
msp
Geometry & Topology 24 (2020) 2361–2433

Equivariant Hodge theory and noncommutative geometry
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We develop a version of Hodge theory for a large class of smooth formally proper
quotient stacks X=G analogous to Hodge theory for smooth projective schemes.
We show that the noncommutative Hodge–de Rham sequence for the category of
equivariant coherent sheaves degenerates. This spectral sequence converges to the
periodic cyclic homology, which we canonically identify with the topological equi-
variant K–theory of X with respect to a maximal compact subgroup of G, equipping
the latter with a canonical pure Hodge structure. We also establish Hodge–de Rham
degeneration for categories of matrix factorizations for a large class of equivariant
Landau–Ginzburg models.
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If X is a smooth projective variety over C , then the cohomology groups H n.X IC/ can

be equipped with a pure Hodge structure of weight n. The theory of Hodge structures

then allows one to “linearize” many important problems in algebraic geometry. Our

goal is to develop such a linearization for the equivariant algebraic geometry of a

locally closed algebraic submanifold X � Pn which is equivariant with respect to an

action of a compact Lie group M. Note that the complexification G of M, a reductive

algebraic group, acts on X as well, and it is natural to ask for a Hodge theory associated

intrinsically to the algebraic stack X WDX=G.

One such linearization follows from the results of Deligne [15], whose work establishes

a canonical mixed Hodge structure on the cohomology of any smooth simplicial scheme
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and in particular on the equivariant cohomology, H�
G
.X /, which is the cohomology of

the simplicial nerve of the action groupoid of G on X. Building on these ideas, one

can even associate a motive to the stack X=G as a colimit of motives of schemes as in

Morel and Voevodsky [49, Section 4.2].

The present paper lays the groundwork for an alternative approach to equivariant Hodge

theory based on equivariant topological K–theory of the underlying analytic variety

K�
M
.X an/. The equivariant K–theory is a module over the representation ring Rep.G/,

and the Atiyah–Segal completion theorem canonically identifies its completion at the

augmentation ideal of Rep.G/ with the Z=2Z–graded equivariant cohomology,

K
even=odd
M

.X an/^ ŠH
even=odd
G

.X an/:

If one completes K�
G
.X an/ with respect to the evaluation ideal at other g 2M, then

one recovers the Z=2Z–graded equivariant cohomology of the fixed locus of g with

respect to the centralizer of g ; see Freed, Hopkins and Teleman [20, Theorem 3.9].

Thus K�
G
.X an/ encodes all of these equivariant cohomology groups, as well as the

data of how to “spread” them out into a single finitely generated Rep.G/–module. In

this sense K�
M
.X an/ is a much richer invariant than H�

G
.X /.

The main challenge is that, unlike cohomology, equivariant K–theory is not simply the

K–theory of the simplicial scheme arising from the action of G on X, so Deligne’s

approach to equivariant Hodge theory does not generalize to K–theory. Instead, our

Hodge structures originate in noncommutative algebraic geometry, which views dg-

categories as “noncommutative spaces”. We ultimately show that in many cases one can

use the dg-enhanced derived category of G–equivariant perfect complexes of coherent

sheaves on X, Perf.X=G/, to construct a pure Hodge structure on K�
M
.X an/.

Noncommutative Hodge–de Rham degeneration

If A is a dg-category over a field k , the Hochschild chain complex, C�.A/, plays the

role of the Hodge cohomology in noncommutative algebraic geometry. The periodic

cyclic complex C
per
� .A/, which is a dg-module over k..u// where u has homological

degree �2, behaves like noncommutative de Rham cohomology. There is a canonical

Hodge filtration of the complex C
per
� .A/ whose associated graded is C�.A/˝ k..u//,

which leads to a noncommutative Hodge–de Rham spectral sequence converging

to H�.C
per
� .A// whose first page is H�.C�.A/˝ k..u///. The Hodge filtration in

our theory will be the filtration on H�.C
per
� .A// arising from the degeneration of this

spectral sequence.
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Geometrically, our main tool for establishing degeneration for the category Perf.X=G/

will be certain stratifications of X into G–stable locally closed subvarieties. It is a

classical observation in geometric invariant theory — see Hesselink [27] and Ness [50] —

that projective varieties with a linearized G–action inherit a canonical stratification.

Kirwan [36] used this stratification to deduce many beautiful results concerning the

equivariant topology of projective varieties with G–action, including a computation of

the Betti numbers and Hodge numbers for a variety obtained as a GIT quotient.

In this paper, we will consider a certain abstraction of this canonical stratification.

These are the (semi)complete Kirwan–Ness (KN) stratifications of a G–variety, in-

troduced by Teleman [63] and recalled in Definition 1.1. The chief benefit of this

more abstract definition is that it applies in many cases when the ambient variety X

is merely quasiprojective. The main classes of examples of G–varieties which admit

semicomplete KN stratifications to keep in mind are

(i) any G–variety X which is projective over an affine G–variety; and

(ii) any G–variety X such that X=G admits a good quotient that is projective-over-

affine.1

In case (i), the KN stratification is complete if and only if dim�.X;OX /
G <1. In

case (ii), the stratification is trivial, and it is complete if and only if the good quotient

of X=G is projective.

Theorem A (Corollary 1.23) If G is a reductive group and X is a smooth G–

quasiprojective variety which admits a complete KN stratification , then the noncommu-

tative Hodge–de Rham sequence for Perf.X=G/ degenerates on the first page.

Remark This builds on [63], which shows that a version of the Hodge–de Rham

spectral sequence for H�
G
.X / degenerates for such G–schemes and that the (a priori

mixed) Hodge structure on H�
G
.X / is pure in this case. Note that in these examples,

the scheme X is not proper, and neither is the quotient stack X=G, so degeneration of

the Hodge–de Rham sequence is somewhat unexpected. Likewise from the noncom-

mutative perspective, D Kaledin’s recent resolution [32] of a well-known conjecture of

M Kontsevich and Y Soibelman [38] shows that the noncommutative Hodge–de Rham

sequence degenerates for dg-categories which are smooth and proper. However, the

categories Perf.X=G/ are typically not smooth even when X is smooth, and they

1Recall that X=G admits a good quotient if there is an algebraic space Y and a G–invariant map
� W X ! Y such that ��W QCoh.X=G/! QCoh.Y / is exact and .��OX /

G ' OY .
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are typically not generated by a single compact generator, so degeneration is again

somewhat unexpected.

The key observation in establishing the degeneration property for Perf.X=G/ is that

the formation of the Hochschild complex takes semiorthogonal decompositions of

dg-categories to direct sums, and its formation commutes with filtered colimits. Thus

if A is a retract of a dg-category which can be built from the derived category of

smooth and proper DM stacks via an infinite semiorthogonal decomposition, then the

degeneration property holds for A.

Example One simple example is the quotient stack An=Gm , where Gm acts with posi-

tive weights. Then the objects OAnfwg2Perf.An=Gm/, each of which denotes the twist

of the structure sheaf by a character of Gm , form an infinite full exceptional collection.

Therefore the Hochschild complex of Perf.An=Gm/ is quasi-isomorphic to a countable

direct sum of copies of C�

�

Perf.Spec.k//
�

, and the degeneration property follows.

We can formulate this most cleanly in terms of G Tabuada’s universal additive invariant

Uk W dgCatk !Mk ; see Blumberg, Gepner and Tabuada [11; 62]. Here Mk is the

1–category which is the localization of the 1–category of small dg-categories which

formally splits all semiorthogonal decompositions into direct sums, and Uk is the

localization map. The following is the main technical result of the paper, and we

believe it is of independent interest.

Theorem B (Theorem 1.8) Let X=G be a smooth quotient stack over a field k

of characteristic 0 that admits a complete KN stratification. Then there is a smooth

projective variety Y such that Uk.X=G/ is a direct summand of Uk.D
b.Y //˚N

in Mk .

Connections with (classical) equivariant topology and purity

If G is the complexification of a compact Lie group M as above, we show that one can

recover the equivariant topological K–theory of the underlying complex analytic space

KM .X an/, as defined by Atiyah and Segal [1; 59], from the dg-category Perf.X=G/.

The first ingredient is the recent construction by A Blanc [8] of a topological K–

theory spectrum Ktop.A/ for any dg-category A over C . Blanc constructs a Chern

character natural transformation chW Ktop.A/ ! HP.A/, shows that ch˝ C is an

equivalence for Perf of a finite-type C–scheme, and conjectures this property for any

Geometry & Topology, Volume 24 (2020)
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smooth and proper dg-category A. We show that ch˝C is an isomorphism for all

categories of the form Perf.Y/, where Y is a smooth DM stack or a smooth quotient

stack admitting a semicomplete KN stratification. In fact, we expect that this “lattice

conjecture” should hold for a much larger class of dg-categories, such as the categories

Db.X/ for any finite-type C–stack and Perf.X=G/ for any quotient stack. Following

some ideas of Thomason in [66], we next construct a natural “topologization” map

�G;X W K
top.Perf.X=G//!KM .X an/ for any smooth G–quasiprojective scheme X

and show:

Theorem C (Theorems 2.10 and 2.17) For any smooth quasiprojective G–scheme X

which admits a semicomplete KN stratification , the topologization map and the Chern

character provide equivalences2

K�M .X an/˝C
�G;X ��� ��K

top.Perf.X=G//˝C
ch
�!H�C

per
� .Perf.X=G//:

Remark In fact, Theorem 2.10 shows a bit more. The map �G;X is an equivalence for

any smooth G–quasiprojective scheme. For an arbitrary G–quasiprojective scheme X

we construct an equivalence of spectra �G;X W K
top.DbCoh.X=G// ! K

c;_
M
.X an/,

where the latter denotes the M –equivariant Spanier–Whitehead dual of the spectrum

KM .X an/, sometimes referred to as the equivariant Borel–Moore K–homology of X.

The equivalence �G;X is compatible up to homotopy with natural pullback and push-

forward maps (to be explained below). This result is of independent interest, and it

allows one to “decategorify” theorems regarding equivariant derived categories in a

precise way.

Note that the groups Kn
M
.X an/ are modules over Rep.M /, the representation ring

of M. We say that a Rep.M /–linear Hodge structure of weight n is a finite Rep.M /–

module E along with a finite filtration of the finite Rep.M /C–module E˝C inducing

a Hodge structure of weight n on the underlying abelian group E . Using the previous

identification Kn
M
.X an/˝C 'H�nC

per
� .Perf.X=G//, we will show:

Theorem D (Theorem 2.20) For any smooth M –quasiprojective scheme admit-

ting a complete KN stratification, the noncommutative Hodge–de Rham sequence

for Kn
M
.X an/˝C degenerates on the first page, equipping Kn

M
.X an/ with a pure

Rep.M /–linear Hodge structure of weight n, functorial in X. There is a canonical

isomorphism

grpKn
M .X an/'H n�2p.R�.I der

X ;OI der
X

//:

2We will see that these homology-level equivalences are induced by suitable chain maps.
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In this theorem, I der
X

denotes the derived inertia stack, sometimes referred to as the

“derived loop stack.” As we will see in Lemma 4.2 below, we can express this more

concretely as

R�.I der
X ;OI der

X

/'R�.G �X �X;O� ˝
L Ox�/

G ;

where G acts on G � X � X by g � .h;x;y/ D .ghg�1;gx;gy/ and the two G–

equivariant closed subschemes of G �X �X are defined as � D f.g;x;gx/g and
x�D f.g;x;x/g respectively.

Example Along the way, we show that the lattice conjecture holds for an arbitrary

smooth DM stack and explicitly compute the Hochschild invariants of Perf.X/. For a

smooth and proper DM stack, we construct an isomorphism of Hodge structures

�nKtop.Perf.X//˝Q'
M

k

H 2k�n
Betti .I

cl
X IQhki/:

It should be noted that the motivic decompositions of Theorem B play a key role in

the proof of Theorem D, but these decompositions do not respect the Rep.M /–linear

nature of the Hodge structure on Kn
M
.X an/.

In Section 4 we spend some time discussing more explicit models for the Hochschild

homology and periodic cyclic homology for quotient stacks. For example, we show

that when X is smooth and affine, there is an explicit bar-type complex comput-

ing the Hochschild homology of Perf.X=G/. As an application of Theorem D, we

prove an HKR-type theorem for the completion of this bar complex at various points

of Spec.Rep.G// when X=G is formally proper. A corollary of this theorem is a

description of the completed Hochschild homology modules equipped with the Connes

operator in terms of differential forms equipped with the de Rham differential.

Extensions to categories of singularities

Another major source of Hodge structures in algebraic geometry comes from singularity

theory. For instance in [56], Kyoji Saito constructs analogues of Hodge theoretic

structures on the universal unfolding of an isolated singularity. More precisely, he

describes analogues of the Gauss–Manin connection and period mappings as well as

canonical coordinates on the base space of the universal unfolding. Motivated in part

by Saito’s work, Katzarkov, Kontsevich and Pantev [33; 34] have proposed a vast

generalization of Hodge theory which they call noncommutative (nc) Hodge structures.

As the name suggests, they envision that nc Hodge structures should arise naturally

from smooth and proper dg-categories (“nc spaces”).
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Let .X;W / be a Landau–Ginzburg (LG) model, that is, a pair .X;W / consisting of

a smooth quasiprojective variety X and a regular function W W X !A1. To any LG

model, one may associate the category of matrix factorizations MF.X;W /, which is

a 2–periodic (meaning k..ˇ//–linear where ˇ has homological degree �2) dg-category.

Applying the theory of nc Hodge structures to these nc spaces is expected to yield a vast

generalization of Saito’s theory to pairs .X;W / with proper critical locus Crit.W /.3

For any LG model .X;W /, there is a “dW –twisted” Hodge–de Rham spectral sequence

which relates the hypercohomologies of the complexes

.��

X ; dW ^ / and .��

X ; d C dW ^ /

(see [33, Section 3.2] for details). Similarly to the classical case, this spectral sequence is

known to degenerate when W W X!A1 is proper by work of Ogus and Vologodsky [52].

This degeneration result plays a central role in the noncommutative Hodge theory of LG

pairs — for example, a version of this result has been used to establish the smoothness

of versal deformation spaces of (compactified) LG models (generalizing the universal

unfolding space of a singularity) [34]. Efimov [18] and Preygel [55] have independently

identified the dW –twisted Hodge–de Rham spectral sequence with the k..ˇ//–linear

noncommutative Hodge–de Rham spectral sequence for the category MF.X;W / (for

closely related results, see also Căldăraru and Tu [14], Dyckerhoff [17], Lin and

Pomerleano [43], Segal [58] and Shklyarov [60]). It follows that the result of Ogus and

Vologodsky can be recast as establishing the degeneration of this spectral sequence of

noncommutative origin.

We prove the following generalization of this degeneration result, which suggests that

in the equivariant context nc Hodge theory should extend to certain dg-categories which

are not smooth. We let Crit0.W / denote the critical locus with critical value 0.

Theorem E (Proposition 3.17) If X is a smooth G–quasiprojective scheme which

admits a semicomplete KN stratification , and W W X !A1 is a G–invariant function

such that Perf.Crit0.W /=G/ is a proper dg-category, then the k..ˇ//–linear noncom-

mutative Hodge–de Rham sequence for MF.X=G;W / degenerates on the first page.

Note that, by Lemma 1.5, the condition on Crit0.W / in the theorem is equivalent to

the induced KN stratification on Crit0.W / being complete. When X is projective over

an affine G–variety, the condition is equivalent to dim�.Crit0.W /;OCrit0.W //
G <1,

3Noncommutative Hodge structures are also expected to exist in other contexts, notably on the quantum
cohomology of a compact symplectic manifold.
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and if X=G admits a good quotient, the condition is equivalent to the condition that

Crit0.W /=G admits a projective good quotient.

We prove Theorem E by establishing an analogue of Theorem B for the k..ˇ//–linear

category MF.X=G;W / in Theorem 3.10. The proof is somewhat more subtle than

the case of Perf.X=G/, and its formulation is a little more complicated, because at

the time of this writing we are not aware of a construction of k..ˇ//–linear additive

noncommutative motives. Along the way, we also establish the degeneration property

for MF.X;W / in the case that X is a smooth quasiprojective DM stack and Crit0.W /

is proper (see Section 3).4

Further questions

The notion of properness in equivariant geometry Our result on noncommutative

Hodge–de Rham degeneration adds to the list of ways in which certain equivariant

geometries behave as if they are proper despite not being proper in the sense of algebraic

stacks. The intrinsic characterization of which smooth algebraic stacks behave as if

they are proper from the perspective of Hodge theory, such as quotient stacks with a

complete KN stratification, and which do not, such as BGa or BU for a unipotent

group U (see Example 1.24), is still somewhat fuzzy.

In [26], Halpern-Leistner and Preygel study these properness phenomena systematically

by introducing the class of formally proper stacks, with the primary application being

the algebraicity of the mapping stack out of a formally proper stack. The examples

and counterexamples above for stacks exhibiting noncommutative Hodge–de Rham

degeneration are also important examples and counterexamples for stacks which are

formally proper in the sense of [26]. This raises a natural question:

Question 0.1 Are there examples of perfect, smooth, and formally proper k–stacks X

for which the Hodge–de Rham sequence associated to Perf.X/ does not degenerate?

Hodge structures on equivariant K–theory We believe that our main theorem for

Hodge structures on Kn
M
.X an/ raises many questions for further inquiry into the role

of Hodge theory in equivariant algebraic geometry. For example, it is plausible that the

results above could be extended to construct mixed Hodge structures on some version

of K–theory for arbitrary finite-type stacks. In a different direction, one of the central

4As mentioned above, after the first draft of this paper was circulated, Kaledin proved the degeneration
conjecture. To the authors’ knowledge, however, the version of the degeneration conjecture for k..ˇ//–
linear categories, which is the one which applies to categories of the form MF.X;W / , does not appear in
the literature.
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notions in Hodge theory is that of a variation of Hodge structure. For simplicity, let S be

an affine scheme and suppose further that � W X=G!S is a smooth equivariant family

over S such that all of the fibers Xs=G admit complete KN stratifications. Most of the

techniques that we have developed work in families, which allows one to establish the

existence of suitable Hodge filtrations on the quasicoherent sheaf H�C
per
S
.Perf.X=G//.

We therefore believe it is quite likely that one can develop a theory of equivariant

period maps. Finally, Theorem E suggests that it may be possible to develop a version

of noncommutative Hodge theory which applies in the equivariant context.

Noncommutative equivariant geometry Although we make use of noncommuta-

tive algebraic geometry, all of the differential graded categories in this paper are of

commutative origin. It is interesting to try to formulate in noncommutative terms a

criterion for the Hodge–de Rham spectral sequence to degenerate. Theorem D suggests

the following concrete question: Let A be a proper dg-category which is a module

over Perf.BG/. Suppose that A˝Perf.BG/ kŠPerf.R/, where R is a dg-algebra which

is homotopically finitely presented, homologically bounded and such that H�.R/ is a

finitely generated module over HH0.R/.

Question 0.2 Does the Hodge–de Rham spectral sequence always degenerate for

such A?

Context Throughout this work, unless explicitly stated otherwise, we work over a

fixed subfield k � C . All of our functors are understood to be derived, so we write

i� for Ri� , i� for Li�, Hom for RHom, etc. We will work with stacks over the étale

site of k–schemes. By convention, unless otherwise indicated the term quotient stack

will denote a quotient of a quasiprojective k–scheme by a linearizable action of an

algebraic k–group G,5 and we denote it by X=G.

Our stacks will be classical whenever we are studying the derived category of co-

herent sheaves DbCoh.X=G/ and its relatives (QC.X/,Perf.X/, etc), but when we

discuss categories of matrix factorizations MF.X;W / and its relatives (IndCoh.X/,

PreMF.X;W /, PreMF1.X;W /, etc), it will be convenient to work with derived stacks.

We will work with k–linear dg-categories. For some of the more abstract arguments

involving homotopy limits and colimits and symmetric monoidal structures, it will be

more convenient to replace them with equivalent stable (ie pretriangulated) dg-categories

in the Morita model structure on dg-categories, then to regard them as k–linear stable

1–categories via the equivalence of Cohn [13]. We permit ourselves a bit of fluidity on

5This is sometimes referred to as a G–quasiprojective scheme.
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this point, in that we refer both to the literature on dg-categories and stable1–categories

as needed for constructions which evidently make sense in either context.
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1 The noncommutative motive of a quotient stack

In this section, we show that the noncommutative Hodge–de Rham spectral sequence

degenerates for Perf.X/ for a large class of smooth quotient stacks subject to a proper-

ness condition. Our method for establishing the degeneration property will be to

systematically realize the derived category of a smooth quotient stack as being “glued

together” from (typically infinitely many) copies of the derived category of smooth

Deligne–Mumford stacks. This method will be used several times throughout this paper,

so we formulate our main result in a way that can be applied directly in different contexts.

We work with the category Mk of k–linear additive motives in the sense of [62] (see

also [11] for a construction using the framework of 1–categories). This is the 1–

category obtained as the left Bousfield localization of the1–category of small k–linear

dg-categories localized at the class of morphisms C!A˚B coming from split exact

sequences of small dg-categories A! C!B. In other words, objects of Mk are dg-

categories ŒC�, where we have formally adjoined the relation ŒC�D ŒA�˚ ŒB� whenever

we have a semiorthogonal decomposition C D hA;Bi. We denote the localization

functor by Uk W dgCatk !Mk .

1.1 Recollections on KN stratifications

Our primary geometric tool will be a “KN stratification” of a quotient stack, as de-

fined in [63, (1.1)] or [24, Definition 2.2]. This is a decomposition of X as a union
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of G–equivariant, smooth, locally closed subschemes:

(1) X=G DX ss=G [
[

i

Si=G:

For instance, when X is projective-over-affine and G is reductive, a KN stratification

of X=G is induced by a choice of a G–linearized ample line bundle L and a Weyl-

invariant inner product on the cocharacter lattice of G. Throughout our discussion, we

will assume that we have fixed a choice of inner product on the cocharacter lattice of G,

and we will refer to the KN stratification induced by L as the L–stratification.

For each i there is a distinguished one-parameter subgroup �i of G. If we let Li

be the centralizer of �i , then there is a smooth open subvariety Zi � X �i which is

Li–invariant. Then by definition we have

Si WDG � fx 2X j lim
t!0

�i.t/ �x 2Zig:

When the KN stratification arises from GIT, then in fact Zi is the semistable locus for

the action of L0i DLi=�i.Gm/ on the closure of Zi .

The main object of study in this paper will be quotient stacks admitting a KN stratifica-

tion of the following form:

Definition 1.1 A KN stratification of a quotient stack X=G is semicomplete if X ss=G

and Zi=L
0
i all admit good quotients which are projective-over-affine. We say that

the KN stratification is complete if all of the good quotients are projective.

Remark 1.2 Given a KN stratification of a G–scheme X, if X ss=G and Zi=L
0 all

admit semicomplete (resp. complete) KN stratifications, then the stratification of X

can be refined to a semicomplete (resp. complete) KN stratification by replacing each

stratum with the preimage of the strata of Zi=L
0
i under the projection Si=G!Zi=L

0
i

and taking the distinguishing one-parameter subgroup of each of these new strata to

be �i plus a very small rational multiple of the distinguished one-parameter subgroup

of the corresponding stratum in Zi=L
0
i (which can be lifted to L rationally).

In a sense the main theorem of GIT is the following:

Theorem 1.3 Given a reductive G and any G–ample bundle on a projective-over-

affine G–scheme X, the L–stratification is semicomplete.

Semicomplete KN stratifications are important because they lead to direct sum de-

compositions of noncommutative motives. If I is a (possibly infinite) totally ordered

Geometry & Topology, Volume 24 (2020)



2372 Daniel Halpern-Leistner and Daniel Pomerleano

set and A is a pretriangulated dg-category, we say that A D hAi I i 2 Ii forms a

semiorthogonal decomposition if objects of the full pretriangulated dg-subcategories Ai

generate A under cones and shifts, and RHom.Ai ;Aj /D 0 for i > j . In other words,

a semiorthogonal decomposition of a pretriangulated dg-category is by definition a

semiorthogonal decomposition of its homotopy category.

Lemma 1.4 If X is a smooth G–scheme with a KN stratification , we have an equiva-

lence in Mk

Uk.Perf.X=G//' Uk.Perf.X ss=G//˚
M

i

Uk.Perf.Zi=Li//:

Proof The main theorem of [24] provides an infinite semiorthogonal decomposition

of Perf.X=G/ under these hypotheses. One factor of the semiorthogonal decomposition

is equivalent to Perf.X ss=G/, and the rest are of the form Perf.Zi=Li/w , where

the subscript denotes the full subcategory of objects whose homology sheaves are

concentrated in weight w with respect to �. The fact that Uk commutes with filtered

colimits implies that the infinite semiorthogonal decomposition maps to an infinite

direct sum decomposition of Uk.Perf.X=G// 2Mk . On the other hand, the category

Perf.Zi=Li/ decomposes as a direct sum of the subcategories Perf.Zi=Li/w over

all w 2 Z, so
L

w Uk.Perf.Zi=Li/w/' Uk.Perf.Zi=Li// 2Mk .

We will also use KN stratifications to compare properness of the dg-category Perf.X=G/

to properness of the dg-categories Perf.X ss=G/ and Perf.Zi=Li/ for all i .

Lemma 1.5 Let X be a perfect derived k–stack of finite cohomological dimension,

and let Y be another perfect derived k–stack such that Ycl;red ' Xcl;red and OY is

eventually coconnective. Then the following are equivalent :

(1) Hi R�.X;F / is finite-dimensional for all i and all F 2 D�Coh.X/.

(2) R�.X;F / is finite-dimensional for all F 2 Coh.X/.

(3) Perf.Y/ is a proper dg-category.6

Furthermore , if X is a separated DM stack , then this is equivalent to X being proper.

6We will need to consider the derived critical loci below, which is why we have introduced derived
stacks here. If X is classical, then there is no need to replace X by an eventually coconnective approxima-
tion in (3), but the example YD XD Spec.kŒt �/ , where t is a variable of homological degree 2 , shows
that (2) does not imply (3) without the eventually coconnective hypothesis.
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Proof Finite cohomological dimension implies that for any F 2 D�Coh.X/ and

all i 2 Z, there is an n sufficiently high that Hi R�.X; ��nF / ' Hi R�.X;F /, so

(2)) (1). Also, (1)) (2) because Coh.X/ � D�Coh.X/ and Hi R�.F / vanishes

in all but finitely many degrees. It is clear that (2) can be checked on Xcl;red because

every F 2 Coh.X/ is pushed forward from Xcl , and any F 2 Coh.Xcl/ has a finite

filtration whose associated graded is pushed forward from Xcl;red .

To show that (2), (3), it thus suffices to show that (2) is equivalent to Perf.X/ being

a proper dg-category in the case when X is eventually coconnective. Because X is

perfect, for any F 2DbCoh.X/ and any n we can find a perfect complex P such that F

is a retract of ��nP, so choosing n large enough shows that Hi R�.X;F / is a retract

of Hi R�.X;P /, which is finite if Perf.X/ is a proper dg-category. On the other hand,

Perf.X/�DbCoh.X/ if X is eventually coconnective, so HomX.E;F /DR�.E_˝F /

is finite-dimensional for perfect complexes E and F.

For the further claim, it suffices to assume that X is classical. In this case if X is a

separated DM stack, one may find a proper surjection from a quasiprojective scheme

X ! X [53], and then deduce that X is proper from property (2), and hence X is

proper.

Lemma 1.6 Let X=G be a quotient stack with a KN stratification. Then Perf.X=G/

is a proper dg-category if and only if Perf.X ss=G/ and Perf.Zi=L
0
i/ are proper dg-

categories for all i .

Proof It suffices to consider the case of a single closed stratum S �X with center

Z � S and with open complement U.

First assume that Perf.X=G/ is a proper dg-category. By [25, Theorem 2.1], there is

a fully faithful embedding Perf.U=G/� D�Coh.X=G/ (in fact one for each choice

of w 2 Z), and to prove the lemma it will suffice by Lemma 1.5 to show that this

embedding preserves R� . Adopting the notation of [25], this amounts to showing

that we can choose a w such that, for F 2 Gw � D�Coh.X/, which is identified

with D�Coh.Xss/ under restriction, we have R�.X;F / ' R�.Xss;F /. This holds

for w D 0 by [25, Lemma 2.8]

Regarding X as a derived stack, we may define the derived fixed locus zZ=L, whose

underlying classical stack is Z=L. Then [25, Theorem 2.1] shows that the functor

i��
�W D�Coh. zZ=L0/' D�Coh. zZ=L/0! D�Coh.X=G/
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is fully faithful. By Lemma 1.5 the dg-category Perf. zZ=L0/ is proper, and thus so

is Perf.Z=L0/.

Conversely, assume that Perf.Z=L0/ and Perf.U=G/ are both proper dg-categories.

We will show that Perf.X=G/ is proper by invoking Lemma 1.5 and showing that

HnR�.X;F /G is finite-dimensional for any n and any coherent sheaf F. Again by

[25, Theorem 2.1], we can functorially write F as a finite extension of an object F 02G0

and two objects supported on the unstable stratum SD S=G, one in D�CohS.X/�0

and one in D�CohS.X/<0 . In particular, as noted above, we have R�.X;F 0/ '

R�.U=G;F 0/, which has finite-dimensional homology.

Thus it suffices to show that R�.X;F 00/ has finite-dimensional homology for any

F 00 2 D�Coh.X/ which is set-theoretically supported on S. Because X has finite

cohomological dimension, we may truncate F 00 so that it lies in DbCoh.X/, and then

in can be built out of a sequence of extensions of shifts of objects of the form i�E

for E 2 Coh.S=G/. Thus it suffices to show that Perf.S=G/ is proper. A similar

filtration argument using the baric decomposition of [25, Lemma 2.2] can be used to

deduce that Perf.S=G/ is proper because Perf.Z=L/ is proper. Finally, the projection

Z=L!Z=L0 is a Gm–gerbe, so the pushforward preserves perfect complexes, and

thus Perf.Z=L/ is proper if Perf.Z=L0/ is proper.

Corollary 1.7 Let X=G be a quotient stack with a semicomplete KN stratification.

Then Perf.X=G/ is a proper dg-category if and only if the stratification is complete.

Proof Combine Lemma 1.6 with Lemma 1.5.

1.2 Motivic decompositions via KN stratifications

We will consider the class of stacks which have semicomplete KN stratifications as in

Definition 1.1. We use the notation C˚N to denote the direct sum of countably many

copies of the dg-category C. Recall also the definition of [39] that a DM stack of finite

type with finite inertia over a field of characteristic 0 is quasiprojective if X is a global

quotient stack and has a quasiprojective coarse moduli space. We will say that X is

furthermore projective-over-affine if its coarse moduli space is projective over an affine

variety.

Theorem 1.8 Let G be an algebraic group over a field k of characteristic 0. Let X

be a smooth G–quasiprojective k–scheme with a semicomplete KN stratification.

Then there exists a smooth projective-over-affine Deligne–Mumford stack Y such
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that Uk.Perf.X=G// is a direct summand of Uk.Perf.Y//˚N in Mk . Furthermore,

if Perf.X=G/ is a proper dg-category , then Y can be chosen to be a smooth projective

scheme.7

Note that, by Corollary 1.7, Perf.X=G/ is proper if and only if the KN stratification is

complete.

Remark 1.9 The proof is constructive, and actually produces something a bit stronger:

if C is the 1–category of small dg-categories, then Perf.X=G/ lies in the smallest

subcategory containing Perf.Y/ and closed under countable semiorthogonal gluings

and passage to semiorthogonal factors.

Example 1.10 If X is projective-over-affine with a linearizable G–action, then the

condition that Perf.X=G/ is a proper dg-category is equivalent to the condition that

H0R�.X;OX /
G is finite-dimensional, by [26, Proposition 4.2.3].

Example 1.11 We can write any algebraic k–group G as a semidirect product G D

U ÌL, where U is its unipotent radical and L its reductive quotient. Assume that

there is a one-parameter subgroup �W Gm! L which is central in L and acts with

positive weights on Lie.U / in the adjoint representation of G. Then this one-parameter

subgroup defines a single KN stratum S DX D f�g , and Z=LD�=L0!� is a good

quotient. Thus Theorem 1.8 applies to a large class of categories of the form Perf.BG/,

including when G is a parabolic subgroup of a reductive group.

Example 1.12 If G is as in the previous example, and X is a smooth projective-

over-affine G–scheme, then one can consider the Białynicki-Birula stratification of X

under the action of �.Gm/, which is a KN stratification. If this is exhaustive, and

�.X �.Gm/;OX �.Gm//L is finite-dimensional, then the Białynicki-Birula stratification

can be refined to a complete KN stratification of X as in Remark 1.2.

Our proof of Theorem 1.8 will proceed by a delicate inductive argument. One of the

key tools is the following:

Lemma 1.13 Let � W Y! X be a rational morphism of finite-type k–stacks , meaning

R��OY'OX . Assume that X is smooth and �� preserves DbCoh. Then Uk.Perf.X//

is a summand of Uk.Perf.Y// in Mk .

7The original version of this paper had Y as a projective DM stack, but by subsequent work of Bergh,
Lunts and Schnürer [7] one can further reduce to a smooth projective scheme.
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Proof First consider the categories Perf.Y/ and Perf.X/. The unit of adjunction

idX =G!���
� is an equivalence in Perf.X/, and hence �� is fully faithful and admits

a right adjoint. Thus Perf.X/ is a semiorthogonal factor of Perf.Y/.

We will apply Lemma 1.13 in three different situations.

Example 1.14 If � W Y! X is a flat morphism of algebraic stacks such that for every

k–point p of X the fiber Yp satisfies R�.Yp;OYp
/' k , then � is rational. If � is

not flat, then the same is true if we take Yp to refer to the derived fiber.

Example 1.15 Any representable birational morphism of smooth k–stacks is rational.

Indeed we can reduce this to the case for schemes, as birational morphisms are preserved

by flat base change and the property of a morphism being rational is fppf-local on the

base.

Example 1.16 Let G!H !K be an extension of linearly reductive groups, and

let K act on a scheme X. Then the morphism pW X=H !X=K is a G–gerbe — after

base change to X this morphism becomes the projection X �BG! X. Therefore,

because G is linearly reductive, Rp�OX=H ' OX=K .

Let � W X 0!X be a projective morphism of smooth projective-over-affine varieties

which is equivariant with respect to the action of a reductive group G. For a G–ample

invertible sheaf L on X and a relatively G–ample invertible sheaf M on X 0, we

consider the fractional polarization L� D LC �M for � 2 Q. We will need the

following:

Lemma 1.17 [63, Lemma 1.2] For any small positive � 2Q, the L�–stratification

of X 0 refines the preimage of the L–stratification of X.

Finally, we need another GIT lemma:

Lemma 1.18 Let X be a G–quasiprojective scheme which admits a good quotient

� W X ! Y such that Y is projective-over-affine. Then X DX ss for some linearized

projective-over-affine G–scheme X , which can be chosen to be smooth if X is smooth.

Proof The proof of [63, Lemma 6.1] applies verbatim: one constructs a relative

G–compactification for X ! Y by choosing a coherent F � ��OX sufficiently large

that X embeds in the projectivization of SpecY Sym.F /. The closure of X is projective

over Y , and hence projective-over-affine, and it has a linearization for which X ss DX
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by the cited argument. Furthermore, one can equivariantly resolve any singularities

occurring in X nX if X is smooth.

Proof of Theorem 1.8 Over the course of the proof, we will actually construct a

finite set of smooth quasiprojective DM stacks Y1; : : : ;YN such that Uk.Perf.X=G//

is a retract of Uk.Perf.Y1//
˚N ˚ � � � ˚ Uk.Perf.YN //

˚N , and then we may take

Y D Y1 t � � � t YN at the end. Also, when Perf.X=G/ is a proper dg-category, it

suffices to show that the Yj can be chosen to be smooth proper DM stacks, because

[7, Theorem 6.6] implies that for any smooth proper DM stack Y, Perf.Y/ is geometric,

meaning a semiorthogonal factor of Perf of a smooth projective variety. We shall prove

the theorem by induction on the rank of G.

Note that, by Lemma 1.4 and the definition of a semicomplete KN stratification,

it suffices to prove this for quotient stacks which have projective-over-affine good

quotients. For our purposes, it will be more convenient to consider smooth G–schemes

which are projective-over-affine, and by Lemmas 1.18 and 1.4 it suffices to prove the

claim for open unions of KN strata in a quotient stack of this form. We fix a G–ample

bundle L on X and consider the L–stratification as in (1).

Case X
ss D ¿ By Lemma 1.4 we must verify the claims for Uk.Perf.Zi=Li// for

all i for which Zi �U. First assume that the inclusion �.Gm/�Li admits a splitting

Li ! Gm , so that Li ' Gm �L0i where the left factor is �.Gm/. Then Zi=Li '

BGm �Zi=L
0
i , so Uk.Perf.Zi=Li// is a direct sum of copies of Uk.Perf.Zi=L

0
i//.

This is the only point of the proof at which an infinite direct sum enters, and it is an

infinite direct sum of copies of the same category, so throughout the proof we will only

encounter a finite set of distinct DM stacks.

If �.Gm/�Li is not split, then we can choose a surjective homomorphism zL!Li

with finite kernel, where zL'Gm �L0 and Gm � f1g !Li factors through �.Gm/.

The morphism pW Zi= zL! Zi=Li is rational, so Lemma 1.13 reduces the problem

to showing the claim for Zi= zL. By the argument of the previous paragraph it again

suffices to prove the claim for Zi=L
0
i.

Let Zi be the closure of Zi , which is a connected component of X �i and hence

smooth and projective-over-affine. Then Zi is the semistable locus for the action of L0i
on Zi , and L0i has lower rank than Li , so the first claim of the theorem follows from

the inductive hypothesis. Note that Lemma 1.6 implies that Perf.Zi=L
0
i/ is a proper

dg-category if Perf.U=G/ is, so in this case the inductive hypothesis implies that one

can choose the DM stacks Yj to be projective.
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Case X
s D X

ss ¤ ¿ The argument in the case where X ss D ¿ applies here as

well, so the inductive hypothesis implies that the conclusion of the theorem holds

for Perf.Zi=Li/ for all Zi �U. By Lemma 1.4 it suffices to show that the claims hold

for X ss=G. In this case X ss=G is a smooth separated Deligne–Mumford stack whose

coarse moduli space is projective-over-affine. Furthermore, if Perf.U=G/ is a proper

dg-category, then so is Perf.X ss=G/ by Lemma 1.6, and hence X ss=G is projective

by Lemma 1.5.

Case X
ss ¤ ¿, X

ss ¤ X
s, and codim.X ss n X

s; X
ss/ � 2 As in the previous case,

it suffices to show the claims for X ss=G. Here we use the main result of [37], which

says that there is a birational morphism � W X 0!X such that .X 0/ss.L�/D .X
0/s.L�/,

where L� D �
�LC �M for a suitable relatively G–ample M. By Lemma 1.17 the

open subset U 0 WD ��1.X ss.L// is a union of KN strata, and � W U 0 ! X ss.L/ is

rational, so by Lemma 1.13 we may reduce the main statement of the theorem to the

corresponding claim for U 0=G, which falls under the previous case. Furthermore,

if Perf.U=G/ is a proper dg-category, the fact that U 0=G! U=G is proper implies

that Perf.U 0=G/ is a proper dg-category, so again we may reduce to the previous case

to show that the Yj can be chosen to be projective.

Case X
ss ¤ ¿ but codim.X ss nX

s; X
ss/ � 1 Let Y be a smooth projective variety

with a G–action such that R�.Y;OY / ' k and for some linearization M we have

codim.Y nY s;Y / � 2. For instance, Y could be a suitable product of flag varieties,

or a large projective space with a suitable linear G–action. We linearize the G–action

on X �Y with L� DLC �M. By Lemma 1.17, the open subvariety U �Y �X �Y

is a union of KN strata for the L�–stratification. The projection U �Y=G! U=G is

rational, and so by Lemma 1.13 it suffices to prove the claims for U �Y=G. Note that

Perf.U �Y=G/ is a proper dg-category if Perf.U=G/ is. Finally we have a sequence

of inclusions

X ss �Y s � .X �Y /s � .X �Y /ss �X ss �Y;

where the first inclusion is due to the fact that points in Y s have finite stabilizers and

thus so do points in X ss �Y s , and the last inclusion follows from Lemma 1.17. This

implies that

codim..X �Y /ss n .X �Y /s; .X �Y /ss/

� codim.X ss � .Y nY s/;X ss �Y /D codim.Y nY s;Y /� 2;

which reduces us to the previous case.
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1.3 ƒ–modules and the noncommutative Hodge–de Rham sequence

Let us recall the negative cyclic and periodic cyclic homology of a small k–linear

dg-category A. We let C�.A/ 2D.ƒ/ denote the (mixed) Hochschild complex of A,

regarded as a dg-module over ƒD kŒB�=B2 where B has homological degree 1 and

acts on C�.A/ by the Connes differential. We have

C .n/
� .A/ WD C�.A/˝ kŒu�=.un/;

C�� .A/ WD lim
 ��

n

C .n/
� ;

C per
� .A/ WD C�� .A/˝kŒŒu�� k..u//;

where u is a variable of homological degree �2. The differential on each complex is

given by dCuB , where d is the differential on C�.A/. In fact, these constructions make

sense for any ƒ–module M. We sometimes denote the negative cyclic construction

by M S1

and the periodic cyclic construction by M Tate . See Lemma 3.2 below.

Definition 1.19 [38] The category A is said to have the degeneration property if

H�.C
.n/
� .A// is a flat kŒu�=.un/–module for all n� 1.

It is immediate from the definitions that the degeneration property is preserved by

filtered colimits of dg-categories. It is also known that the degeneration property holds

for categories of the form AD Perf.R/, where R is a smooth and proper dg-algebra

[31; 32]. In particular, this holds when AD Perf.X/, where X is a smooth and proper

Deligne–Mumford stack over k [23], although a more direct argument in this case

follows from Proposition 2.13 below. If A satisfies the degeneration property, then

H�.C
�
� .A// is a flat kŒŒu��–module. (See [38, Corollary 9.1.3]).

The degeneration property owes its name to its relationship with the noncommutative

Hodge–de Rham spectral sequence. This is the spectral sequence associated to the

filtration8 of the complex

FpC per
� .A/D up �C�� .A/� C per

� .A/:

The E1 page of the spectral sequence is gr C
per
� .A/ ' C�.A/˝ k..u//. The degen-

eration property implies that this spectral sequence degenerates on the first page,

8Note that the filtration is not a filtration of k..u//–modules, as u �Fp � FpC1 . As explained to us
by Kaledin, this can be understood by thinking of u as the Tate motive. In other words when k � C ,
rather than regarding kŒŒu�� simply as a complex (where u has cohomological degree 2), we regard it
as H�.P1/ with its Hodge structure, which places u in F1CŒŒu�� .
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so the associated graded of the resulting filtration on H�.C
per
� .A// is isomorphic

to H�.C�.A//˝k..u//. Under the assumption that A is suitably bounded, we can say

something more precise:

Lemma 1.20 Let A be a dg-category such that H�.C�.A// is homologically bounded

above and which satisfies the degeneration property. Then there exists a (noncanonical )

isomorphism H�.C
�
� .A//'H�.C�.A//˝ kŒŒu��.

Proof This follows from the remark before Theorem 4.14 of [33].

The hypothesis of Lemma 1.20, that H�.C�.A// is homologically bounded above, will

apply to Perf.X/ for all smooth k–stacks X of finite cohomological dimension such

that QC.X/ is compactly generated.

Remark 1.21 The ƒ–module C�.A/ is functorial in A. When A is a symmetric

monoidal k–linear 1–category, exterior tensor product followed by the symmetric

monoidal product gives a natural map

C�� .A/˝C�� .A/! C�� .A˝A/! C�� .A/

and likewise for C
per
� .A/. On the level of homology, this gives H�C

per
� .A/ the structure

of a commutative k..u//–algebra, and for any symmetric monoidal functor between sym-

metric monoidal 1–categories A!B, the resulting map H�C
per
� .A/!H�C

per
� .B/

is a map of commutative k..u//–algebras.

1.4 The degeneration property for quotient stacks

In [63, Theorem 7.3], Teleman establishes the degeneration of a commutative Hodge–

de Rham sequence, which converges to the equivariant Betti cohomology H�
G
.X /,

for a smooth quotient stack X=G with a complete KN stratification. The argument

in [63] makes use of the KN stratification and has a similar flavor to the proof of

Theorem 1.8. However the proof in the commutative case is substantially simpler. In

the noncommutative situation, we are not aware of an argument to reduce the proof of

degeneration to the case of the quotient of a smooth projective scheme by the action of

a reductive group, as was done in [63].

Using the motivic statement of Theorem 1.8, we can immediately deduce noncommu-

tative Hodge–de Rham degeneration. The main observation is the following:
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Lemma 1.22 The degeneration property is closed under direct summands and arbitrary

direct sums in Mk .

Proof The Hochschild complex C�.�/ is an additive invariant of dg-categories and

thus factors through Uk uniquely up to contractible choices. The claim follows from the

fact that the operation D.ƒ/!D.k/ mapping .M; d;B/ 7! .M˝kŒu�=.un/; dCuB/

commutes with filtered colimits and in particular infinite direct sums and the fact that

an infinite direct sum of .kŒu�=.un//–modules is flat if and only if every summand is

flat.

Corollary 1.23 Let G be a reductive group and let X be a smooth G–quasiprojective

scheme which admits a complete KN stratification. Then Perf.X=G/ has the degenera-

tion property.

Proof Combine Lemma 1.22 with the conclusion of Theorem 1.8.

Example 1.24 As a counterexample, consider Perf.BGa/. This category is Morita

equivalent to the category Perf.kŒ��=.�2// where � has degree �1. By the (graded-

commutative) HKR theorem [44, Proposition 5.4.6] we have H�C�.Perf.kŒ��=.�2//Š

kŒ��=.�2/˝ Sym�.d�/, where d� has degree 0. By Theorem 5.4.7 of the same book,

the Connes operator goes to the de Rham differential which sends �! d� and so the

spectral sequence does not degenerate.

We also observe, somewhat surprisingly, that the derived category of coherent sheaves

on certain singular quotient stacks also has the degeneration property. We will consider

the following geometric setup:

� X=G DX ss=G[
S

i Si=G is a complete KN stratification (Definition 1.1) of a

smooth quotient stack,

� V is a G–equivariant locally free sheaf on X such that V jZi
has �i–weights

less than or equal to 0 for all i , and

� � 2 �.X;V /G is an invariant section.

Note that the quantization-commutes-with-reduction theorem [63] implies that if

the �i–weights of V jZi
are strictly negative, then �.X;V /G ' �.X ss.L/;V /G (this

is referred to as adapted in [63]). Using the methods of [24] one can show that

dim�.X;V /G <1 even when the �i–weight of V jZi
vanishes for some i .
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Amplification 1.25 In the setup above , if

(1) � is regular on X ss with smooth vanishing locus , and

(2) for all i the restriction of � to .V jZi
/�D0 , the summand of V jZi

which is fixed

by �.Gm/, is regular with smooth vanishing locus ,

then there is a smooth and proper quasiprojective Deligne–Mumford stack Y such that

Uk.D
bCoh.X�=G// is a retract of Uk.Perf.Y//˚N .

Proof We apply the structure theorem for the derived zero locus X� in [25, Theorem

3.2], whose derived category is just the derived category of the sheaf of CDGAs

over X=G given by the Koszul algebra

AD .Sym.V _Œ1�/; d� D �.s//:

The structure theorem constructs an infinite semiorthogonal decomposition which gener-

alizes the main structure theorem of [24]. One factor is isomorphic to DbCoh.X ss
� =G/,

and the remaining factors are isomorphic to DbCoh.Z0i=Li/
w , where Z0i denotes

the derived zero locus of � restricted to .V jZi
/�D0 , and the superscript w denotes

the full subcategory of DbCoh.Z0i=Li/ consisting of complexes whose homology is

concentrated in weight w .

In order to apply this theorem, we must check that after restricting the cotangent

complex LX� =G to Z0i=Li and looking at the summand with �–weights < 0, there is

no fiber homology in homological degree 1. Because X� is a derived zero section,

.LX� =G jZ 0
i
/�<0 ' Œ.V _jZi

/�<0! .�X jZ 0
i
/�<0! OZ 0

i
˝ .g_/�<0�:

So the weight hypotheses on V jZi
imply that this is a two-term complex of locally

free sheaves in homological degrees 0 and �1 and hence has no fiber homology in

homological degree 1.

Given the structure theorem for DbCoh.X�=G/, the proof of Lemma 1.4 now applies

verbatim to give a finite direct sum decomposition

Uk.D
bCoh.X�=G//D Uk.D

bCoh.X ss
� =G//˚

M

i

Uk.D
bCoh.Z0i=Li//:

Under the hypotheses of the amplification, each factor in this direct sum decomposition

is DbCoh of a smooth quotient stack satisfying the hypotheses of Theorem 1.8, and

the result follows.

Remark 1.26 If V is strictly adapted to the KN stratification, then condition (2) in

the previous amplification is vacuous.
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Corollary 1.27 In the setup of Amplification 1.25, the category DbCoh.X�=G/ has

the degeneration property.

We will see another approach to establishing Corollary 1.27 using graded LG models

in Example 3.23 and Proposition 3.26.

2 Hodge structures on equivariant K–theory

In this section we consider the action of a reductive group G on a smooth quasiprojective

C–scheme X. Our goal is to identify the periodic cyclic homology C
per
� .DbCoh.X=G//

with the complexification of the Atiyah–Segal equivariant topological K–theory

KM .X an/ with respect to a maximal compact subgroup M �G (see Section 2.1.2).

Our final result, Theorem 2.20, will allow us to define a pure Hodge structure of

weight n on Kn
M
.X an/ in the case where X admits a complete KN stratification.

Rather than construct a direct isomorphism, we study an intermediate object, the

topological K–theory of the dg-category Ktop.DbCoh.X=G//, as defined in [8], which

admits natural comparison isomorphisms with each of these theories. In Blanc’s

construction, Ktop.C/ is constructed from the geometric realization of the presheaf of

spectra on the category, Aff, of affine C–schemes of finite type,

K.C/W A 7!K.A˝C C/:

Here K.�/ denotes the nonconnective algebraic K–theory of a dg-category of [8,

Definition 2.10]. The geometric realization of a presheaf, j � j, is defined to be the

left Kan extension of the functor A 7! †1.Spec A/an
C , regarded as functor with

values in spectra, along the Yoneda embedding of the category of finite-type C–

schemes into presheaves of spectra, Aff! Sp.Aff/. The geometric realization functor

j � jW Sp.Aff/ ! Sp admits a right adjoint, which assigns M 2 Sp to the presheaf

of spectra HB.M / WD HomSp.†
1. � /an

C;M /. The semitopological K–theory is the

geometric realization

Ksemitop.C/ WD jK.C/j;

regarded as a Ksemitop.C/–module spectrum. By [8, Theorem 4.5], we have an isomor-

phism Ksemitop.C/' bu, where the latter denotes the connective topological K–theory

spectrum. Choosing a generator ˇ 2�2.bu/, one then defines the topological K–theory

of a dg-category to be

Ktop.C/ WDKsemitop.C/Œˇ�1�D jK.C/j˝bu buŒˇ�1�:
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Remark 2.1 In the definition of the presheaf K.C/, A˝C C denotes the derived

tensor product of non-idempotent-complete dg-categories, as in [35, Section 4.3]. In

Section 3 we will also consider a symmetric monoidal structure on small stable idem-

potent complete dg-categories, which we will denote by A P̋ B to avoid confusion. In

addition, following the convention of [8, Definition 2.7], throughout this paper we define

the algebraic K–theory of a small dg-category C to be the algebraic K–theory of the

Waldhausen category Perf.C/, so that it is automatically Morita invariant. We warn the

reader that, as a consequence, if C is a stable dg-category, then K.C/ denotes the usual

algebraic K–theory of the idempotent completion of C, not the K–theory of C itself.

We will also use the construction of a Chern character map ChW Ktop.C/! C
per
� .C/.9

First, one obtains a map of presheaves K.C/!C
per
� .C/ from the usual Chern character

in algebraic K–theory, where C
per
� .C/ denotes the presheaf A 7!C

per
� .A˝CC/. Using

a version of the Künneth formula for periodic cyclic homology, one obtains an equiva-

lence jC per
� .C/j ' C

per
� .C/˝CŒu˙� jC

per
� .C/j. Then one can construct an isomorphism

of presheaves C
per
� .C/ ' HB.CŒu

˙�/, which leads to a map jC per
� .C/j ! CŒu˙�.

Combining these provides a map

Ksemitop.C/! C per
� .C/˝CŒu˙� jC

per
� .C/j ! C per

� .C/

which give the Chern character after inverting ˇ . The main result we use is [8,

Proposition 4.32], which states that for a finite-type C–scheme X, the Chern character

induces an equivalence Ktop.Perf.X //˝C! C
per
� .Perf.X //. Furthermore, there is a

natural topologization map which is an equivalence Ktop.Perf.X //!K.X an/, and

under this equivalence Ch can be identified with a twisted form of the usual Chern

character for X an under a canonical isomorphism C
per
� .X /!HBetti.X IQ/˝Q CŒu˙�.

More precisely, Blanc’s Chern character provides an equivalence

Ktop.Perf.X //˝Q'HBetti.X IQ/˝Q
��

u

2� i

��

�HBetti.X
anIQ/˝C..u//;

which we can alternatively express as an isomorphism

�n

�

Ktop.Perf.X //
�

˝Q'
M

p

H 2p�n.X anIQhpi/;

where Qhpi �C denotes the subgroup .2� i/pQ.

9In order to be consistent with the rest of the paper, we use the notation C
per
� for the periodic cyclic

homology complex of a dg-category, rather than the notation HP used in [8]. In addition, we use the
notation ˝ rather than ^ for the smash product of spectra and module spectra. For example Ktop.C/˝C

is the C–module spectrum, which we canonically identify with a complex of C–modules, which is denoted
by Ktop.C/^HC in [8].
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2.1 Equivariant K–theory: Atiyah–Segal versus Blanc

In this section we consider a reductive group G with maximal compact subgroup

M �G, and a G–quasiprojective scheme X, which need not be smooth. The goal of this

section will be to construct a comparison isomorphism between Ktop.DbCoh.X=G//

and topological M –equivariant K–homology of X an with locally compact supports,

whose construction and properties we recall below.

2.1.1 Equivariant Borel–Moore homology theories from invariants of dg-categories

Let us consider an additive invariant of dg-categories, E.�/. Then we have a Borel–

Moore homology theory on the category of G–schemes by defining EBM.X / WD

E.DbCoh.X=G// (see Remark 2.4 below). This assignment is covariantly func-

torial with respect to proper G–equivariant maps pW X 0 ! X by applying E.�/

to the pushforward functor p�W DbCoh.X 0=G/ ! DbCoh.X=G/, and E.X / is

contravariantly functorial with respect to flat G–equivariant maps f W X 0 ! X

by applying E.�/ to the pullback functor f �W DbCoh.X=G/ ! DbCoh.X 0=G/.

Note also that if X is a smooth G–space, then we have a canonical equivalence

E.Perf.X=G//! E.DbCoh.X=G//, so we can canonically identify EBM.X / with

the “cohomology” theory E.X / WD E.Perf.X=G//, which is a form of Poincaré

duality.

More precisely, let SpacesG denote the category of algebraic spaces with a G–action

and G–equivariant maps, and let Spaces?
G for ? D f;p;' respectively denote the

subcategories consisting of flat maps, proper maps, and isomorphisms. We regard the

additive invariant E as giving two strict functors into spectra E
p
BMW Spaces

p
G
! Sp

and E
f
BMW .Spaces

f
G
/op! Sp along with an isomorphism of the restriction of these

functors to the subcategories Spaces'G � Spaces
p
G

and Spaces'G � .Spaces
f
G
/op . Here

we have used the fact that Spaces'G is a groupoid to make the canonical identification

Spaces'G ' .Spaces'G /
op .

Recall that an additive invariant E.�/ of dg-categories is localizing if it takes local-

ization sequences of dg-categories to exact triangles, and we say that E.�/ satisfies

equivariant dévissage if for any closed immersion i W X ,! X 0 of G–spaces the in-

duced map i�W E.DbCoh.X=G//! E.DbCohX .X
0=G// is an equivalence, where

DbCohX .X
0=G/ denotes the derived category of quasicoherent complexes with coher-

ent cohomology sheaves which are set-theoretically supported on X.

Lemma 2.2 Let E be an additive invariant of dg-categories. Then:
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(1) The base-change formula holds: if pW X ! Y is proper , f W Y 0! Y is flat , and

f 0 and p0 are base changes of f and p , then there is an equality of compositions

p� ı f
� D .f 0/� ı .p0/�W EBM.X /! EBM.Y

0/ in the homotopy category of

spectra Ho.Sp/.

(2) If V is a G–equivariant vector bundle on X and � W P .V/!X is the projection ,

then

��W EBM.X /!EBM.P .V//

followed by

.�/˝OP.V/.k/W EBM.P .V//!EBM.P .V//

is a split injection.

(3) The previous maps, where k ranges from 0; : : : ; n � 1, define a canonical

equivalence

EBM.P .V//'EBM.X /
˚n:

Furthermore , if E is localizing and satisfies equivariant dévissage , then:

(4) For any closed immersion of G–spaces i W X ,! X 0 with open complement

j W U �X 0, there is an exact triangle EBM.X /
i��!EBM.X

0/
j�

�!EBM.U /! .

(5) If � W V !X is a G–equivariant torsor for V, then ��W EBM.X /!EBM.V / is

an equivalence.

Proof The claim (1) follows immediately by applying E.�/ to the usual base-change

formula. Claims (2) and (3) follow from the facts that E is an additive invariant and

that there is a canonical semiorthogonal decomposition

DbCoh.P .V/=G/D h��.DbCoh.X=G//; ��.DbCoh.X=G//˝OP.V/.1/; : : : ;

��.DbCoh.X=G//˝OP.V/.n� 1/i:

Now let us assume that E satisfies dévissage. Claim (4) follows immediately from the

dévissage condition and the localization exact triangle

E.DbCohX .X
0=G//!E.DbCoh.X 0=G//!E.DbCoh..X 0�X /=G//! :

For (5), we note that Thomason’s proof when E.�/ is algebraic K–theory in [65,

Theorem 4.1] generalizes to this context as well: the torsor V is classified by an

extension 0! V! V0! OX ! 0 of G–equivariant locally free sheaves on X and

is isomorphic to the complement of the closed embedding P.V/ ,! P.V0/. Using
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the direct sum decomposition of E.P .V0// and E.P .V// from (3) one can show

that E.i�/W E.P .F//!E.P .W// is a split injection, and the pullback map gives an

equivalence of the cofiber with E.X /. It follows from the localization sequence of (4)

that the cofiber of E.i�/ can be canonically identified with E.P .V0/�P .V// under

the restriction map, so we have that pullback gives an equivalence E.X /'E.V /.

Example 2.3 Algebraic K–theory of dg-categories as defined in [8, Definition 2.10]

is a localizing invariant and satisfies dévissage, and it follows that Ktop.�/ is localizing

and satisfies dévissage as well.

Remark 2.4 The theory EBM.X / gives a Borel–Moore homology theory in the sense

of [41, Definition 2.1.2], but whose source is the category of G–spaces and which takes

values in Ho.Sp/ rather than graded abelian groups. We are forced to use the homotopy

category of spectra because we have only formulated the base-change formula in this

setting. In order to formulate a “strict” Borel–Moore homology theory valued in spectra,

one would have to define the source category as an 1–category of correspondences,

as in [22, Section V].

Remark 2.5 Although we are only interested in quotient stacks here, one can define

a Borel–Moore homology theory EBM.X/ WD E.DbCoh.X// for arbitrary algebraic

stacks, and the statements and proofs of the previous lemma extend to this context.

2.1.2 Atiyah–Segal equivariant K–theory We now turn our attention to topological

equivariant K–theory with respect to a maximal compact subgroup M �G. There is

a K–cohomology theory for topological M –spaces constructed in [1]. Below we use

the more systematic description of KM .X / in terms of equivariant stable homotopy

theory as the spectrum obtained by taking levelwise M –equivariant mapping spaces

from X to the naive M –spectrum underlying the M –spectrum buM . For details

on the nonequivariant and equivariant stable homotopy category, we refer the reader

to [42] and [47, Chapters XII, XIV and XVI]. KM .X an/ can also be constructed as

the K–theory spectrum associated via Quillen’s Q–construction to the exact category

of M –equivariant complex vector bundles on X an .

We will also consider the Atiyah–Segal equivariant K–homology with locally compact

supports K
c;_
M
.X an/. This theory was studied in [66, Section 5] under the notation

GAS.G;X /, and our discussion follows this reference closely. In particular, we refer the

reader there for a nice discussion contextualizing K
c;_
M
.�/ with respect to several other
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versions of equivariant K–theory. We have chosen to denote the M –equivariant K–

homology with locally compact supports as K
c;_
M
.X an/ because it is the M –equivariant

Spanier–Whitehead dual (see [47, XVI.7]) of the M –spectrum of equivariant K–theory

with compact supports constructed in [59, page 136], which we denote by Kc
M
.X an/.

In particular, Kc
M
.X / is strictly covariantly functorial for open immersions [59,

Proposition 2.9] and strictly contravariantly functorial for proper maps. Dually, it

follows that K
c;_
M
.�/ can be regarded as both a strict functor Spaces

p
G
! Sp and a

strict functor .Spaceso
G/

op! Sp, where Spaceso
G � SpacesG denotes the subcategory

of open immersions, and these two functors are isomorphic on the subcategory Spaces'G .

Poincaré duality in this context gives a canonical isomorphism KM .X an/'K
c;_
M
.X an/

for complex G–manifolds — a priori this isomorphism depends on a choice of orienta-

tion, but complex manifolds are canonically oriented for K–theory (see [59, Section 3]

and [47, XIV]).

Lemma 2.6 The properties of Lemma 2.2 also hold for K
c;_
M
.X an/. Namely:

(1) The base-change formula holds with respect to a proper map pW X ! Y and an

open immersion f W U � Y .

(2) If V is a G–equivariant vector bundle on X of dimension n, then there is a

canonical equivalence K
c;_
M
.P .V/an/'K

c;_
M
.X an/˚n .

(3) For any closed immersion of G–spaces i W X ,! X 0 with open complement

j W U �X 0, there is an exact triangle EBM.X /
i��!EBM.X

0/
j�

�!EBM.U /! .

(4) If � W V !X is a G–equivariant torsor for V, then there is a canonical equiva-

lence EBM.X /!EBM.V /.

Proof The base-change formula arises from the observation that if U 0 WDp�1.U /�X,

then there is a commutative diagram of maps of one-point compactifications

XC //

��

.U 0/C

��

Y C // UC

and it is precisely pullback along these maps which is used to define proper pullback and

pushforward along an open immersion in Kc
M
.�/. The canonical equivalence (2) is dual

to the equivalence Kc
M
.P .V//'Kc

M
.X /˚n of [59, Proposition 3.9]. Property (3) is

[59, Proposition 2.9]. One proves (4) using the same method as the proof of Lemma 2.2:
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the canonical functor K
c;_
M
.X an/!K

c;_
M
.V / is the inclusion of the 0th piece of the

direct sum decomposition K
c;_
M
.P .V0//'K

c;_
M
.X an/˚nC1 followed by restriction to

the open subset V � P .V0/.

Remark 2.7 How to define a canonical pullback map f �W Kc;_
M
.Y an/!K

c;_
M
.X an/

for a flat map f W X ! Y is not clear a priori. That is why we have only stated the

projection formula for open immersions, and it’s why in (2) and (4) above we can not

state that the canonical isomorphisms are given by pullback. Indeed it is not immediate

in (4) that the isomorphism K
c;_
M
.X an/'K

c;_
M
.V an/ is independent of the presentation

of V as a torsor for V. If f were the restriction of a flat map X 0! Y 0 along a closed

embedding Y ,! Y 0, then one could provisionally define a pullback map using the

localization sequence (3), but perhaps the most uniform definition of flat pullback

for K
c;_
M

is via the isomorphism of Theorem 2.10 below.

2.1.3 The comparison map We now construct a comparison map between Borel–

Moore homology theories �G;X W K
top.DbCoh.X=G// ! K

c;_
M
.X an/ by first con-

structing a comparison isomorphism between the corresponding cohomology theories

Ktop.Perf.X=G//! KM .X an/. Observe that we have a natural transformation of

presheaves of spectra

Kalg.Perf.X=G �T //!KM .X an �T an/

which is induced by the functor of exact categories which sends an algebraic G–vector

bundle to its underlying complex topological vector bundle equipped with the induced

action of M (this functor is symmetric monoidal and hence induces a map of K–theory

spectra [66, Section 5.4]). By Lemma 2.8 below, the presheaf KM .X an � .�/an/

is weakly equivalent to HomSp.†
1.�/an

C;KM .X an//, where HomSp. � ; � / denotes

the internal function spectrum in the category of spectra. Composing this with the

comparison map above gives a map of presheaves

Kalg.Perf.X=G/˝C OT //! HomSp.†
1T an
C ;KM .X an//;

where both sides are regarded simultaneously as presheaves in the G–space X and the

affine scheme T . Here we have used the natural Morita equivalence

Perf.X=G/˝C OT
'�! Perf.X=G �T /:

By the adjunction defining the geometric realization [8, Definition 3.13] for presheaves

on the category of affine schemes, this gives a map

Ksemitop.Perf.X=G//!KM .X an/
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of presheaves in the G–space X. This natural transformation of presheaves on SpacesG

will be bu–linear by construction. Because KM .X an/ already satisfies Bott periodicity,

this comparison map extends uniquely to the localization, giving our final comparison

map

�
perf
G;X
W Ktop.Perf.X=G// WDKsemitop.Perf.X=G//˝bu buŒˇ�1�!KM .X an/:

The following technical lemma was used in the construction above:

Lemma 2.8 For any topological space Y and topological M –space X, we have a

natural weak equivalence in Sp,

HomSp.†
1YC;KM .X //ŠKM .X �Y /;

where on the right Y is regarded as an M –space with trivial M –action.

Proof We fix a universe U for forming the equivariant stable homotopy category SpM

as in [42]. The “change of universe” functor taking an E 2 SpM to its underlying naive

M –spectrum admits a left adjoint, as does the functor from naive M –spectra to spectra

which applies the M –fixed-point functor levelwise. We will denote the composition of

these to functors as .�/M W SpM ! Sp, and it therefore has a left adjoint, which we

denote by �. By definition we have that

KM .X / WD .HomSpM
.†1U XC; buM //M ;

where buM is the M –spectrum representing equivariant K–theory, †1
U

is the stabi-

lization functor from pointed M –spaces to M –spectra, and HomSpM
is the internal

function spectrum in the symmetric monoidal category of M –spectra [42, page 72].

Thus by the (spectrally enhanced) adjunction and the definition of inner Hom in a

symmetric monoidal category we have

HomSp.†
1YC;KM .X //'

�

HomSpM
.�.†1YC/^†

1
U .XC/; buM /

�M
:

The claim now follows from the natural isomorphism �.†1YC/ ' †1
U
.YC/ [42,

Remark II.3.14(i)], where Y is regarded as an M –space with trivial M –action, the

fact that †1
U

maps smash products of pointed M –spaces to smash products of M –

spectra [42, Remark II.3.14(iii)], and the fact that YC ^XC ' .Y �X /C for pointed

M –spaces.

Now that we have constructed a comparison map Ktop.Perf.X=G//!KM .X an/ of

presheaves, we construct a comparison map �G;X W K
top.DbCoh.X=G//!K

c;_
M
.X an/

for Borel–Moore homology for a G–quasiprojective scheme X as follows: Choose
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a G–equivariant closed immersion i W X ,! Z into a smooth G–scheme Z with

open complement j W U �X. Then by Lemmas 2.2 and 2.6, and using the canonical

equivalence Perf.Z=G/' DbCoh.Z=G/, there is a dotted arrow completing the map

of exact triangles

(2)

Ktop.DbCoh.X=G//
i�

//

�G;X

��

Ktop.Perf.Z=G//
j�

//

�
perf
G;Z

��

Ktop.Perf.U=G//

��

//

�
perf
G;U

��

K
c;_
M
.X an/

i�
// K

c;_
M
.Zan/

j�

// K
c;_
M
.U an/ //

Lemma 2.9 The map �G;X W K
top.DbCoh.X=G//! K

c;_
M
.X an/ is canonically de-

fined up to homotopy, independent of the choice of embedding X ,!Z , and agrees

with the comparison map �
perf
G;X

if X is smooth. The map �G;X commutes (up to

homotopy) with proper pushforwards , restriction to open G–subschemes , the canonical

equivalence between the Borel–Moore homology of X and that of a torsor for a vector

bundle over X, and restriction from G–equivariant K–theory to H–equivariant K–

theory for a reductive subgroup H �G such that H is the complexification of H \M.

Proof The fact that the map �G;X is canonical up to homotopy follows from the fact

that the rest of the diagram is strictly commutative and the formation of homotopy

fibers is functorial in the category of spectra. So the map between homotopy fibers

of the two restriction maps j � is canonical, and the dévissage isomorphism with the

homotopy fiber of j � induced by the Gysin map i� is canonical for both the theories

Ktop.DbCoh.�=G// and K
c;_
M
..�/an/. The fact that �G;X � �

perf
G;X

when X is smooth

follows from considering the identity embedding X ,!X. Independence of the choice

of embedding is essentially proved in [66], which is an extension to the equivariant

setting of [64]. For the benefit of the reader, we explain the conceptual core of argument:

Define a category Emb of “virtual embeddings” whose objects are G–quasiprojective

schemes and whose morphisms X  Z consist of a G–equivariant closed subscheme

V ,! Z along with a G–equivariant map V ! X which can be factored as a com-

position of maps which are torsors for locally free sheaves. Composition is given by

pullback of closed subschemes. Then in the proofs of [66; 64], Thomason shows that

given two maps X  Z1 and X  Z2 , there is a linear action of G on An and

maps Z1 An and Z2 An such that the two compositions X  An agree.10 In

10More precisely, the proof of [66, Proposition 5.8] shows that for any G–quasiprojective X there
is a map X  An for some linear representation of G. Therefore, it suffices to consider the case
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particular, the under-category EmbX= is filtered, as is the category Embsm
X=

of virtual

embeddings X  Z , where Z is smooth.

Now let X  Z be a virtual embedding into a smooth Z , which corresponds to

.V ,! Z; � W V ! X /. For ease of notation let E1.X /DKtop.Perf.X=G// and let

E2.X /DKM .X an/ for any smooth G–quasiprojective scheme X. Then we define

Ei.X  Z/ WDEi
V .X /D fib.Ei.Z/!Ei.Z �V // for i D 1; 2:

Note that, by functoriality of the homotopy fiber, the comparison maps on cohomology

theories �perf
G;Z

and �perf
G;Z�V

induce a map

�.X  Z/W E1.X  Z/!E2.X  Z/:

We claim that each of the assignments Ei.X Z/ can be extended to a corresponding

functor Ei W Embsm
X=
! Ho.Sp/ in which all arrows in Embsm

X=
map to isomorphisms,

and the comparison map �.X  Z/ defines a natural transformation of functors

E1!E2 . Indeed given a composition X  Z1!Z2 , which we regard as a map

Z1  Z2 in Embsm
X=

, consider the following diagram, where the central square is

cartesian:

V 0
2

~~

� p

  

i

��

�

��

V1 � p

  ~~

V2 � p

  ~~

X // Z1
// Z2

Then we have canonical isomorphisms

Ei
V1
.Z1/

��

�!Ei
V 0

2

.V2/
i��!Ei

V 0
2

.Z2/ for i D 1; 2;

where the construction of the latter map uses Poincaré duality (all of the G–schemes

involved are smooth) to convert cohomology to homology with locally compact supports

of two maps X  Ani for i D 1; 2 . Next if V ! X is a composition of torsors for locally free
sheaves and V ,! Ani for i D 1; 2 are two G–equivariant closed embeddings, then the proof of [64,
Lemma 4.2] works equivariantly to construct equivariant embeddings Ani ,!An1 �An2 such that the
two induced embeddings V ,!An1�An2 agree. Thus it suffices to show that for any two maps X Ani

corresponding to two fibrations Vi !X, one can compose with maps Ani  An0
i such that if V 0i �An0

i

corresponds to the compositions X  An0
i , then V 0

1
' V 0

2
over X. This follows from the proof of [64,

Proposition 4.7], which also works equivariantly.
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(ie Borel–Moore homology), and i� is an isomorphism by dévissage for the Borel–

Moore theory. We leave the somewhat involved diagram chase to the reader to show

that the isomorphisms Ei.X  Z1/!Ei.X  Z2/ commute with the comparison

maps �.X  Z1/ and �.X  Z2/ up to homotopy.

Our comparison map �G;X arises from choosing an embedding X  Z where

V D X and combining �.X  Z/ with the canonical dévissage isomorphisms

Ktop.DbCoh.X=G// ' E1.X  Z/ and K
c;_
M
.X an/ ' E2.X  Z/. We observe

that, using Lemmas 2.2(5) and 2.6(4), for any X  Z we can compose the canonical

equivalence Ktop.DbCoh.X=G// ! Ktop.DbCoh.V =G// with the canonical dévis-

sage equivalence Ktop.DbCoh.V =G//!E1
V
.Z/, and likewise for K

c;_
M
.�/. Given

a map V ! Z which is a composition of torsors for vector bundles, and given a

closed G–subscheme X ,! Z , the canonical equivalences Ktop.DbCoh.Z=G//!

Ktop.DbCoh.V =G// and Ktop.DbCoh.X=G// ! Ktop.DbCoh.V jX =G// commute

with the pushforward maps, and likewise for K
c;_
M
.�/. It follows that for any compo-

sition X  Z1 Z2 , the composition of the canonical maps

Ktop.DbCoh.X=G//!E1.X  Z1/!E1.X  Z2/

is homotopic to the canonical map Ktop.DbCoh.X=G//! E1.X  Z2/, and the

same is true for K
c;dual
M

.�/. Combining these facts, we see that the comparison map

�G;X defined via the canonical equivalences for any smooth virtual embedding X Z

Ktop.DbCoh.X=G//'E1.X  Z/
�.X Z/
�����!E2.X  Z/'K

c;_
M
.X an/

is independent of the choice of X  Z , because the category Embsm
X=

is filtered.

Now that we have shown that the comparison map

�G;X W K
top.DbCoh.X=G//!K

c;_
M
.X an/

is independent, up to homotopy, of the choice of embedding X  Z , it is fairly

straightforward to show that �G;X commutes with restriction to an open subset and

restriction of equivariance from G to a reductive subgroup H � G which is the

complexification of H \M, because the corresponding claims hold for the comparison

map �perf
G;X for smooth G–schemes. The fact that �G;X commutes with the equivalences

Ktop.DbCoh.X=G//'Ktop.DbCoh.V =G// and K
c;_
M
.X an/'K

c;_
M
.V an/ for a map

V !X which is a torsor for a vector bundle follows from the more general description

of �G;X above, because any closed embedding into a smooth G–scheme V ,! Z

defines both a virtual embedding X  Z and an embedding V  Z , and the
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canonical equivalence Ktop.DbCoh.X=G// ' E1.X  Z/ is the composition of

the equivalences Ktop.DbCoh.X=G// ' Ktop.DbCoh.V =G// ' E1.V  Z/ and

likewise for K
c;_
M
.�/.

Last, one shows that �G;X commutes with pushforward along a proper map pW X!Y

by choosing a closed immersion Y ,!Z into a smooth G–scheme Z and a projective

bundle P .V/ over Z such that p factors through a closed immersion X ,! Y . One

shows that � commutes with pushforward along the projection P .VjY /! Y using

dévissage and the corresponding fact for �perf
G;Z

for smooth G–schemes. It therefore

suffices to show that � commutes with closed immersions. For any closed immersion

of G–schemes X1 ,!X2 , we can choose a closed immersion into a smooth G–scheme

X2 ,! Z . Then � commutes with pushforward along X1 ,! X2 because i� is part

of a canonical map of exact triangles from Ei.X1/!Ei.Z/!Ei.Z �X1/! to

Ei.X2/!Ei.Z/!Ei.Z �X2/ for both theories i D 1; 2.

Note that in Lemma 2.9 we have passed from strict presheaves on the category of alge-

braic G–spaces with values in spectra, to presheaves on the category of quasiprojective

G–schemes with values in the homotopy category Ho.Sp/. Presumably neither of these

relaxations are necessary, but they simplify our discussion.

Theorem 2.10 The natural map �G;X W K
top.Db Coh.X=G// '�! K

c;_
M
.X an/ con-

structed in (2) and Lemma 2.9 is a weak equivalence.

Proof By the commutativity of the diagram (2) and the fact that �perf
G;X
� �G;X

when X is smooth, it suffices to show that �G;X is a weak equivalence when X

is a smooth G–quasiprojective scheme. Let T � G be a maximal torus which is

the complexification of a compact maximal torus Tc D T \M, and let B � G

be a Borel subgroup containing T . For both G–equivariant cohomology theories,

pullback along the map G �B X !X is an injection which is canonically split by the

pushforward map. The map which forgets from G–equivariance to T –equivariance,

then restricts along the T –equivariant map f1g�X !G�B X induces an equivalence

KM .G �B X /!KTc
.X / because topologically G �B X DM �Tc

X and the same

maps induces an equivalence Ktop.Perf.G �B X=G//!Ktop.Perf.X=T // because

X=T !G�B X=G'X=B is a composition of torsors for line bundles on X=B . The

comparison map �perf
G;X

commutes with the operations of pullback, proper pushforward,

and restriction to subgroups, so � is compatible with the splitting of the inclusions

Ktop.Perf.X=G// ,! Ktop.Perf.X=T // and KM .X an/ ,! KTc
.X an/, so it suffices

to prove the claim when G D T is a torus.
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We can stratify X=T by smooth T –schemes of the form U � .T=T 0/, where T 0 � T

is an algebraic subgroup and T acts trivially on U. Using the localization sequences

for closed immersions in Lemmas 2.2 and 2.6 and the compatibility of �G;X with push-

forward along closed immersions and restriction to open subsets, Lemma 2.9, it suffices

to prove the claim for schemes of this form. The fact that Perf.U � .T=T 0/=T / '

Perf.U �BT 0/'
L

� Perf.U /, where � ranges over the group of characters of the di-

agonalizable group T 0, implies that Ktop.Perf.U �.T=T 0/=T //'
L

� Ktop.Perf.U //.

There is an analogous decomposition of KTc
.U �T=T 0/, and �T;U�T =T 0 respects this

direct sum decomposition because the summands are the essential image of pullback

along the map U � T=T 0 ! U followed by tensoring with the various characters

of T 0. We note that when the group is trivial, our comparison map agrees with the one

constructed in [8, Proposition 4.32] and thus is an equivalence, and the claim follows.

Remark 2.11 If G is not necessarily reductive, then one can choose a decomposition

G D U ÌH, where H is reductive and U is a connected unipotent group. As in

the first step in the proof of [66, Theorem 5.9], one shows that the map of stacks

X=H ! X=G can be factored as a sequence of torsors for vector bundles, so the

canonical restriction map Ktop.Perf.X=G//! Ktop.Perf.X=H // is an equivalence

by Lemma 2.2. Combining this with the previous theorem shows that for a maxi-

mal compact subgroup M � H � G, the topologization functor is an equivalence

Ktop.Perf.X=G// ! KM .X an/ as presheaves of spectra on SmG , and we have a

comparison isomorphism �G;X W K
top.DbCoh.X=G//!Kc_

M
.X an/.

2.2 The case of smooth Deligne–Mumford stacks

Here we provide an explicit computation of the periodic cyclic homology of Perf.X/ for

a smooth Deligne–Mumford stack of finite type over C and study its noncommutative

Hodge theory when it is proper. The results of this section are likely known to experts.

Given a smooth scheme U, we can consider its de Rham complex, 0!OU!�1
U
!� � � ,

a complex of vector spaces. We can regard this as a ƒ–module ��.U / by defining

�p.U / WD �
�p
U

and letting B act via the de Rham differential. Even though the

ƒ–module structure is not OU –linear, it still defines a sheaf of ƒ–modules on the

small site Xét for any smooth DM stack X. We define the de Rham cohomology of a

smooth Deligne–Mumford stack X to be the ƒ–module

HdR.X/ WD R�.Xét; ��/:
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There are several other ways to present HdR.X/. First note that we can equivalently

restrict to the subsite of étale maps U ! X for which U is affine, which we denote

by Xaff
ét , because it has an equivalent topos of sheaves, ie the canonical map is an

equivalence

HdR.X/
'�! R�.Xaff

ét ; ��/:

We can consider the sheaf of ƒ–modules on Xaff
ét given by U 7!C�.OU /, the Hochschild

complex of coordinate algebra. This admits a canonical map to the presheaf of ƒ–

modules given by U 7! C�.Perf.U //. Likewise, for any smooth affine scheme U,

the Hochschild–Kostant–Rosenberg isomorphism is a map of ƒ–modules C�.OU /!

��.U /. Its formation is compatible with étale base change, so it induces a map of

presheaves C�.O�/!��.�/ on X aff
ét .

Lemma 2.12 The canonical maps

R�.Xaff
ét ; ��/ R�.Xaff

ét ;C�.O�//! R�
�

Xaff
ét ;C�.Perf.�//

�

are all equivalences of ƒ–modules.

Proof These maps are all equivalences for affine U at the level of underlying com-

plexes. The result follows formally from the fact that a map of ƒ–modules is an

equivalence if and only if the underlying map of complexes is an equivalence, and the

forgetful functor taking a ƒ–module to its underlying complex commutes with limits

and hence commutes with R� .

The following is due to Toen, and essentially follows the argument of [67] in the case

of algebraic K–theory. We will need to use both the derived inertia stack IX and its

underlying classical stack I cl
X
� IX .

Proposition 2.13 (Toen, unpublished) Let X be a smooth Deligne–Mumford stack ,

and let I cl
X

denote its classical inertia stack. There is a natural isomorphism of ƒ–

modules C�.Perf.X//!HdR.I
cl
X
/.

The idea of the proof is to show that the formation of both complexes is local in the

étale topology over the coarse moduli space of X, so one can reduce to the case of

a global quotient. Thus a key observation is that the formation of the derived inertia

stack IX is étale local.

Lemma 2.14 Let X!X be a map from a stack to a separated algebraic space, and

let U! U be the base change along an étale map U !X. Then IU ' IX �X U.
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Proof This can be seen for the derived inertia stack from a functor-of-points definition

of IU. We let U.T / denote the 1–groupoid of maps from T to U for a derived affine

scheme T . Then

IU.T /D U.T /�U.T /�U.T / U.T /

�Map.S1;U.T //

�Map.S1;X.T //�Map.S1;X .T // Map.S1;U.T //:

So in order to show that IU.T / ' IX.T / �X .T / U.T /, it will suffice to show that

IU ' IX �X U in the derived sense. Consider the following diagram, in which each

square is Cartesian and the vertical arrows are closed immersions:

U //

'

&&
U �X U //

��

� //

��

X

��

U �U // U �X // X �X

Here � denotes the graph of the morphism U ! X. Then by definition IX is the

derived self-intersection of the closed subspace X !X �X, so in order to prove the

claim it will suffice to show that � �U�X � is isomorphic to IU as a derived scheme

over U.

The map U ! � is an isomorphism on underlying classical algebraic spaces, and

it follows from the fact that U ! U �X U is an étale closed immersion of closed

substacks of U �U that the induced map IU ! � �U�X � induces an isomorphism

on cotangent complexes as well and hence is an isomorphism.

Proof of Proposition 2.13 The pullback functor along the projection I cl
X
!X induces

a map C�.Perf.X//!C�.Perf.I cl
X
//. For any étale U=I cl

X
, the pullback functor induces

a natural map C�.Perf.I cl
X
//! C�.Perf.U //. Thus we get a map of presheaves of

ƒ–modules

C�.Perf.X//! R�
�

.I cl
X /

aff
ét ;C�.Perf.�//

�

'HdR.I
cl
X /:

Note that if pW X! X is the coarse moduli space of X, then the map constructed

above is functorial with respect to pullback along maps U !X.

We claim that C�.Perf.X//, regarded as a presheaf over X, has étale descent. Indeed,

consider any étale map U !X, and let UD X�X U. Because the derived category
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of U is compactly generated [23], we can make the identification

C�.Perf.U//' R�.U; ����.OU//' R�.U; .pU /�OIU/;

where �W U! U�U is the diagonal, pU W U! U is the base change of p , and OIU

is the structure sheaf of the derived inertia stack, regarded as a finite algebra over OU.

In the previous lemma, we saw that the formation of IU commutes with étale base

change, so this combined with the projection formula implies that R�.U;p�OIU/'

R�.U;p�.OIX/jU /, functorially in U. The presheaf U=X 7! R�.U;p�.OIX/jU / has

étale descent, so U 7! C�.Perf.U// does as well.

Thus in order to show that C�.Perf.X//!HdR.I
cl
X
/ is an equivalence, it suffices to

verify this after base change to an étale cover of X. We can find such a U !X such

that UDX�X U is a global quotient of a scheme by a finite group action. In that case,

the result is shown in [2, Proposition 4].

Finally after applying the Tate construction, ie passing to periodic cyclic homology,

we can compare this to the cohomology of jXanj, the geometric realization of the

underlying topological stack (in the analytic topology) associated to X [51], as well as

the cohomology of a coarse moduli space X!X.

Lemma 2.15 Let X be a Noetherian separated DM stack of finite type over a Noe-

therian base scheme. Assume that X has finite dimension. Then X has finite étale

cohomological dimension with Q–linear coefficients, and the functor R�.Xét;�/

commutes with filtered colimits.

Proof We first claim that the pushforward along the projection to the coarse moduli

space pW X!X is exact. Indeed this can be checked étale locally on X, and so we may

assume that X is a global quotient U=G, where G is a finite group. One can factor p

as U=G! X �BG! X — pushforward along the first is exact by [3, Tag 03QP],

and the second is exact because we are using characteristic 0 coefficients.

It now suffices to prove the claim when XDX is a Noetherian separated algebraic space

of finite type over a Noetherian base scheme. In this case, we can apply the induction

principle of [3, Tag 08GP] and the fact that étale cohomology takes elementary excision

squares to homotopy cartesian squares to reduce to the case of affine schemes. In this

case, the result follows from the fact that derived global sections of characteristic 0

sheaves on a Noetherian scheme in the étale topology agrees with that in the Nisnevich

topology, and the Nisnevich topology has cohomological dimension � d .
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Finally, the implication that finite cohomological dimension implies commutation with

filtered colimits in the unbounded derived category is [12, Lemma 1.1.7].

Lemma 2.16 There are natural isomorphisms

HdR.X/
Tate ' C �sing.jX

anjIQ/˝Q C..u//' C �sing.X IQ/˝Q C..u//:

Proof The de Rham isomorphism gives a canonical isomorphism of presheaves of

C..u//–modules on Xaff
ét between U 7! .��.U //

Tate and U 7! C �sing.U
anIC/..u//, so

we have a canonical isomorphism11

C �sing.jY
anjIC/˝C..u//' R�.Xaff

ét ; ��.�/
Tate/:

It therefore suffices to show that the Tate construction commutes with taking derived

global sections for the sheaf of ƒ–modules �� . For this we observe that the functor

M 7!M S1

commutes with homotopy limits, and hence with derived global sections,

and M Tate is the filtered colimit of M S1

!M S1

Œ2�!M S1

Œ4�!� � � , so its formation

commutes with R� by the previous lemma.

Finally, one can check that the pullback map C �sing.Y
anIQ/! C �sing.jY

anjIQ/ is an

equivalence locally in the analytic topology on Y an . Locally Yan is isomorphic to a

global quotient of a scheme by a finite group, for which the fact is well known.

2.3 Equivariant K–theory and periodic cyclic homology

For a dg-category, C, it is natural to ask if the Chern character induces an equivalence

Ktop.C/˝C ! C
per
� .C/. This is referred to as the lattice conjecture in [8], where

it is conjectured to hold for all smooth and proper dg-categories. Here we observe

some situations in which the lattice conjecture holds, even for categories which are not

smooth and proper.

Theorem 2.17 (lattice conjecture for smooth quotient stacks) Let G be an algebraic

group acting on a smooth quasiprojective scheme X. If X=G admits a semicomplete

KN stratification (Definition 1.1), then the Chern character induces an equivalence

Ktop.Perf.X=G//˝C! C
per
� .Perf.X=G//.

11All of the singular complexes we will encounter have finite-dimensional total cohomology, so
M..u//'M ˝C C..u// .
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Lemma 2.18 Let X be a smooth Deligne–Mumford stack , and let i W Z ,! X be a

smooth closed substack. Then the pushforward functor fits into a fiber sequence

C per
� .Perf.Z// i��! C per

� .Perf.X// j�

�! C per
� .Perf.X�Z//:

Proof This follows from Proposition 2.13, combined with Lemma 2.16 and the usual

Gysin sequence for the regular embedding of inertia stacks IZ ,! IX .

Proof of Theorem 2.17 Because Ktop.�/˝C and C
per
� .�/ are both additive invari-

ants, proving that the natural transformation

Ktop.Perf.X=G//˝C! C per
� .Perf.X=G//

is an equivalence for smooth projective-over-affine X and reductive G reduces to the

case where X=G is Deligne–Mumford by Theorem 1.8.

Note that the only point in the proof of Lemma 2.2 which does not immediately apply

to an arbitrary additive invariant is the localization sequence for a closed immersion.

Therefore Lemma 2.18 implies that Lemma 2.2 applies to the presheaf C
per
� .Perf.�//,

because the only stacks that appear in the proof are DM.

We can now imitate the proof of Theorem 2.10: Perf.X=G/ is a retract of Perf.X=B/,

and Perf.X=B/! Perf.X=T / induces an equivalence for both invariants Ktop. � /

and C
per
� . � /, by Lemma 2.2. Thus it suffices to consider smooth DM stacks of the

form X=T . Any such stack admits a stratification by smooth stacks of the form U �B�

for some finite group � , and by Lemma 2.18 it suffices to prove the theorem for such

stacks. Thus Ch˝C is an equivalence because it is an equivalence for smooth schemes

and Perf.U �B�/'
L

� Perf.U /, the sum ranging over characters of � .

Corollary 2.19 (lattice conjecture for smooth Deligne–Mumford stacks) Let X be

a smooth Deligne–Mumford stack. Then the Chern character induces an equivalence

Ktop.Perf.X//˝C! C
per
� .Perf.X//.

Proof We have established a localization sequence for closed immersions of smooth

DM stacks for Ktop.Perf.�// in Lemma 2.2. We do not know if the localizing invariant

of dg-categories HP.�/ satisfies dévissage in the sense of Lemma 2.2 for arbitrary

closed immersions of stacks, but the localization sequence for closed immersions

of smooth DM stacks follows from the comparison results Proposition 2.13 and

Lemma 2.16 and the corresponding fact for singular cohomology.
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We therefore have a map of fiber sequences for any closed immersion of smooth DM

stacks over C ,

Ktop.DbCoh.Z//˝C //

Ch
��

Ktop.DbCoh.X//˝C

Ch
��

// Ktop.DbCoh.U//˝C

Ch
��

HP.DbCoh.Z// // HP.DbCoh.X// // HP.DbCoh.U//

From [40, Corollaire 6.1.1] every smooth DM stack of finite type admits a stratification

by locally closed substacks which are quotients of a smooth affine scheme by a finite

group. The corollary follows by applying Theorem 2.17 and the fiber sequence above

inductively to this stratification.

2.4 Hodge structure on equivariant K–theory

We can now prove the final result of this paper, the construction of a pure Hodge

structure on the equivariant K–theory. What we mean by a pure Hodge structure on a

spectrum E in this case is simply a Hodge structure on the homotopy groups of that

spectrum ��.E/: ie for each n a weight n Hodge structure on �n.E/ is a descending

filtration of �n.E/˝C such that

�n.E/˝C D Fp�n.E/˝C˚FnC1�p��.E/˝C for all p:

Theorem 2.20 Let X be a smooth quasiprojective C–scheme , and let M be a com-

pact Lie group whose complexification G acts on X. Then , if X=G admits a complete

KN stratification , the Chern character isomorphism

KM .X an/˝C! C per
� .Perf.X=G//

combined with the noncommutative Hodge–de Rham sequence induces a pure Hodge

structure of weight n on Kn
M
.X an/ with a canonical isomorphism

grp
Hodge.K

n
M .X an/˝C/'H n�2pR�.IX;OIX/;

where IX denotes the derived inertia stack of X WD X=G. The Hodge filtration

on Kn
M
.X an/ is compatible with pullback maps , and in particular it is a filtration

of Rep.M /–modules.

Remark 2.21 As we will see in the proof, this claim also holds for arbitrary smooth

and proper DM stacks over C , without requiring that X be a global quotient.
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Proof The degeneration property follows from Corollary 1.23, and we have a Chern

character isomorphism from Theorem 2.10 combined with Theorem 2.17, so all we have

to do is check that the filtration on C
per
� .Perf.X=G// coming from the Hodge–de Rham

spectral sequence combined with the rational structure coming from the Chern character

defines a weight n pure Hodge structure on ��n.K
top.Perf.X=G//˝Q. This claim is

closed under arbitrary direct sums and summands in Mk , so by Theorem 1.8 it suffices

to prove this claim for smooth and proper DM stacks which are global quotients of a

G–quasiprojective scheme by a reductive group G.

For a smooth and proper DM stack, Proposition 2.13 gives an isomorphism HdR.I
cl
X
/'

C�.Perf.X// of ƒ–modules. Note that I cl
X

is itself a smooth and proper DM stack, and

for any smooth DM stack Y the complex HdR.Y/
Tate is canonically equivalent to the

usual de Rham complex of [57] tensored with C..u//,

R�.Y; Œ0! OY!�1
Y! � � � �/˝C C..u//:

However, the usual Hodge filtration differs slightly from the noncommutative one. We

have canonical isomorphisms

H n.HdR.Y/
Tate/'

M

l�n mod 2

H l.YIC/;

grpF �
nc H n.HdR.Y/

Tate/'
M

i

R�.Y; �i
YŒi � 2p�/:

Because the cyclic complex HdR.Y/ has the degeneration property, we may commute

taking cohomology H n and taking associated graded grp , so we have

grpF �
nc H n.HdR.Y/

Tate/'
M

i

H nCi�2p.Y; �i
Y/:

Therefore, on each direct summand H l.YIC/ of H n.HdR.Y/
Tate/, the subquotient

H l�p0
.Y; �

p0

Y
/ shows up in F

p
nc if and only if l�p0D nCp0�2p00 for some p00 �p .

In other words the subquotients appearing are those for which p0 � pC 1
2
.l � n/. It

follows that under the direct sum decomposition above we have

Fp
nc H n.HdR.Y/

Tate/'
M

l�n mod 2

F
pC 1

2
.l�n/

classical H l.YIC/:

Therefore, under the isomorphism H n.HdR.Y/
Tate/ '

L

l�n mod 2 H l.YIQ/ ˝ C

of Lemma 2.16, the noncommutative Hodge filtration corresponds to the Hodge

filtration on
L

l�n mod 2 H l.YIQ/
˝

1
2
.l � n/

˛

. We claim that this rational structure
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on H n.HdR.I
cl
X
/Tate/ agrees with the one induced by the equivalence Ktop.Perf.X//˝

C 'HdR.I
cl
X
/Tate of Theorem 2.17 and Lemma 2.16, so that we have an isomorphism

of Hodge structures

(3) ��n

�

Ktop.Perf.X//
�

˝Q'
M

l�n mod 2

H l.I cl
X IQ/

˝

1
2
.l � n/

˛

:

The Hodge structure on the l th rational cohomology of the de Rham complex of a smooth

DM stack has weight l (see [61]), so it would follow that ��n

�

Ktop.Perf.X//
�

˝Q

has a Hodge structure of weight n.

For the claim about the rational structure of HdR.I
cl
X
/, note that the isomorphism

HdR.I
cl
X
/Tate 'Ktop.Perf.X//˝C results from applying the derived global sections

functor to isomorphic sheaves on the étale site of I cl
X

:

R�
�

.I cl
X /

aff
ét ;K

top.Perf.�//˝C
�

' R�
�

.I cl
X /

aff
ét ;C

per
� .Perf.�//

�

' R�
�

.I cl
X /

aff
ét ;C

�
sing..�/

anIC/..u//
�

:

But according to [8, Proposition 4.32], the noncommutative Chern character for smooth

C–schemes factors through the twisted Chern character under the natural equivalence

C
per
� .Perf.X // ' HdR.X /

Tate ' C �sing

�

X IC..u//
�

. It follows that the isomorphism

above is the complexification of a map of presheaves of Q–complexes on .I cl
X
/aff

ét ,

Ktop.Perf.�//˝Q! C �sing..�/
anIQ/˝Q Q

��

u

2� i

��

;

which is also a levelwise weak equivalence. Therefore, the rational structure on

H n.HdR.I
cl
X
/Tate/ agrees with that of the Hodge structure of (3).

Remark 2.22 For any of the quotient stacks appearing in Amplification 1.25, the

theorem above still holds for DbCoh.X/ with the same proof, with the exception of the

explicit computation of grpH n
�

C
per
� .DbCoh.X//

�

when X is not smooth. In particular:

� A canonical isomorphism KM .X an/˝C!C
per
� .DbCoh.X=G// which factors

through the complexification of the Chern character Ktop.DbCoh.X=G//!

C
per
� .DbCoh.X=G//.

� The degeneration property for DbCoh.X=G/.

� A pure Hodge structure of weight n on ��nKtop.DbCoh.X// coming from

the degeneration of the noncommutative Hodge–de Rham sequence which is

Rep.G/–linear.
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3 Hodge–de Rham degeneration for singularity categories

In this section we extend our methods to establish the degeneration property for certain

“dg-categories of singularities”, MF.X=G;W /, associated to an equivariant Landau–

Ginzburg model, ie a smooth G–variety X and a G–invariant function W W X !A1.

The notation MF is more frequently used for categories of matrix factorizations, which

are equivalent to singularity categories for LG models on smooth schemes [54]. We

have chosen to use MF to denote singularity categories for consistency with [55].

The categories MF.X=G;W / will be Z=2Z–graded, and we will need a suitable

1–categorical model to work with these. The 1–category of (essentially) small

idempotent complete stable 1–categories, Catperf
1 , admits a symmetric monoidal

structure [11, Section 3.1]. For A;B 2 Catperf
1 , A P̋ B is the category of compact

objects in Ind.A/ y̋ Ind.B/, which is idempotent complete.

For any E1–algebra R, Perf.R/ is canonically a commutative algebra object in Catperf
1 .

We let

LinCatsm
R D .Perf.R/˝/–Mod.Catperf

1 /

denote the 1–category of Perf.R/˝–module objects. LinCatsm
R is equivalent, via the

ind-completion functor, to the 1–category of .R–Mod/˝–module objects in the 1–

category of compactly generated presentable stable 1–categories with functors which

preserve colimits and compact objects, as in [45, Definition 6.2]. Because .R–Mod/˝ is

a commutative algebra object, LinCatsm
R has a canonical symmetric monoidal structure

[46, Theorem 4.5.2.1]. In addition, if R!R0 is a map of E1–algebras, the tensor

product induces a map of commutative algebra objects Perf.R/˝! Perf.R0/˝ , and

this induces a symmetric monoidal pullback functor [46, Theorem 4.5.3.1] which we

denote by

.�/ P̋ R R0W LinCatsm
R ! LinCatsm

R0 :

These constructions work just as well with Perf.R/˝ and Perf.R0/˝ replaced by any

other essentially small stable idempotent complete symmetric monoidal 1–categories.

Any 1–category C in LinCatsm
R is canonically enriched over R–Mod; that is,

RHom.E;F / 2 R–Mod for any E;F 2 C, via an inner-Hom construction. In

fact, by [13], LinCatsm
R is equivalent to the 1–category of categories enriched in

R–module spectra. Regarding k..ˇ//, where ˇ is variable of homological degree �2,

as an E1–algebra via the forgetful functor from dg-algebras to E1–algebras, this
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identifies LinCatsm
k..ˇ//

with the 1–category of categories enriched over dg-k..ˇ//–

modules, or Z=2Z–graded dg-categories. This justifies using LinCatsm
k..ˇ//

as our model

for Z=2Z–graded dg-categories.

The main results of this section, Theorem 3.10 and Proposition 3.17, will establish a

k..ˇ//–linear version of the degeneration property for some categories of singularities

on quotient stacks.

3.1 Preliminaries on categories of singularities on stacks

There have been several concrete approaches to developing the general theory of

singularity categories [19; 43; 54]. We will mostly use the perspective of [55], extended

more recently in [9], which is more abstract but has the advantage of allowing one to

deduce results about singularity categories directly from the analogous statement for

derived categories of coherent sheaves (see Lemma 3.9). We will summarize the main

definitions and lemmas we will use from [55]. As elsewhere in the paper k denotes a

field of characteristic zero.

Definition 3.1 A Landau–Ginzburg (LG) model is a pair .X;W /, where X is a smooth

finite-type k–stack such that the automorphism groups of its geometric points are affine

and W is a morphism

W W X!A1:

In particular, X is a QCA stack over k in the sense of [16]. Our primary examples of

interest will be quotient stacks X WD X=G over k . By generic smoothness, if W is

nonconstant on every component of X, then W has only finitely many critical values

in A1. Throughout this paper we let Crit0.W / denote the component of the vanishing

locus of dW 2 �.X; �1
X
/ which lies set-theoretically in X0 WD X�A1 f0g.

We now equip the bounded derived category of coherent sheaves on the zero fiber,

DbCoh.X0/, with a kŒŒˇ��–linear structure, where ˇ is a variable of homological

degree �2. This arises from a homotopical S1–action on the category DbCohX0
.X/, in

the terminology of [55], which concretely refers to a natural action of H�.S
1I k/'ƒ

on the Hom-complexes of the category. The formal variable ˇ arises via the same

construction which leads to the formal variable u acting on C�� .A/, but we use different

variable names to avoid confusion between these two S1–actions, especially when we

discuss the k..ˇ//–linear negative cyclic homology below.
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Spec.ƒ/ admits the structure of a derived group scheme, so the1–category DbCoh.ƒ/,

as well as its ind-completion IndCoh.ƒ/, admits a symmetric monoidal structure given

by the convolution product “ı”: Given F;G 2 DbCoh.ƒ/, F ıG WD m�.F �G/,

where mW Spec.ƒ/�Spec.ƒ/!Spec.ƒ/ is the group multiplication. So the underlying

complex of F ıG is F ˝k G, with the ƒ–module structure given by letting B act on

homogeneous elements by

BF˝G.m˝ n/ WD BF .m/˝ nC .�1/jmjm˝BG.n/:

The following is an enrichment of standard Koszul duality results.

Lemma 3.2 The functor

DbCoh.ƒ/! Perf.kŒŒˇ��/; V 7! V S1

WD RHomƒ.k;V /;

extends to a symmetric monoidal equivalence , leading to a symmetric monoidal equiva-

lence

IndCoh.ƒ/˝ Š .kŒŒˇ��–Mod/˝:

Proof This is [55, Proposition 3.1.4]; see also [9, Remark 2.38, Lemma 2.39].

The proof of Lemma 3.2 relies on an elementary but important observation. Let .V; d/

be a complex with a ƒ–action. There is a quasi-isomorphism of complexes

V S1

Š .V ŒŒˇ��; d CˇB/:

Formal completion does not commute with the formation of tensor products of com-

plexes, but the formation of the complex .V Œˇ�; d CˇB/ does commute with forming

tensor products of complexes. So the crux of the proof of Lemma 3.2 is the following:

Lemma 3.3 The natural inclusion of complexes

.V Œˇ�; d CˇB/! .V ŒŒˇ��; d CˇB/

is a quasi-isomorphism whenever .V; d/ is homologically bounded above.

Proof By definition, the complex .V ŒŒˇ��; dCˇB/ is the inverse limit of the complexes

.V Œˇ�=.ˇn/; d C ˇB/. If V is homologically bounded above, then for any m the

canonical map .V Œˇ�; d CˇB/! .V Œˇ�=.ˇn/; d CˇB/ induces an isomorphism in

homology of degree �m for n� 0, which implies the claim.
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As described in [55, Construction 3.1.5; 9, Remark 2.38] the stack X0 admits an action

by the derived group scheme Spec.ƒ/ which defines the upper horizontal arrow in the

cartesian square

(4)

X0 �Spec.ƒ/ //

p1

��

X0

i
��

X0
i

// X

The action (4) can be described [55, Remark 3.1.7] concretely by a cosimplicial,

commutative dg-OX–algebra whose cosimplicial degree n piece is given by An WD

hOXŒBX;B1; : : : ;Bn�; dBi D 0; dBX DW i, where the variables Bi each have degree

one.

Definition 3.4 We define PreMF.X;W / WD DbCoh.X0/ with the additional kŒŒˇ��–

linear structure induced by Lemma 3.2 and the DbCoh.ƒ/˝–module structure on

DbCoh.X0/ induced by the action (4).

It is useful to note that the kŒŒˇ��–linear structure has a concrete dg-model, described

in [55], which we now recall. Observe that OX0
ŠA WD .OXŒBX�; dBXDW /, where BX

is a variable of degree one. Pushforward defines a canonical equivalence,

DbCoh.X0/ŠA–Mod.Perf.X/˝/;

where the right-hand side denotes the category of coherent A–modules. There are

natural adjoint functors

i�W A–Mod.Perf.X/˝/! DbCoh.X/ and i�W DbCoh.X/!A–Mod.Perf.X/˝/

given by forgetting the A–module structure and tensoring with A, respectively. Now

given two dg-A–modules M and N each of whose underlying complex of OX–modules

has bounded coherent homology, the Hom-complex HomX.i�M; i�N / inherits a ƒ–

module structure given by

(5) BW � 7! BX ı� � .�1/j�j� ıBX:

The following proposition shows that this ƒ–module structure is enough to recover

Homs as A–modules:

Lemma 3.5 [55, Section 3.3; see also Proposition 3.2.1] Given objects M;N 2

A–Mod.Perf.X/˝/, we have an equivalence HomX.i�M; i�N /S
1

Š HomA.M;N /,

where the S1–action is given by (5).
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Proof For any object M 2A–Mod.Perf.X/˝/, we can construct a complex of BX–

modules M ŒB�, where as usual B is a variable of degree 1 with B2D 0 and the action

of BX is given by .BX/MCB , where left multiplication by B on M ŒB� anticommutes

with the action of .BX/M . There is an adjunction:12

(6) HomX.i�M; i�N /Š HomA.M ŒB�;N /;

�.m/ 7! z�.mCBm0/ WD �.m�BX �m
0/C .�1/j�jBX�.m

0/;

z .m/ WD  .mCB � 0/ [  .mCBm0/:

The ƒDkŒB�–module structure, which on the left-hand side is given by

BW � 7! BX ı� � .�1/j�j� ıBX;

corresponds under this isomorphism to the ƒ–module structure given by

BW �.�/ 7! ��.B � .�//:

We then extend M ŒB� to a resolution of M as an A–module by forming the complex

(7)
�

M ŒB�˝k

�

k..ˇ//=ˇkŒŒˇ��
�

I d D dM �Bˇ � .�/
� Š

B;ˇ�n 7!0

// M;

where ˇ is a variable of homological degree �2, which we refer to as the Koszul–Tate

resolution of M. Using (6) and (7), we have that HomA.M;N / can be computed as

HomA

�

M ŒB�˝k

�

k..ˇ//=ˇkŒŒˇ��
�

;N
�

ŠHomA.M ŒB�;N /ŒŒˇ��ŠHomX.i�M; i�N /S
1

;

where it is evident that the differential on the first term agrees with the differential used

to compute the invariants for the S1–action defined in (5).

The natural kŒŒˇ��–linear structure on the complex HomX.i�M; i�N /S
1

provides an

explicit model for the kŒŒˇ��–linear structure from Definition 3.4. Note that in (7), we con-

structed a canonical quasi-isomorphism of A–modules M ŠM ŒB�˝k

�

k..ˇ//=ˇkŒŒˇ��
�

,

where the latter has an explicit action by kŒŒˇ��. Under the resulting quasi-isomorphism,

HomA.M;N /' HomA

�

M ŒB�˝k

�

k..ˇ//=ˇkŒŒˇ��
�

;N
�

;

12More conceptually, we have that M ŒB� is isomorphic to i�i�M DA˝OX
M . Both are isomorphic

to M˚M Œ1� as complexes of OX–modules, and the isomorphism A˝OX
M !M ŒB� which intertwines

the action of BX is .m;m0/ 7! .mCBXm0;m0/ .
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the action of ˇ corresponds to �.�/ 7! �.ˇ � .�//. The fact that composition is

kŒŒˇ��–linear follows from the elementary calculation that

HomX.i�M; i�N /˝k HomX.i�N; i�P /! HomX.i�M; i�P /

is ƒ–linear and Lemma 3.2.

With all of this in place, we turn to defining our main objects of interest, the categories

of singularities:

Definition 3.6 We define the category MF.X;W / to be

MF.X;W / WD PreMF.X;W / P̋ kŒŒˇ�� k..ˇ//:

This definition is justified by the following lemma:

Lemma 3.7 [55, Proposition 3.4.1] MF.X;W / is a dg-enhancement of the idempo-

tent completion of the triangulated category

H 0.DbCoh.X0//=H
0.Perf.X0//:

Proof Let M 2 DbCoh.X0/. The lemma can be easily reduced to the following

assertion: M 2 Perf.X0/ if and only if ˇn D 0 � Hom.M;M / for large enough n.

To prove this assertion, recall that M is perfect if and only if it is compact in QC.X0/,

because X0 is QCA [16, Corollary 1.4.3].

On one hand ˇn 2 HomA.M;M / corresponds under the quasi-isomorphism (7) to

simply multiplying by ˇn . We observe that the kernel

ker
�

ˇnW M ŒB�˝
�

k..ˇ//=ˇkŒŒˇ��
�

!M ŒB�˝
�

k..ˇ//=ˇkŒŒˇ��
��

DM ŒB� �ˇ�n�1˚ � � �˚M ŒB� �ˇ0

of the surjective map ˇn is a compact A–module because the associated graded of

the ˇ–adic filtration is a direct sum of finitely many copies of the compact A–module

M ŒB� ' A˝OX
M. Giving a null-homotopy of ˇn , which is equivalent to giving

a null-homotopy of the composition ˇn ı idM , is equivalent to giving a factoriza-

tion of idM ŒB�˝.k..ˇ//=ˇkŒŒˇ��/ through the subcomplex ker.ˇn/. In this case M is a

homotopy retract of the compact A–module ker.ˇn/ and is thus compact.

Conversely, if M ŒB�˝
�

k..ˇ//=ˇkŒŒˇ��
�

D
S

n ker.ˇn/ is a compact A–module, the

identity morphism factors through ker.ˇn/ for some n. This proves the lemma.
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There is another point of view on the kŒŒˇ��–linear structure, which will be useful below.

Let .X;W / be an LG model. According to [5, Theorem 1.1.3], there is an equivalence

of categories

DbCoh.X0/Š Funex
Perf.A1/˝.Perf.k/;Perf.X//:

It is not difficult to check that the DbCoh.ƒ/˝–module structure on the left-hand side

of this equivalence corresponds to the natural Funex
Perf.A1/˝.Perf.k/;Perf.k//–module

structure on the right-hand side. If A is a module category for some symmetric

monoidal 1–category C˝ , and AD hAi I i 2 Ii is a possibly infinite semiorthogonal

decomposition indexed by a totally ordered set I, we say that the semiorthogonal

decomposition is C˝–linear if C P̋ Ai!A factors through Ai , in which case it does

so uniquely up to contractible choices.

Lemma 3.8 Let C˝ be a symmetric monoidal stable 1–category, and let B and A

be C˝–module categories with B compact in C˝–Mod.Catperf
1 /. If AD hAi I i 2 Ii

is a C˝–linear semiorthogonal decomposition , then Funex
C˝.B;Ai/! Funex

C˝.B;A/ is

a fully faithful functor , and identifying the former with its essential image in the latter ,

we have a semiorthogonal decomposition ,

Funex
C˝.B;A/D hFunex

C˝.B;Ai/I i 2 Ii:

Proof The fact that B is compact as a C˝–module category allows us to commute

Funex
C˝.B;�/ with filtered colimits and therefore reduce to the case of a finite index

set I. Then by an inductive argument it suffices to prove the claim in the case where we

have a two-term semiorthogonal decomposition AD hA0;A1i. If we let �i W Ai ,!A

denote the inclusion, and we let �R
1

(respectively �L
0

) denote the right (respectively

left) adjoint whose existence is guaranteed by the semiorthogonal decomposition. One

can check that the composition functor �R
1
ı .�/W Funex

C˝.B;A/! Funex
C˝.B;A1/ is a

right adjoint to the composition functor �1 ı .�/W Funex
C˝.B;A1/! Funex

C˝.B;A/, and

likewise �L
0
ı .�/ is a left adjoint to �0 ı .�/. It is also straightforward to check that

the canonical maps

�L0 ı �0 ı .�/! id and id! �R1 ı �1 ı .�/

are equivalences, and Map.�1 ıF; �0 ıG/ is contractible for any functors

F 2 Funex
C˝.B;A1/ and G 2 Funex

C˝.B;A0/:

The claim follows.
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An immediate corollary of this is the following:

Lemma 3.9 Let .X;W / be an LG model , and suppose that Perf.X/ admits a

Perf.A1/˝–linear semiorthogonal decomposition hAi I i 2 Ii. Then MF.X;W / admits

a semiorthogonal decomposition by k..ˇ//–linear subcategories ,

MF.X;W /D
˝

k..ˇ// P̋ kŒŒˇ�� Funex
Perf.A1/˝.Perf.k/;Ai/

˛

:

Proof By the previous lemma applied to A D Perf.X/, we obtain a semiorthog-

onal decomposition PreMF.X;W / D hFunex
Perf.A1/˝.Perf.k/;Ai/i. The semiorthog-

onal decomposition is kŒŒˇ��–linear because ˇ acts via endofunctors of Perf.k/ as

a Perf.A1/˝–module category. Finally, the localization functor from kŒŒˇ��–linear

categories to k..ˇ//–linear categories commutes with filtered colimits, so one gets the

desired semiorthogonal decomposition of MF.X;W / WD k..ˇ// P̋ kŒŒˇ�� PreMF.X;W /

by base-changing semiorthogonal decompositions.

3.2 Motivic decompositions and degeneration for MF

In this section we prove an analogue of Theorem 1.8 for the k..ˇ//–linear dg-category

MF.X=G;W /. For any A2LinCatsm
k..ˇ//

, let G .A/�LinCatsm
k..ˇ//

denote the smallest

1–subcategory containing A that is closed under splitting countable semiorthogonal

decompositions in the following sense: for any C2LinCatsm
k..ˇ//

which has a Z–indexed

semiorthogonal decomposition CD hCiii2Z , C 2G .A/ if and only if Ci 2G .A/ for

all A.

Theorem 3.10 Let G be an algebraic group. Let X be a smooth G–quasiprojective k–

scheme with a semicomplete KN stratification , and let W W X=G!A1 be a morphism.

Then there is a smooth projective-over-affine Deligne–Mumford stack Y with a map

W 0W Y!A1 such that

MF.X=G;W / 2G .MF.Y;W 0//� LinCatsm
k..ˇ// :

Furthermore , if Perf.Crit0.W /=G/ is a proper dg-category , then the pair .Y;W 0/ can

be chosen so that Y is a smooth variety and W 0W Y!A1 is projective.

Note that, by Corollary 1.7, Perf.Crit0.W /=G/ is a proper dg-category if and only if

the induced KN stratification on Crit0.W / is complete.
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Remark 3.11 There is a slightly cleaner formulation of Theorem 3.10 using k..ˇ//–

linear additive noncommutative motives, analogous to Theorem 1.8. Tabuada [62]

constructed additive noncommutative motives for dg-categories which are linear over

a commutative ring, and Blumberg, Gepner and Tabuada [11] constructed additive

noncommutative motives over the sphere spectrum. The methods of [11] appear to

apply verbatim to construct the 1–category of additive noncommutative motives over

an arbitrary E1–algebra R, such as k..ˇ//, but in the interest of space we have

formulated Theorem 3.10 to avoid developing this additional machinery.

Before proving the theorem, we note the following analogues of Lemmas 1.4 and 1.13:

Lemma 3.12 Suppose that X is a smooth G–scheme with a KN stratification and

that W W X=G!A1 is an LG model. Then

MF.X=G;W / 2G

�

MF.X ss=G;W /˚
M

i

MF.Zi=Li ;W jZi =Li
/

�

in LinCatsm
k..ˇ//

.

Proof The main semiorthogonal decomposition of [24] extends to categories of

singularities by Lemma 3.9, and hence the argument of Lemma 1.4 applies verbatim

to MF.X=G;W /.

Lemma 3.13 Let � W Y! X be a rational morphism of finite-type k–stacks, that is,

R��OY ' OX , and let W W X!A1 be a morphism. Assume that X is smooth and ��

preserves DbCoh. Then MF.X;W / is a semiorthogonal factor of MF.Y;W /.

Proof The functors �� and �� are Perf.A1/–linear, and it follows from Lemma 3.9

that the semiorthogonal decomposition of Perf.Y/ in the proof of Lemma 1.13 induces

a semiorthogonal decomposition of MF.Y;W /.

Proof of Theorem 3.10 The proof of Theorem 1.8 mostly applies verbatim, with the

following substitutions: Lemma 3.12 in place of Lemma 1.4; Lemma 3.13 in place

of Lemma 1.13; the properness of the dg-category Perf.Crit0.W /=G/ in place of

the properness of the dg-category Perf.U=G/; and Proposition 3.14 below in place

of [7, Theorem 6.6] to reduce from the case of a projective-over-affine DM stack to a

quasiprojective scheme.

The only parts of the proof of Theorem 1.8 which require modification in the cur-

rent context are those which have to do with the properness of the dg-category
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Perf.Crit0.W /=G/, and this only affects two cases of the inductive proof. We thus

rewrite these cases, indicating the necessary modifications:

Case X
ss ¤¿, X

ss ¤X
s, and codim.X ssnX

s; X
ss/�2 It suffices by the inductive

hypothesis to prove the claim for .X ss=G;W /. We apply the inductive partial resolution

procedure of [37]: Let Y �X ss be the locus of points whose stabilizer has maximal

dimension. Then Y is a smooth closed subvariety, and the blowup X 0 WD BlY .X ss/

has a KN stratification induced by a relatively ample bundle such that .X 0/ss has

lower-dimensional stabilizers.

Consider a point x 2 Y , let R � G be the (reductive) stabilizer subgroup. The G–

invariance of W implies that .dW /x 2 .�
1
X ss;x

/R � �1
X ss;x

. Because .X ss/G � Y

the restriction map .�1
X ss;x

/R ! �1
Y;x

is injective, and hence the pullback map

.�1
X ss;x

/R ! �1
X 0;y

is injective for any point y in the fiber of x under the map

pW X 0D BlY X ss!X ss . It follows that for any y 2 p�1.x/, .dW /x D 0 if and only

if .d.W jX 0//y D 0, and therefore Crit0.W jX 0/D p�1.Crit0.W //.

Now, by Lemmas 3.13 and 3.12, if Zi are the centers of the KN stratification of X 0,

then

MF.X ss=G;W / 2G

�

MF..X 0/ss=G;W jX 0/˚
M

i

MF.Zi=Li ;W jZi =Li
/

�

:

Note that if Perf.Crit0.W /=G/ is a proper dg-category, then Perf.Crit0.W jX 0/=G/ is

also, using criterion (2) of Lemma 1.5 and the fact that Crit0.W jX 0/! Crit0.W /

is proper. It follows from Lemma 1.6 that in this case Perf.Crit0.W j.X 0/ss/=G/

and Perf.Crit0.W jZi
/=Li/ are proper dg-categories as well. The claim holds for

the categories MF.Zi=Li ;W jZi =Li
/ by the inductive hypothesis, so it suffices to

show the claim for MF..X 0/ss=G;W jX 0/. Because the dimensions of the stabilizer

groups of .X 0/ss are strictly smaller than those of the stabilizer groups in X ss , we can

replace X ss with .X 0/ss and iterate this construction until X ssDX s , which is handled

in a previous case.

Case X
ss ¤ ¿ but codim.X ss n X

s; X
ss/ � 1 Here the only modification needed

to the proof of Theorem 1.8 is the observation that Crit0.W jU�Y /D Crit0.W jU /�Y ,

so Perf.Crit0.W jU�Y // is a proper dg-category if Perf.Crit0.W jU /=G/ is.

In the proof of Theorem 3.10, we used the following proposition to reduce from the

case of a DM stack to the case of a variety. The proof is an adaptation of the methods

of [7] to categories of matrix factorizations.
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Proposition 3.14 Let W W X!A1 be an LG model such that X is a smooth quasipro-

jective (in the sense of [39]) DM stack and Crit0.W / is proper. Then there is a

smooth variety Y and a projective morphism W 0W Y ! A1 such that MF.X;W / 2

G .MF.Y;W 0//� LinCatsm
k..ˇ//

.

Proof As observed in [39], X D X=G for some reductive G and G–equivariant

locally closed embedding X ,! .PN /s for some linearized action of G on a projective

space. Considering the graph of the map W W X !A1 gives a G–equivariant locally

closed embedding X ,! .PN �A1/s , where G acts trivially on the A1 factor. Using

Kirwan’s resolution algorithm [37], as in [39], we modify .PN �A1/ss by a series of

smooth blowups away from .PN �A1/s such that the resulting semistable locus is a

DM stack Y which is smooth and projective over A1. Thus taking the closure of X in Y

and resolving singularities, we can produce a Nagata compactification W W X! A1

of the original morphism W W X!A1 such that X is projective over A1 and smooth

over the ground field.

Because X and X are DM and the critical locus Crit0.W / is proper, it follows that

Crit0.W / is a union of connected components of Crit0.W /. Therefore, the category

MF.X;W / splits as a direct sum of the subcategory consisting of objects supported

on Crit0.W / and the subcategory consisting of objects supported on other components

of Crit0.W / [55, Proposition 4.1.6]. So it suffices to prove the claim for MF.X;W /,

ie we may assume that the potential W W X!A1 itself is projective rather than assuming

that just Crit0.W / is proper.

First we reduce to the case where X has generically trivial stabilizer. Because X

is a global quotient stack, we may find a vector bundle V over X on which the

automorphism groups act faithfully. Then P .V ˚OX/! X is a rational morphism,

so by Lemma 3.13 the claim for P .V ˚OX/ implies the claim for X, and the generic

stabilizer of the former is trivial. Furthermore, the function W restricted to P .V ˚OX/

will still be proper.

Next we consider Bergh’s destackification, constructed in [6],

X0

�

~~

f

��

X 0 X

where X 0 is the coarse moduli space and is smooth, the morphism � is a composition

of root stacks along smooth divisors and f is a composition of root stacks along smooth
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divisors and blowups along smooth centers. Note that the morphism f is rational, so

by Lemma 3.13 it suffices to prove the claim for the composition W 0W X0! X!A1.

Note that W 0 will still be proper.

Finally, because X 0 is the coarse space of X0, the function W 0 descends uniquely to

W 0W X 0 ! A1, and this map is still proper. Because � W X0 ! X 0 is a composition

of root stacks along smooth divisors, it suffices to prove the following claim: if Y

is a smooth DM stack and X! Y is a root stack along a smooth divisor in Y and

W W Y!A1 is a proper map, then the claim of the proposition for Y implies the claim

for X.

Let D ,! Y be the Cartier divisor used to form the root construction, and consider the

diagram

D�B�r
i

//

�D

��

X

�
��

D // Y

Then [29, Proposition 6.1] shows that we have a semiorthogonal decomposition

Perf.X/D
˝

i��
�
D.Perf.D//˝M r�1; : : : ; i��

�
D.Perf.D//˝M; ��.Perf.Y//

˛

;

where M is the universal invertible sheaf coming from the root stack construction.

Given a map W W Y ! A1 and a module F 2 Perf.A1/, it is evident from the de-

scription of this semiorthogonal decomposition that each subcategory is preserved

by the functor ��W �.F /˝ .�/. If follows that this is a semiorthogonal decompo-

sition of Perf.A1/˝–module categories, and thus by Lemma 3.9 there are induced

semiorthogonal decompositions

Perf.X0/D
˝

i��
�
D0
.Perf.D0//˝M r�1; : : : ; i��

�
D0
.Perf.D0//˝M; ��.Perf.Y0//

˛

;

DbCoh.X0/

D
˝

i��
�
D0
.DbCoh.D0//˝M r�1; : : : ; i��

�
D0
.DbCoh.D0//˝M; ��.DbCoh.Y0//

˛

;

where the subscript 0 refers to the derived zero fiber of W and its restrictions to

D, X, and D�B�r . Thus we have a semiorthogonal decomposition of k..ˇ//–linear

categories

MF.X;W ı�/' hMF.D;W jD/; : : : ;MF.D;W jD/;MF.Y;W /i

and the claim of the proposition for X follows from the claim for Y and induction,

because D is smooth of one lower dimension.
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3.2.1 The degeneration property for quotient stacks For any A 2 LinCatsm
k..ˇ//

,

we may form the k..ˇ//–linear Hochschild complex C k..ˇ//
� .A/, which is a module

over the CDGA ƒ..ˇ//D k..ˇ//ŒB�=.B2/. It is computed by a Barr complex:

(8) C k..ˇ//
� .A/

WD
M

o1;o2;:::;on

Hom.o1; o2/˝k..ˇ// Hom.o2; o3/˝k..ˇ// � � � ˝k..ˇ// Hom.on; o1/;

where the oi are objects of A, the differential is given by the usual formula for

the Hochschild complex of a k–linear dg-category [48], and B acts by the Connes

differential. Using the ƒ..ˇ//–module structure, we may form the associated com-

plexes C k..ˇ//;.n/
� .A/, C k..ˇ//;�

� .A/, and C k..ˇ//;per
� .A/ just as in the k–linear case

(see Section 1.3).

Definition 3.15 A k..ˇ//–linear dg-category A is said to have the k..ˇ//–linear

degeneration property if H�.C
k..ˇ//;.n/
� .A// is a flat kŒu�=.un/–module for all n� 1.

Lemma 3.16 Let A 2 LinCatsm
k..ˇ// satisfy the k..ˇ//–linear degeneration property.

Then any other category C 2G .A/ satisfies the k..ˇ//–linear degeneration property.

Proof The proof of Lemma 1.22 applies verbatim to show that if CD hCii is a Z–

indexed semiorthogonal decomposition of k..ˇ//–linear dg-categories, then C satisfies

the degeneration property if and only if each of the Ci do. This implies that the full

1–subcategory of LinCatsm
k..ˇ//

consisting of categories that satisfy the k..ˇ//–linear

degeneration property contains A and is closed under splitting countable semiorthogonal

decompositions, so it contains G .A/ by definition.

Our main degeneration result for categories of matrix factorizations is the following:

Proposition 3.17 Suppose that W W X=G ! A1 is an LG model , where X is a

smooth G–quasiprojective scheme which admits a semicomplete KN stratification.

If Perf.Crit0.W /=G/ is a proper dg-category, then the k..ˇ//–linear degeneration

property holds for MF.X=G;W /.

Proof By Theorem 3.10 and Lemma 3.16, this reduces to the k..ˇ//–linear degen-

eration property for MF.Y;W / where Y is a smooth scheme and W W Y ! A1 is a

projective map. This amounts to the degeneration of the W –twisted Hodge–de Rham

complex by [18, Theorem 1.3], which is established in [52, Theorem 4.22].

Example 3.18 The hypotheses of the proposition are satisfied if X is projective-over-

affine and �.X;OCrit0.W //
G is finite-dimensional; see Example 1.10.
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We also have the following, which was left as an assumption in the original version of

this paper:

Corollary 3.19 If X is a smooth quasiprojective DM stack and W W X ! A1 is a

map such that Crit0.W / is proper , then the k..ˇ//–linear degeneration property holds

for MF.X;W /.

Proof Proposition 3.14 reduces this to the case of a projective morphism W W Y !A1,

with Y smooth, which as noted above follows from [52, Theorem 4.22].

Remark 3.20 We briefly discuss more concrete descriptions of C k..ˇ//
� .MF.X;W //

when X is a smooth separated Deligne–Mumford stack. Namely, for any affine U with

an étale map U ! X, let ��.U;W jU / denote the Tate construction on
L

�i.U /Œi �

with respect to the S1–action given by �dW ^ , that is, ��.U;W jU / is the ƒ..ˇ//–

module
L

�i
U
..ˇ//Œi � with differential �ˇ �dW ^ . Letting B act on ��.U;W jU / via

the de Rham differential as usual, ��.�;W / defines a sheaf of ƒ..ˇ//–modules on the

small étale site Xaff
ét . We define the global de Rham complex to be the ƒ..ˇ//–module

��.X;W / WDR�.Xaff
ét ; ��.�;W //:

Assume for simplicity that Crit0.W / D Crit.W /. Then by combining the approach

of Proposition 2.13 with [55, Theorem 8.2.6], it is not difficult to show that there is a

natural isomorphism of ƒ..ˇ//–modules

C k..ˇ//
� .MF.X;W //'��.I

cl
X ;W /;

which induces an equivalence C
k..ˇ//;per
� .MF.X;W // ' ��.I

cl
X
;W /Tate . Therefore,

Corollary 3.19 is equivalent to the statement that the .k..ˇ//˝ƒ/–module ��.X;W /

has the degeneration property. This constitutes a slight generalization of the degenera-

tion results of [52] to DM stacks.

3.3 Graded Landau–Ginzburg models

We will use these results to establish a large class of examples of k–linear dg-categories

for which the usual k–linear degeneration property holds.

Definition 3.21 A graded LG model is a map W W X!A1=Gm , where X is a smooth

algebraic k–stack whose automorphism groups at geometric points are affine, and Gm

acts on A1 with weight one.

Geometry & Topology, Volume 24 (2020)



2418 Daniel Halpern-Leistner and Daniel Pomerleano

Note that the data of a graded LG model is equivalent to specifying an invertible

sheaf L on X=G, which is classified by the composition X!A1=Gm! BGm , and

a section W 2 �.X=G;L/. Denote by �W X0! X the Gm–torsor over X associated

to L, ie X0 D TotX.L_/ n 0. To any graded LG model, we use the term associated

LG model to denote the pair .X0; ��W W X0!A1/. We will see in Proposition 3.24 that,

in a precise sense, the graded LG model is a refinement of its associated LG model.13

In the setting of graded LG models, for F 2 DbCoh.X0/, there is a distinguished

triangle

F ˝L�1Œ1�! i�i�F ! F

giving rise to a natural transformation ˇLW �˝LŒ�2�! id which in the nongraded

case, where L' OX , is the natural transformation idŒ�2�! id induced by the kŒŒˇ��–

linear structure of Definition 3.4. To make this natural transformation more explicit, we

introduce an analogue of the Koszul–Tate resolution (7), KT.M /ŠM, and construct

a very concrete natural transformation ˇLW KT.�/˝LŒ�2�! KT.�/.

First consider the dg-algebra A WD OX˚L�1 �BX , where BX is a formal variable of

degree 1, and dBX DW , ie the differential is trivial on OX and acts on the second

summand by the map L�1 ! OX that is the defining section W . An A–module

consists of an OX–module M along with a map BXW L
�1˝M !M Œ�1� of OX–

modules satisfying the Leibniz rule dBX.s˝m/DW sm�BX.s˝dm/, where s is a

local section of L�1 and m is a homogeneous local section of M. The 1–category

of A–modules is equivalent to the 1–category DbCoh.X0/.

Given a module M over A, we can form the analogue of M ŒB� above, which we

denote by
yM WDM ˚ .L�1˝M �B/;

where the differential is just dM ˚L�1˝ dM . We have two operators,

BM
X W L

�1˝M !M Œ�1�;

defined by the A–module structure of M, and

BW L�1˝M !L�1˝M;

which is just the identity. Using these two operators we can form a canonical action

13Note also that given an LG model .X;W / , we can forget the data of the trivialization of L

to obtain a graded LG model. This will correspond to forgetting the k..ˇ//–linear structure on the
category MF.X;W / .
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of A on yM , where the action of BX on the first component is just BM
X
CB , and the

action on the second component is L�1˝BM
X

.

Let Q.r/W L�r ˝ yM !L�rC1˝ yM be the map which sends the first component of

L�r ˝ yM to the second component of L�rC1˝ yM by the identity. Then we define

the Koszul–Tate resolution as

KT.M / WD

�

M

r�0

L�r ˝ yM Œ�2r �I d D d yM C
X

r>0

Q.r/

�

:

After pulling back to X0, this complex can be identified with M ŒB�˝
�

k..ˇ//=ˇkŒŒˇ��
�

,

so it follows that the canonical map KT.M / ! M, which annihilates all r > 0

summands and B , is a quasi-isomorphism. We now define the natural map

ˇLW KT.M /˝LŒ�2�! KT.M /

to be the map of A–modules which annihilates the r D 0 summand and identifies

the .rC1/st summand of KT.M /˝LŒ�2� with the r th summand of KT.M /.

Definition 3.22 We define the graded singularity category DbSing.X;W / to be the

idempotent completion of the dg-category with the same objects as DbCoh.X0/ but

with morphisms between M and N given by

HomDbSing.X;W /.M;N / WD hocolimp HomDbCoh.X0/.M;N ˝L�p/Œ2p�;

where the homotopy colimit is formed with respect to the natural maps

ˇLW L
�p˝N Œ2p�!L�p�1˝N Œ2pC 2�:

Example 3.23 Let Y be a smooth variety over k , let E be a vector bundle over Y

and let s 2 �.E/ be a regular section. We have an action of Gm on Tot.E_/ by scaling

in the fibers. The function s therefore determines a mapping

WsW XD Tot.E_/=Gm!A1=Gm:

The main theorem of [30] gives an equivalence of (Z–graded) dg-categories

DbSing.Tot.E_/=Gm;Ws/' DbCoh.s�1.0//:

The construction of this equivalence works equally well when Y has an action of a

linear algebraic group G, E is a G–equivariant locally free sheaf, and s is G–invariant

(see for instance [28]). This gives an equivalence of k–linear dg-categories

DbSing.Tot.E_/=.G �Gm/;Ws/' DbCoh.s�1.0/=G/:
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In this case the associated LG model is simply the map W 0W Tot.E_/=G!A1 obtained

by forgetting the Gm–action.

For a Z–graded k–linear dg-category C, we may tensor with k..ˇ//, thereby collapsing

the grading on Hom.E;F / to a Z=2Z–grading. The following proposition describes

the relationship between a graded LG model and its associated LG model.

Proposition 3.24 Let W W X!A1=Gm be a graded LG model , and let W 0W X0!A1

be the associated LG model. Then we have a canonical equivalence of Z=2Z–graded

dg-categories , DbSing.X;W / P̋ k k..ˇ//'MF.X0;W 0/.

Lemma 3.25 Let � W X!Y be a smooth affine morphism of QCA stacks. Then objects

of the form ��F for some F 2 DbCoh.Y/ split generate DbCoh.X/, ie DbCoh.X/ is

the smallest subcategory containing these objects which is closed under shifts , cones ,

and retracts.

Proof First note that the analogous claim holds for perfect stacks using Perf instead

of DbCoh and assuming only that � is affine. Indeed, the fact that the pushforward

functor ��W QC.X/! QC.Y/ is conservative implies that objects of the form ��F

with F 2 Perf.Y/ split generate QC.X/.

In order to conclude the same for DbCoh, we must imitate this argument for the

categories IndCoh, ie show that �IndCoh;� is conservative. The pushforward �IndCoh;�

again has a left adjoint ��IndCoh which preserves DbCoh and agrees with the usual

pullback functor there. Because �IndCoh;� satisfies base change with respect to the

shriek pullback [21, 5.2.5], and IndCoh satisfies fppf descent with respect to shriek

pullback, it suffices to show this when YD Y is an affine derived scheme and hence

XDX is as well. In this case [21, Proposition 4.5.3] shows that the essential image of

the functor QC.X/ y̋ QC.Y/ IndCoh.Y/! IndCoh.X/ generates the latter category (in

fact this functor is an equivalence). It follows that IndCoh.X/ is generated by objects

of the form E ˝ � IndCoh;�.F / for E 2 Perf.X/ and F 2 DbCoh.Y/. Furthermore,

because X is affine, the category Perf.X/ is split generated by OX , so IndCoh.X/

is generated by objects of the form � IndCoh;�.F / with F 2 DbCoh.Y/. It follows by

adjunction that �IndCoh;� is conservative.

Proof of Proposition 3.24 Pullback along �W X0 ! X defines a functor of dg-

categories DbCoh.X0/! DbCoh.X0
0
/ which intertwines the actions of ˇL and ˇLjX0 .
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Making use of the canonical trivialization LjX0 ' OX0 , we get a canonical map

��W hocolimp HomDbCoh.X0/.M;N ˝L�p/Œ2p�

! hocolimp HomDbCoh.X0
0
/.�
�.M /; ��.N //Œ2p�:

The latter can be identified with

HomPreMF.X0;W /.�
�.M /; ��.N //˝kŒŒˇ�� k..ˇ//Š HomMF.X0;W /.�

�.M /; ��.N //:

Because DbSing.X;W / is generated by objects of DbCoh.X0/, this extends to a dg-

functor on idempotent completions ��W DbSing.X;W / ! MF.X0;W 0/. From the

universal property of the base-change category, �� admits an essentially unique k..ˇ//–

linear extension

��k..ˇ//W DbSing.X;W / P̋ k k..ˇ//!MF.X0;W /;

and we will show that this functor is an isomorphism.

Concretely, ��k..ˇ// maps an object F 2 DbCoh.X0/, regarded as a generator for

DbSing.X;W / P̋ k k..ˇ//, to the object ��.F /2DbCoh.X0
0
/, regarded as a generator of

MF.X0;W 0/. Lemma 3.25 implies that objects of the form ��.F / with F 2DbCoh.X0/

generate MF.X0;W /, so it suffices to show that ��k..ˇ// is fully faithful on the full

subcategory of DbSing.X;W / P̋ k k..ˇ// spanned by objects of DbCoh.X0/.

For M;N 2 DbCoh.X0/, we consider

HomDbSing.X;W /.M;N /˝ k..ˇ//

WD
M

q

hocolimp�q HomDbCoh.X0/.M;N ˝Lq�p/Œ2.p� q/�Œ2q�:

Commuting colimits and reshuffling indices, this is isomorphic to

hocolimp

M

q

HomDbCoh.X0/.M;Lq˝N ˝L�p/Œ2p�:

In this presentation, the operator ˇL corresponds to the isomorphism between

HomDbCoh.X0/.M;Lq˝N˝L�p/ and HomDbCoh.X0/.M;LqC1˝N˝L�.pC1//:

The Hom–complex is in turn isomorphic to

hocolimp HomQC.X0/.M; ��.OX0
0
/˝N ˝L�p/Œ2p�;

where this last isomorphism uses the identification ��.OX0
0
/'

L

n2Z Ln . It also uses

the fact that M is coherent and ��.OX0
0
/˝N ˝L�p is homologically bounded above,
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so that we may commute HomQC.X0/.M;�/ with this infinite direct sum. Using the

projection formula and the adjunction between �� and �� , we finally obtain a natural

equivalence with

hocolimp HomDbCoh.X0
0
/.�
�.M /; ��.N /˝��.L/�p/Œ2p�:

The multiplication by ˇ on HomDbSing.X;W /.M;N /˝ k..ˇ// now corresponds to the

canonical isomorphisms

HomDbCoh.X0
0
/.�
�.M /; ��.N /˝��.L/�p/

! HomDbCoh.X0
0
/.�
�.M /; ��.N /˝��.L/�.pC1//

which arise from the canonical trivialization OX 0
0
! ��.L�1/. This operator is identi-

fied with the operator ˇ in Definition 3.4 and therefore we have naturally identified

the Hom–complex in DbSing.X;W / P̋ k k..ˇ// with HomMF.X0;W 0/.�
�.M /; ��.N //

as required.

We can now establish our main result on the degeneration property for graded singularity

categories:

Proposition 3.26 Let W W X=G ! A1=Gm be a graded LG model with associated

LG model W 0W X 0=G ! A1. If X 0 admits a semicomplete KN stratification and

Perf.Crit0.W 0/=G/ is a proper dg-category, then DbSing.X=G;W / satisfies the k–

linear degeneration property.

Lemma 3.27 Let C be a k–linear (ie Z–graded) dg-category. Then the degeneration

property for C is equivalent to the k..ˇ//–linear degeneration property for C P̋ k k..ˇ//.

Proof When D D C P̋ k..ˇ//, then the Barr complex (8) computing C k..ˇ//
� .D/ is

quasi-isomorphic to the subcomplex in which all of the objects oi lie in the generating

set of objects of D of the form E˝ k..ˇ//, with E 2 C. It follows that

C k..ˇ//
� .D/Š C�.C/˝ k..ˇ//

canonically as dg-ƒ..ˇ//–modules. We therefore have that

C k..ˇ//;.n/
� .D/Š C .n/

� .C/˝ k..ˇ//

on the level of chain complexes as well. The result follows since as a complex k..ˇ//Š
L

n2Z kŒ2n�, so the homology H�
�

C .n/
� .C/˝ k..ˇ//

�

ŠH�.C
.n/
� .C//˝ k..ˇ// will

be flat over kŒu�=un if and only if H�.C
.n/
� .C// is flat over the same ring.
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Proof of Proposition 3.26 By Lemma 3.27 and Proposition 3.24, the degeneration

property for DbSing.X=G;W / is equivalent to the k..ˇ//–linear degeneration property

for MF.X 0=G;W 0/, so the result follows from Proposition 3.17.

Remark 3.28 Using Example 3.23, Proposition 3.26 implies noncommutative Hodge–

de Rham degeneration for the derived category of certain complete intersections

s�1.0/=G, where s is a G–invariant section of a locally free sheaf E on a smooth

G–scheme Y . In fact, the hypotheses of Amplification 1.25 imply that in the associated

LG model W W Tot.E_/=G!A1, Crit0.W / admits a complete KN stratification, and

thus Perf.Crit0.W /=G/ is a proper dg-category by Corollary 1.7. Proposition 3.26

therefore provides an alternate proof of Corollary 1.27.

4 Computations of Hochschild invariants

4.1 Generalities on Hochschild invariants

In this section we identify the Hochschild homology with functions on the derived

inertia stack (or loop stack) X�L
X�X X, which we denote by IX , and we give an explicit

description when X is a quotient stack.

Proposition 4.1 Let X be a smooth algebraic k–stack which is perfect , ie X is

quasicompact with affine diagonal , and QC.X/Š Ind.Perf.X//, and let �W X!X�X

be the diagonal. Then we have an identification

C�.Perf.X//Š R�.IX;OIX/:

Proof Morita theory for perfect stacks [4] identifies the identity functor with ��OX

in the category QCoh.X�X/. To compute C� , we use the Morita invariant definition

of the Hochschild homology of a compactly generated dg-category as the trace of the

identity functor. Thus we must compute the trace

ytrW QCoh.X�X/! QCoh.Spec k/:

On sheaves of the form ��
1
.P1/˝�

�
2
.P2/, with P1;P2 2 Perf.X/, we have that the

trace is given by

tr.��1 .P1/˝�
�
2 .P2// WDRHom.Hom.P1;OX/;P2/

ŠR�
�

X; ��.��1 .P1/˝�
�
2 .P2//

�

:
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Since the category QC.X�X/ is the colimit completion of sheaves of this form, we

have that for an arbitrary object F 2 QC.X�X/, the trace can be computed by

(9) F ! R�.X; ��.F //:

It follows that we have an isomorphism

C�.Perf.X//Š R�.X; ����OX /:

Now let X=G be a global quotient stack. We consider the scheme P WDG �X �X.

Denote by x�W G�X !P the map .g;x/ 7! .g;x;x/ and by �W G�X !P the map

.g;x/ 7! .g;x;g �x/. Both are closed immersions, and we will also use the notation
x� and � to denote the corresponding subschemes of P.

Lemma 4.2 Let X=G be a smooth quotient stack. Both � and x� are equivariant with

respect to the G–action on P which sends h � .g;x1;x2/! .hgh�1; hx1; hx2/, and

C�.Perf.X=G//ŠR�.X;Ox�˝
L O�/

G :

Proof By Proposition 4.1 we must compute the derived global sections of the structure

sheaf of the derived inertia stack. First note the alternate presentation for the stack

X=G 'G �X=G2 , where the G2–action in the second presentation is given by

.h1; h2/ � .g;x/D .h2gh�1
1 ; h1x/:

In this presentation the diagonal X=G ! X=G � X=G corresponds to the G2–

equivariant map G �X !X �X given by .g;x/ 7! .x;gx/.

Let G2 act on P by

.h1; h2/ � .g;x1;x2/D .h2gh�1
1 ; h1x1; h2x2/:

Then � is G2–equivariant, and using the presentation above we see that the diagonal

factors as the closed immersion �W G �X=G2! P=G2 followed by the projection

P=G2! X �X=G2 , which is smooth and affine. It follows that the derived inertia

stack is the derived intersection of p�1
1
� and p�1

2
� in P�X 2 P=G2 .

Now P�X 2 P'G �G �X �X with G2–action given by

.h1; h2/ � .g1;g2;x1;x2/D .h2g1h�1
1 ; h2g2h�1

1 ; h1x1; h2x2/:
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The projections p1;p2W P�X 2 P! P are given by forgetting g2 and g1 respectively.

We claim that P�X 2 P=G2 ' P=G, where G acts on P as in the statement of the

lemma. Indeed we can present P=G as the quotient of G �P by the G2–action

.h1; h2/ � .g1;g2;x1;x2/D .h2g1h�1
1 ; h1g2h�1

1 ; h1x1; h1x2/;

and we have a G2–equivariant isomorphism G �P! P�X 2 P given by

.g1;g2;x1;x2/ 7! .g1;g1g2;x1;g1x2/:

The resulting isomorphism P=G! P�X 2 P=G2 is given by the map .g;x1;x2/ 7!

.1;g;x1;x2/, which is equivariant with respect to the diagonal homomorphism

G!G2 .

To finish the proof, we must identify the closed substacks p�1
1
.�=G2/ and p�1

2
.�=G2/

in P�X 2 P=G2 under the isomorphism with P=G. The first is the closed subscheme

p�1
1
� \ .f1g �P/D x�, regarded as a G–equivariant closed subscheme of P, and the

second is p�1
2
.�/\ .f1g �P/D � , as a G–equivariant closed subscheme of P.

The case when X is a vector space V, and G acts on V via a linear action, is of

interest in two-dimensional gauge theory. In this case we make the above derived

intersection explicit using a Koszul resolution. Denote by ˛W G �V ! V the action

morphism .g; v/ 7! g � v . We choose linear coordinates on V and identify V � V

with Spec.kŒxi ;yi �/.

The Koszul complex for the regular sequence KV�V .xi � yi/ gives a resolution of

the diagonal on V � V . An important point is that, in this case, this resolution is

G–equivariant with respect to the diagonal G–action because the G–action on V is

linear. Then

KG�V�V .xi �yi/! Ox�

is a resolution of Ox� over P.

Corollary 4.3 C�.Perf.V=G//Š
�

KG�V .xi �˛
�.xi//

�G
.

Proof By the above lemma, C�.Perf.V=G// is isomorphic to

.KG�V�V .xi �yi/˝OP
O�/

G ' .��KG�V�V .xi �yi//
G :

Pulled back to G � V , ��.yi/ D ˛�.xi/, and therefore ��KG�V�V .xi � yi/ D

KG�V .xi �˛
�.xi//.
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Remark 4.4 We expect that one could describe similar models for the Hochschild

homology of general gauged linear sigma models .V=G;W /. The key step needed

to do this would be to generalize [55, Theorem 4.2.3] to quotient (or more generally

QCA) stacks.

4.2 An HKR theorem and quotients of affine varieties

In [10], Block and Getzler construct for any compact smooth M –manifold X an

explicit model for the M –equivariant cyclic homology of the algebra C1.X / using

differential forms on X. Our goal is to translate their construction into algebraic

geometry and establish their version of the equivariant Hochschild–Kostant–Rosenberg

theorem when X D Spec.A/ is smooth and affine, G is a reductive group, and X=G

is formally proper, which is equivalent to the condition that AG is finite-dimensional

over k . Our proof is an application of Theorems 1.8 and 2.17. For simplicity, we

let k DC throughout this section.

To compute the derived intersection appearing in Lemma 4.2, we may use the bar

resolution B.A/ of A as an A�A bimodule. Namely,

Bn.A/ WDA˝A˝n˝A;

where the differential can be described as the sum b D†i.�1/i@i , where

@i.a
0
0˝ a1˝ � � � an˝ a000/ WD

8

<

:

a0
0
a1˝ � � �˝ an˝ a00

0
if i D 0;

a0
0
˝ � � �˝ aiaiC1˝ � � �˝ a00

0
if i ¤ 0;¤ n;

a0
0
˝ � � �˝ ana00

0
if i D n:

Our notation is meant to highlight the fact that the first and last variables in the bar

complex play a distinguished role from the other ai . We then have that OG˝B.A/ is

a resolution of Ox� which we may restrict to � . The result is a complex where the nth

graded piece is

Cn.A;G/ WD OG ˝A˝nC1 D �.G �X nC1;OG�X nC1/:

For any c 2 �.OG�X nC1/, the differentials @i above now take the form

@ic.g;x0;x1; : : : ;xn�1/ WD

8

<

:

c.g;x0;x0;x1; : : : ;xn�1/ if i D 0;

c.g;x0; : : : ;xi ;xi ; : : : ;xn�1/ if i ¤ 0;¤ n;

c.g;x0; : : : ;xn�1;g �x0/ if i D n:

We define the ƒ–module C�;G.A/ WD C�.A;G/
G, and note the following corollary

of Lemma 4.2.
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Corollary 4.5 C�.Perf.X=G//Š C�;G.A/.

Let C�;G.A/
^
g denote the completion of C�;G.A/ as a complex of modules over the

representation ring Rep.G/˝C D �.OG/
G at the conjugacy class Œg�. Let us work

for the moment with a fixed normal element g 2 G. Let Y D Spec.A/g denote the

fixed-point locus of g and BD�.OY /. The letter Z will designate the centralizer of g

and z denotes its Lie algebra, and normality of g ensures that Z is the complexification

of Zc WD Z \M for a maximal compact subgroup M � G. We have embeddings

j W Z!G and kW Y !X.

Lemma 4.6 When Spec.A/=G is formally proper , the natural restriction map gives

rise to an isomorphism k�W C�;G.A/
^
g ! C�;Z .B/

^
g .

Proof Note that because Spec.A/=G is formally proper, each Cn;G.A/ is a coherent

Rep.G/˝C–module, so completion commutes with taking homology in this case, and it

suffices to prove the result on the level of homology. It is known [20, Proposition 3.10]

that the map k�W K�
M
.X an;C/^g!KZc

.Y an;C/^g is an isomorphism. The comparison

maps

K�
M
.X an;C/

'
//

k�

��

H�.C
per
�;G
.A//

k�

��

K�
Zc
.Y an;C/

'
// H�.C

per
�;Z
.B//

are maps of .Rep.G/ ˝ C/–modules, and therefore we conclude that the map

k�W H�.C
per
�;G.A//

^
g !H�.C

per
�;Z .B//

^
g is an isomorphism as well. By Theorem 2.20,

the vector spaces H�.C
per
�;G.A// and H�.C

per
�;Z .B// admit compatible Hodge structures.

We observe that the Hodge decompositions

H�.C
per
�;G.A//Š

M

n�� mod 2

Hn.C�;G.A//; H�.C
per
�;Z .B//Š

M

n�� mod 2

H�.C�;Z .B//

are decompositions of Rep.G/– and Rep.Z/–modules respectively. This follows

because both the Hodge filtration and the conjugate filtration are filtrations of Rep.G/–

modules as can be seen for example by examining the explicit model for C
per
�;G.A/. The

lemma now follows by taking completions of these decompositions.

Next we construct a model for C�;Z .B/
^
g based on the algebraic differential forms �n

Y
,

regarded as a projective B–module. Recall that the Cartan differential

iW Sym.z�/˝�n
Y ! Sym.z�/˝�n�1

Y
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is the unique extension of the contraction map �n
Y
! z� ˝�n�1

Y
to a differential

satisfying the Leibniz rule. Alternatively, regarding ! 2 Sym.z�/˝�n
Y

as a section of

a quasicoherent sheaf over z, we have

.i!/.z/D iz!.z/:

We thus have a chain complex, in fact a CDGA,

��

Y Œz
��D

�

M

n

Sym.z�/˝�n
Y Œn�; i

�

:

Note that i is Z–equivariant and that it descends to the quotient Sym.z/�=mk . Thus

we can define

��

Y ŒŒz
���k WD

�

M

n

Sym.z�/=mk ˝�n
Y Œn�; i

�

;

��

Y ŒŒz
���Zk WD

�

M

n

.Sym.z�/=mk ˝�n
Y Œn�/

Z ; i

�

:

Proposition 4.7 The comparison map of Construction 4.8 is a quasi-isomorphism of

ƒ–modules

HKR^g W C�;Z .B/
^
g ! lim

 ��
k

.��

Y ŒŒz
���Zk /:

Hence, when Spec.A/=G is formally proper, we have a quasi-isomorphism of ƒ–

modules

HKR^g ı k�W C�;G.A/
^
g ! lim

 ��
k

.��

Y ŒŒz
���Zk /:

Let Z.k/ denote the k th infinitesimal neighborhood of the identity in Z . The expo-

nential map provides a compatible system of isomorphisms

expk W Spec.Sym.z�/=mk//!Z.k/:

Note that, under this equivalence, Gm acts algebraically on Z.k/ by scaling, and this

action actually extends to an action of the monoid A1. This is encoded algebraically

via a coaction map Sym.z�/=mk ! Sym.z�/=mk ˝CŒt �.

Construction 4.8 For any b2B , the coaction of OZ on B , the exponential map expk ,

and the Gm–action on z define an element

expk.�t � z/ � b 2 B˝Sym.z�/=mk ˝CŒt �:
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We define Cn;k.B;Z/ WD OZ.k/
˝BnC1 , ie the reduction of C�.B;Z/ modulo mk ,

and introduce the map HKRg;k W Cn;k.B;Z/!�n
Y
ŒŒz���k given by

(10)  ˝ b00˝ b1˝ � � �˝ bn

7!  .g � expk.z//

�

Z

�n

b00 d.expk.�t1z/ � b1/^ � � � ^ d.expk.�tnz/ � bn/ dt1 dt2 � � � dtn:

Here d.�/ denotes the .Sym.z�/=mk˝CŒt �/–linear extension of the exterior derivative

d W B˝Sym.z�/=mk ˝CŒt �!�1
Y ˝Sym.z�/=mk ˝CŒt �:

The integrand is regarded as an element of Sym.z�/=mk ˝�n
Y
˝CŒt1; : : : ; tn�, and

the integral over the standard n–simplex �n is regarded formally as a linear map

CŒt1; : : : ; tn�! C . This formula is identical to the one used in [10], so it follows

formally from the computations there that HKRg;k is a chain map (see for instance

[10, Theorem 3.2]). This map is Z–equivariant, so it restricts to a chain maps

HKRg;k W C�;k.B;Z/
Z !��

Y ŒŒz
���Zk

and

HKR^g WD lim
 ��

k

HKRg;k W C�;Z .B/
^
g ! lim

 ��
k

��

Y ŒŒz
���Zk :

Proof of Proposition 4.7 By the compatibility of the HKR maps with translation by

the central element g , it suffices to consider the case g D id. The maps

HKRid;k W C�;k.B;Z/!��

Y ŒŒz
���k

are a compatible family of maps of bounded complexes with coherent homology over

B˝Sym.z�/=mk . The map HKRid;1 is the classical HKR map

b00˝ � � �˝ bn 7!
1

n!
b00 db1 � � � dbn;

which is an equivalence of ƒ–modules. Hence by Nakayama’s lemma each HKRid;k

is a quasi-isomorphism, and the same is true after taking Z–invariants. Hence HKR^id
is a quasi-isomorphism. The final statement of the proposition combines this with the

previous lemma.
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