxicol Sci.* 85(1):683-693.
- 966 Hankinson O. 1995. The aryl hydrocarbon receptor complex. *Annu Rev Pharmacol Toxicol.* 35:307-340.
- 967 Hao R, Bondesson M, Singh AV, Riu A, McCollum CW, Knudsen TB, Gorelick DA, Gustafsson JA. 2013. Identification
968 of estrogen target genes during zebrafish embryonic development through transcriptomic analysis. *PLoS One.*
969 8(11):e79020.
- 970 Hawliczek A, Nota B, Cenijn P, Kamstra J, Pieterse B, Winter R, Winkens K, Hollert H, Segner H, Legler J. 2012.
971 Developmental toxicity and endocrine disrupting potency of 4-azaprene, benzo[b]fluorene and retene in the
972 zebrafish *Danio rerio*. *Reprod Toxicol.* 33(2):213-223.
- 973 Heasman J. 2002. Morpholino oligos: Making sense of antisense? *Dev Biol.* 243(2):209-214.
- 974 Henry TR, Spitsbergen JM, Hornung MW, Abnet CC, Peterson RE. 1997. Early life stage toxicity of 2,3,7,8-
975 tetrachlorodibenzo-p-dioxin in zebrafish (*Danio rerio*). *Toxicol. Appl. Pharmacol.* 142(1):56-68.
- 976 Hoffman EC, Reyes H, Chu FF, Sander F, Conley LH, Brooks BA, Hankinson O. 1991. Cloning of a factor required for
977 activity of the ah (dioxin) receptor. *Science.* 252(5008):954-958.
- 978 Hofsteen P, Mehta V, Kim M-S, Peterson RE, Heideman W. 2013a. Tcdd inhibits heart regeneration in adult zebrafish.
979 *Toxicol Sci.* 132(1):211-221.
- 980 Hofsteen P, Plavicki J, Johnson SD, Peterson RE, Heideman W. 2013b. Sox9b is required for epicardium formation and
981 plays a role in tcdd-induced heart malformation in zebrafish. *Mol Pharmacol.* 84(3):353-360.
- 982 Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et
983 al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. *Nature.*
984 496(7446):498-503.
- 985 Huang L, Wang C, Zhang Y, Li J, Zhong Y, Zhou Y, Chen Y, Zuo Z. 2012. Benzo[a]pyrene exposure influences the cardiac
986 development and the expression of cardiovascular relative genes in zebrafish (*Danio rerio*) embryos. *Chemosphere.*
987 87(4):369-375.
- 988 Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL. 2005. Aryl hydrocarbon receptor-independent
989 toxicity of weathered crude oil during fish development. *Environ Health Perspect.* 113(12):1755-1762.
- 990 Incardona JP, Day HL, Collier TK, Scholz NL. 2006. Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons
991 in zebrafish is differentially dependent on ah receptor isoforms and hepatic cytochrome p4501a metabolism.
992 *Toxicol. Appl. Pharmacol.* 217(3):308-321.
- 993 Incardona JP, Linbo TL, Scholz NL. 2011. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially
994 dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development. *Toxicol. Appl. Pharmacol.*
995 257(2):242-249.
- 996 Ishikawa T-o, Griffin KJ, Banerjee U, Herschman HR. 2007. The zebrafish genome contains two inducible, functional
997 cyclooxygenase-2 genes. *Biochem Biophys Res Co.* 352(1):181-187.
- 998 Jackson DP, Joshi AD, Elferink CJ. 2015. Ah receptor pathway intricacies; signaling through diverse protein partners and
999 DNA-motifs. *Toxicol Res (Camb).* 4(5):1143-1158.
- 000 Jayasundara N, Van Tiem Garner L, Meyer JN, Erwin KN, Di Giulio RT. 2015. Ahr2-mediated transcriptomic responses
001 underlying the synergistic cardiac developmental toxicity of pahs. *Toxicol Sci.* 143(2):469-481.
- 002 Jenny MJ, Aluru N, Hahn ME. 2012. Effects of short-term exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on microRNA
003 expression in zebrafish embryos. *Toxicol. Appl. Pharmacol.* 264(2):262-273.
- 004 Jenny MJ, Karchner SI, Franks DG, Woodin BR, Stegeman JJ, Hahn ME. 2009. Distinct roles of two zebrafish ahr repressors
005 (ahrra and ahrrb) in embryonic development and regulating the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin.
006 *Toxicol Sci.* 110(2):426-441.
- 007 Jin H, Ji C, Ren F, Aniagu S, Tong J, Jiang Y, Chen T. 2020. Ahr-mediated oxidative stress contributes to the cardiac
008 developmental toxicity of trichloroethylene in zebrafish embryos. *J Hazard Mater.* 385:121521.
- 59
60

- 009 Jones DP. 2006. Redefining oxidative stress. *Antioxid Redox Signal.* 8(9-10):1865-1879.
- 010 Jonsson ME, Franks DG, Woodin BR, Jenny MJ, Garrick RA, Behrendt L, Hahn ME, Stegeman JJ. 2009. The tryptophan
011 photoproduct 6-formylindolo[3,2-b]carbazole (ficz) binds multiple ahrs and induces multiple cyp1 genes via ahr2
012 in zebrafish. *Chem Biol Interact.* 181(3):447-454.
- 013 Jonsson ME, Jenny MJ, Woodin BR, Hahn ME, Stegeman JJ. 2007. Role of ahr2 in the expression of novel cytochrome
014 p450 1 family genes, cell cycle genes, and morphological defects in developing zebra fish exposed to 3,3',4,4',5-
015 pentachlorobiphenyl or 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Toxicol Sci.* 100(1):180-193.
- 016 Jonsson ME, Kubota A, Timme-Laragy AR, Woodin B, Stegeman JJ. 2012. Ahr2-dependence of pcb126 effects on the
017 swim bladder in relation to expression of cyp1 and cox-2 genes in developing zebrafish. *Toxicol. Appl. Pharmacol.*
018 265(2):166-174.
- 019 Kafafi SA, Afeefy HY, Ali AH, Said HK, Kafafi AG. 1993. Binding of polychlorinated biphenyls to the aryl hydrocarbon
020 receptor. *Environ Health Perspect.* 101(5):422-428.
- 021 Karchner S, Jenny M, Aluru N, Franks D, Laub L, Linney E, Williams L, Teraoka H, Hahn M. 2017. Evidence for
022 developmental versus toxicological roles for zebrafish ahr1b. *Toxicological Sciences (The Toxicologist Supplement)*
023 156, S39 (Abstract #1165).
- 024 Karchner SI, Franks DG, Hahn ME. 2005. Ahr1b, a new functional aryl hydrocarbon receptor in zebrafish: Tandem
025 arrangement of ahr1b and ahr2 genes. *Biochem J.* 392:153-161.
- 026 Kazlauskas A, Poellinger L, Pongratz I. 1999. Evidence that the co-chaperone p23 regulates ligand responsiveness of the
027 dioxin (aryl hydrocarbon) receptor. *J Biol Chem.* 274(19):13519-13524.
- 028 Kewley RJ, Whitelaw ML, Chapman-Smith A. 2004. The mammalian basic helix-loop-helix/pas family of transcriptional
029 regulators. *The international journal of biochemistry & cell biology.* 36(2):189-204.
- 030 Kim KH, Park HJ, Kim JH, Kim S, Williams DR, Kim MK, Jung YD, Teraoka H, Park HC, Choy HE et al. 2013. Cyp1a
031 reporter zebrafish reveals target tissues for dioxin. *Aquat Toxicol.* 134-135:57-65.
- 032 Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish.
033 *Developmental dynamics : an official publication of the American Association of Anatomists.* 203(3):253-310.
- 034 King-Heiden TC, Mehta V, Xiong KM, Lanham KA, Antkiewicz DS, Ganser A, Heideman W, Peterson RE. 2012.
035 Reproductive and developmental toxicity of dioxin in fish. *Molecular and cellular endocrinology.* 354(1-2):121-
036 138.
- 037 King-Heiden TC, Struble CA, Rise ML, Hessner MJ, Hutz RJ, Carvan MJ, 3rd. 2008. Molecular targets of 2,3,7,8-
038 tetrachlorodibenzo-p-dioxin (tcdd) within the zebrafish ovary: Insights into tcdd-induced endocrine disruption and
039 reproductive toxicity. *Reprod Toxicol.* 25(1):47-57.
- 040 King-Heiden TK, Hutz RJ, Carvan MJ, 3rd. 2005. Accumulation, tissue distribution, and maternal transfer of dietary
041 2,3,7,8-tetrachlorodibenzo-p-dioxin: Impacts on reproductive success of zebrafish. *Toxicol Sci.* 87(2):497-507.
- 042 Knecht AL, Goodale BC, Truong L, Simonich MT, Swanson AJ, Matzke MM, Anderson KA, Waters KM, Tanguay RL.
043 2013. Comparative developmental toxicity of environmentally relevant oxygenated pahs. *Toxicol. Appl. Pharmacol.*
044 271(2):266-275.
- 045 Knecht AL, Truong L, Marvel SW, Reif DM, Garcia A, Lu C, Simonich MT, Teeguarden JG, Tanguay RL. 2017a.
046 Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to
047 benzo[a]pyrene in zebrafish. *Toxicol. Appl. Pharmacol.* 329:148-157.
- 048 Knecht AL, Truong L, Simonich MT, Tanguay RL. 2017b. Developmental benzo[a]pyrene (b[a]p) exposure impacts larval
049 behavior and impairs adult learning in zebrafish. *Neurotoxicol Teratol.* 59:27-34.
- 050 Ko SK, Jin HJ, Jung DW, Tian X, Shin I. 2009. Cardiosulfa, a small molecule that induces abnormal heart development in
051 zebrafish, and its biological implications. *Angew Chem Int Ed Engl.* 48(42):7809-7812.
- 052 Ko SK, Shin I. 2012. Cardiosulfa induces heart deformation in zebrafish through the ahr-mediated, cyp1a-independent
053 pathway. *Chembiochem.* 13(10):1483-1489.
- 054 Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I et
055 al. 2015. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes
056 in zebrafish. *Dev Cell.* 32(1):97-108.
- 057 Kubota A, Goldstone JV, Lemaire B, Takata M, Woodin BR, Stegeman JJ. 2014. Pregnan x receptor and aryl hydrocarbon
058 receptor both are involved in transcriptional regulation of pxr, cyp2 and cyp3 genes in developing zebrafish. *Toxicol
059 Sci.* 143(2):398-407.
- 060 Kubota A, Goldstone JV, Lemaire B, Takata M, Woodin BR, Stegeman JJ. 2015. Role of pregnane x receptor and aryl
061 hydrocarbon receptor in transcriptional regulation of pxr, cyp2, and cyp3 genes in developing zebrafish. *Toxicol
062 Sci.* 143(2):398-407.

- 063 Kubota A, Stegeman JJ, Woodin BR, Iwanaga T, Harano R, Peterson RE, Hiraga T, Teraoka H. 2011. Role of zebrafish
064 cytochrome p450 cyp1c genes in the reduced mesencephalic vein blood flow caused by activation of ahr2. *Toxicol.*
065 *Appl. Pharmacol.* 253(3):244-252.
- 066 Lanham KA, Plavicki J, Peterson RE, Heideman W. 2014. Cardiac myocyte-specific ahr activation phenocopies tcdd-
067 induced toxicity in zebrafish. *Toxicol Sci.* 141(1):141-154.
- 068 Le Beau M, Carver L, Espinosa III R, Schmidt J, Bradfield C. 1994. Chromosomal localization of the human ahr locus
069 encoding the structural gene for the ah receptor to 7p21→ p15. *Cytogenetic and Genome Research.* 66(3):172-176.
- 070 Lee JS, Iwabuchi K, Nomaru K, Nagahama N, Kim EY, Iwata H. 2013. Molecular and functional characterization of a novel
071 aryl hydrocarbon receptor isoform, ahr1beta, in the chicken (*Gallus gallus*). *Toxicol Sci.* 136(2):450-466.
- 072 Liu H, Nie FH, Lin HY, Ma Y, Ju XH, Chen JJ, Gooneratne R. 2016. Developmental toxicity, oxidative stress, and related
073 gene expression induced by dioxin-like pcb 126 in zebrafish (*Danio rerio*). *Environ Toxicol.* 31(3):295-303.
- 074 Lynch M, Force A. 2000. The probability of duplicate gene preservation by subfunctionalization. *Genetics.* 154(1):459-473.
- 075 Ma Z, Zhu P, Shi H, Guo L, Zhang Q, Chen Y, Chen S, Zhang Z, Peng J, Chen J. 2019. Ptc-bearing mrna elicits a genetic
076 compensation response via upf3a and compass components. *Nature.* 568(7751):259-263.
- 077 Ma Q, Whitlock JP, Jr. 1997. A novel cytoplasmic protein that interacts with the ah receptor, contains tetratricopeptide
078 repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *J Biol Chem.*
079 272(14):8878-8884.
- 080 Mandal PK. 2005. Dioxin: A review of its environmental effects and its aryl hydrocarbon receptor biology. *J Comp Physiol*
081 *B.* 175(4):221-230.
- 082 Marlowe JL, Knudsen ES, Schwemberger S, Puga A. 2004. The aryl hydrocarbon receptor displaces p300 from e2f-
083 dependent promoters and represses s phase-specific gene expression. *J Biol Chem.* 279(28):29013-29022.
- 084 Marques IJ, Lupi E, Mercader N. 2019. Model systems for regeneration: Zebrafish. *Development.* 146(18):dev167692.
- 085 Massarsky A, Bone AJ, Dong W, Hinton DE, Prasad GL, Di Giulio RT. 2016. Ahr2 morpholino knockdown reduces the
086 toxicity of total particulate matter to zebrafish embryos. *Toxicol. Appl. Pharmacol.* 309:63-76.
- 087 Mathew LK, Andreasen EA, Tanguay RL. 2006. Aryl hydrocarbon receptor activation inhibits regenerative growth. *Mol*
088 *Pharmacol.* 69(1):257-265.
- 089 Mathew LK, Andreasen EA, Tanguay RL. 2007. Misexpression of r-spondin1 impairs tissue regeneration. *Faseb Journal.*
090 21(5):A620-A620.
- 091 Mathew LK, Simonich MT, Tanguay RL. 2009. Ahr-dependent misregulation of wnt signaling disrupts tissue regeneration.
092 *Biochem Pharmacol.* 77(4):498-507.
- 093 McGee SP, Konstantinov A, Stapleton HM, Volz DC. 2013. Aryl phosphate esters within a major pentabde replacement
094 product induce cardiotoxicity in developing zebrafish embryos: Potential role of the aryl hydrocarbon receptor.
095 *Toxicol Sci.* 133(1):144-156.
- 096 Meyer-Alert H, Ladermann K, Larsson M, Schiwy S, Hollert H, Keiter SH. 2018. A temporal high-resolution investigation
097 of the ah-receptor pathway during early development of zebrafish (*Danio rerio*). *Aquat Toxicol.* 204:117-129.
- 098 Meyer DN, Baker BB, Baker TR. 2018. Ancestral tcdd exposure induces multigenerational histologic and transcriptomic
099 alterations in gonads of male zebrafish. *Toxicol Sci.* 164(2):603-612.
- 100 Miao W, Hu L, Scrivens PJ, Batist G. 2005. Transcriptional regulation of nf-e2 p45-related factor (nrf2) expression by the
101 aryl hydrocarbon receptor-xenobiotic response element signaling pathway: Direct cross-talk between phase i and ii
102 drug-metabolizing enzymes. *J Biol Chem.* 280(21):20340-20348.
- 103 Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y. 1999. Identification of a novel mechanism of regulation of ah (dioxin)
104 receptor function. *Genes Dev.* 13(1):20-25.
- 105 Muffato M, Louis A, Poisnel CE, Roest Crollius H. 2010. Genomicus: A database and a browser to study gene synteny in
106 modern and ancestral genomes. *Bioinformatics.* 26(8):1119-1121.
- 107 Nebert DW, Dalton TP, Okey AB, Gonzalez FJ. 2004. Role of aryl hydrocarbon receptor-mediated induction of the cyp1
108 enzymes in environmental toxicity and cancer. *J Biol Chem.* 279(23):23847-23850.
- 109 Nguyen LP, Bradfield CA. 2008. The search for endogenous activators of the aryl hydrocarbon receptor. *Chem Res Toxicol.*
110 21(1):102-116.
- 111 Nguyen NTT, Vincens P, Roest Crollius H, Louis A. 2018. Genomicus 2018: Karyotype evolutionary trees and on-the-fly
112 synteny computing. *Nucleic Acids Res.* 46(D1):D816-D822.
- 113 Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, Maruyama T, Kim S, Tanaka T. 2016. Using
114 zebrafish in systems toxicology for developmental toxicity testing. *Congenital Anomalies.* 56(1):18-27.
- 115 O'Donnell EF, Saili KS, Koch DC, Kopparapu PR, Farrer D, Bisson WH, Mathew LK, Sengupta S, Kerkvliet NI, Tanguay
116 RL et al. 2010. The anti-inflammatory drug leflunomide is an agonist of the aryl hydrocarbon receptor. *PLoS One.*
117 5(10): e13128.
- 58
59
60

- 118 Otake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H, Takahashi S, Kouzmenko A, Nohara K, Chiba T et al. 2007.
119 Dioxin receptor is a ligand-dependent e3 ubiquitin ligase. *Nature*. 446(7135):562-566.
- 120 Otake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P
121 et al. 2003. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. *Nature*.
122 423(6939):545-550.
- 123 Olsvik PA, Williams TD, Tung HS, Mirbahai L, Sanden M, Skjaerven KH, Ellingsen S. 2014. Impacts of tcdd and mehg
124 on DNA methylation in zebrafish (*Danio rerio*) across two generations. *Comp Biochem Physiol C Toxicol
125 Pharmacol*. 165:17-27.
- 126 Patrizi B, Siciliani de Cumis M. 2018. Tcdd toxicity mediated by epigenetic mechanisms. *Int J Mol Sci*. 19(12):4101.
- 127 Perdew GH. 1988. Association of the ah receptor with the 90-kda heat shock protein. *J Biol Chem*. 263(27):13802-13805.
- 128 Planchart A, Mattingly CJ. 2010. 2,3,7,8-tetrachlorodibenzo-p-dioxin upregulates foxq1b in zebrafish jaw primordium.
129 *Chem Res Toxicol*. 23(3):480-487.
- 130 Plavicki JS, Baker TR, Burns FR, Xiong KM, Gooding AJ, Hofsteen P, Peterson RE, Heideman W. 2014. Construction and
131 characterization of a sox9b transgenic reporter line. *Int J Dev Biol*. 58(9):693-699.
- 132 Poland A, Glover E, Kende AS. 1976. Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by
133 hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase. *J Biol
134 Chem*. 251(16):4936-4946.
- 135 Poland A, Kende A. 1976. 2,3,7,8-tetrachlorodibenzo-p-dioxin: Environmental contaminant and molecular probe. *Fed Proc*.
136 35(12):2404-2411.
- 137 Postlethwait JH. 2007. The zebrafish genome in context: Ohnologs gone missing. *J Exp Zool B Mol Dev Evol*. 308(5):563-
138 577.
- 139 Prasch AL, Heideman W, Peterson RE. 2004. Arnt2 is not required for tcdd developmental toxicity in zebrafish. *Toxicol
140 Sci*. 82(1):250-258.
- 141 Prasch AL, Tanguay RL, Mehta V, Heideman W, Peterson RE. 2006. Identification of zebrafish arnt1 homologs: 2,3,7,8-
142 tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires arnt1. *Mol Pharmacol*. 69(3):776-787.
- 143 Prasch AL, Teraoka H, Carney SA, Dong W, Hiraga T, Stegeman JJ, Heideman W, Peterson RE. 2003. Aryl hydrocarbon
144 receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. *Toxicol Sci*.
145 76(1):138-150.
- 146 Puga A, Barnes SJ, Dalton TP, Chang CY, Knudsen ES, Maier MA. 2000. Aromatic hydrocarbon receptor interaction with
147 the retinoblastoma protein potentiates repression of e2f-dependent transcription and cell cycle arrest. *J Biol Chem*.
148 275(4):2943-2950.
- 149 Reichard JF, Dalton TP, Shertzer HG, Puga A. 2006. Induction of oxidative stress responses by dioxin and other ligands of
150 the aryl hydrocarbon receptor. *Dose Response*. 3(3):306-331.
- 151 Reyes H, Reisz-Porszasz S, Hankinson O. 1992. Identification of the ah receptor nuclear translocator protein (arnt) as a
152 component of the DNA binding form of the ah receptor. *Science*. 256(5060):1193-1195.
- 153 Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, Stainier DY. 2015. Genetic compensation induced by
154 deleterious mutations but not gene knockdowns. *Nature*. 524(7564):230-233.
- 155 Rousseau ME, Sant KE, Borden LR, Franks DG, Hahn ME, Timme-Laragy AR. 2015. Regulation of ahr signaling by nrf2
156 during development: Effects of nrf2a deficiency on pcb126 embryotoxicity in zebrafish (*Danio rerio*). *Aquat
157 Toxicol*. 167:157-171.
- 158 Safe S, Lee SO, Jin UH. 2013. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. *Toxicol
159 Sci*. 135(1):1-16.
- 160 Safe S, Wormke M. 2003. Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of
161 action. *Chem Res Toxicol*. 16(7):807-816.
- 162 Sant KE, Hansen JM, Williams LM, Tran NL, Goldstone JV, Stegeman JJ, Hahn ME, Timme-Laragy A. 2017. The role of
163 nrf1 and nrf2 in the regulation of glutathione and redox dynamics in the developing zebrafish embryo. *Redox Biol*.
164 13:207-218.
- 165 Santamaria JA, Becerra J. 1991. Tail fin regeneration in teleosts: Cell-extracellular matrix interaction in blastemal
166 differentiation. *J Anat*. 176:9-21.
- 167 Scott JA, Incardona JP, Pelkki K, Shepardson S, Hodson PV. 2011. Ahr2-mediated, cyp1a-independent cardiovascular
168 toxicity in zebrafish (*Danio rerio*) embryos exposed to retene. *Aquat Toxicol*. 101(1):165-174.
- 169 Sehring IM, Jahn C, Weidinger G. 2016. Zebrafish fin and heart: What's special about regeneration? Current opinion in
170 *genetics & development*. 40:48-56.
- 171 Seifinejad A, Li S, Mikhail C, Vassalli A, Pradervand S, Arribat Y, Pezeshgi Modarres H, Allen B, John RM, Amati F et
172 al. 2019. Molecular codes and in vitro generation of hypocretin and melanin concentrating hormone neurons. *Proc
173 Natl Acad Sci U S A*. 116(34):17061-17070.

- 174 Shankar P, Geier MC, Truong L, McClure RS, Pande P, Waters KM, Tanguay RL. 2019. Coupling genome-wide
175 transcriptomics and developmental toxicity profiles in zebrafish to characterize polycyclic aromatic hydrocarbon
176 (pah) hazard. *Int J Mol Sci.* 20(10):2570.
- 177 Shaya L, Jones DE, Wilson JY. 2019. Cyp3c gene regulation by the aryl hydrocarbon and estrogen receptors in zebrafish.
178 *Toxicol. Appl. Pharmacol.* 362:77-85.
- 179 Sies H, Berndt C, Jones DP. 2017. Oxidative stress. *Annu Rev Biochem.* 86:715-748.
- 180 Sipes NS, Padilla S, Knudsen TB. 2011. Zebrafish: As an integrative model for twenty-first century toxicity testing. *Birth*
181 *Defects Res, Part C.* 93(3):256-267.
- 182 Souder JP, Gorelick DA. 2019. Ahr2, but not ahr1a or ahr1b, is required for craniofacial and fin development and tcdd-
183 dependent cardiotoxicity in zebrafish. *Toxicol Sci.* 170(1):25-44.
- 184 Stainier DYR, Raz E, Lawson ND, Ekker SC, Burdine RD, Eisen JS, Ingham PW, Schulte-Merker S, Yelon D, Weinstein
185 BM et al. 2017. Guidelines for morpholino use in zebrafish. *PLoS Genet.* 13(10):e1007000.
- 186 Sugden WW, Leonardo-Mendonca RC, Acuna-Castroviejo D, Siekmann AF. 2017. Genetic dissection of endothelial
187 transcriptional activity of zebrafish aryl hydrocarbon receptors (ahrs). *PLoS One.* 12(8):e0183433.
- 188 Swanson HI. 2002. DNA binding and protein interactions of the ahr/arnt heterodimer that facilitate gene activation. *Chem*
189 *Biol Interact.* 141(1-2):63-76.
- 190 Swedenborg E, Pongratz I. 2010. Ahr and arnt modulate er signaling. *Toxicology.* 268(3):132-138.
- 191 Tanguay RL, Abnet CC, Heideman W, Peterson RE. 1999. Cloning and characterization of the zebrafish (*Danio rerio*) aryl
192 hydrocarbon receptor. *Biochim Biophys Acta.* 1444(1):35-48.
- 193 Tanguay RL, Andreasen E, Heideman W, Peterson RE. 2000. Identification and expression of alternatively spliced aryl
194 hydrocarbon nuclear translocator 2 (arnt2) cdnas from zebrafish with distinct functions. *Biochim Biophys Acta.*
195 1494(1-2):117-128.
- 196 Teraoka H, Dong W, Hiraga T. 2003a. Zebrafish as a novel experimental model for developmental toxicology. *Congenit*
197 *Anom (Kyoto).* 43(2):123-132.
- 198 Teraoka H, Dong W, Tsujimoto Y, Iwasa H, Endoh D, Ueno N, Stegeman JJ, Peterson RE, Hiraga T. 2003b. Induction of
199 cytochrome p450 1a is required for circulation failure and edema by 2,3,7,8-tetrachlorodibenzo-p-dioxin in
200 zebrafish. *Biochem Biophys Res Commun.* 304(2):223-228.
- 201 Teraoka H, Kubota A, Dong W, Kawai Y, Yamazaki K, Mori C, Harada Y, Peterson RE, Hiraga T. 2009. Role of the
202 cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in
203 mesencephalic vein blood flow in the zebrafish embryo. *Toxicol. Appl. Pharmacol.* 234(1):33-40.
- 204 Teraoka H, Okuno Y, Nijoukubo D, Yamakoshi A, Peterson RE, Stegeman JJ, Kitazawa T, Hiraga T, Kubota A. 2014.
205 Involvement of cox2-thromboxane pathway in tcdd-induced precardiac edema in developing zebrafish. *Aquat*
206 *Toxicol.* 154:19-26.
- 207 Timme-Laragy AR, Cockman CJ, Matson CW, Di Giulio RT. 2007. Synergistic induction of ahr regulated genes in
208 developmental toxicity from co-exposure to two model pahs in zebrafish. *Aquat Toxicol.* 85(4):241-250.
- 209 Timme-Laragy AR, Karchner SI, Franks DG, Jenny MJ, Harbeitner RC, Goldstone JV, McArthur AG, Hahn ME. 2012a.
210 Nrf2b, novel zebrafish paralog of oxidant-responsive transcription factor nf-e2-related factor 2 (nrf2). *J Biol Chem.*
211 287(7):4609-4627.
- 212 Timme-Laragy AR, Karchner SI, Hahn ME. 2012b. Gene knockdown by morpholino-modified oligonucleotides in the
213 zebrafish (*Danio rerio*) model: Applications for developmental toxicology. *Methods Mol Biol.* 889:51-71.
- 214 Timme-Laragy AR, Noyes PD, Buhler DR, Di Giulio RT. 2008. Cyp1b1 knockdown does not alter synergistic
215 developmental toxicity of polycyclic aromatic hydrocarbons in zebrafish (*Danio rerio*). *Mar Environ Res.* 66(1):85-
216 87.
- 217 Timme-Laragy AR, Sant KE, Rousseau ME, diIorio PJ. 2015. Deviant development of pancreatic beta cells from embryonic
218 exposure to pcb-126 in zebrafish. *Comp Biochem Physiol C Toxicol Pharmacol.* 178:25-32.
- 219 Ulin A, Henderson J, Pham MT, Meyo J, Chen Y, Karchner SI, Goldstone JV, Hahn ME, Williams LM. 2019.
220 Developmental regulation of nuclear factor erythroid-2 related factors (nrf2s) by ahr1b in zebrafish (*Danio rerio*).
221 *Toxicol Sci.* 167(2):536-545.
- 222 Van Tiem LA, Di Giulio RT. 2011. Ahr2 knockdown prevents pah-mediated cardiac toxicity and xre- and are-associated
223 gene induction in zebrafish (*Danio rerio*). *Toxicol. Appl. Pharmacol.* 254(3):280-287.
- 224 Viluksela M, Pohjanvirta R. 2019. Multigenerational and transgenerational effects of dioxins. *Int J Mol Sci.* 20(12):2947.
- 225 Vinopal JH, Casida JE. 1973. Metabolic stability of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in mammalian liver microsomal
226 systems and in living mice. *Arch Environ Contam Toxicol.* 1(2):122-132.
- 227 Vogel CF, Sciuollo E, Matsumura F. 2007. Involvement of relb in aryl hydrocarbon receptor-mediated induction of
228 chemokines. *Biochem Biophys Res Commun.* 363(3):722-726.

- 229 Waits ER, Nebert DW. 2011. Genetic architecture of susceptibility to *pcb126*-induced developmental cardiotoxicity in
230 zebrafish. *Toxicol Sci.* 122(2):466-475.
- 231 Wang H, Li Y, Xia X, Xiong X. 2018. Relationship between metabolic enzyme activities and bioaccumulation kinetics of
232 pahs in zebrafish (*Danio rerio*). *J Environ Sci (China)*. 65:43-52.
- 233 Wang W-D, Chen Y-M, Hu C-H. 1998a. Detection of ah receptor and ah receptor nuclear translocator mrnas in the oocytes
234 and developing embryos of zebrafish (*Danio rerio*). *Fish physiology and biochemistry*. 18(1):49-57.
- 235 Wang WD, Chen GT, Hsu HJ, Wu CY. 2015. Aryl hydrocarbon receptor 2 mediates the toxicity of paclobutrazol on the
236 digestive system of zebrafish embryos. *Aquat Toxicol.* 159:13-22.
- 237 Wang WD, Chen YM, Hu CH. 1998b. Detection of ah receptor and ah receptor nuclear translocator mrnas in the oocytes
238 and developing embryos of zebrafish (*Danio rerio*). *Fish physiology and biochemistry*. 18(1):49-57.
- 239 Wang WD, Wu JC, Hsu HJ, Kong ZL, Hu CH. 2000. Overexpression of a zebrafish arnt2-like factor represses cyp1a
240 transcription in zle cells. *Mar Biotechnol (NY)*. 2(4):376-386.
- 241 Watson AJ, Hankinson O. 1992. Dioxin- and ah receptor-dependent protein binding to xenobiotic responsive elements and
242 g-rich DNA studied by in vivo footprinting. *J Biol Chem.* 267(10):6874-6878.
- 243 Webb KJ, Norton WH, Trumbach D, Meijer AH, Ninkovic J, Topp S, Heck D, Marr C, Wurst W, Theis FJ et al. 2009.
244 Zebrafish reward mutants reveal novel transcripts mediating the behavioral effects of amphetamine. *Genome Biol.*
245 10(7):R81.
- 246 Wentworth JN, Buzzeo R, Pollenz RS. 2004. Functional characterization of aryl hydrocarbon receptor (zfahr2) localization
247 and degradation in zebrafish (*Danio rerio*). *Biochem Pharmacol.* 67(7):1363-1372.
- 248 Wincent E, Jonsson ME, Bottai M, Lundstedt S, Dreij K. 2015. Aryl hydrocarbon receptor activation and developmental
249 toxicity in zebrafish in response to soil extracts containing unsubstituted and oxygenated pahs. *Environ Sci Technol.*
250 49(6):3869-3877.
- 251 Wincent E, Kubota A, Timme-Laragy A, Jonsson ME, Hahn ME, Stegeman JJ. 2016. Biological effects of 6-
252 formylindolo[3,2-b]carbazole (ficz) in vivo are enhanced by loss of cyp1a function in an ahr2-dependent manner.
253 *Biochem Pharmacol.* 110-111:117-129.
- 254 Wormke M, Stoner M, Saville B, Walker K, Abdelrahim M, Burghardt R, Safe S. 2003. The aryl hydrocarbon receptor
255 mediates degradation of estrogen receptor alpha through activation of proteasomes. *Mol Cell Biol.* 23(6):1843-1855.
- 256 Wright EJ, De Castro KP, Joshi AD, Elferink CJ. 2017. Canonical and non-canonical aryl hydrocarbon receptor signaling
257 pathways. *Curr Opin Toxicol.* 2:87-92.
- 258 Wu PY, Chuang PY, Chang GD, Chan YY, Tsai TC, Wang BJ, Lin KH, Hsu WM, Liao YF, Lee H. 2019. Novel endogenous
259 ligands of aryl hydrocarbon receptor mediate neural development and differentiation of neuroblastoma. *ACS Chem*
260 *Neurosci.* 10(9):4031-4042.
- 261 Xiong KM, Peterson RE, Heideman W. 2008. Aryl hydrocarbon receptor-mediated down-regulation of sox9b causes jaw
262 malformation in zebrafish embryos. *Mol Pharmacol.* 74(6):1544-1553.
- 263 Yamazaki K, Teraoka H, Dong W, Stegeman JJ, Hiraga T. 2002. Cdna cloning and expressions of cytochrome p450 1a in
264 zebrafish embryos. *J Vet Med Sci.* 64(9):829-833.
- 265 Yano F, Kugimiya F, Ohba S, Ikeda T, Chikuda H, Ogasawara T, Ogata N, Takato T, Nakamura K, Kawaguchi H. 2005.
266 The canonical wnt signaling pathway promotes chondrocyte differentiation in a sox9-dependent manner. *Biochem*
267 *Biophys Res Co.* 333(4):1300-1308.
- 268 Yasui T, Kim EY, Iwata H, Franks DG, Karchner SI, Hahn ME, Tanabe S. 2007. Functional characterization and
269 evolutionary history of two aryl hydrocarbon receptor isoforms (ahr1 and ahr2) from avian species. *Toxicol Sci.*
270 99(1):101-117.
- 271 Yeager RL, Reisman SA, Aleksunes LM, Klaassen CD. 2009. Introducing the “tcdd-inducible ahr-nrf2 gene battery”.
272 *Toxicol Sci.* 111(2):238-246.
- 273 Yin HC, Tseng HP, Chung HY, Ko CY, Tzou WS, Buhler DR, Hu CH. 2008. Influence of tcdd on zebrafish cyp1b1
274 transcription during development. *Toxicol Sci.* 103(1):158-168.
- 275 Yoshioka W, Peterson RE, Tohyama C. 2011. Molecular targets that link dioxin exposure to toxicity phenotypes. *J Steroid*
276 *Biochem Mol Biol.* 127(1-2):96-101.
- 277 Yoshioka W, Tohyama C. 2019. Mechanisms of developmental toxicity of dioxins and related compounds. *Int J Mol Sci.*
278 20(3):617.
- 279 Zhang L, Jin Y, Han Z, Liu H, Shi L, Hua X, Doering JA, Tang S, Giesy JP, Yu H. 2018a. Integrated in silico and in vivo
280 approaches to investigate effects of bde-99 mediated by the nuclear receptors on developing zebrafish. *Environ*
281 *Toxicol Chem.* 37(3):780-787.
- 282 Zhang R, Wang X, Zhang X, Song C, Letcher RJ, Liu C. 2018b. Polychlorinated diphenylsulfides activate aryl hydrocarbon
283 receptor 2 in zebrafish embryos: Potential mechanism of developmental toxicity. *Environ Sci Technol.* 52(7):4402-
284 4412.
- 59
- 60

- 285 Zhang Y, Wang C, Huang L, Chen R, Chen Y, Zuo Z. 2012. Low-level pyrene exposure causes cardiac toxicity in zebrafish
286 (*Danio rerio*) embryos. *Aquat Toxicol.* 114-115:119-124.
- 287 Zodrow JM, Stegeman JJ, Tanguay RL. 2004. Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin
288 (tcdd) in zebrafish. *Aquat Toxicol.* 66(1):25-38.
- 289 Zodrow JM, Tanguay RL. 2003. 2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits zebrafish caudal fin regeneration. *Toxicol Sci.*
290 76(1):151-161.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Figures

Figure 1. Shared synteny between zebrafish and other vertebrate *AHR* genes. Shared synteny was analyzed using *Genomicus* (versions 93.0 and 100.01) (Muffato et al. 2010; Nguyen et al. 2018) with manual curation using *Ensembl*. The AlignView tool in *Genomicus* was used to visualize the synteny relationships. Genomes for human (*Homo sapiens*), mouse (*Mus musculus*), and chicken (*Gallus gallus*) were used to illustrate synteny relationships with the chromosomes containing three zebrafish *ahr* genes. The panels show the shared synteny obtained when using **A**) zebrafish *ahr1a* (chromosome 16), **B**) zebrafish *ahr2-ahr1b* (chromosome 22), and **C**) human *AHR* (chromosome 7) as reference genes. The genes on either side of the reference gene are shown in the correct order and orientation. Orthologs (or in some cases paralogs) of the reference gene and its flanking genes are shown in the same color, below the reference chromosome, organized by species and chromosome. The position and order of genes below the reference chromosome do not necessarily reflect their position and order on the indicated chromosome.

Tables

Table 1. Zebrafish AHR genes and their respective translation products.

Characteristic	AHR2	AHR1a	AHR1b
Zebrafish chromosome/linkage group	22	16	22
Mammalian orthologs	--	AHR	--
Amino acid length	1027 aa	805 aa	954 aa
Predicted molecular mass of protein	113 kDa	90.4 kDa	104.8 kDa
Overall amino acid identity comparison with human AHR	51 %	52 %	67 %
Amino acid identity comparison with human AHR ligand binding domain	71 %	68 %	71 %
Overall amino acid identity comparison with AHR1b	45 %	44 %	100 %
Conserved N-terminal halves identity comparison with AHR1b protein	66 %	63 %	100 %

295 **Table 2. Receptor characteristics (developmental baseline and TCDD-induced mRNA expression, endogenous
296 ligands and roles, and binding partners) of AHR2, AHR1a, and AHR1b. See text for citations.**

Characteristic	AHR2	AHR1a	AHR1b
Earliest detected expression	5 hpf (Andreasen et al. 2002b; Tanguay et al. 1999)	24 hpf (Andreasen et al. 2002a; Karchner et al. 2005)	24 hpf (Karchner et al. 2005)
mRNA localization during development	Several regions including the head and trunk (Andreasen et al. 2002b; Sugden et al. 2017)	Liver at 52 hpf (Sugden et al. 2017), regenerating fin (Sugden et al. 2017)	Developing eye (Karchner et al. 2017; Sugden et al. 2017)
mRNA localization in adults	Brain, heart, muscle, swim bladder, liver, gill, skin, eye, kidney, fin (Andreasen et al. 2002a)	Brain (Webb et al. 2009), liver, heart, swim bladder, and kidney (Andreasen et al. 2002a)	Unknown
Effect of TCDD exposure on mRNA expression	Increase in expression (Andreasen et al. 2002b; Garcia et al. 2018a; Karchner et al. 2005; Tanguay et al. 1999)	Increase in expression (Andreasen et al. 2002a; Karchner et al. 2005)	No change in expression (Karchner et al. 2005; Ulin et al. 2019)
Endogenous roles	Several at both embryonic/larval and adult life stages (See Section 1.2.)	Possible roles in hypocretin/orexin signaling (Seifinejad et al. 2019)	Crosstalk detected with NRF signaling (Ulin et al. 2019)
Known endogenous ligands	FICZ (Jonsson et al. 2009; Wincent et al. 2016), 3α,5α-tetrahydrocorticosterone and 3α,5β-tetrahydrocorticosterone (5α- and 5β-THB) (Wu et al. 2019)	None identified	FICZ (Jonsson et al. 2009)
Endogenous Cyp1a expression regulation	Expression in the developing zebrafish eye but not in the trunk or brain (Sugden et al. 2017)	None	None
In vitro binding with ARNTs	ARNT1b, 1c, 2b, 2c (Prasch et al. 2006; Tanguay et al. 2000)	ARNT2b (Andreasen et al. 2002a)	ARNT2b (Karchner et al. 2005)
In vitro binding with TCDD	Yes (Prasch et al. 2006; Tanguay et al. 2000)	No (Andreasen et al. 2002a; Karchner et al. 2005)	Yes (Karchner et al. 2005)
In vitro transactivation activity with TCDD	Yes (Prasch et al. 2006; Tanguay et al. 2000)	Not applicable	Yes but less sensitive than AHR2 (Karchner et al. 2005)
ARNT required for <i>in vivo</i> activation	ARNT1 (Antkiewicz et al. 2006; Prasch et al. 2004; Prasch et al. 2006)	Not applicable	Unknown

298
1 **Table 3. Predicted binding of different ligands to the zebrafish AHRs.**
2

Ligand	AHR2	AHR1a	AHR1b	References
Anthracene	Yes	Not tested	Not tested	(Goodale et al. 2015)
Anthrone derivative SP600125	Yes	Not tested	Not tested	(Goodale et al. 2015)
BAA	Yes	Not tested	Not tested	(Goodale et al. 2015)
BaP	Yes	Not tested	Not tested	(Goodale et al. 2015)
BEZO	Yes	Not tested	Not tested	(Goodale et al. 2015)
CH223191	Yes	Yes	Weak	(Gerlach et al. 2014)
Leflunomide	Yes	Yes	Yes	(Bisson et al. 2009; Goodale et al. 2012; O'Donnell et al. 2010)
<i>ortho</i>-mITP	Yes	No	No	(Gerlach et al. 2014)
<i>meta</i>-mITP	Yes	Yes	Weak	(Gerlach et al. 2014)
<i>para</i>-mITP	Weak	Yes	No	(Gerlach et al. 2014)
TCDD	Yes	No	Yes	(Bisson et al. 2009)
NPAHs, HAHs, amino PAHs	Yes	Yes	Yes	(Chlebowski et al. 2017)

299

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

300 **Table 4. Developmental toxicity endpoints and CYP1A expression patterns mediated by AHR2 from morpholino
1 knockdown studies.**

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Xenobiotic ligand	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Endpoints mediated by ligand x AHR2	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Results of AHR2 knockdown	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 References
Polycyclic Aromatic Hydrocarbons (PAHs)			
Pyrene	<ul style="list-style-type: none"> - Pericardial edema, cell death in the neural tube, anemia - CYP1A protein expression 	<ul style="list-style-type: none"> - Prevention of morphological effects 	(Incardona et al. 2005)
Chrysene	<ul style="list-style-type: none"> - CYP1A protein expression 	<ul style="list-style-type: none"> - Prevention of epidermal expression - <i>No change to vasculature expression</i> 	(Incardona et al. 2005)
Dibenzothiophene	<ul style="list-style-type: none"> - CYP1A protein expression 	<ul style="list-style-type: none"> - Reduction of weak vascular expression - <i>No change to cardiotoxicity</i> 	(Incardona et al. 2005)
Phenanthrene	<ul style="list-style-type: none"> - CYP1A protein expression 	<ul style="list-style-type: none"> - Reduction of weak vascular expression - <i>No change to cardiotoxicity</i> 	(Incardona et al. 2005)
Benz[a]anthracene (BAA)	<ul style="list-style-type: none"> - Pericardial edema - Intracranial hemorrhage - CYP1A protein expression 	<ul style="list-style-type: none"> - Reduction in prevalence of pericardial edema - Prevention - Reduction in ventricular myocardium and epidermis - <i>No reduction in endocardial and other vascular endothelial CYP1A protein induction</i> 	(Incardona et al. 2006; Incardona et al. 2011)
Benzo[a]pyrene (BaP)	<ul style="list-style-type: none"> - Pericardial edema - CYP1A protein expression Larval hyperactive swimming response 	<ul style="list-style-type: none"> - Partial protection - Loss of myocardial expression - <i>No reduction in endocardial expression</i> - Decreased larval swimming response 	(Cunha et al. 2020; Incardona et al. 2011; Knecht et al. 2017b)
Benzo[k]fluoranthene (BkF)	<ul style="list-style-type: none"> - CYP1A protein expression 	<ul style="list-style-type: none"> - Markedly reduced epidermal CYP1A expression - <i>No reduction in endocardial expression or pericardial edema</i> 	(Incardona et al. 2011)

Retene	<ul style="list-style-type: none"> - Pericardial edema - CYP1A protein expression 	<ul style="list-style-type: none"> - Prevalence and severity of pericardial edema lower - Reduced epidermal expression - <i>No change to vascular expression</i> 	(Scott et al. 2011)
Benz(a)anthracene-7,12-dione (7,12-B[a]AQ)	<ul style="list-style-type: none"> - Morphology malformations: axis, trunk, brain, yolk and pericardial edemas, circulation, eye and jaw malformations - CYP1A protein expression 	<ul style="list-style-type: none"> - Prevention 	(Goodale et al. 2015; Knecht et al. 2013)
1,9-benz-10-anthrone (BEZO)	<ul style="list-style-type: none"> - Morphology malformations: axis, trunk, brain, yolk and pericardial edemas, circulation, eye and jaw malformations 	<ul style="list-style-type: none"> - Prevention 	(Goodale et al. 2015)
1,6-dinitropyrene,	<ul style="list-style-type: none"> - CYP1A protein expression 	<ul style="list-style-type: none"> - Reduction in skin and vasculature 	(Chlebowski et al. 2017)
benzo[j]fluoranthene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, and benzo[b]fluoranthene	<ul style="list-style-type: none"> - CYP1A protein expression 	<ul style="list-style-type: none"> - Reduction in vasculature and prevention of skin expression 	(Shankar et al. 2019)
6H-benzo[cd]pyren-6-one	<ul style="list-style-type: none"> - Cardiotoxicity 	<ul style="list-style-type: none"> - Prevention 	(Cunha et al. 2020)
Other chemicals: mixtures, pharmaceuticals, indoles, and halogenated aromatic hydrocarbons			
PAH-containing soil extracts from a gasworks, a former wood preservation site, and a coke oven	<ul style="list-style-type: none"> - Edema and viability 	<ul style="list-style-type: none"> - Decrease in edema occurrence, and increase in viability 	(Wincent et al. 2015)
Total particulate matter (cigarette smoke)	<ul style="list-style-type: none"> - Several morphological endpoints, viability, hatching success 	<ul style="list-style-type: none"> - Reduction in morphological endpoints, increased viability and hatching success 	(Massarsky et al. 2016)

1	Environmentally relevant	- CYP1A protein	- Supermix 3: decrease invasculature	(Geier et al.
2	PAH mixtures (“Supermix	expression	expression and increase in liver	2018b)
3	3” and “Supermix 10”)		expression	
4			Supermix 10: persistence of both	
5			vaskculature and liver expression	
6				
7				
8	BaP and 6H-	- Cardiotoxicity	- Prevention	(Cunha et al.
9	benzo[cd]pyren-6-one	(pericardial edema and		2020)
10		string heart formation)		
11				
12	Cardiosulfa (sulfanomide	- Cardiotoxicity	- Reduction	(Ko et al. 2009;
13	drug)			Ko and Shin 2012)
14				
15	Leflunomide	- CYP1A protein	Reduction	(Goodale et al.
16		expression		2012; O'Donnell et
17				al. 2010)
18				
19	3,3',4,4',5-	- Cardiotoxicity and	- Reduction	(Garner et al.
20	pentachlorobiphenyl	mortality		2013; Jonsson et
21	(PCB-126)			al. 2007)
22				
23	Mono-substituted	- CYP1A protein	- Reduction	(Gerlach et al.
24	isopropyl triaryl	expression		2014)
25				
26	phosphate (mITP) (a			
27	major component of			
28	Firemaster 550, a flame			
29	retardant mixture)			
30				
31				
32	Paclobutrazol (fungicide)	- Digestive tract toxicity	- Reduction	(Wang et al. 2015)
33				
34				
35	Formylindolo[3,2-	- Mortality, pericardial	- Prevention	(Wincent et al.
36	b]carbazole (FICZ)	edema, circulatory failure		2016)
37				
38				
39	Phenanthroline	- PAH-like toxicity	- Reduction	(Ellis and
40				Crawford 2016)
41				
42	2,7-dibromocarbazole and	- TCDD-like	- Reduction	(Fang et al. 2016)
43	2,3,6,7-	developmental toxicity		
44	tetrachlorocarbazole			
45				
46				
47				
48	3α,5α-	- Enhanced larval	- Blocked enhancement	(Wu et al. 2019)
49	tetrahydrocorticosterone	locomotor activity	- <i>AHR2 knockdown did not block 5β-</i>	
50	(5α-THB)		<i>THB-induced enhanced larval</i>	
51			<i>locomotor activity</i>	
52				
53				
54	2,3,7,8-tetrachlorodibenzo-	- Developmental toxicity	- Prevention	See text
55	p-dioxin (TCDD)	(multiple endpoints)	- <i>No change to inhibition of swim</i>	
56			<i>bladder inflation and mortality</i>	
57				
58				
59				
60				

302 **Table 5. Developmental toxicity endpoints and CYP1A expression patterns mediated by AHR1a from morpholino
303 knockdown studies.**

Xenobiotic ligand	Endpoints mediated by ligand x AHR1a	Results of AHR1a knockdown	References
Chrysene	- Vasculature CYP1A expression	- Reduction - <i>No change to epidermal CYP1A expression</i>	(Incardona et al. 2005)
Pyrene	- Liver abnormalities, pericardial edema, neural tube cell death	- Reduction - <i>No change to dorsal curvature caused by pyrene exposure</i>	(Incardona et al. 2006)
Pyrene	- Liver CYP1A expression	- Reduction - <i>No change to vascular CYP1A expression</i>	(Incardona et al. 2006)
Leflunomide	- Liver CYP1A expression	- Reduction	(Goodale et al. 2012)
BkF + FL, PCB-126	- Pericardial effusion - CYP1A activity	- Greater pericardial effusion - Increased activity	(Garner et al. 2013)
Xanthone	- Several developmental endpoints - Liver CYP1A expression	- Attenuated malformations - Reduction	(Knecht et al. 2013)
mITP	- Pericardial edema	- Increased prevalence	(Gerlach et al. 2014)
5-nitroacenaphthalene	- Pericardial and yolk sac edemas	- Reduction	(Chlebowski et al. 2017)
5-nitroacenaphthalene, 9-nitrophenanthrene, and 7-nitrobenzo[k]fluoranthene	- Liver CYP1A expression	- Reduction	(Chlebowski et al. 2017)

305 **Table 6. Developmental toxicity endpoints and CYP1A expression patterns mediated by AHR1b from morpholino
306 knockdown studies.**

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Xenobiotic ligand	Endpoints mediated by ligand x AHR1b	Results of AHR1b knockdown	References
	Leflunomide	- Vasculature CYP1A expression	- Prevention	(Goodale et al. 2012)
	mITP	- Pericardial edema	- Reduction in prevalence of pericardial edema	(Gerlach et al. 2014)
	7-nitrobenzo[k]fluoranthene	- Vasculature, skin, neuromast CYP1A protein expression	- Slight reduction	(Chlebowski et al. 2017)

Figure 1. Shared synteny between zebrafish and other vertebrate AHR genes. Shared synteny was analyzed using Genomicus (versions 93.0 and 100.01) (Muffato et al. 2010; Nguyen et al. 2018) with manual curation using Ensembl. The AlignView tool in Genomicus was used to visualize the synteny relationships. Genomes for human (*Homo sapiens*), mouse (*Mus musculus*), and chicken (*Gallus gallus*) were used to illustrate the synteny relationships with the chromosomes containing three zebrafish *ahr* genes. The panels show the shared synteny obtained when using A) zebrafish *ahr1a* (chromosome 16), B) zebrafish *ahr2-ahr1b* (chromosome 22), and C) human *AHR* (chromosome 7) as reference genes. The genes on either side of the reference gene are shown in the correct order and orientation. Orthologs (or in some cases paralogs) of the reference gene and its flanking genes are shown in the same color, below the reference chromosome, organized by species and chromosome. The position and order of genes below the reference chromosome do not necessarily reflect their position and order on the indicated chromosome.