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Equivariant Hodge theory and noncommutative geometry
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We develop a version of Hodge theory for a large class of smooth formally proper
quotient stacks X /G analogous to Hodge theory for smooth projective schemes.
We show that the noncommutative Hodge—de Rham sequence for the category of
equivariant coherent sheaves degenerates. This spectral sequence converges to the
periodic cyclic homology, which we canonically identify with the topological equi-
variant K—theory of X with respect to a maximal compact subgroup of G, equipping
the latter with a canonical pure Hodge structure. We also establish Hodge—de Rham
degeneration for categories of matrix factorizations for a large class of equivariant
Landau—Ginzburg models.
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If X is a smooth projective variety over C, then the cohomology groups H"(X; C) can
be equipped with a pure Hodge structure of weight n. The theory of Hodge structures
then allows one to “linearize”” many important problems in algebraic geometry. Our
goal is to develop such a linearization for the equivariant algebraic geometry of a
locally closed algebraic submanifold X C P" which is equivariant with respect to an
action of a compact Lie group M. Note that the complexification G of M, a reductive
algebraic group, acts on X as well, and it is natural to ask for a Hodge theory associated
intrinsically to the algebraic stack X := X/G.

One such linearization follows from the results of Deligne [15], whose work establishes
a canonical mixed Hodge structure on the cohomology of any smooth simplicial scheme
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and in particular on the equivariant cohomology, H(X), which is the cohomology of
the simplicial nerve of the action groupoid of G on X. Building on these ideas, one
can even associate a motive to the stack X/ G as a colimit of motives of schemes as in
Morel and Voevodsky [49, Section 4.2].

The present paper lays the groundwork for an alternative approach to equivariant Hodge
theory based on equivariant topological K—theory of the underlying analytic variety
K3, (X?"). The equivariant K—theory is a module over the representation ring Rep(G),
and the Atiyah—Segal completion theorem canonically identifies its completion at the
augmentation ideal of Rep(G) with the Z/2Z—graded equivariant cohomology,

K;}en/odd(Xan)/\ ~ Hgven/odd(Xan).

If one completes K, (X") with respect to the evaluation ideal at other g € M, then
one recovers the 7 /27—graded equivariant cohomology of the fixed locus of g with
respect to the centralizer of g; see Freed, Hopkins and Teleman [20, Theorem 3.9].
Thus K (X®") encodes all of these equivariant cohomology groups, as well as the
data of how to “spread” them out into a single finitely generated Rep(G)—module. In
this sense Ky, (X®") is a much richer invariant than Hg (X).

The main challenge is that, unlike cohomology, equivariant K-theory is not simply the
K—theory of the simplicial scheme arising from the action of G on X, so Deligne’s
approach to equivariant Hodge theory does not generalize to K—theory. Instead, our
Hodge structures originate in noncommutative algebraic geometry, which views dg-
categories as “noncommutative spaces”. We ultimately show that in many cases one can
use the dg-enhanced derived category of G—equivariant perfect complexes of coherent
sheaves on X, Perf(X/G), to construct a pure Hodge structure on K73, (X").

Noncommutative Hodge-de Rham degeneration

If A is a dg-category over a field k, the Hochschild chain complex, C,(A), plays the
role of the Hodge cohomology in noncommutative algebraic geometry. The periodic
cyclic complex CY"(A), which is a dg-module over k((1)) where u has homological
degree —2, behaves like noncommutative de Rham cohomology. There is a canonical
Hodge filtration of the complex CJ*(A) whose associated graded is C,(A) ® k (1)),
which leads to a noncommutative Hodge—de Rham spectral sequence converging
to Hy(CY(A)) whose first page is Hyx(C.(A) ® k((1))). The Hodge filtration in
our theory will be the filtration on Hy(CY (A)) arising from the degeneration of this
spectral sequence.
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Geometrically, our main tool for establishing degeneration for the category Perf(X/G)
will be certain stratifications of X into G—stable locally closed subvarieties. It is a
classical observation in geometric invariant theory — see Hesselink [27] and Ness [50] —
that projective varieties with a linearized G—action inherit a canonical stratification.
Kirwan [36] used this stratification to deduce many beautiful results concerning the
equivariant topology of projective varieties with G—action, including a computation of
the Betti numbers and Hodge numbers for a variety obtained as a GIT quotient.

In this paper, we will consider a certain abstraction of this canonical stratification.
These are the (semi)complete Kirwan—Ness (KN) stratifications of a G—variety, in-
troduced by Teleman [63] and recalled in Definition 1.1. The chief benefit of this
more abstract definition is that it applies in many cases when the ambient variety X
is merely quasiprojective. The main classes of examples of G—varieties which admit
semicomplete KN stratifications to keep in mind are

(i) any G-variety X which is projective over an affine G—variety; and

(ii) any G-variety X such that X/G admits a good quotient that is projective-over-
affine.!

In case (i), the KN stratification is complete if and only if dim I'(X, 9x)% < co. In
case (ii), the stratification is trivial, and it is complete if and only if the good quotient
of X/G is projective.

Theorem A (Corollary 1.23) If G is a reductive group and X is a smooth G—
quasiprojective variety which admits a complete KN stratification, then the noncommu-
tative Hodge—de Rham sequence for Perf(X/G) degenerates on the first page.

Remark This builds on [63], which shows that a version of the Hodge—de Rham
spectral sequence for H(X) degenerates for such G-schemes and that the (a priori
mixed) Hodge structure on H(X) is pure in this case. Note that in these examples,
the scheme X is not proper, and neither is the quotient stack X'/ G, so degeneration of
the Hodge—de Rham sequence is somewhat unexpected. Likewise from the noncom-
mutative perspective, D Kaledin’s recent resolution [32] of a well-known conjecture of
M Kontsevich and Y Soibelman [38] shows that the noncommutative Hodge—de Rham
sequence degenerates for dg-categories which are smooth and proper. However, the
categories Perf(X/G) are typically not smooth even when X is smooth, and they

IRecall that X/G admits a good quotient if there is an algebraic space ¥ and a G—invariant map
: X — Y such that w4: QCoh(X/G) — QCoh(Y) is exact and (JZ'*OX)G ~Oy.
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are typically not generated by a single compact generator, so degeneration is again
somewhat unexpected.

The key observation in establishing the degeneration property for Perf(X/G) is that
the formation of the Hochschild complex takes semiorthogonal decompositions of
dg-categories to direct sums, and its formation commutes with filtered colimits. Thus
if A is a retract of a dg-category which can be built from the derived category of
smooth and proper DM stacks via an infinite semiorthogonal decomposition, then the
degeneration property holds for A.

Example One simple example is the quotient stack A" /G, , where G, acts with posi-
tive weights. Then the objects O pn{w} € Perf(A” /G,y,), each of which denotes the twist
of the structure sheaf by a character of G, form an infinite full exceptional collection.
Therefore the Hochschild complex of Perf(A” /G,) is quasi-isomorphic to a countable
direct sum of copies of C, (Perf(Spec(k))), and the degeneration property follows.

We can formulate this most cleanly in terms of G Tabuada’s universal additive invariant
Uy : dgCaty, — 4} ; see Blumberg, Gepner and Tabuada [11; 62]. Here .#j is the
oo—category which is the localization of the co—category of small dg-categories which
formally splits all semiorthogonal decompositions into direct sums, and Uy is the
localization map. The following is the main technical result of the paper, and we
believe it is of independent interest.

Theorem B (Theorem 1.8) Let X/G be a smooth quotient stack over a field k
of characteristic 0 that admits a complete KN stratification. Then there is a smooth
projective variety Y such that Uy (X/G) is a direct summand of U (D?(Y))®N
in Ay .

Connections with (classical) equivariant topology and purity

If G is the complexification of a compact Lie group M as above, we show that one can
recover the equivariant topological K—theory of the underlying complex analytic space
Kpr (X)), as defined by Atiyah and Segal [1; 59], from the dg-category Perf(X/G).

The first ingredient is the recent construction by A Blanc [8] of a topological K—
theory spectrum K'"P(A) for any dg-category A over C. Blanc constructs a Chern
character natural transformation ch: K'P(A) — HP(A), shows that ch ® C is an
equivalence for Perf of a finite-type C—scheme, and conjectures this property for any
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smooth and proper dg-category A. We show that ch ® C is an isomorphism for all
categories of the form Perf(Y), where Y is a smooth DM stack or a smooth quotient
stack admitting a semicomplete KN stratification. In fact, we expect that this “lattice
conjecture” should hold for a much larger class of dg-categories, such as the categories
DP(X) for any finite-type C—stack and Perf(X/G) for any quotient stack. Following
some ideas of Thomason in [66], we next construct a natural “topologization” map
pG.x: KP(Perf(X/G)) — Kpr(X*) for any smooth G—quasiprojective scheme X
and show:

Theorem C (Theorems 2.10 and 2.17) For any smooth quasiprojective G—scheme X
which admits a semicomplete KN stratification, the topologization map and the Chern

character provide equivalences?

K (X™) @ C LS 7, K (Perf(X/G)) ® C <25 H,CP*(Perf(X/G)).

Remark In fact, Theorem 2.10 shows a bit more. The map p¢, x is an equivalence for
any smooth G—quasiprojective scheme. For an arbitrary G—quasiprojective scheme X
we construct an equivalence of spectra pg, x: KP(D’Coh(X/G)) — K]c"lv (X,
where the latter denotes the M —equivariant Spanier—Whitehead dual of the spectrum
Kar (X*"), sometimes referred to as the equivariant Borel-Moore K-homology of X.
The equivalence pg,x is compatible up to homotopy with natural pullback and push-
forward maps (to be explained below). This result is of independent interest, and it
allows one to “decategorify” theorems regarding equivariant derived categories in a
precise way.

Note that the groups K, (X®") are modules over Rep(M ), the representation ring
of M. We say that a Rep(M )-linear Hodge structure of weight 7 is a finite Rep(M )-
module E along with a finite filtration of the finite Rep(M )c—module £ ® C inducing
a Hodge structure of weight 7 on the underlying abelian group E. Using the previous
identification K7 (X*")® C ~ H_, CY" (Perf(X/G)), we will show:

Theorem D (Theorem 2.20) For any smooth M —quasiprojective scheme admit-
ting a complete KN stratification, the noncommutative Hodge—de Rham sequence
for K3, (X*") ® C degenerates on the first page, equipping K,(X*") with a pure
Rep(M )-linear Hodge structure of weight n, tunctorial in X. There is a canonical
isomorphism

gt? K (X™) ~ H" 2P (RT(I§, O 10))-

2We will see that these homology-level equivalences are induced by suitable chain maps.

Geometry € Topology, Volume 24 (2020)



2366 Daniel Halpern-Leistner and Daniel Pomerleano

In this theorem, 1 :%er denotes the derived inertia stack, sometimes referred to as the
“derived loop stack.” As we will see in Lemma 4.2 below, we can express this more
concretely as

RT(I§, 0yger) = RT(G x X x X, Or @l 05)°,

where G acts on G x X x X by g-(h,x,y) = (ghg™!,gx,gy) and the two G-
equivariant closed subschemes of G x X x X are defined as I' = {(g, x, gx)} and
A = {(g, x,x)} respectively.

Example Along the way, we show that the lattice conjecture holds for an arbitrary
smooth DM stack and explicitly compute the Hochschild invariants of Perf(X). For a
smooth and proper DM stack, we construct an isomorphism of Hodge structures

ma K'P (Perf(X)) ® Q ~ ) Haki" (I Q(k)).
k
It should be noted that the motivic decompositions of Theorem B play a key role in
the proof of Theorem D, but these decompositions do not respect the Rep(M )-linear
nature of the Hodge structure on K%, (X*").

In Section 4 we spend some time discussing more explicit models for the Hochschild
homology and periodic cyclic homology for quotient stacks. For example, we show
that when X is smooth and affine, there is an explicit bar-type complex comput-
ing the Hochschild homology of Perf(X/G). As an application of Theorem D, we
prove an HKR-type theorem for the completion of this bar complex at various points
of Spec(Rep(G)) when X/G is formally proper. A corollary of this theorem is a
description of the completed Hochschild homology modules equipped with the Connes
operator in terms of differential forms equipped with the de Rham differential.

Extensions to categories of singularities

Another major source of Hodge structures in algebraic geometry comes from singularity
theory. For instance in [56], Kyoji Saito constructs analogues of Hodge theoretic
structures on the universal unfolding of an isolated singularity. More precisely, he
describes analogues of the Gauss—Manin connection and period mappings as well as
canonical coordinates on the base space of the universal unfolding. Motivated in part
by Saito’s work, Katzarkov, Kontsevich and Pantev [33; 34] have proposed a vast
generalization of Hodge theory which they call noncommutative (nc) Hodge structures.
As the name suggests, they envision that nc Hodge structures should arise naturally
from smooth and proper dg-categories (“nc spaces”).
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Let (X, W) be a Landau—Ginzburg (LG) model, that is, a pair (X, W) consisting of
a smooth quasiprojective variety X and a regular function W: X — A, To any LG
model, one may associate the category of matrix factorizations MF(X, W), which is
a 2—periodic (meaning k((f))-linear where 8 has homological degree —2) dg-category.
Applying the theory of nc Hodge structures to these nc spaces is expected to yield a vast
generalization of Saito’s theory to pairs (X, W) with proper critical locus Crit(W).?

For any LG model (X, W), thereis a “d W -twisted” Hodge—de Rham spectral sequence
which relates the hypercohomologies of the complexes

Q. dW A) and (Qy.d +dW A)

(see [33, Section 3.2] for details). Similarly to the classical case, this spectral sequence is
known to degenerate when W: X — A! is proper by work of Ogus and Vologodsky [52].
This degeneration result plays a central role in the noncommutative Hodge theory of LG
pairs — for example, a version of this result has been used to establish the smoothness
of versal deformation spaces of (compactified) LG models (generalizing the universal
unfolding space of a singularity) [34]. Efimov [18] and Preygel [55] have independently
identified the d W—twisted Hodge—de Rham spectral sequence with the k((f))-linear
noncommutative Hodge—de Rham spectral sequence for the category MF(X, W) (for
closely related results, see also Cilddraru and Tu [14], Dyckerhoff [17], Lin and
Pomerleano [43], Segal [58] and Shklyarov [60]). It follows that the result of Ogus and
Vologodsky can be recast as establishing the degeneration of this spectral sequence of
noncommutative origin.

We prove the following generalization of this degeneration result, which suggests that
in the equivariant context nc Hodge theory should extend to certain dg-categories which
are not smooth. We let Critg(W) denote the critical locus with critical value 0.

Theorem E (Proposition 3.17) If X is a smooth G—quasiprojective scheme which
admits a semicomplete KN stratification, and W: X — A is a G—invariant function
such that Perf(Critg(W)/G) is a proper dg-category, then the k((8))-linear noncom-
mutative Hodge—de Rham sequence for MF(X /G, W) degenerates on the first page.

Note that, by Lemma 1.5, the condition on Crito(W) in the theorem is equivalent to
the induced KN stratification on Crity(W') being complete. When X is projective over
an affine G-variety, the condition is equivalent to dim I"(Crity(W), OCritO(W))G < 00,

3Noncommutative Hodge structures are also expected to exist in other contexts, notably on the quantum
cohomology of a compact symplectic manifold.
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and if X' /G admits a good quotient, the condition is equivalent to the condition that
Crito(W)/G admits a projective good quotient.

We prove Theorem E by establishing an analogue of Theorem B for the & ((8))-linear
category MF(X /G, W) in Theorem 3.10. The proof is somewhat more subtle than
the case of Perf(X/G), and its formulation is a little more complicated, because at
the time of this writing we are not aware of a construction of k((f))-linear additive
noncommutative motives. Along the way, we also establish the degeneration property
for MF(X, W) in the case that X is a smooth quasiprojective DM stack and Crity(W')
is proper (see Section 3).4

Further questions

The notion of properness in equivariant geometry Our result on noncommutative
Hodge—de Rham degeneration adds to the list of ways in which certain equivariant
geometries behave as if they are proper despite not being proper in the sense of algebraic
stacks. The intrinsic characterization of which smooth algebraic stacks behave as if
they are proper from the perspective of Hodge theory, such as quotient stacks with a
complete KN stratification, and which do not, such as BG, or BU for a unipotent
group U (see Example 1.24), is still somewhat fuzzy.

In [26], Halpern-Leistner and Preygel study these properness phenomena systematically
by introducing the class of formally proper stacks, with the primary application being
the algebraicity of the mapping stack out of a formally proper stack. The examples
and counterexamples above for stacks exhibiting noncommutative Hodge—de Rham
degeneration are also important examples and counterexamples for stacks which are
formally proper in the sense of [26]. This raises a natural question:

Question 0.1 Are there examples of perfect, smooth, and formally proper k—stacks X
for which the Hodge—de Rham sequence associated to Perf(X) does not degenerate?

Hodge structures on equivariant K—-theory We believe that our main theorem for
Hodge structures on K}, (X™") raises many questions for further inquiry into the role
of Hodge theory in equivariant algebraic geometry. For example, it is plausible that the
results above could be extended to construct mixed Hodge structures on some version
of K—theory for arbitrary finite-type stacks. In a different direction, one of the central

4 As mentioned above, after the first draft of this paper was circulated, Kaledin proved the degeneration
conjecture. To the authors’ knowledge, however, the version of the degeneration conjecture for k((8))—

linear categories, which is the one which applies to categories of the form MF(X, W), does not appear in
the literature.
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notions in Hodge theory is that of a variation of Hodge structure. For simplicity, let S be
an affine scheme and suppose further that 7: X /G — S is a smooth equivariant family
over S such that all of the fibers X;/G admit complete KN stratifications. Most of the
techniques that we have developed work in families, which allows one to establish the
existence of suitable Hodge filtrations on the quasicoherent sheaf H Cger (Perf(X/G)).
We therefore believe it is quite likely that one can develop a theory of equivariant
period maps. Finally, Theorem E suggests that it may be possible to develop a version
of noncommutative Hodge theory which applies in the equivariant context.

Noncommutative equivariant geometry Although we make use of noncommuta-
tive algebraic geometry, all of the differential graded categories in this paper are of
commutative origin. It is interesting to try to formulate in noncommutative terms a
criterion for the Hodge—de Rham spectral sequence to degenerate. Theorem D suggests
the following concrete question: Let A be a proper dg-category which is a module
over Perf(BG). Suppose that A ®pe( )k = Perf(R), where R is a dg-algebra which
is homotopically finitely presented, homologically bounded and such that Hy(R) is a
finitely generated module over HH?(R).

Question 0.2 Does the Hodge—de Rham spectral sequence always degenerate for
such A?

Context Throughout this work, unless explicitly stated otherwise, we work over a
fixed subfield k£ C C. All of our functors are understood to be derived, so we write
is for Riy, i* for Li*, Hom for RHom, etc. We will work with stacks over the étale
site of k—schemes. By convention, unless otherwise indicated the term guotient stack
will denote a quotient of a quasiprojective k—scheme by a linearizable action of an
algebraic k—group G,> and we denote it by X/G.

Our stacks will be classical whenever we are studying the derived category of co-
herent sheaves D°Coh(X/G) and its relatives (QC(X),Perf(X), etc), but when we
discuss categories of matrix factorizations MF(X, W) and its relatives (IndCoh(X),
PreMF(X, W), PreMF®° (X, W), etc), it will be convenient to work with derived stacks.

We will work with k—linear dg-categories. For some of the more abstract arguments
involving homotopy limits and colimits and symmetric monoidal structures, it will be
more convenient to replace them with equivalent stable (ie pretriangulated) dg-categories
in the Morita model structure on dg-categories, then to regard them as k—linear stable
oo—categories via the equivalence of Cohn [13]. We permit ourselves a bit of fluidity on

SThis is sometimes referred to as a G—quasiprojective scheme.
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this point, in that we refer both to the literature on dg-categories and stable co—categories
as needed for constructions which evidently make sense in either context.
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1 The noncommutative motive of a quotient stack

In this section, we show that the noncommutative Hodge—de Rham spectral sequence
degenerates for Perf(X) for a large class of smooth quotient stacks subject to a proper-
ness condition. Our method for establishing the degeneration property will be to
systematically realize the derived category of a smooth quotient stack as being “glued
together” from (typically infinitely many) copies of the derived category of smooth
Deligne-Mumford stacks. This method will be used several times throughout this paper,
so we formulate our main result in a way that can be applied directly in different contexts.

We work with the category .#), of k—linear additive motives in the sense of [62] (see
also [11] for a construction using the framework of co—categories). This is the co—
category obtained as the left Bousfield localization of the co—category of small k-linear
dg-categories localized at the class of morphisms € — A @ B coming from split exact
sequences of small dg-categories A — C — B. In other words, objects of .}, are dg-
categories [C], where we have formally adjoined the relation [C] = [A] & [B] whenever
we have a semiorthogonal decomposition € = (A, B). We denote the localization
functor by Ug: dgCat; — # .

1.1 Recollections on KN stratifications

Our primary geometric tool will be a “KN stratification” of a quotient stack, as de-
fined in [63, (1.1)] or [24, Definition 2.2]. This is a decomposition of X as a union
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of G—equivariant, smooth, locally closed subschemes:

(1) X/G=x%/Gul JSi/G.

1
For instance, when X is projective-over-affine and G is reductive, a KN stratification
of X/G is induced by a choice of a G-linearized ample line bundle L and a Weyl-
invariant inner product on the cocharacter lattice of G. Throughout our discussion, we
will assume that we have fixed a choice of inner product on the cocharacter lattice of G,
and we will refer to the KN stratification induced by L as the L—stratification.

For each i there is a distinguished one-parameter subgroup A; of G. If we let L;
be the centralizer of A;, then there is a smooth open subvariety Z; C X* which is
L;—invariant. Then by definition we have

Sii=G-{xeX| lirr(l)ki(t)-x eZi}.
t—

When the KN stratification arises from GIT, then in fact Z; is the semistable locus for
the action of L} = L;/A;(Gy,) on the closure of Z;.

The main object of study in this paper will be quotient stacks admitting a KN stratifica-
tion of the following form:

Definition 1.1 A KN stratification of a quotient stack X/ G is semicomplete if X**/G
and Z; /L all admit good quotients which are projective-over-affine. We say that
the KN stratification is complete if all of the good quotients are projective.

Remark 1.2 Given a KN stratification of a G—scheme X, if X*/G and Z;/L’ all
admit semicomplete (resp. complete) KN stratifications, then the stratification of X
can be refined to a semicomplete (resp. complete) KN stratification by replacing each
stratum with the preimage of the strata of Z; /L’ under the projection S;/G — Z; /L
and taking the distinguishing one-parameter subgroup of each of these new strata to
be A; plus a very small rational multiple of the distinguished one-parameter subgroup
of the corresponding stratum in Z;/ Lﬁ. (which can be lifted to L rationally).

In a sense the main theorem of GIT is the following:

Theorem 1.3 Given a reductive G and any G—-ample bundle on a projective-over-
affine G—scheme X, the L—stratification is semicomplete.

Semicomplete KN stratifications are important because they lead to direct sum de-
compositions of noncommutative motives. If I is a (possibly infinite) totally ordered
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set and A is a pretriangulated dg-category, we say that A = (A;;i € I) forms a
semiorthogonal decomposition if objects of the full pretriangulated dg-subcategories A;
generate A under cones and shifts, and RHom(A;, A;) = 0 for i > j. In other words,
a semiorthogonal decomposition of a pretriangulated dg-category is by definition a
semiorthogonal decomposition of its homotopy category.

Lemma 1.4 If X is a smooth G—scheme with a KN stratification, we have an equiva-
lence in

Uy (Perf(X/ G)) == U (Perf(X ™/ G)) & D) U (Perf(Z;/ Ly)).

1

Proof The main theorem of [24] provides an infinite semiorthogonal decomposition
of Perf(X/G) under these hypotheses. One factor of the semiorthogonal decomposition
is equivalent to Perf(X*/(G), and the rest are of the form Perf(Z;/L;)y, where
the subscript denotes the full subcategory of objects whose homology sheaves are
concentrated in weight w with respect to A. The fact that U commutes with filtered
colimits implies that the infinite semiorthogonal decomposition maps to an infinite
direct sum decomposition of Uy (Perf(X/G)) € ... On the other hand, the category
Perf(Z;/L;) decomposes as a direct sum of the subcategories Perf(Z;/L;), over
all w e Z, so @, Ux(Perf(Z; / Li)w) ~ Uy (Perf(Z;/L;)) € M. |

We will also use KN stratifications to compare properness of the dg-category Perf(X/G)
to properness of the dg-categories Perf(X**/G) and Perf(Z;/L;) for all i.

Lemma 1.5 Let X be a perfect derived k—stack of finite cohomological dimension,
and let Y be another perfect derived k—stack such that yelred ~ celred 554 Oy is
eventually coconnective. Then the following are equivalent:

(1) H;RI'(X, F) is finite-dimensional for all i and all F € D™ Coh(X).
(2) RI(X, F) is finite-dimensional for all F € Coh(X).
(3) Perf(Y) is a proper dg-category.®
Furthermore, if X is a separated DM stack, then this is equivalent to X being proper.

SWe will need to consider the derived critical loci below, which is why we have introduced derived
stacks here. If X is classical, then there is no need to replace X by an eventually coconnective approxima-
tion in (3), but the example Y = X = Spec(k[¢]), where ¢ is a variable of homological degree 2, shows
that (2) does not imply (3) without the eventually coconnective hypothesis.
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Proof Finite cohomological dimension implies that for any F € D~ Coh(X) and
all i € Z, there is an n sufficiently high that H;RT (X, 1<, F) ~ H;R['(X, F), so
(2) = (1). Also, (1) = (2) because Coh(X) C D™Coh(X) and H;RI'(F) vanishes
in all but finitely many degrees. It is clear that (2) can be checked on X" because
every F € Coh(X) is pushed forward from X, and any F € Coh(X*") has a finite
filtration whose associated graded is pushed forward from X¢bred,

To show that (2) < (3), it thus suffices to show that (2) is equivalent to Perf(X) being
a proper dg-category in the case when X is eventually coconnective. Because X is
perfect, for any F € D’Coh(X) and any n we can find a perfect complex P such that F
is a retract of t<, P, so choosing n large enough shows that H; R["(X, F') is a retract
of H;RI'(X, P), which is finite if Perf(X) is a proper dg-category. On the other hand,
Perf(X) C D’Coh(X) if X is eventually coconnective, so Homy (E, F) =RI'(EY ® F)
is finite-dimensional for perfect complexes E and F.

For the further claim, it suffices to assume that X is classical. In this case if X is a
separated DM stack, one may find a proper surjection from a quasiprojective scheme
X — X [53], and then deduce that X is proper from property (2), and hence X is
proper. d

Lemma 1.6 Let X/G be a quotient stack with a KN stratification. Then Perf(X/G)
is a proper dg-category if and only if Perf(X*/G) and Perf(Z;/L}) are proper dg-
categories for all 7 .

Proof It suffices to consider the case of a single closed stratum S C X with center
Z C S and with open complement U.

First assume that Perf(X/G) is a proper dg-category. By [25, Theorem 2.1], there is
a fully faithful embedding Perf(U/G) C D™ Coh(X/G) (in fact one for each choice
of w € Z), and to prove the lemma it will suffice by Lemma 1.5 to show that this
embedding preserves RI'. Adopting the notation of [25], this amounts to showing
that we can choose a w such that, for F € §*¥ C D™ Coh(X), which is identified
with D™ Coh(X**) under restriction, we have RI'(X, F) ~ RI'(X*, F)). This holds
for w =0 by [25, Lemma 2.§]

Regarding X as a derived stack, we may define the derived fixed locus V4 /L, whose
underlying classical stack is Z /L. Then [25, Theorem 2.1] shows that the functor

ism*: D”Coh(Z /L") ~ D™ Coh(Z/L)® — D™ Coh(X/G)
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is fully faithful. By Lemma 1.5 the dg-category Perf(Z /L") is proper, and thus so
is Perf(Z/L’).

Conversely, assume that Perf(Z/L’) and Perf(U/G) are both proper dg-categories.
We will show that Perf(X/G) is proper by invoking Lemma 1.5 and showing that
H,RI'(X, F)9 is finite-dimensional for any » and any coherent sheaf F. Again by
[25, Theorem 2.1], we can functorially write F as a finite extension of an object F’ € G°
and two objects supported on the unstable stratum 8 = S /G, one in D~Cohg(X)=°
and one in D~Cohg(X)<%. In particular, as noted above, we have RI'(X, F’) ~
RIT(U/G, F'), which has finite-dimensional homology.

Thus it suffices to show that RI'(X, F”) has finite-dimensional homology for any
F” € D~ Coh(X) which is set-theoretically supported on 8. Because X has finite
cohomological dimension, we may truncate F” so that it lies in DPCoh(X), and then
in can be built out of a sequence of extensions of shifts of objects of the form ix E
for £ € Coh(S/G). Thus it suffices to show that Perf(S/G) is proper. A similar
filtration argument using the baric decomposition of [25, Lemma 2.2] can be used to
deduce that Perf(S/G) is proper because Perf(Z /L) is proper. Finally, the projection
Z/L — Z/L’ is a G,,—gerbe, so the pushforward preserves perfect complexes, and
thus Perf(Z /L) is proper if Perf(Z/L’) is proper. |

Corollary 1.7 Let X/G be a quotient stack with a semicomplete KN stratification.
Then Perf(X/G) is a proper dg-category if and only if the stratification is complete.

Proof Combine Lemma 1.6 with Lemma 1.5. O

1.2 Motivic decompositions via KN stratifications

We will consider the class of stacks which have semicomplete KN stratifications as in
Definition 1.1. We use the notation €®N to denote the direct sum of countably many
copies of the dg-category C. Recall also the definition of [39] that a DM stack of finite
type with finite inertia over a field of characteristic 0 is quasiprojective it X is a global
quotient stack and has a quasiprojective coarse moduli space. We will say that X is
furthermore projective-over-affine if its coarse moduli space is projective over an affine
variety.

Theorem 1.8 Let G be an algebraic group over a field k of characteristic 0. Let X
be a smooth G—quasiprojective k—scheme with a semicomplete KN stratification.
Then there exists a smooth projective-over-atfine Deligne—Mumford stack Y such
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that Uy (Perf(X/G)) is a direct summand of Uy (Perf(Y))®N in .4 . Furthermore,
if Perf(X/G) is a proper dg-category, then Y can be chosen to be a smooth projective
scheme.”
Note that, by Corollary 1.7, Perf(X/G) is proper if and only if the KN stratification is
complete.

Remark 1.9 The proof is constructive, and actually produces something a bit stronger:
if C is the oo—category of small dg-categories, then Perf(X/G) lies in the smallest
subcategory containing Perf(Y) and closed under countable semiorthogonal gluings
and passage to semiorthogonal factors.

Example 1.10 If X is projective-over-affine with a linearizable G—action, then the
condition that Perf(X/G) is a proper dg-category is equivalent to the condition that
HoRI'(X, O X)G is finite-dimensional, by [26, Proposition 4.2.3].

Example 1.11 We can write any algebraic k—group G as a semidirect product G =
U x L, where U is its unipotent radical and L its reductive quotient. Assume that
there is a one-parameter subgroup A: G,, — L which is central in L and acts with
positive weights on Lie(U) in the adjoint representation of G. Then this one-parameter
subgroup defines a single KN stratum S = X = {*},and Z/L = /L’ — * is a good
quotient. Thus Theorem 1.8 applies to a large class of categories of the form Perf(BG),
including when G is a parabolic subgroup of a reductive group.

Example 1.12 If G is as in the previous example, and X is a smooth projective-
over-affine G—scheme, then one can consider the Biatynicki-Birula stratification of X
under the action of A(Gy,), which is a KN stratification. If this is exhaustive, and
r )‘(Gm), O XMGW,))L is finite-dimensional, then the Biatynicki-Birula stratification
can be refined to a complete KN stratification of X as in Remark 1.2.

Our proof of Theorem 1.8 will proceed by a delicate inductive argument. One of the
key tools is the following:

Lemma 1.13 Let 7n: Y — X be a rational morphism of finite-type k—stacks, meaning
ROy =~ Ox. Assume that X is smooth and « preserves D°Coh. Then Uy (Perf(X))
is a summand of Uy (Perf(Y)) in .4 .

7The original version of this paper had Y as a projective DM stack, but by subsequent work of Bergh,
Lunts and Schniirer [7] one can further reduce to a smooth projective scheme.
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Proof First consider the categories Perf(Y) and Perf(X). The unit of adjunction
idy,G — m«m™ is an equivalence in Perf(X), and hence 7™ is fully faithful and admits
a right adjoint. Thus Perf(X) is a semiorthogonal factor of Perf(Y). a

We will apply Lemma 1.13 in three different situations.

Example 1.14 If 7: Y — X is a flat morphism of algebraic stacks such that for every
k—point p of X the fiber Y, satisfies RT'(Jp, Oy,) =~ k, then 7 is rational. If 7 is
not flat, then the same is true if we take Y, to refer to the derived fiber.

Example 1.15 Any representable birational morphism of smooth k—stacks is rational.
Indeed we can reduce this to the case for schemes, as birational morphisms are preserved
by flat base change and the property of a morphism being rational is fppf-local on the
base.

Example 1.16 Let G — H — K be an extension of linearly reductive groups, and
let K act on a scheme X. Then the morphism p: X/H — X /K is a G—gerbe — after
base change to X this morphism becomes the projection X x BG — X. Therefore,
because G is linearly reductive, Rp«Ox/ g >~ Ox /.

Let m: X’ — X be a projective morphism of smooth projective-over-affine varieties
which is equivariant with respect to the action of a reductive group G. For a G—ample
invertible sheaf L on X and a relatively G—ample invertible sheaf M on X', we
consider the fractional polarization L = L 4+ €M for ¢ € Q. We will need the
following:

Lemma 1.17 [63, Lemma 1.2] For any small positive € € Q, the L¢—stratification
of X' refines the preimage of the L—stratification of X.

Finally, we need another GIT lemma:

Lemma 1.18 Let X be a G—quasiprojective scheme which admits a good quotient
n: X — Y such that Y is projective-over-affine. Then X = X for some linearized
projective-over-affine G—scheme X , which can be chosen to be smooth if X is smooth.

Proof The proof of [63, Lemma 6.1] applies verbatim: one constructs a relative
G—compactification for X — Y by choosing a coherent F' C 4Oy sufficiently large
that X' embeds in the projectivization of Specy Sym(F'). The closure of X is projective
over Y, and hence projective-over-affine, and it has a linearization for which X% = X
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by the cited argument. Furthermore, one can equivariantly resolve any singularities
occurring in X \ X if X is smooth. |

Proof of Theorem 1.8 Over the course of the proof, we will actually construct a
finite set of smooth quasiprojective DM stacks Y1, ..., Yn such that Uy (Perf(X/G))
is a retract of Uy (Perf(Y1))®N @ --- @ Uy (Perf(Yn))®N, and then we may take
Y=Y, U---UYyn at the end. Also, when Perf(X/G) is a proper dg-category, it
suffices to show that the YJ; can be chosen to be smooth proper DM stacks, because
[7, Theorem 6.6] implies that for any smooth proper DM stack Y, Perf(Y) is geometric,
meaning a semiorthogonal factor of Perf of a smooth projective variety. We shall prove
the theorem by induction on the rank of G.

Note that, by Lemma 1.4 and the definition of a semicomplete KN stratification,
it suffices to prove this for quotient stacks which have projective-over-affine good
quotients. For our purposes, it will be more convenient to consider smooth G—schemes
which are projective-over-affine, and by Lemmas 1.18 and 1.4 it suffices to prove the
claim for open unions of KN strata in a quotient stack of this form. We fix a G—ample
bundle L on X and consider the L—stratification as in (1).

Case X* = @ By Lemma 1.4 we must verify the claims for Uy (Perf(Z;/L;)) for
all i for which Z; C U. First assume that the inclusion A(G,,) C L; admits a splitting
L;i — Gy, so that L; >~ Gy, X L; where the left factor is A(Gy,). Then Z;/L; >~
BGy x Zi/L}, so Uy (Perf(Z;/L;)) is a direct sum of copies of Uy (Perf(Z;/L})).
This is the only point of the proof at which an infinite direct sum enters, and it is an
infinite direct sum of copies of the same category, so throughout the proof we will only
encounter a finite set of distinct DM stacks.

If A(G,,) C L; is not split, then we can choose a surjective homomorphism L— L;
with finite kernel, where L ~ G, x L’ and G,, x {1} — L; factors through A(G,).
The morphism p: Z;/ L—Z; /L; is rational, so Lemma 1.13 reduces the problem
to showing the claim for Z;/ L. By the argument of the previous paragraph it again
suffices to prove the claim for Z; /L.

Let Z ; be the closure of Z;, which is a connected component of X *i and hence
smooth and projective-over-affine. Then Z; is the semistable locus for the action of L
on Z;, and L;. has lower rank than L;, so the first claim of the theorem follows from
the inductive hypothesis. Note that Lemma 1.6 implies that Perf(Z;/L?) is a proper
dg-category if Perf(U/G) is, so in this case the inductive hypothesis implies that one
can choose the DM stacks Y; to be projective.
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Case X° = X% # @ The argument in the case where X% = @ applies here as
well, so the inductive hypothesis implies that the conclusion of the theorem holds
for Perf(Z;/L;) forall Z; C U. By Lemma 1.4 it suffices to show that the claims hold
for X*/@. In this case X**/G is a smooth separated Deligne—-Mumford stack whose
coarse moduli space is projective-over-affine. Furthermore, if Perf(U/G) is a proper
dg-category, then so is Perf(X*/G) by Lemma 1.6, and hence X**/G is projective
by Lemma 1.5.

Case X% # &, X% # X5, and codim(X*\ X*, X%) > 2 As in the previous case,
it suffices to show the claims for X%/ G. Here we use the main result of [37], which
says that there is a birational morphism 7: X’ — X such that (X")*(L¢) = (X")*(L¢),
where L = n*L + € M for a suitable relatively G—ample M. By Lemma 1.17 the
open subset U’ := 7~ 1(X*(L)) is a union of KN strata, and 7: U’ — X*(L) is
rational, so by Lemma 1.13 we may reduce the main statement of the theorem to the
corresponding claim for U’/G, which falls under the previous case. Furthermore,
if Perf(U/G) is a proper dg-category, the fact that U’/G — U /G is proper implies
that Perf(U’/G) is a proper dg-category, so again we may reduce to the previous case
to show that the Y; can be chosen to be projective.

Case X* # @ but codim(X*\ X5, X%) <1 Let Y be a smooth projective variety
with a G—action such that RI'(Y, Oy) ~ k and for some linearization M we have
codim(Y \ Y*,Y) > 2. For instance, Y could be a suitable product of flag varieties,
or a large projective space with a suitable linear G—action. We linearize the G—action
on X xY with L = L +eM. By Lemma 1.17, the open subvariety U xY C X xY
is a union of KN strata for the L—stratification. The projection U x Y/G — U /G is
rational, and so by Lemma 1.13 it suffices to prove the claims for U x Y /G. Note that
Perf(U x Y/G) is a proper dg-category if Perf(U/G) is. Finally we have a sequence
of inclusions
XY Cc(XxY)YCc(XxY)®CX¥xY,

where the first inclusion is due to the fact that points in Y* have finite stabilizers and
thus so do points in X x Y, and the last inclusion follows from Lemma 1.17. This
implies that

codim((X x Y)® \ (X x Y)*, (X x Y)*)
> codim(X® x (Y \Y*), X¥xY) =codim(Y \Y*,Y) > 2,

which reduces us to the previous case. |
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1.3 A -modules and the noncommutative Hodge—de Rham sequence

Let us recall the negative cyclic and periodic cyclic homology of a small k—linear
dg-category A. We let C,(A) € D(A) denote the (mixed) Hochschild complex of A,
regarded as a dg-module over A = k[B]/B? where B has homological degree 1 and
acts on C,(A) by the Connes differential. We have

CI(A) := Co(A) ® k[u] /(u™),
Co(A) =1lim C",

CXNA) == C7(A) @kl k(w).

where u is a variable of homological degree —2. The differential on each complex is
given by d+u B, where d is the differential on C,(A). In fact, these constructions make
sense for any A—module M. We sometimes denote the negative cyclic construction
by MS " and the periodic cyclic construction by M ™€ See Lemma 3.2 below.

Definition 1.19 [38] The category A is said to have the degeneration property if
H, (C.(”)(A)) is a flat k[u]/(u")-module for all n > 1.

It is immediate from the definitions that the degeneration property is preserved by
filtered colimits of dg-categories. It is also known that the degeneration property holds
for categories of the form A = Perf(R), where R is a smooth and proper dg-algebra
[31; 32]. In particular, this holds when A = Perf(X), where X is a smooth and proper
Deligne-Mumford stack over k [23], although a more direct argument in this case
follows from Proposition 2.13 below. If A satisfies the degeneration property, then
H.(C, (A)) is a flat k[u]-module. (See [38, Corollary 9.1.3]).

The degeneration property owes its name to its relationship with the noncommutative
Hodge—de Rham spectral sequence. This is the spectral sequence associated to the
filtration® of the complex

FPCP(A) =u? -C(A) C CP(A).
The E; page of the spectral sequence is gr C¥"(A) ~ C,(A) ® k((1)). The degen-
eration property implies that this spectral sequence degenerates on the first page,

8Note that the filtration is not a filtration of k ((#))—modules, as u - F? ¢ FPT1_ Asexplained to us
by Kaledin, this can be understood by thinking of u as the Tate motive. In other words when k C C,
rather than regarding k[u] simply as a complex (where u has cohomological degree 2), we regard it
as H*(P°°) with its Hodge structure, which places u in F!C[u].
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so the associated graded of the resulting filtration on Hy(CE*(A)) is isomorphic
to Hx(Co(A)) ® k((u)). Under the assumption that A is suitably bounded, we can say
something more precise:

Lemma 1.20 Let A be a dg-category such that Hx(C,(A)) is homologically bounded
above and which satistfies the degeneration property. Then there exists a (noncanonical)
isomorphism Hy(C; (A)) ~ Hx(Co(A)) ® k[u].

Proof This follows from the remark before Theorem 4.14 of [33]. O

The hypothesis of Lemma 1.20, that Hy(C,(A)) is homologically bounded above, will
apply to Perf(X) for all smooth k—stacks X of finite cohomological dimension such
that QC(X) is compactly generated.

Remark 1.21 The A-module C,(A) is functorial in A. When A is a symmetric
monoidal k-linear co—category, exterior tensor product followed by the symmetric
monoidal product gives a natural map

C,(ARC, (A —>Cor(ARA)—C(A)

and likewise for CY"(A). On the level of homology, this gives Hyx C* (A) the structure
of a commutative k ((¢2))—algebra, and for any symmetric monoidal functor between sym-
metric monoidal co—categories A — B, the resulting map HyCY™ (A) — H,CY*(B)
is a map of commutative k((u))—algebras.

1.4 The degeneration property for quotient stacks

In [63, Theorem 7.3], Teleman establishes the degeneration of a commutative Hodge—
de Rham sequence, which converges to the equivariant Betti cohomology Hg (X),
for a smooth quotient stack X /G with a complete KN stratification. The argument
in [63] makes use of the KN stratification and has a similar flavor to the proof of
Theorem 1.8. However the proof in the commutative case is substantially simpler. In
the noncommutative situation, we are not aware of an argument to reduce the proof of
degeneration to the case of the quotient of a smooth projective scheme by the action of
a reductive group, as was done in [63].

Using the motivic statement of Theorem 1.8, we can immediately deduce noncommu-
tative Hodge—de Rham degeneration. The main observation is the following:
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Lemma 1.22 The degeneration property is closed under direct summands and arbitrary
direct sums in A, .

Proof The Hochschild complex C,(—) is an additive invariant of dg-categories and
thus factors through Uy uniquely up to contractible choices. The claim follows from the
fact that the operation D(A) — D(k) mapping (M, d, B)+— (M ®k[u]/(u"),d+uB)
commutes with filtered colimits and in particular infinite direct sums and the fact that
an infinite direct sum of (k[u]/(u"))-modules is flat if and only if every summand is
flat. |

Corollary 1.23 Let G be a reductive group and let X be a smooth G—quasiprojective
scheme which admits a complete KN stratification. Then Perf(X /G) has the degenera-
tion property.

Proof Combine Lemma 1.22 with the conclusion of Theorem 1.8. O

Example 1.24 As a counterexample, consider Perf(BG,). This category is Morita
equivalent to the category Perf(k[e]/(¢?)) where € has degree —1. By the (graded-
commutative) HKR theorem [44, Proposition 5.4.6] we have H,C,(Perf(k[e]/(€?)) =
k€] /(e?) ® Sym*(de), where de has degree 0. By Theorem 5.4.7 of the same book,
the Connes operator goes to the de Rham differential which sends € — de and so the
spectral sequence does not degenerate.

We also observe, somewhat surprisingly, that the derived category of coherent sheaves
on certain singular quotient stacks also has the degeneration property. We will consider
the following geometric setup:

e X/G=X%/GULY; Si/G is acomplete KN stratification (Definition 1.1) of a
smooth quotient stack,

e V is a G—equivariant locally free sheaf on X such that V|7, has A;—weights
less than or equal to 0 for all 7, and

e o eI (X,V)Y is an invariant section.

Note that the quantization-commutes-with-reduction theorem [63] implies that if
the A;—weights of V|7, are strictly negative, then I"(X, V)9 ~T(XS(L), V) (this
is referred to as adapted in [63]). Using the methods of [24] one can show that
dim (X, V)% < oo even when the A;—weight of V| z; vanishes for some i.
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Amplification 1.25 In the setup above, if

(1) o isregular on X with smooth vanishing locus, and

))»=0

(2) foralli the restriction of o to (V|z, , the summand of V| z, which is fixed

by AMGy,), is regular with smooth vanishing locus,

then there is a smooth and proper quasiprojective Deligne—Mumford stack Y such that
Uy (DPCoh(X4 /G)) is a retract of Uy (Perf(Y))®N .

Proof We apply the structure theorem for the derived zero locus X, in [25, Theorem
3.2], whose derived category is just the derived category of the sheaf of CDGAs
over X /G given by the Koszul algebra

A= (Sym(VY[1]).d¢ = ¢(s)).

The structure theorem constructs an infinite semiorthogonal decomposition which gener-
alizes the main structure theorem of [24]. One factor is isomorphic to D?Coh(X$*/G),
and the remaining factors are isomorphic to DbCOh(Zlf /Li)”, where Z! denotes

the derived zero locus of o restricted to (V| Zl.))‘=0

, and the superscript w denotes
the full subcategory of D°’Coh(Z {/L;) consisting of complexes whose homology is

concentrated in weight w.

In order to apply this theorem, we must check that after restricting the cotangent
complex Ly, ;G to Z;/L; and looking at the summand with A-weights < 0, there is
no fiber homology in homological degree 1. Because Xy is a derived zero section,

(Lx, 6z =0 ~[(VY[2)*=° = (Qx|2)*=" — 07/ @ (")),

So the weight hypotheses on V|7, imply that this is a two-term complex of locally
free sheaves in homological degrees 0 and —1 and hence has no fiber homology in
homological degree 1.

Given the structure theorem for D°Coh(X,/G), the proof of Lemma 1.4 now applies
verbatim to give a finite direct sum decomposition
Uk (D°Coh(Xy/ G)) = Uy (D°Coh(X5*/ G)) @ (P Uk (D°Coh(Z;/ Li)).
i
Under the hypotheses of the amplification, each factor in this direct sum decomposition
is D’Coh of a smooth quotient stack satisfying the hypotheses of Theorem 1.8, and
the result follows. |

Remark 1.26 If V is strictly adapted to the KN stratification, then condition (2) in
the previous amplification is vacuous.
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Corollary 1.27 In the setup of Amplification 1.25, the category D’Coh(X,/G) has
the degeneration property.

We will see another approach to establishing Corollary 1.27 using graded LG models
in Example 3.23 and Proposition 3.26.

2 Hodge structures on equivariant K —-theory

In this section we consider the action of a reductive group G on a smooth quasiprojective
C—scheme X. Our goal is to identify the periodic cyclic homology CY*'(DPCoh(X/G))
with the complexification of the Atiyah—Segal equivariant topological K—theory
Kpr (X)) with respect to a maximal compact subgroup M C G (see Section 2.1.2).
Our final result, Theorem 2.20, will allow us to define a pure Hodge structure of
weight n on K7 (X®") in the case where X admits a complete KN stratification.

Rather than construct a direct isomorphism, we study an intermediate object, the
topological K—-theory of the dg-category K'°P(DPCoh(X/G)), as defined in [8], which
admits natural comparison isomorphisms with each of these theories. In Blanc’s
construction, K'P(C) is constructed from the geometric realization of the presheaf of
spectra on the category, Aff, of affine C—schemes of finite type,

K(@): A~ K(A®c ©).

Here K(—) denotes the nonconnective algebraic K-theory of a dg-category of [8,
Definition 2.10]. The geometric realization of a presheaf, |-|, is defined to be the
left Kan extension of the functor A +— X% (Spec 4)%", regarded as functor with
values in spectra, along the Yoneda embedding of the category of finite-type C—
schemes into presheaves of spectra, Aff — Sp(Aff). The geometric realization functor
| -|: Sp(Aff) — Sp admits a right adjoint, which assigns M € Sp to the presheaf
of spectra Hp(M) := Homg,(X°°(-)¥', M). The semitopological K—theory is the
geometric realization
KPemion() = K (©)],

regarded as a K*°™P(C)—module spectrum. By [8, Theorem 4.5], we have an isomor-
phism K*Mi©P(C) ~ bu, where the latter denotes the connective topological K—theory
spectrum. Choosing a generator 8 € 7, (bu), one then defines the topological K-theory
of a dg-category to be

KP(€) := K*™P(@)[f™"] = | K(C)| ®pu bulB"].

Geometry € Topology, Volume 24 (2020)



2384 Daniel Halpern-Leistner and Daniel Pomerleano

Remark 2.1 1In the definition of the presheaf K(C), A ®c € denotes the derived
tensor product of non-idempotent-complete dg-categories, as in [35, Section 4.3]. In
Section 3 we will also consider a symmetric monoidal structure on small stable idem-
potent complete dg-categories, which we will denote by A ® B to avoid confusion. In
addition, following the convention of [8, Definition 2.7], throughout this paper we define
the algebraic K—theory of a small dg-category € to be the algebraic K—theory of the
Waldhausen category Perf(C), so that it is automatically Morita invariant. We warn the
reader that, as a consequence, if C is a stable dg-category, then K(C) denotes the usual
algebraic K-theory of the idempotent completion of €, not the K-theory of € itself.

We will also use the construction of a Chern character map Ch: K'°P(C) — C&(€).°
First, one obtains a map of presheaves K (C) — @ (€) from the usual Chern character
in algebraic K—theory, where Qﬂ (C) denotes the presheaf A4+ CY*(4A®c €@). Using
a version of the Kiinneth formula for periodic cyclic homology, one obtains an equiva-
lence | Qﬂ ©)| =~ & ©) OC[ut] |Cier (©)|. Then one can construct an isomorphism
of presheaves f(@) ~ Hg(C[u%]), which leads to a map |£(C)| — Clu?t].
Combining these provides a map

K™ () - CP(C) @ gty ICFT(C)] — €I (©)

which give the Chern character after inverting f. The main result we use is [8,
Proposition 4.32], which states that for a finite-type C—scheme X, the Chern character
induces an equivalence K'P(Perf(X)) ® C — CY*(Perf(X)). Furthermore, there is a
natural topologization map which is an equivalence K'P(Perf(X)) — K(X?"), and
under this equivalence Ch can be identified with a twisted form of the usual Chern
character for X under a canonical isomorphism C&* (X)) — Hpeyi(X; Q) ®¢ C [ut].
More precisely, Blanc’s Chern character provides an equivalence

K“P(Perf(X)) ® Q ~ Hpei(X: Q) ® Q ((%)) C Hpewi(X™: Q) ® C((u)),

which we can alternatively express as an isomorphism
t 2p— an.
(K P (Perf(X))) ® Q ~ @D H*P " (X*™: Q(p)).
p

where Q(p) C C denotes the subgroup (27i)?Q.

9In order to be consistent with the rest of the paper, we use the notation C2" for the periodic cyclic
homology complex of a dg-category, rather than the notation HP used in [8]. In addition, we use the
notation ® rather than A for the smash product of spectra and module spectra. For example K'°P(C) ® C

is the C—module spectrum, which we canonically identify with a complex of C—modules, which is denoted
by KP(C) A HC in [8].
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2.1 Equivariant K-theory: Atiyah—Segal versus Blanc

In this section we consider a reductive group G with maximal compact subgroup
M C G, and a G—quasiprojective scheme X, which need not be smooth. The goal of this
section will be to construct a comparison isomorphism between K'°P(DPCoh(X/G))
and topological M —equivariant K—homology of X" with locally compact supports,
whose construction and properties we recall below.

2.1.1 Equivariant Borel-Moore homology theories from invariants of dg-categories
Let us consider an additive invariant of dg-categories, E(—). Then we have a Borel-
Moore homology theory on the category of G—schemes by defining Epm(X) =
E(DPCoh(X/G)) (see Remark 2.4 below). This assignment is covariantly func-
torial with respect to proper G—equivariant maps p: X’ — X by applying E(—)
to the pushforward functor ps: DPCoh(X’/G) — DPCoh(X/G), and E(X) is
contravariantly functorial with respect to flat G—equivariant maps f: X' — X
by applying E(—) to the pullback functor f*: D’Coh(X/G) — DPCoh(X’/G).
Note also that if X is a smooth G—space, then we have a canonical equivalence
E(Perf(X/G)) — E(D’Coh(X/G)), so we can canonically identify Egp(X) with
the “cohomology” theory E(X) := E(Perf(X/G)), which is a form of Poincaré
duality.

More precisely, let Spaces; denote the category of algebraic spaces with a G—action
and G-equivariant maps, and let Spaces‘t’; for ? = f, p, >~ respectively denote the
subcategories consisting of flat maps, proper maps, and isomorphisms. We regard the
additiv;c( invariant 5(? as giving two strict functors into spectra Eé’M: Spacesé — Sp
and Egy: (Spaces;;)° — Sp along with an isomorphism of the restriction of these
functors to the subcategories Spacesg C Spacesé and Spacesg C (Spacesé)"p. Here
we have used the fact that Spaces is a groupoid to make the canonical identification
Spaces ~ (Spacesg;)°P.

Recall that an additive invariant E(—) of dg-categories is localizing if it takes local-
ization sequences of dg-categories to exact triangles, and we say that E(—) satisfies
equivariant dévissage if for any closed immersion i: X < X’ of G-spaces the in-
duced map is: E(D°Coh(X/G)) — E(DPCohy(X’/G)) is an equivalence, where
DPCohy (X’/G) denotes the derived category of quasicoherent complexes with coher-
ent cohomology sheaves which are set-theoretically supported on X.

Lemma 2.2 Let E be an additive invariant of dg-categories. Then:
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(1) The base-change formula holds: if p: X — Y is proper, f: Y’ —Y is flat, and
f" and p’ are base changes of f and p, then there is an equality of compositions
pxo f* = (/) o(p)«: Egm(X) — Epm(Y’) in the homotopy category of
spectra Ho(Sp).

(2) IfV is a G—equivariant vector bundle on X and w: P(V) — X is the projection,
then
7*: Egm(X) — Epm(P(V))
followed by

(=) ® Op) (k): Egm(P(V)) = Esm(P(V))
is a split injection.

(3) The previous maps, where k ranges from 0,...,n — 1, define a canonical
equivalence
Epm(P(V)) =~ Egm(X)®".

Furthermore, if E is localizing and satisfies equivariant dévissage, then:

(4) For any closed immersion of G-spaces i: X — X " with open complement
j: U C X', there is an exact triangle Egp(X) = Egm(X') <> Epm(U) — .

(5) Ifn: V — X isa G-equivariant torsor for V, then 7*: Egy(X) — Egm(V) is
an equivalence.

Proof The claim (1) follows immediately by applying E(—) to the usual base-change
formula. Claims (2) and (3) follow from the facts that £ is an additive invariant and
that there is a canonical semiorthogonal decomposition

D°Coh(P(V)/G) = (x*(D"Coh(X/G)), *(D"Coh(X/G)) & Op(v)(1), ...,
7*(D°Coh(X/G)) ® Op(y)(n —1)).

Now let us assume that £ satisfies dévissage. Claim (4) follows immediately from the
dévissage condition and the localization exact triangle

E(D°Cohy (X'/G)) — E(D°Coh(X’/G)) — E(D°Coh((X' — X)/G)) — .

For (5), we note that Thomason’s proof when E(—) is algebraic K—theory in [65,
Theorem 4.1] generalizes to this context as well: the torsor V' is classified by an
extension 0 >V — V' — Oy — 0 of G—equivariant locally free sheaves on X and
is isomorphic to the complement of the closed embedding P(V) < P(V’). Using
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the direct sum decomposition of E(P(V’)) and E(P(V)) from (3) one can show
that E(ix): E(P(F)) — E(P(W)) is a split injection, and the pullback map gives an
equivalence of the cofiber with £(X). It follows from the localization sequence of (4)
that the cofiber of E(ix) can be canonically identified with E(P (V') —P(V)) under
the restriction map, so we have that pullback gives an equivalence E(X) >~ E(V). O

Example 2.3 Algebraic K-theory of dg-categories as defined in [8, Definition 2.10]
is a localizing invariant and satisfies dévissage, and it follows that K'°P(—) is localizing
and satisfies dévissage as well.

Remark 2.4 The theory Egym(X) gives a Borel-Moore homology theory in the sense
of [41, Definition 2.1.2], but whose source is the category of G—spaces and which takes
values in Ho(Sp) rather than graded abelian groups. We are forced to use the homotopy
category of spectra because we have only formulated the base-change formula in this
setting. In order to formulate a “strict” Borel-Moore homology theory valued in spectra,
one would have to define the source category as an oo—category of correspondences,
as in [22, Section V].

Remark 2.5 Although we are only interested in quotient stacks here, one can define
a Borel-Moore homology theory Egpm(X) := E(D°Coh(X)) for arbitrary algebraic
stacks, and the statements and proofs of the previous lemma extend to this context.

2.1.2 Atiyah-Segal equivariant K—theory We now turn our attention to topological
equivariant K—theory with respect to a maximal compact subgroup M C G. There is
a K—cohomology theory for topological M —spaces constructed in [1]. Below we use
the more systematic description of Kz (X) in terms of equivariant stable homotopy
theory as the spectrum obtained by taking levelwise M —equivariant mapping spaces
from X to the naive M —spectrum underlying the M —spectrum buys. For details
on the nonequivariant and equivariant stable homotopy category, we refer the reader
to [42] and [47, Chapters XII, XIV and XVI]. Kz (X?) can also be constructed as
the K—theory spectrum associated via Quillen’s Q—construction to the exact category
of M —equivariant complex vector bundles on X",

We will also consider the Atiyah—Segal equivariant K—homology with locally compact
supports K]CV’IV (X@). This theory was studied in [66, Section 5] under the notation
GAS (G, X), and our discussion follows this reference closely. In particular, we refer the
reader there for a nice discussion contextualizing Kfv’fv (—) with respect to several other
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versions of equivariant K—theory. We have chosen to denote the M —equivariant K—
homology with locally compact supports as ch\/’[v (X)) because it is the M —equivariant
Spanier—Whitehead dual (see [47, XV1.7]) of the M —spectrum of equivariant K—theory
with compact supports constructed in [59, page 136], which we denote by Kj,(X").

In particular, K§,(X) is strictly covariantly functorial for open immersions [59,
Proposition 2.9] and strictly contravariantly functorial for proper maps. Dually, it
follows that KJCV’IV (=) can be regarded as both a strict functor Spacesé — Sp and a
strict functor (Spaces(;)°® — Sp, where Spaces(; C Spaces denotes the subcategory
of open immersions, and these two functors are isomorphic on the subcategory Spacesg, .
Poincaré duality in this context gives a canonical isomorphism K 3z (X?") ~ KX}V (X
for complex G—manifolds — a priori this isomorphism depends on a choice of orienta-
tion, but complex manifolds are canonically oriented for K—theory (see [59, Section 3]
and [47, XIV]).

Lemma 2.6 The properties of Lemma 2.2 also hold for K]CV’IV (X®). Namely:
(1) The base-change formula holds with respect to a proper map p: X — Y and an
open immersion f: U CY.

(2) IfV is a G—equivariant vector bundle on X of dimension n, then there is a
canonical equivalence KC’V(IP’ (V)a) ~ KC’V(Xa“)@".
(3) For any closed immersion of G-spaces i: X — X " with open complement

j: U C X', there is an exact triangle Egp(X) = Egm(X') <> Epm(U) — .

(4) Ifm: V — X is a G—equivariant torsor for 'V, then there is a canonical equiva-
lence EBM(X) — EBM(V).

Proof The base-change formula arises from the observation that if U’ := p~!(U) C X,
then there is a commutative diagram of maps of one-point compactifications

Xt — UuHt

|

Yyt——ut
and it is precisely pullback along these maps which is used to define proper pullback and
pushforward along an open immersion in K§,(—). The canonical equivalence (2) is dual
to the equivalence Kj,(P(V)) >~ Kj,(X Y®" of [59, Proposition 3.9]. Property (3) is
[59, Proposition 2.9]. One proves (4) using the same method as the proof of Lemma 2.2:
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the canonical functor K]c\,’lv (X)) — KJC\’JV(V) is the inclusion of the 0" piece of the
direct sum decomposition ch\/’lv (P (V) ~ K]CV’[V (Xa)®n+1 followed by restriction to
the open subset V C P (V). O

Remark 2.7 How to define a canonical pullback map f™*: KK,’IV(Yan) — K]cv’[\/ (X
for a flat map f: X — Y is not clear a priori. That is why we have only stated the
projection formula for open immersions, and it’s why in (2) and (4) above we can not
state that the canonical isomorphisms are given by pullback. Indeed it is not immediate
in (4) that the isomorphism K]c\,’[V (X)) ~ K]c\j[V(V"‘“) is independent of the presentation
of V as a torsor for V. If f were the restriction of a flat map X’ — Y along a closed
embedding Y < Y’, then one could provisionally define a pullback map using the
localization sequence (3), but perhaps the most uniform definition of flat pullback
for K]CV’IV is via the isomorphism of Theorem 2.10 below.

2.1.3 The comparison map We now construct a comparison map between Borel—
Moore homology theories pg, x: K"P(DPCoh(X/G)) — KX/’IV(X a) by first con-
structing a comparison isomorphism between the corresponding cohomology theories
K"P(Perf(X/G)) — Kpr(X*™). Observe that we have a natural transformation of
presheaves of spectra

K% Perf(X/G x T)) — Kp (X* x T™)

which is induced by the functor of exact categories which sends an algebraic G—vector
bundle to its underlying complex topological vector bundle equipped with the induced
action of M (this functor is symmetric monoidal and hence induces a map of K—theory
spectra [66, Section 5.4]). By Lemma 2.8 below, the presheaf Kps (X" x (—)*")
is weakly equivalent to Homg, (X% (—)%", Kps (X)), where Homg(-,-) denotes
the internal function spectrum in the category of spectra. Composing this with the
comparison map above gives a map of presheaves

K (Perf(X/G) ®c O1)) — Homgy (Z®° T, Kpr (X™)),

where both sides are regarded simultaneously as presheaves in the G—space X and the
affine scheme 7. Here we have used the natural Morita equivalence

Perf(X/G) ®c O = Perf(X/G x T).

By the adjunction defining the geometric realization [8, Definition 3.13] for presheaves
on the category of affine schemes, this gives a map

K*™P (Perf(X / G)) — Kag (X™)
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of presheaves in the G—space X. This natural transformation of presheaves on Spaces ;
will be bu-linear by construction. Because Kjs(X®") already satisfies Bott periodicity,
this comparison map extends uniquely to the localization, giving our final comparison
map

Pyt KP(Perf(X/G)) 1= K*™P(Perf(X /G)) @y bu[B "] — Kpr (X™).
The following technical lemma was used in the construction above:

Lemma 2.8 For any topological space Y and topological M —space X, we have a
natural weak equivalence in Sp,

Homs, (XY, Kpr(X)) = Ky (X xY),
where on the right Y is regarded as an M —space with trivial M —action.

Proof We fix a universe U for forming the equivariant stable homotopy category Sp,,
as in [42]. The “change of universe” functor taking an £ € Sp,, to its underlying naive
M —spectrum admits a left adjoint, as does the functor from naive M —spectra to spectra
which applies the M —fixed-point functor levelwise. We will denote the composition of
these to functors as (—)M: Sp v — Sp, and it therefore has a left adjoint, which we
denote by ¢. By definition we have that

K (X) := (Homsy,, (EF X4, bup)M,

where buyy is the M—spectrum representing equivariant K—theory, %77 is the stabi-
lization functor from pointed M —spaces to M —spectra, and Homsgp,, is the internal
function spectrum in the symmetric monoidal category of M —spectra [42, page 72].
Thus by the (spectrally enhanced) adjunction and the definition of inner Hom in a
symmetric monoidal category we have
Homsy (S Y+, Kpr (X)) ~ (Homs,,, ((Z®°Y4) A S (X4), bupp)) ™.

The claim now follows from the natural isomorphism «(X*°Y1) ~ Z77(Y4) [42,
Remark 11.3.14(i)], where Y is regarded as an M —space with trivial M —action, the
fact that 377 maps smash products of pointed M —spaces to smash products of M~
spectra [42, Remark I1.3.14(iii)], and the fact that Y4+ A X4 >~ (Y x X)4 for pointed
M —spaces. |

Now that we have constructed a comparison map K'P(Perf(X/G)) — Kpr (X™) of
presheaves, we construct a comparison map pg,x: KP (DPCoh(X/G)) — KIC\/’[V (X
for Borel-Moore homology for a G—quasiprojective scheme X as follows: Choose
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a G-equivariant closed immersion i: X < Z into a smooth G—scheme Z with
open complement j: U C X. Then by Lemmas 2.2 and 2.6, and using the canonical
equivalence Perf(Z/G) ~ D°Coh(Z/G), there is a dotted arrow completing the map
of exact triangles

K©P(DPCoh(X/G)) —— KP(Perf(Z/G)) ——s K (Perf(U/G)) ——>
|
Ji |

+ s
K&y (xmy — o K8 (7 — L K (U™ ———

Lemma 2.9 The map pg,x: K'’(D*Coh(X/G)) — K},'(X™) is canonically de-
fined up to homotopy, independent of the choice of embedding X — Z, and agrees
with the comparison map pl();’rg( if X is smooth. The map pg,x commutes (up to
homotopy) with proper pushforwards, restriction to open G—subschemes, the canonical
equivalence between the Borel-Moore homology of X and that of a torsor for a vector
bundle over X, and restriction from G—equivariant K—theory to H—equivariant K-
theory for a reductive subgroup H C G such that H is the complexification of H N M.

Proof The fact that the map pg, x is canonical up to homotopy follows from the fact
that the rest of the diagram is strictly commutative and the formation of homotopy
fibers is functorial in the category of spectra. So the map between homotopy fibers
of the two restriction maps j* is canonical, and the dévissage isomorphism with the
homotopy fiber of j* induced by the Gysin map i is canonical for both the theories
K'"“P(DPCoh(—/G)) and K;,’IV((—)E‘"). The fact that pg, x ~ ,o%e’n;( when X is smooth
follows from considering the identity embedding X < X. Independence of the choice
of embedding is essentially proved in [66], which is an extension to the equivariant
setting of [64]. For the benefit of the reader, we explain the conceptual core of argument:

Define a category Emb of “virtual embeddings” whose objects are G—quasiprojective
schemes and whose morphisms X ~> Z consist of a G—equivariant closed subscheme
V < Z along with a G—equivariant map V' — X which can be factored as a com-
position of maps which are torsors for locally free sheaves. Composition is given by
pullback of closed subschemes. Then in the proofs of [66; 64], Thomason shows that
given two maps X ~» Z; and X »> Z,, there is a linear action of G on A" and
maps Z; ~ A" and Z, ~> A" such that the two compositions X ~> A" agree.!® In

10More precisely, the proof of [66, Proposition 5.8] shows that for any G—quasiprojective X there
is amap X » A" for some linear representation of G. Therefore, it suffices to consider the case
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particular, the under-category Emby is filtered, as is the category Emb}}"/ of virtual
embeddings X ~> Z, where Z is smooth.

Now let X ~ Z be a virtual embedding into a smooth Z, which corresponds to
(V< Z,n: V — X). For ease of notation let E'(X) = K'P(Perf(X/G)) and let
E?(X) = Kp(X™) for any smooth G—quasiprojective scheme X. Then we define

E(X«»Z)_E (X) =fib(EX(Z) > EN(Z-V)) fori=1,2.

Note that, by functoriality of the homotopy fiber, the comparison maps on cohomology
theories pr();’,rfz and plz;e’er_V induce a map

o(X v Z): ENX » Z) —> EX(X » Z).

We claim that each of the assignments E?(X ~> Z) can be extended to a corresponding
functor E*: Emb? / — Ho(Sp) in which all arrows in EmbYy, Y, Mmap to isomorphisms,
and the comparison map p(X ~> Z) defines a natural transformation of functors
E!' — E?. Indeed given a composition X ~ Z; — Z,, which we regard as a map
Zy v Z5 in Emby /, consider the following diagram, where the central square is

ﬁ%\v\
SN N

X s Z |~ 2

cartesian:

Then we have canonical isomorphisms
El (Z)) X5 EL, (Vo) &5 EL(Z) fori=1,2,
1 2 2

where the construction of the latter map uses Poincaré duality (all of the G—schemes
involved are smooth) to convert cohomology to homology with locally compact supports

of two maps X ~ A" for i = 1,2. Nextif V — X is a composition of torsors for locally free
sheaves and V < A" for i = 1,2 are two G—equivariant closed embeddings, then the proof of [64,
Lemma 4.2] works equivariantly to construct equivariant embeddings A" <> A™1 x A"2 such that the
two induced embeddings V <> A1 x A"2 agree. Thus it suffices to show that for any two maps X A”l
corresponding to two fibrations V; — X, one can compose with maps A" > A" such that if V/ C A"
corresponds to the compositions X ~> A, then V| >~V over X. This follows from the proof of [64,
Proposition 4.7], which also works equivariantly.
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(ie Borel-Moore homology), and iy is an isomorphism by dévissage for the Borel—
Moore theory. We leave the somewhat involved diagram chase to the reader to show
that the isomorphisms E!(X ~ Z;) — E!(X ~> Z,) commute with the comparison
maps p(X ~ Z;) and p(X ~» Z;) up to homotopy.

Our comparison map pg,x arises from choosing an embedding X ~ Z where
V = X and combining p(X ~> Z) with the canonical dévissage isomorphisms
K“P(D°Coh(X/G)) ~ E'(X » Z) and K}’ (X™) ~ E*(X ~ Z). We observe
that, using Lemmas 2.2(5) and 2.6(4), for any X ~> Z we can compose the canonical
equivalence K°P(D°Coh(X/G)) — K'“P(D°Coh(V/G)) with the canonical dévis-
sage equivalence K'P(DPCoh(V/G)) — E},(Z), and likewise for K3’ (—). Given
amap V — Z which is a composition of torsors for vector bundles, and given a
closed G—subscheme X < Z, the canonical equivalences K*°?(D’Coh(Z/G)) —
K"P(DPCoh(V/G)) and K'P(DPCoh(X/G)) — K°P(D’Coh(V|x/G)) commute
with the pushforward maps, and likewise for KJCQV (—). It follows that for any compo-
sition X~ Z; » Z,, the composition of the canonical maps

K“P(DPCoh(X/G)) = EN(X » Z1) » EL(X ~ Z5)

is homotopic to the canonical map K*°P(D°’Coh(X/G)) — E'(X ~ Z,), and the
same is true for K]C‘,’Idual(—). Combining these facts, we see that the comparison map

pG,x defined via the canonical equivalences for any smooth virtual embedding X v Z
X~Z
K (D’Coh(X/G)) ~ E' (X v Z) 2X22, E2(x > Z) ~ KSY (X™)
is independent of the choice of X ~> Z, because the category Emb}"/ is filtered.
Now that we have shown that the comparison map
pG,x: KP(D’Coh(X/G)) — Ky,  (X*)

is independent, up to homotopy, of the choice of embedding X ~> Z, it is fairly
straightforward to show that pg x commutes with restriction to an open subset and
restriction of equivariance from G to a reductive subgroup H C G which is the
complexification of H N M, because the corresponding claims hold for the comparison
map p%e’rg( for smooth G—schemes. The fact that pg, x commutes with the equivalences
K“P(DCoh(X/G)) ~ K'P(DPCoh(V/G)) and K3, (X™) ~ K}, (V™) for a map
V' — X which is a torsor for a vector bundle follows from the more general description
of pg,x above, because any closed embedding into a smooth G—scheme V — Z
defines both a virtual embedding X ~ Z and an embedding V ~> Z, and the
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canonical equivalence K'°P(D°’Coh(X/G)) ~ E'(X ~ Z) is the composition of
the equivalences K'°P(DPCoh(X/G)) ~ K'P(D’Coh(V/G)) ~ EY(V ~ Z) and
likewise for KJCV’IV (—).

Last, one shows that pg x commutes with pushforward along a proper map p: X — Y
by choosing a closed immersion ¥ < Z into a smooth G-scheme Z and a projective
bundle P (V) over Z such that p factors through a closed immersion X < Y. One
shows that p commutes with pushforward along the projection P(V|y) — Y using
dévissage and the corresponding fact for pI&e’er for smooth G—schemes. It therefore
suffices to show that p commutes with closed immersions. For any closed immersion
of G-schemes X; < X5, we can choose a closed immersion into a smooth G—scheme
X, < Z. Then p commutes with pushforward along X; — X, because i is part
of a canonical map of exact triangles from E*(X,) — E/(Z) - E'(Z — X;) — to
E'(X,) - E/(Z) — E'(Z — X>) for both theories i = 1, 2. o

Note that in Lemma 2.9 we have passed from strict presheaves on the category of alge-
braic G—spaces with values in spectra, to presheaves on the category of quasiprojective
G-schemes with values in the homotopy category Ho(Sp). Presumably neither of these
relaxations are necessary, but they simplify our discussion.

Theorem 2.10 The natural map pg,x: K'P(D? Coh(X/G)) => K§;'(X™) con-
structed in (2) and Lemma 2.9 is a weak equivalence.

Proof By the commutativity of the diagram (2) and the fact that ,o%e,n;( ~ PG, X
when X is smooth, it suffices to show that pg x is a weak equivalence when X
is a smooth G-—quasiprojective scheme. Let 77 C G be a maximal torus which is
the complexification of a compact maximal torus 7, = T N M, and let B C G
be a Borel subgroup containing 7. For both G—equivariant cohomology theories,
pullback along the map G xp X — X is an injection which is canonically split by the
pushforward map. The map which forgets from G—equivariance to 7'—equivariance,
then restricts along the 7'—equivariant map {1} x X — G xg X induces an equivalence
Ky (G xp X) — K7,.(X) because topologically G xp X = M xr, X and the same
maps induces an equivalence K'P(Perf(G xg X/G)) — K"P(Perf(X/T)) because
X/T — GxpgX/G ~ X/B is a composition of torsors for line bundles on X/ B. The
comparison map p%e’r; commutes with the operations of pullback, proper pushforward,
and restriction to subgroups, so p is compatible with the splitting of the inclusions
K'*P(Perf(X/G)) — K“P(Perf(X/T)) and Kpr(X*) — Kr.(X*), so it suffices
to prove the claim when G = T is a torus.
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We can stratify X /T by smooth T-schemes of the form U x (T/T"), where T' C T
is an algebraic subgroup and T acts trivially on U. Using the localization sequences
for closed immersions in Lemmas 2.2 and 2.6 and the compatibility of pg,x with push-
forward along closed immersions and restriction to open subsets, Lemma 2.9, it suffices
to prove the claim for schemes of this form. The fact that Perf(U x (T /T")/T) ~
Perf(U x BT') ~ EBX Perf(U), where y ranges over the group of characters of the di-
agonalizable group 7", implies that K*P(Perf(U x(T/T")/T)) =@, K'P(Perf(U)).
There is an analogous decomposition of K7, (U xT/T"), and pr <1, respects this
direct sum decomposition because the summands are the essential image of pullback
along the map U x T /T’ — U followed by tensoring with the various characters
of T’. We note that when the group is trivial, our comparison map agrees with the one
constructed in [8, Proposition 4.32] and thus is an equivalence, and the claim follows. O

Remark 2.11 If G is not necessarily reductive, then one can choose a decomposition
G = U x H, where H is reductive and U is a connected unipotent group. As in
the first step in the proof of [66, Theorem 5.9], one shows that the map of stacks
X/H — X /G can be factored as a sequence of torsors for vector bundles, so the
canonical restriction map K'"P(Perf(X/G)) — K'P(Perf(X/H)) is an equivalence
by Lemma 2.2. Combining this with the previous theorem shows that for a maxi-
mal compact subgroup M C H C G, the topologization functor is an equivalence
K"“P(Perf(X/G)) — Kp(X™) as presheaves of spectra on Smg, and we have a
comparison isomorphism pg, x: K'P(D°Coh(X/G)) — K5/ (X™).

2.2 The case of smooth Deligne-Mumford stacks

Here we provide an explicit computation of the periodic cyclic homology of Perf(X) for
a smooth Deligne-Mumford stack of finite type over C and study its noncommutative
Hodge theory when it is proper. The results of this section are likely known to experts.

Given a smooth scheme U, we can consider its de Rham complex, 0 — Oy — Q }J — e,
a complex of vector spaces. We can regard this as a A—module Q,(U) by defining
QpU) = Ql_]p and letting B act via the de Rham differential. Even though the
A—module structure is not Oy—linear, it still defines a sheaf of A—-modules on the
small site Xg for any smooth DM stack X. We define the de Rham cohomology of a
smooth Deligne-Mumford stack X to be the A—module

Hgr(X) := RT" (X, 24).
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There are several other ways to present Hgr(X). First note that we can equivalently
restrict to the subsite of étale maps U — X for which U is affine, which we denote
by ngf, because it has an equivalent topos of sheaves, ie the canonical map is an
equivalence

Har(X) => RC (A, Q.).

et

We can consider the sheaf of A—modules on DCgff givenby U — C,(Oy ), the Hochschild
complex of coordinate algebra. This admits a canonical map to the presheaf of A—
modules given by U +— C,(Perf(U)). Likewise, for any smooth affine scheme U,
the Hochschild—Kostant—Rosenberg isomorphism is a map of A—modules C,(Oy) —
Q.(U). Its formation is compatible with étale base change, so it induces a map of
presheaves C,(O_) — Q4(—) on Xé’tff.

Lemma 2.12 The canonical maps

RT(X4, Q,) < R[(XAT, C,(0-)) — RT (XU, C, (Perf(—)))

ét o ét e
are all equivalences of A—modules.

Proof These maps are all equivalences for affine U at the level of underlying com-
plexes. The result follows formally from the fact that a map of A—modules is an
equivalence if and only if the underlying map of complexes is an equivalence, and the
forgetful functor taking a A—module to its underlying complex commutes with limits
and hence commutes with RI". |

The following is due to Toen, and essentially follows the argument of [67] in the case
of algebraic K—theory. We will need to use both the derived inertia stack I and its
underlying classical stack I&l C Iy.

Proposition 2.13 (Toen, unpublished) Let X be a smooth Deligne—Mumford stack,
and let IDCC1 denote its classical inertia stack. There is a natural isomorphism of A—
modules C,(Perf(X)) — HdR(Ifcl).

The idea of the proof is to show that the formation of both complexes is local in the
étale topology over the coarse moduli space of X, so one can reduce to the case of
a global quotient. Thus a key observation is that the formation of the derived inertia
stack Iy is étale local.

Lemma 2.14 Let X — X be a map from a stack to a separated algebraic space, and
let W — U be the base change along an étale map U — X. Then Iy >~ Iy xx U.
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Proof This can be seen for the derived inertia stack from a functor-of-points definition
of Iy. We let U(T) denote the co—groupoid of maps from 7" to U for a derived affine
scheme 7. Then

I(T) =WT) xueryxu) WT)
~ Map(S', W(T))
~Map(S ', X(T)) Xytap(st, x 1y Map(S', U(T)).
So in order to show that Iy(T) >~ Ix(T) xx(r) U(T), it will suffice to show that

Iy >~ Ix xx U in the derived sense. Consider the following diagram, in which each
square is Cartesian and the vertical arrows are closed immersions:

/\

U—UxyU r X

L

UxU—UxX — XxX

Here I' denotes the graph of the morphism U — X. Then by definition Iy is the
derived self-intersection of the closed subspace X — X x X, so in order to prove the
claim it will suffice to show that I' Xy« x ' is isomorphic to Iy, as a derived scheme
over U.

The map U — TI' is an isomorphism on underlying classical algebraic spaces, and
it follows from the fact that U — U xx U is an étale closed immersion of closed
substacks of U x U that the induced map Iy — I' xyx x ' induces an isomorphism
on cotangent complexes as well and hence is an isomorphism. a

Proof of Proposition 2.13 The pullback functor along the projection /. DCCI — X induces
amap C,(Perf(X)) — C,(Perf(1 DCCI)) . For any étale U/ 1 3’%1, the pullback functor induces
a natural map C, (Perf(IDCCl)) — C,(Perf(U)). Thus we get a map of presheaves of

A—modules
ét s

C.(Perf(X)) — RI((I$)3, Co(Perf(—))) ~ Har(15).

Note that if p: X — X is the coarse moduli space of X, then the map constructed
above is functorial with respect to pullback along maps U — X.

We claim that C,(Perf(X)), regarded as a presheaf over X, has étale descent. Indeed,
consider any étale map U — X, and let U = X xy U. Because the derived category
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of U is compactly generated [23], we can make the identification
C.(Perf(U)) >~ RT (U, A*Ax(On)) ~RT(U, (py)«Or,),

where A: U — U x U is the diagonal, py: U — U is the base change of p, and Oy,
is the structure sheaf of the derived inertia stack, regarded as a finite algebra over Oy.
In the previous lemma, we saw that the formation of I; commutes with étale base
change, so this combined with the projection formula implies that RT'(U, p«Op, ) >~
RI'(U, p«(Or.)|v), functorially in U. The presheaf U/X +— RI'(U, p«(Oy.)|v) has
étale descent, so U +— C,(Perf(U)) does as well.

Thus in order to show that C,(Perf(X)) — HdR(IDCCl) is an equivalence, it suffices to
verify this after base change to an étale cover of X. We can find sucha U — X such
that U = X xx U is a global quotient of a scheme by a finite group action. In that case,
the result is shown in [2, Proposition 4]. O

Finally after applying the Tate construction, ie passing to periodic cyclic homology,
we can compare this to the cohomology of |X"|, the geometric realization of the
underlying topological stack (in the analytic topology) associated to X [51], as well as
the cohomology of a coarse moduli space X — X.

Lemma 2.15 Let X be a Noetherian separated DM stack of finite type over a Noe-
therian base scheme. Assume that X has finite dimension. Then X has finite étale
cohomological dimension with Q-linear coefficients, and the functor RI" (X, —)
commutes with filtered colimits.

Proof We first claim that the pushforward along the projection to the coarse moduli
space p: X — X is exact. Indeed this can be checked étale locally on X, and so we may
assume that X is a global quotient U/ G, where G is a finite group. One can factor p
as U/G — X x BG — X — pushforward along the first is exact by [3, Tag 03QP],
and the second is exact because we are using characteristic 0 coefficients.

It now suffices to prove the claim when X = X is a Noetherian separated algebraic space
of finite type over a Noetherian base scheme. In this case, we can apply the induction
principle of [3, Tag 08GP] and the fact that étale cohomology takes elementary excision
squares to homotopy cartesian squares to reduce to the case of affine schemes. In this
case, the result follows from the fact that derived global sections of characteristic 0
sheaves on a Noetherian scheme in the étale topology agrees with that in the Nisnevich
topology, and the Nisnevich topology has cohomological dimension < d .
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Finally, the implication that finite cohomological dimension implies commutation with
filtered colimits in the unbounded derived category is [12, Lemma 1.1.7]. |

Lemma 2.16 There are natural isomorphisms

Har (0™ = C2,,(1X™[: Q) ®g C (1) = Cyy (X: Q) ®g C (1)

Proof The de Rham isomorphism gives a canonical isomorphism of presheaves of
C ((u))-modules on ngf between U > (Q,(U))™ and U Cs’fng(Ua“; C)(u)), so
we have a canonical isomorphism!!

Cihng(19™]: ©) ® C((w) = RI (X, Qu(—) ™).

sing ét o

It therefore suffices to show that the Tate construction commutes with taking derived
global sections for the sheaf of A—modules €2,. For this we observe that the functor
M — MS' commutes with homotopy limits, and hence with derived global sections,
and M ™ is the filtered colimit of MS' — MS'[2]— MS'[4]— - -, so its formation
commutes with RI" by the previous lemma.

Finally, one can check that the pullback map Cj,(Y*: Q) — Cg,(I9*"]: Q) is an
equivalence locally in the analytic topology on Y". Locally Y*" is isomorphic to a
global quotient of a scheme by a finite group, for which the fact is well known. |

2.3 Equivariant K-theory and periodic cyclic homology

For a dg-category, C, it is natural to ask if the Chern character induces an equivalence
K"“P(C) ® C — CP*(@). This is referred to as the lattice conjecture in [8], where
it is conjectured to hold for all smooth and proper dg-categories. Here we observe
some situations in which the lattice conjecture holds, even for categories which are not
smooth and proper.

Theorem 2.17 (lattice conjecture for smooth quotient stacks) Let G be an algebraic
group acting on a smooth quasiprojective scheme X. It X /G admits a semicomplete
KN stratification (Definition 1.1), then the Chern character induces an equivalence
K"“P(Perf(X/G)) ® C — C¥* (Perf(X/G)).

TTAIL of the singular complexes we will encounter have finite-dimensional total cohomology, so
M((u) ~ M ®c C((u).
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Lemma 2.18 Let X be a smooth Deligne—-Mumford stack, and let i: Z — X be a
smooth closed substack. Then the pushforward functor fits into a fiber sequence

CPr(Perf(Z)) -5 CPOr(Perf(X)) L CPr(Perf(X — 2)).

Proof This follows from Proposition 2.13, combined with Lemma 2.16 and the usual
Gysin sequence for the regular embedding of inertia stacks Iy <> Iy. a

Proof of Theorem 2.17 Because K'P(—) ® C and C¥*'(—) are both additive invari-
ants, proving that the natural transformation

K“P(Perf(X/G)) ® C — CP (Perf(X/G))

is an equivalence for smooth projective-over-affine X and reductive G reduces to the
case where X' /G is Deligne-Mumford by Theorem 1.8.

Note that the only point in the proof of Lemma 2.2 which does not immediately apply
to an arbitrary additive invariant is the localization sequence for a closed immersion.
Therefore Lemma 2.18 implies that Lemma 2.2 applies to the presheaf CY* (Perf(—)),
because the only stacks that appear in the proof are DM.

We can now imitate the proof of Theorem 2.10: Perf(X/G) is a retract of Perf(X/B),
and Perf(X/B) — Perf(X/T) induces an equivalence for both invariants K'P(-)
and CY”(-), by Lemma 2.2. Thus it suffices to consider smooth DM stacks of the
form X/ T. Any such stack admits a stratification by smooth stacks of the form U x BI"
for some finite group I', and by Lemma 2.18 it suffices to prove the theorem for such
stacks. Thus Ch® C is an equivalence because it is an equivalence for smooth schemes
and Perf(U x BI'") ~ @X Perf(U), the sum ranging over characters of I". a

Corollary 2.19 (lattice conjecture for smooth Deligne-Mumford stacks) Let X be
a smooth Deligne—Mumford stack. Then the Chern character induces an equivalence
K“P(Perf(X)) ® C — C¥*'(Perf(X)).

Proof We have established a localization sequence for closed immersions of smooth
DM stacks for K'°P(Perf(—)) in Lemma 2.2. We do not know if the localizing invariant
of dg-categories HP(—) satisfies dévissage in the sense of Lemma 2.2 for arbitrary
closed immersions of stacks, but the localization sequence for closed immersions
of smooth DM stacks follows from the comparison results Proposition 2.13 and
Lemma 2.16 and the corresponding fact for singular cohomology.
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We therefore have a map of fiber sequences for any closed immersion of smooth DM
stacks over C,

K"“P(DPCoh(2)) ® C —— K'P(DPCoh(X)) ® C —— K'"P(DPCoh(U)) ® C

JCh lCh JCh
HP(DPCoh(Z)) ——— HP(D"Coh(X)) ——— HP(DPCoh(U))

From [40, Corollaire 6.1.1] every smooth DM stack of finite type admits a stratification
by locally closed substacks which are quotients of a smooth affine scheme by a finite
group. The corollary follows by applying Theorem 2.17 and the fiber sequence above
inductively to this stratification. |

2.4 Hodge structure on equivariant K-theory

We can now prove the final result of this paper, the construction of a pure Hodge
structure on the equivariant K—theory. What we mean by a pure Hodge structure on a
spectrum E in this case is simply a Hodge structure on the homotopy groups of that
spectrum 74 (E): ie for each n a weight n Hodge structure on 7, (E) is a descending
filtration of 7,(E) ® C such that

T (EY®C = FPr,(E)®@ C Frt1-Pg, (E)®C forall p.

Theorem 2.20 Let X be a smooth quasiprojective C—scheme, and let M be a com-
pact Lie group whose complexification G acts on X. Then, it X /G admits a complete
KN stratification, the Chern character isomorphism

Ky (X ® C — CP"(Perf(X/G))

combined with the noncommutative Hodge—de Rham sequence induces a pure Hodge
structure of weight n on K, (X®") with a canonical isomorphism

grflodge(K]r\l/l (Xan) ® C) = Hn_szF(IDC’ le)’

where Iy denotes the derived inertia stack of X := X/G. The Hodge filtration
on Kj,(X™) is compatible with pullback maps, and in particular it is a filtration
of Rep(M )-modules.

Remark 2.21 As we will see in the proof, this claim also holds for arbitrary smooth
and proper DM stacks over C, without requiring that X be a global quotient.
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Proof The degeneration property follows from Corollary 1.23, and we have a Chern
character isomorphism from Theorem 2.10 combined with Theorem 2.17, so all we have
to do is check that the filtration on CY* (Perf(X/G)) coming from the Hodge-de Rham
spectral sequence combined with the rational structure coming from the Chern character
defines a weight n pure Hodge structure on 77—, (K"P(Perf(X/G)) ® Q. This claim is
closed under arbitrary direct sums and summands in .#}, so by Theorem 1.8 it suffices
to prove this claim for smooth and proper DM stacks which are global quotients of a
G—quasiprojective scheme by a reductive group G.

For a smooth and proper DM stack, Proposition 2.13 gives an isomorphism Hgg (1. &1) ~
C,(Perf(X)) of A—modules. Note that [ DCCI is itself a smooth and proper DM stack, and
for any smooth DM stack Y the complex Hgg(Y)™® is canonically equivalent to the
usual de Rham complex of [57] tensored with C((«)),

RI'(Y,[0 - Oy — Qé — - ]) ®c C((n)).

However, the usual Hodge filtration differs slightly from the noncommutative one. We
have canonical isomorphisms

H"(HrW) ™)~ @ H'Y:0),

I=n mod 2

ar? Fy, H"(Har(9)™) ~ @RI (Y. Q{li —2p)).

Because the cyclic complex Hgr(Y) has the degeneration property, we may commute
taking cohomology H" and taking associated graded gr?, so we have

gr? Fy, H" (Hr ()™) ~ @ H"H 727 (Y, Q).
i

Therefore, on each direct summand H'!(Y; C) of H"(Hgr(4)™°), the subquotient
HI=P'(y, Qg ) shows up in F% if and only if / — p’ =n+ p’ —2p” for some p” > p.
In other words the subquotients appearing are those for which p’ > p + %(1 —n). It
follows that under the direct sum decomposition above we have

Le—
FLH"Ha)™) = @ Fhy " H G:0).

classical
I=n mod 2

Therefore, under the isomorphism H”(Hur(Y)™°) ~ @) moas H' (¥: Q) ® C
of Lemma 2.16, the noncommutative Hodge filtration corresponds to the Hodge
filtration on @;—, moa» H' (Y: Q)(1(/ —n)). We claim that this rational structure
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on H"(Hgr (1 %)Ta‘e) agrees with the one induced by the equivalence K'°P(Perf(X)) ®
C ~ Hgr( &1)Tate of Theorem 2.17 and Lemma 2.16, so that we have an isomorphism
of Hodge structures

3) T (K Perf(X) ®Q~ @ H'I:Q(3(—n).

[=n mod 2

The Hodge structure on the /™ rational cohomology of the de Rham complex of a smooth
DM stack has weight / (see [61]), so it would follow that w_, (K top (Perf(f)C))) RQ
has a Hodge structure of weight 7.

For the claim about the rational structure of HdR(IDCCl), note that the isomorphism
Hgr (1§ ~ K'P(Perf(X)) ® C results from applying the derived global sections
functor to isomorphic sheaves on the étale site of I JCCI:

RT((I§HT, K*°P(Perf(—)) ® C) ~ R ((I$)3, CP*' (Perf(—)))

ét ét
~ RT((I)E Clag(5)™: C) ().
But according to [8, Proposition 4.32], the noncommutative Chern character for smooth
C—schemes factors through the twisted Chern character under the natural equivalence
CY (Perf(X)) ~ Hagr(X)T ~ C;‘ng (X: (C((u))). It follows that the isomorphism
above is the complexification of a map of presheaves of Q—complexes on (1 Dccl)gff,

K'"P(Perf(-)) ® Q — CsTng((_)an; Q) ®eQ ((;t?))’

which is also a levelwise weak equivalence. Therefore, the rational structure on
H"(Har(1§))™') agrees with that of the Hodge structure of (3). i

Remark 2.22 For any of the quotient stacks appearing in Amplification 1.25, the
theorem above still holds for DPCoh(X) with the same proof, with the exception of the
explicit computation of gr? H" (C.p < (DbCOh(f)C))) when X is not smooth. In particular:

A canonical isomorphism K7 (X*)® C — CY*(DPCoh(X/G)) which factors
through the complexification of the Chern character K'°°(D’Coh(X/G)) —
CX(DPCoh(X/G)).

e The degeneration property for D’Coh(X/G).

e A pure Hodge structure of weight n on 7_, K'?(D’Coh(X)) coming from

the degeneration of the noncommutative Hodge—de Rham sequence which is
Rep(G)-linear.
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3 Hodge-de Rham degeneration for singularity categories

In this section we extend our methods to establish the degeneration property for certain
“dg-categories of singularities”, MF(X /G, W), associated to an equivariant Landau—
Ginzburg model, ie a smooth G—variety X and a G—invariant function W: X — Al
The notation MF is more frequently used for categories of matrix factorizations, which
are equivalent to singularity categories for LG models on smooth schemes [54]. We
have chosen to use MF to denote singularity categories for consistency with [55].

The categories MF(X /G, W) will be Z/2Z-graded, and we will need a suitable
oo—categorical model to work with these. The oco—category of (essentially) small
idempotent complete stable oco—categories, Catgzrf, admits a symmetric monoidal
structure [11, Section 3.1]. For A,B € Catgzrf, A ® B is the category of compact

objects in Ind(A) ® Ind(B), which is idempotent complete.

For any Es—algebra R, Perf(R) is canonically a commutative algebra object in Catgzﬁ.
We let

LinCaty' = (Perf(R)®)—Mod(CathIf)

denote the oo—category of Perf(R)®—module objects. LinCat’' is equivalent, via the
ind-completion functor, to the co—category of (R-Mod)®-module objects in the co—
category of compactly generated presentable stable co—categories with functors which
preserve colimits and compact objects, as in [45, Definition 6.2]. Because (R-Mod)® is
a commutative algebra object, LinCatg" has a canonical symmetric monoidal structure
[46, Theorem 4.5.2.1]. In addition, if R — R’ is a map of E,—algebras, the tensor
product induces a map of commutative algebra objects Perf(R)® — Perf(R')®, and
this induces a symmetric monoidal pullback functor [46, Theorem 4.5.3.1] which we
denote by

(-) ®g R": LinCaty’ — LinCat%) .

These constructions work just as well with Perf(R)® and Perf(R’)® replaced by any
other essentially small stable idempotent complete symmetric monoidal co—categories.

Any oo—category C in LinCaty' is canonically enriched over R-Mod; that is,
RHom(E, F) € R-Mod for any E, F € C, via an inner-Hom construction. In
fact, by [13], LinCaty' is equivalent to the oo—category of categories enriched in
R-module spectra. Regarding k((8)), where B is variable of homological degree —2,
as an E,—algebra via the forgetful functor from dg-algebras to E,—algebras, this
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identifies LinCatz?( ) with the co—category of categories enriched over dg-k((f))—
modules, or Z/27—graded dg-categories. This justifies using LinCatir?( gy as our model
for 7. /27—graded dg-categories.

The main results of this section, Theorem 3.10 and Proposition 3.17, will establish a
k((B))-linear version of the degeneration property for some categories of singularities
on quotient stacks.

3.1 Preliminaries on categories of singularities on stacks

There have been several concrete approaches to developing the general theory of
singularity categories [19; 43; 54]. We will mostly use the perspective of [55], extended
more recently in [9], which is more abstract but has the advantage of allowing one to
deduce results about singularity categories directly from the analogous statement for
derived categories of coherent sheaves (see Lemma 3.9). We will summarize the main
definitions and lemmas we will use from [55]. As elsewhere in the paper k denotes a
field of characteristic zero.

Definition 3.1 A Landau-Ginzburg (LG) model is a pair (X, W), where X is a smooth
finite-type k—stack such that the automorphism groups of its geometric points are affine

and W is a morphism
W: X — Al

In particular, X is a QCA stack over k in the sense of [16]. Our primary examples of
interest will be quotient stacks X := X /G over k. By generic smoothness, if W is
nonconstant on every component of X, then W has only finitely many critical values
in A'. Throughout this paper we let Crity(W) denote the component of the vanishing
locus of dW € I' (X, Q%C) which lies set-theoretically in X := X x 41 {0}.

We now equip the bounded derived category of coherent sheaves on the zero fiber,
DPCoh(Xy), with a k[B]-linear structure, where f is a variable of homological
degree —2. This arises from a homotopical S !-action on the category D*Cohxy, (X), in
the terminology of [55], which concretely refers to a natural action of Hx(S':k) ~ A
on the Hom-complexes of the category. The formal variable § arises via the same
construction which leads to the formal variable u acting on C, (A), but we use different
variable names to avoid confusion between these two S !—actions, especially when we
discuss the k((B))-linear negative cyclic homology below.
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Spec(A) admits the structure of a derived group scheme, so the co—category DPCoh(A),
as well as its ind-completion IndCoh(A), admits a symmetric monoidal structure given
by the convolution product “o”: Given F, G € D’Coh(A), F oG := m«(F X G),
where m: Spec(A)xSpec(A)— Spec(A) is the group multiplication. So the underlying
complex of F oG is F ®j G, with the A—module structure given by letting B act on
homogeneous elements by

Breg(m®n) := Bp(m)®n+ (—1)"m ® Bg(n).

The following is an enrichment of standard Koszul duality results.

Lemma 3.2 The functor
DPCoh(A) — Perf(k[B]), V + V' :=RHomu(k, V),

extends to a symmetric monoidal equivalence, leading to a symmetric monoidal equiva-
lence
IndCoh(A)® = (k[B]-Mod)®.

Proof This is [55, Proposition 3.1.4]; see also [9, Remark 2.38, Lemma 2.39]. O
The proof of Lemma 3.2 relies on an elementary but important observation. Let (V, d)
be a complex with a A—action. There is a quasi-isomorphism of complexes

vS' >~ (V[B].d + BB).

Formal completion does not commute with the formation of tensor products of com-
plexes, but the formation of the complex (V[B], d + BB) does commute with forming
tensor products of complexes. So the crux of the proof of Lemma 3.2 is the following:

Lemma 3.3 The natural inclusion of complexes
(VIBl.d + BB) — (V[B].d + BB)

is a quasi-isomorphism whenever (V, d) is homologically bounded above.

Proof By definition, the complex (V[B], d + BB) is the inverse limit of the complexes
(VIB1/(B™),d + BB). If V is homologically bounded above, then for any m the
canonical map (V[B].d + BB) — (V[B]/(B"),d + BB) induces an isomorphism in
homology of degree > m for n >> 0, which implies the claim. |
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As described in [55, Construction 3.1.5; 9, Remark 2.38] the stack Xy admits an action
by the derived group scheme Spec(A) which defines the upper horizontal arrow in the
cartesian square

Xo x Spec(A) —— Xy

4) Pll li

Xy ——— X
The action (4) can be described [55, Remark 3.1.7] concretely by a cosimplicial,
commutative dg- Ox—algebra whose cosimplicial degree n piece is given by A, :=
(Ox[Bx, B1, ..., Bnl,dB; =0,dByxy = W), where the variables B; each have degree
one.

Definition 3.4 We define PreMF(X, W) := D’Coh(X,) with the additional k[B]-
linear structure induced by Lemma 3.2 and the D°Coh(A)®—module structure on
DPCoh(X) induced by the action (4).

It is useful to note that the k[B]-linear structure has a concrete dg-model, described
in [55], which we now recall. Observe that Oy, = A := (Ox[Bx], d Bx = W), where By
is a variable of degree one. Pushforward defines a canonical equivalence,

DCoh(X) = A-Mod(Perf(X)®),

where the right-hand side denotes the category of coherent A-modules. There are
natural adjoint functors

ix: A-Mod(Perf(X)®) — DPCoh(X) and i*: D’Coh(X) — A-Mod(Perf(X)®)

given by forgetting the A-module structure and tensoring with A, respectively. Now
given two dg- A-modules M and N each of whose underlying complex of Ox—modules
has bounded coherent homology, the Hom-complex Homy (ix« M, i+« N') inherits a A—
module structure given by

(5) B: ¢+ Bxog—(—1)1lp o By.

The following proposition shows that this A—module structure is enough to recover
Homs as A-modules:

Lemma 3.5 [55, Section 3.3; see also Proposition 3.2.1] Given objects M, N €
A-Mod(Perf(X)®), we have an equivalence Homy (ix M, i*N)S] =~ Homy (M, N),
where the S'-action is given by (5).
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Proof For any object M € A-Mod(Perf(X)®), we can construct a complex of By—
modules M [B], where as usual B is a variable of degree 1 with B? = 0 and the action

of By is given by (By)as + B, where left multiplication by B on M [B] anticommutes

with the action of (By)as. There is an adjunction:!?

¢(m) > Gm + Bm') := ¢ (m — B -m') + (=1)? By ("),
W (m) := Y (m+ B-0) <y (m+ Bm).
The A=k|[B]-module structure, which on the left-hand side is given by
B: ¢+ Byogp—(—1)?l¢o By,

corresponds under this isomorphism to the A—-module structure given by

B:¢(=) = —¢(B-(-)).

We then extend M [B] to a resolution of M as an A-module by forming the complex

~

@) (M[B]®y (k(B)/BKIPY):d = dp — BB - (-)) 500 M

where B is a variable of homological degree —2, which we refer to as the Koszul-Tate
resolution of M. Using (6) and (7), we have that Homy4 (M, N) can be computed as

Hom (M [B]®y (k(B))/BkIA]). N) = Homu(M[B], N)[B] = Homy (ix M. ixN)"".

where it is evident that the differential on the first term agrees with the differential used
to compute the invariants for the .S I_action defined in (5). O

The natural k[f]-linear structure on the complex Homy (ix M, ixN)S l provides an
explicit model for the k[[B]-linear structure from Definition 3.4. Note that in (7), we con-
structed a canonical quasi-isomorphism of A-modules M = M [B]Qx (k((B))/BK[B]).
where the latter has an explicit action by k[[8]. Under the resulting quasi-isomorphism,

Hom, (M. N) ~ Homy (M [B]® (k(B)/BKIAT). N).

12More conceptually, we have that M[B] is isomorphic to i *is M = A ® (@ M. Both are isomorphic
to M @ M 1] as complexes of Ox—modules, and the isomorphism A® @, M — M|[B] which intertwines
the action of By is (m,m’) — (m + Boem',m’).
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the action of S corresponds to ¢(—) — ¢(B - (—)). The fact that composition is
k[[B]-linear follows from the elementary calculation that

Homy (ix« M,ixN) @ Homy(ix N,ix P) — Homy (ix M, ix P)
is A-linear and Lemma 3.2.

With all of this in place, we turn to defining our main objects of interest, the categories
of singularities:

Definition 3.6 We define the category MF(X, W) to be
MF(X, W) := PreMF(X, W) Q7 k (B))-

This definition is justified by the following lemma:

Lemma 3.7 [55, Proposition 3.4.1] MF(X, W) is a dg-enhancement of the idempo-
tent completion of the triangulated category

H°(DPCoh(Xg))/H° (Perf(Xy)).

Proof Let M € DPCoh(X,). The lemma can be easily reduced to the following
assertion: M € Perf(Xy) if and only if f” = 0 C Hom(M, M) for large enough 7.
To prove this assertion, recall that M is perfect if and only if it is compact in QC(Xy),
because Xg is QCA [16, Corollary 1.4.3].

On one hand B" € Homy (M, M) corresponds under the quasi-isomorphism (7) to
simply multiplying by B”. We observe that the kernel

ker(8": M[B]® (k(B)/BKIB]) — M(BI® (k(B)/BKIAI))
=M[B]- 7" &--- & M[B]- p°

of the surjective map B” is a compact A-module because the associated graded of
the B-adic filtration is a direct sum of finitely many copies of the compact A-module
M[B] ~ A ®o, M. Giving a null-homotopy of B”", which is equivalent to giving
a null-homotopy of the composition B” oidys, is equivalent to giving a factoriza-
tion of idas[B1ok(8)/Bk[A]) through the subcomplex ker(B"). In this case M is a
homotopy retract of the compact A-module ker(8") and is thus compact.

Conversely, if M[B]® (k((B))/BkIB]) = U, ker(B") is a compact A-module, the
identity morphism factors through ker(8”) for some n. This proves the lemma. O
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There is another point of view on the k[f]-linear structure, which will be useful below.
Let (X, W) be an LG model. According to [5, Theorem 1.1.3], there is an equivalence
of categories

DP°Coh(X) = Fun;’;rf( AD® (Perf(k), Perf(X)).

It is not difficult to check that the D*Coh(A)®—module structure on the left-hand side
of this equivalence corresponds to the natural Fungérf( AD® (Perf(k), Perf(k))-module
structure on the right-hand side. If A is a module category for some symmetric
monoidal co—category C®, and A = (A;;i € I) is a possibly infinite semiorthogonal
decomposition indexed by a totally ordered set I, we say that the semiorthogonal
decomposition is €®—linear if € ® A; — A factors through A;, in which case it does
so uniquely up to contractible choices.

Lemma 3.8 Let C® be a symmetric monoidal stable co—category, and let B and A
be C®—module categories with B compact in €®—Mod(Cathrf). If A= (Ajiel)
is a €®—linear semiorthogonal decomposition, then Fungg (B, A;) — Funge (B, A) is
a fully faithful functor, and identifying the former with its essential image in the latter,
we have a semiorthogonal decomposition,

Funds (B, A) = (Funfe (B, A;);i € I).

Proof The fact that B is compact as a @®—module category allows us to commute
Fun%’é; (B, —) with filtered colimits and therefore reduce to the case of a finite index
set /. Then by an inductive argument it suffices to prove the claim in the case where we
have a two-term semiorthogonal decomposition A = (Ag, A;). If we let ¢;: A;j — A
denote the inclusion, and we let Lf (respectively LOL) denote the right (respectively
left) adjoint whose existence is guaranteed by the semiorthogonal decomposition. One
can check that the composition functor L{" o (—): Fungg (B, A) — Funge (B, A;) is a
right adjoint to the composition functor ¢1 o (—): Funge (B, A1) — Fungg (B, A), and
likewise Lé’ o (—) is a left adjoint to ¢g o (—). It is also straightforward to check that
the canonical maps

Lgotoo(—)—nd and id—>tfeotlo(—)
are equivalences, and Map(tq o F, ¢y o G) is contractible for any functors
F € Funge (B, A1) and G €Funge (B, A).

The claim follows. O
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An immediate corollary of this is the following:

Lemma 3.9 Let (X, W) be an LG model, and suppose that Perf(X) admits a
Perf(A)®—linear semiorthogonal decomposition (A;;i € I). Then MF(X, W) admits
a semiorthogonal decomposition by k((f))—linear subcategories,

MF(X, W) = (k(B)) @[] Funpea1ye (Perf(k), As)).

Proof By the previous lemma applied to A = Perf(X), we obtain a semiorthog-
onal decomposition PreMF(X, W) = (Fung; £ ane (Perf(k), A;)). The semiorthog-
onal decomposition is k[f]-linear because B acts via endofunctors of Perf(k) as
a Perf(A!)®—module category. Finally, the localization functor from k[B]-linear
categories to k((f))-linear categories commutes with filtered colimits, so one gets the
desired semiorthogonal decomposition of MF(X, W) := k((B)) ®k[[ﬁ]] PreMF(X, W)
by base-changing semiorthogonal decompositions. |

3.2 Motivic decompositions and degeneration for MF

In this section we prove an analogue of Theorem 1.8 for the k((8))-linear dg-category
MF(X/G,W). Forany A € LinCat;C“(‘( gy let G(A)C LinCatz?( gy denote the smallest
oo—subcategory containing A that is closed under splitting countable semiorthogonal
decompositions in the following sense: for any € € LinCat;g?( 8) which has a Z—-indexed
semiorthogonal decomposition € = (C;);jez, C € G (A) if and only if C; € G (A) for

all A.

Theorem 3.10 Let G be an algebraic group. Let X be a smooth G'—quasiprojective k—
scheme with a semicomplete KN stratification, and let W: X /G — A be a morphism.
Then there is a smooth projective-over-affine Deligne—-Mumford stack Y with a map
W’:Y — Al such that

MF(X/G, W) € G(MF(Y, W) C LinCat{ 4 -

Furthermore, if Perf(Crito(W)/G) is a proper dg-category, then the pair (Y, W') can
be chosen so that Y is a smooth variety and W': Y — A is projective.

Note that, by Corollary 1.7, Perf(Critg(W)/G) is a proper dg-category if and only if
the induced KN stratification on Crity(W) is complete.
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Remark 3.11 There is a slightly cleaner formulation of Theorem 3.10 using k((8))—
linear additive noncommutative motives, analogous to Theorem 1.8. Tabuada [62]
constructed additive noncommutative motives for dg-categories which are linear over
a commutative ring, and Blumberg, Gepner and Tabuada [11] constructed additive
noncommutative motives over the sphere spectrum. The methods of [11] appear to
apply verbatim to construct the co—category of additive noncommutative motives over
an arbitrary Eoo—algebra R, such as k((f)), but in the interest of space we have
formulated Theorem 3.10 to avoid developing this additional machinery.

Before proving the theorem, we note the following analogues of Lemmas 1.4 and 1.13:

Lemma 3.12 Suppose that X is a smooth G—scheme with a KN stratification and
that W: X/G — A is an LG model. Then

ME(X/G, W) e G (MF(XSS/G, W)@ EPMF(Z;i/Li, W|Z,./L,.))
i
in LinCat?(T( )"

Proof The main semiorthogonal decomposition of [24] extends to categories of
singularities by Lemma 3.9, and hence the argument of Lemma 1.4 applies verbatim
to ME(X/G, W). ad

Lemma 3.13 Let 7: Y — X be a rational morphism of finite-type k—stacks, that is,
ROy >~ Ox, and let W: X — Al bea morphism. Assume that X is smooth and 4
preserves DPCoh. Then MF(X, W) is a semiorthogonal factor of MF(Y, W).

Proof The functors m, and 7™* are Perf(Al)—linear, and it follows from Lemma 3.9
that the semiorthogonal decomposition of Perf(Y) in the proof of Lemma 1.13 induces
a semiorthogonal decomposition of MF(Y, W). |

Proof of Theorem 3.10 The proof of Theorem 1.8 mostly applies verbatim, with the
following substitutions: Lemma 3.12 in place of Lemma 1.4; Lemma 3.13 in place
of Lemma 1.13; the properness of the dg-category Perf(Critg(W)/G) in place of
the properness of the dg-category Perf(U/G); and Proposition 3.14 below in place
of [7, Theorem 6.6] to reduce from the case of a projective-over-affine DM stack to a
quasiprojective scheme.

The only parts of the proof of Theorem 1.8 which require modification in the cur-
rent context are those which have to do with the properness of the dg-category
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Perf(Crito(W)/G), and this only affects two cases of the inductive proof. We thus
rewrite these cases, indicating the necessary modifications:

Case X5 £, X*# X% and codim(X %\ X*, X*)>2 TItsuffices by the inductive
hypothesis to prove the claim for (X* /G, W). We apply the inductive partial resolution
procedure of [37]: Let Y C X be the locus of points whose stabilizer has maximal
dimension. Then Y is a smooth closed subvariety, and the blowup X’ := Bly (X*)
has a KN stratification induced by a relatively ample bundle such that (X’)* has
lower-dimensional stabilizers.

Consider a point x € Y, let R C G be the (reductive) stabilizer subgroup. The G-
invariance of W implies that (d W), € (Q! SS’X)R C Q/les,x’ Because (X*)¢ c Y
the restriction map (Q)l(ss’ x)R — Q%, . s injective, and hence the pullback map
Q! SS’X)R - Qy, , is injective for any point y in the fiber of x under the map
p: X' =Bly X% — X It follows that for any y € p~1(x), (d W), = 0 if and only
if (d(W|x+))y =0, and therefore Crito(W [x/) = p~H(Critg(W)).

Now, by Lemmas 3.13 and 3.12, if Z; are the centers of the KN stratification of X,
then

MF(X*/G, W) e G (MF((X/)SS/G, Wix) @ @ MF(Z;/L;, W|Zl~/L,~))-

Note that if Perf(Critg(W)/G) is a proper dg-category, then Perf(Crito(W |x/)/G) is
also, using criterion (2) of Lemma 1.5 and the fact that Crito(W|x+) — Critg(W)
is proper. It follows from Lemma 1.6 that in this case Perf(Crito(W|(x)s)/G)
and Perf(Crito(W|z,)/L;) are proper dg-categories as well. The claim holds for
the categories MF(Z;/L;, W|z,,r,) by the inductive hypothesis, so it suffices to
show the claim for MF((X')*/G, Wx+). Because the dimensions of the stabilizer
groups of (X”)* are strictly smaller than those of the stabilizer groups in X, we can
replace X% with (X’)* and iterate this construction until X** = X, which is handled

in a previous case.

Case X% # @ but codim(X*\ X, X%) <1 Here the only modification needed
to the proof of Theorem 1.8 is the observation that Crito (W |yxy) = Critg(W |y) X Y,
so Perf(Critg (W |yxy)) is a proper dg-category if Perf(Crito(W |)/G) is. ad

In the proof of Theorem 3.10, we used the following proposition to reduce from the
case of a DM stack to the case of a variety. The proof is an adaptation of the methods
of [7] to categories of matrix factorizations.
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Proposition 3.14 Let W: X — A be an LG model such that X is a smooth quasipro-
jective (in the sense of [39]) DM stack and Crity(W) is proper. Then there is a
smooth variety Y and a projective morphism W': Y — A such that MF(X, W) €
G (MF(Y, W")) C LinCatj( g -

Proof As observed in [39], X = X/G for some reductive G and G-equivariant
locally closed embedding X < (PN)* for some linearized action of G on a projective
space. Considering the graph of the map W: X — A! gives a G—equivariant locally
closed embedding X < (PN x A')%, where G acts trivially on the A! factor. Using
Kirwan’s resolution algorithm [37], as in [39], we modify (PN x Al)yss by a series of
smooth blowups away from (PV x A')S such that the resulting semistable locus is a
DM stack Y which is smooth and projective over A !. Thus taking the closure of X in Y
and resolving singularities, we can produce a Nagata compactification W: X — A!
of the original morphism W: X — A! such that X is projective over A! and smooth
over the ground field.

Because X and X are DM and the critical locus Crito(W) is proper, it follows that
Crito(W) is a union of connected components of Crity(W ). Therefore, the category
MF(X, W) splits as a direct sum of the subcategory consisting of objects supported
on Crito (W) and the subcategory consisting of objects supported on other components
of Crito(W) [55, Proposition 4.1.6]. So it suffices to prove the claim for MF(XC, W),
ie we may assume that the potential W: X — A ! itself is projective rather than assuming
that just Crityg(W) is proper.

First we reduce to the case where X has generically trivial stabilizer. Because X
is a global quotient stack, we may find a vector bundle V' over X on which the
automorphism groups act faithfully. Then P(V & Oy) — X is a rational morphism,
so by Lemma 3.13 the claim for P(V & Oy) implies the claim for X, and the generic
stabilizer of the former is trivial. Furthermore, the function W restricted to P (V & Ox)
will still be proper.

Next we consider Bergh’s destackification, constructed in [6],

xl
7 X
X’ X
where X is the coarse moduli space and is smooth, the morphism 7 is a composition
of root stacks along smooth divisors and f" is a composition of root stacks along smooth
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divisors and blowups along smooth centers. Note that the morphism f is rational, so
by Lemma 3.13 it suffices to prove the claim for the composition W’: X' — X — Al
Note that W’ will still be proper.

Finally, because X’ is the coarse space of X', the function W’ descends uniquely to
W’: X' — A, and this map is still proper. Because 7: X’ — X’ is a composition
of root stacks along smooth divisors, it suffices to prove the following claim: if Y
is a smooth DM stack and X — Y is a root stack along a smooth divisor in Y and
W:Y — Al is a proper map, then the claim of the proposition for Y implies the claim
for X.

Let D < Y be the Cartier divisor used to form the root construction, and consider the
diagram
Dx By, — X
D—-—y

Then [29, Proposition 6.1] shows that we have a semiorthogonal decomposition
Perf(X) = (ix73 (Perf(D)) ® M"Y (Perf(D)) ® M, 7 * (Perf(Y))).

where M is the universal invertible sheaf coming from the root stack construction.
Given amap W:Y — A! and a module F € Perf(Al), it is evident from the de-
scription of this semiorthogonal decomposition that each subcategory is preserved
by the functor 7*W*(F) ® (—). If follows that this is a semiorthogonal decompo-
sition of Perf(A!)®—module categories, and thus by Lemma 3.9 there are induced
semiorthogonal decompositions

Perf(Xo) = (ixm, (Perf(Do)) @ M" ™', ... ixn}y (Perf(Do)) ® M, m*(Perf(Yo))),
DCoh(Xg)

= (ix73),(D°Coh(Do)) ® M" ", ..., ixn], (D°Coh(Dyg)) ® M, 7*(D’Coh(Yo))),
where the subscript 0 refers to the derived zero fiber of W and its restrictions to

D, X, and D x B, . Thus we have a semiorthogonal decomposition of k((f))-linear
categories

ME(X, W o 77) ~ (ME(D, W|p), . .., ME(D, W |p), ME(Y, W))

and the claim of the proposition for X follows from the claim for Y and induction,
because D is smooth of one lower dimension. i
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3.2.1 The degeneration property for quotient stacks For any A € LinCat?(“(‘( 8)°
we may form the k((8))—linear Hochschild complex C*¥B)(A), which is a module
over the CDGA A((B)) = k((B))[B]/(B?). It is computed by a Barr complex:

®) kP
= @ Hom(o1, 02) ® () Hom(0z, 03) ®k((p)) - - - ®k((g)) Hom(0n, 01),

where the o; are objects of A, the differential is given by the usual formula for
the Hochschild complex of a k—linear dg-category [48], and B acts by the Connes
differential. Using the A((f))—module structure, we may form the associated com-
plexes C,k«ﬂ))’(”)(fl), C.k((ﬂ))’_(f[), and CKB)-per(4) just as in the k—linear case
(see Section 1.3).

Definition 3.15 A k((8))-linear dg-category A is said to have the k((B))-linear
degeneration property if Hy(C*B)-(")(4)) is a flat k[u]/(u")-module for all n > 1.

Lemma 3.16 Let A € LinCatin(l( gy satisfy the k((p))—linear degeneration property.
Then any other category C € G (A) satisfies the k(())-linear degeneration property.

Proof The proof of Lemma 1.22 applies verbatim to show that if € = (C;) is a Z~—
indexed semiorthogonal decomposition of k ((f))-linear dg-categories, then C satisfies
the degeneration property if and only if each of the C; do. This implies that the full
oo—subcategory of LinCatﬁf(‘( gy consisting of categories that satisfy the k((B))-linear
degeneration property contains A and is closed under splitting countable semiorthogonal
decompositions, so it contains G (A) by definition. i

Our main degeneration result for categories of matrix factorizations is the following:

Proposition 3.17 Suppose that W: X/G — A' is an LG model, where X is a
smooth G—quasiprojective scheme which admits a semicomplete KN stratification.
It Perf(Critg(W)/G) is a proper dg-category, then the k((f))-linear degeneration
property holds for ME(X /G, W).

Proof By Theorem 3.10 and Lemma 3.16, this reduces to the k((8))-linear degen-
eration property for MF(Y, W) where Y is a smooth scheme and W: Y — Al isa
projective map. This amounts to the degeneration of the W-twisted Hodge—de Rham
complex by [18, Theorem 1.3], which is established in [52, Theorem 4.22]. O

Example 3.18 The hypotheses of the proposition are satisfied if X is projective-over-
affine and I'(X, OCritO(W))G is finite-dimensional; see Example 1.10.
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We also have the following, which was left as an assumption in the original version of
this paper:

Corollary 3.19 If X is a smooth quasiprojective DM stack and W: X — Al is a
map such that Critog(W) is proper, then the k((f))—linear degeneration property holds
for MF(X, W).

Proof Proposition 3.14 reduces this to the case of a projective morphism W: Y — A,
with Y smooth, which as noted above follows from [52, Theorem 4.22]. O

Remark 3.20 We briefly discuss more concrete descriptions of C,k B (MF(X, W))
when X is a smooth separated Deligne-Mumford stack. Namely, for any affine U with
an étale map U — X, let Q,(U, W|y) denote the Tate construction on @ Q' (U)[i]
with respect to the S'-action given by —d W A, that is, Q.(U, W|y) is the A((B))-
module Q’i]((ﬂ))[i] with differential —8-d W A . Letting B acton Q.(U, W|y) via
the de Rham differential as usual, ,(—, W) defines a sheaf of A((8))-modules on the
small étale site ngf We define the global de Rham complex to be the A ((8))-module

Q.(, W) := RT (XY, Q. (—, W)).

ét o
Assume for simplicity that Critg(W) = Crit(W). Then by combining the approach

of Proposition 2.13 with [55, Theorem 8.2.6], it is not difficult to show that there is a
natural isomorphism of A ((f))-modules

CEE ME(X, W) ~ Q.(IS, W),

which induces an equivalence CE@rer (\p(, W) ~ Q.(15, W)™ Therefore,
Corollary 3.19 is equivalent to the statement that the (k((8))®A)-module Q2,(X, W)
has the degeneration property. This constitutes a slight generalization of the degenera-
tion results of [52] to DM stacks.

3.3 Graded Landau—Ginzburg models

We will use these results to establish a large class of examples of k—linear dg-categories
for which the usual k-linear degeneration property holds.

Definition 3.21 A graded LG model is amap W: X — A!/G,,, where X is a smooth
algebraic k—stack whose automorphism groups at geometric points are affine, and G,
acts on A! with weight one.
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Note that the data of a graded LG model is equivalent to specifying an invertible
sheaf L on X /G, which is classified by the composition X — A'/G,, — BG,,, and
a section W € I'(X/G, L). Denote by ¢: X' — X the G,~torsor over X associated
to L, ie X' = Toty(L"Y)\ 0. To any graded LG model, we use the term associated
LG model to denote the pair (X', ¢*W: X’ — A'). We will see in Proposition 3.24 that,
in a precise sense, the graded LG model is a refinement of its associated LG model.!3

In the setting of graded LG models, for F € D°Coh(X,), there is a distinguished
triangle
FQL '1]—i*iyF—F

giving rise to a natural transformation fy: —® L[—2] — id which in the nongraded
case, where L >~ Ox, is the natural transformation id[—2] — id induced by the k[S]-
linear structure of Definition 3.4. To make this natural transformation more explicit, we
introduce an analogue of the Koszul-Tate resolution (7), KT(M) = M, and construct
a very concrete natural transformation fr: KT(—) ® L[-2] — KT(-).

First consider the dg-algebra A := Ox & L' By, where B is a formal variable of
degree 1, and dBy = W, ie the differential is trivial on Oy and acts on the second
summand by the map L~! — Oy that is the defining section W. An A-module
consists of an Ox—module M along with a map By: L' ® M — M[—1] of Ox—
modules satisfying the Leibniz rule d Bx (s ® m) = Wsm — By (s ® dm), where s is a
local section of L™! and m is a homogeneous local section of M. The co—category
of A-modules is equivalent to the co—category DPCoh(X,).

Given a module M over A, we can form the analogue of M[B] above, which we
denote by
M:=M&(L"'®M-B),

where the differential is just dps @ L~ ® dps. We have two operators,
BM: 7' M — M[-1],
defined by the A-module structure of M, and
B:L7'eM — L 'eM,
which is just the identity. Using these two operators we can form a canonical action

I3Note also that given an LG model (X, W), we can forget the data of the trivialization of L
to obtain a graded LG model. This will correspond to forgetting the k((f8))—linear structure on the
category MF(X, W).
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of A on M, where the action of By on the first component is just BDICV[ + B, and the
action on the second component is ™! @ szé/[ .

Let Q(r): L7 ® M — L™"*1® M be the map which sends the first component of
L~ ® M to the second component of L7771 ® M by the identity. Then we define
the Koszul-Tate resolution as

KT(M) := (@ L @M[-2rlid =dg + Y Q(r)).

r=>0 r>0

After pulling back to X, this complex can be identified with M[B]® (k((B))/Bk[B]).
so it follows that the canonical map KT(M) — M, which annihilates all r > 0
summands and B, is a quasi-isomorphism. We now define the natural map

BL: KT(M)® L[-2] — KT(M)

to be the map of A-modules which annihilates the » = 0 summand and identifies
the (r+1)*' summand of KT(M) ® L[—2] with the r™ summand of KT(M).

Definition 3.22 We define the graded singularity category DSing(X, W) to be the
idempotent completion of the dg-category with the same objects as D?Coh(X) but
with morphisms between M and N given by

Homppsging(x,w) (M. N) := hocolim, Homppconexg) (M. N @ L™7)[2p],
where the homotopy colimit is formed with respect to the natural maps

Br: LPQN[2p]— L P '@ N[2p +2].

Example 3.23 Let Y be a smooth variety over k, let £ be a vector bundle over Y
and let s € I'(€) be a regular section. We have an action of G, on Tot(EY) by scaling
in the fibers. The function s therefore determines a mapping

Wy: X =Tot(&Y) /Gy — Al /G,
The main theorem of [30] gives an equivalence of (Z—graded) dg-categories
D°Sing(Tot(£Y) /G, Wy) =~ D°Coh(s ™' (0)).

The construction of this equivalence works equally well when Y has an action of a
linear algebraic group G, € is a G—equivariant locally free sheaf, and s is G—invariant
(see for instance [28]). This gives an equivalence of k—linear dg-categories

D°Sing(Tot(£Y) /(G x G,,), Ws) ~ D°Coh(s~1(0)/ G).
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In this case the associated LG model is simply the map W': Tot(€Y)/G — A obtained
by forgetting the G,,—action.

For a Z—graded k-linear dg-category C, we may tensor with k((8)), thereby collapsing
the grading on Hom(E, F) to a Z/27Z-grading. The following proposition describes
the relationship between a graded LG model and its associated LG model.

Proposition 3.24 Let W: X — A!/G,,, be a graded LG model, and let W': X' — Al
be the associated LG model. Then we have a canonical equivalence of 7. /27 —graded
dg-categories, DSing(XX, W) ® k(B)) ~ MF(X', W).

Lemma 3.25 Let w: X —Y be a smooth affine morphism of QCA stacks. Then objects
of the form w* F for some F € D°Coh(Y) split generate D*Coh(X), ie D*Coh(X) is
the smallest subcategory containing these objects which is closed under shifts, cones,
and retracts.

Proof First note that the analogous claim holds for perfect stacks using Perf instead
of D°Coh and assuming only that 7 is affine. Indeed, the fact that the pushforward
functor m4: QC(X) — QC(Y) is conservative implies that objects of the form 7* F
with F € Perf(Y) split generate QC(X).

In order to conclude the same for D°’Coh, we must imitate this argument for the
categories IndCoh, ie show that muacon,+ is conservative. The pushforward mindcon,«
again has a left adjoint 7"~ . Which preserves DPCoh and agrees with the usual
pullback functor there. Because macon,+ Satisfies base change with respect to the
shriek pullback [21, 5.2.5], and IndCoh satisfies fppf descent with respect to shriek
pullback, it suffices to show this when Y = Y is an affine derived scheme and hence
X = X is as well. In this case [21, Proposition 4.5.3] shows that the essential image of
the functor QC(X) ®Qc(y) IndCoh(Y) — IndCoh(X) generates the latter category (in
fact this functor is an equivalence). It follows that IndCoh(X) is generated by objects
of the form E ® 7™MICoM*(F) for E e Perf(X) and F € D°Coh(Y). Furthermore,
because X is affine, the category Perf(X) is split generated by O, so IndCoh(X)
is generated by objects of the form 7™4Ch*(F) with F e D°Coh(Y). It follows by
adjunction that myygcoh,* 1S conservative. O

Proof of Proposition 3.24 Pullback along ¢: X’ — X defines a functor of dg-
categories D’Coh(X) — DbCoh(DC{)) which intertwines the actions of Bz and By ., .
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Making use of the canonical trivialization L]y >~ Oy, we get a canonical map
¢™: hocolim, Hompbcon(xy) (M. N ® L™7)[2p]
— hocolim, Hompconexy) (@™ (M), p*(N)[2p].
The latter can be identified with
Hompemrr, w) (9™ (M), ¢*(N)) ®kppp k(B)) = Homyrr, ) (9™ (M), 9™ (N)).

Because DPSing(X, W) is generated by objects of D?Coh(Xy), this extends to a dg-
functor on idempotent completions ¢*: DPSing(X(, W) — MF(X’, W’). From the
universal property of the base-change category, ¢* admits an essentially unique & ((8))—
linear extension

$ipy: D"Sing(X, W) & k(B) — MF(X', W),
and we will show that this functor is an isomorphism.

Concretely, ¢,’:((ﬂ)) maps an object F € DPCoh(Xy), regarded as a generator for
DPSing(X, W)®xk((B)), to the object ¢p* (F) € DbCoh(DC:)), regarded as a generator of
MF(X’, W’). Lemma 3.25 implies that objects of the form ¢* (F) with F € D°Coh(X)
generate MF(X', W), so it suffices to show that gb,f((ﬂ)) is fully faithful on the full
subcategory of DPSing(X, W) ®y k((8)) spanned by objects of D’Coh(Xy).

For M, N € D’Coh(Xy), we consider

HomeSing(f)C,W) (M’ N) ® k((,B ))

= @ hocolim,—g Hompsconxy) (M, N @ L77P)[2(p — 9)][24].
q

Commuting colimits and reshuffling indices, this is isomorphic to

hocolim, @) Hompscon(y) (M. L9 ® N ® L™7)[2p].
q

In this presentation, the operator 7 corresponds to the isomorphism between
Hompscony) (M, LT@ N®L™P) and  Homppconcy) (M, LI @ N @ L™ TD),
The Hom—complex is in turn isomorphic to

hocolim, Homqcxy) (M, ¢x(Ox;) ® N ® L™P)[2p],

where this last isomorphism uses the identification ¢« (O%) >~ @,z L". It also uses
the fact that M is coherent and ¢ (O%) ® N ® L™ is homologically bounded above,
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so that we may commute Homgc(y,,) (M, —) with this infinite direct sum. Using the
projection formula and the adjunction between ¢« and ¢*, we finally obtain a natural
equivalence with

hocolim, Hompncon(a) (@*(M),¢*(N)®¢™ (L) P)[2p].

The multiplication by 8 on Homppginecx,w) (M, N) ® k((8)) now corresponds to the
canonical isomorphisms

Hompscon(ay) (0" (M), ¢*(N) @ ¢ (L)~?)

— Homppeony) (67 (M), ¢*(N) @ ¢*(L)~#*D)
which arise from the canonical trivialization O x; ¢*(L~1). This operator is identi-
fied with the operator B in Definition 3.4 and therefore we have naturally identified

the Hom—complex in DPSing(X, W) ®; k((B)) with Homyipe, iy (@™ (M), ¢*(N))
as required. |

We can now establish our main result on the degeneration property for graded singularity
categories:

Proposition 3.26 Let W: X/G — A'/G,, be a graded LG model with associated
LG model W': X'/G — A'. If X' admits a semicomplete KN stratification and
Perf(Crito(W')/G) is a proper dg-category, then D°Sing(X /G, W) satisfies the k—
linear degeneration property.

Lemma 3.27 Let C be a k-linear (ie Z-graded) dg-category. Then the degeneration
property for C is equivalent to the k((B))—linear degeneration property for € ®y k((B)).

Proof When D = € ® k((8)), then the Barr complex (8) computing CXB) (D) is
quasi-isomorphic to the subcomplex in which all of the objects o; lie in the generating
set of objects of D of the form E ® k((f)), with E € C. It follows that

CH® ) = @) @ k(B)
canonically as dg- A ((8))-modules. We therefore have that
CHDO (D) = (@) @ k(B)

on the level of chain complexes as well. The result follows since as a complex k((f)) =
@B,.cz k[2n], so the homology Hy(C{(C) ® k((B))) = Hx(CI(C)) @ k(B)) will
be flat over k[u]/u” if and only if Hy(C”(€)) is flat over the same ring. O
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Proof of Proposition 3.26 By Lemma 3.27 and Proposition 3.24, the degeneration
property for DPSing(X /G, W) is equivalent to the k((8))-linear degeneration property
for MF(X’/G, W'), so the result follows from Proposition 3.17. O

Remark 3.28 Using Example 3.23, Proposition 3.26 implies noncommutative Hodge—
de Rham degeneration for the derived category of certain complete intersections
s71(0)/ G, where s is a G—invariant section of a locally free sheaf & on a smooth
G-scheme Y. In fact, the hypotheses of Amplification 1.25 imply that in the associated
LG model W: Tot(€V)/G — A, Crito(W) admits a complete KN stratification, and
thus Perf(Critg(W)/G) is a proper dg-category by Corollary 1.7. Proposition 3.26
therefore provides an alternate proof of Corollary 1.27.

4 Computations of Hochschild invariants

4.1 Generalities on Hochschild invariants

In this section we identify the Hochschild homology with functions on the derived
inertia stack (or loop stack) X x%x « X, which we denote by Iy, and we give an explicit
description when X is a quotient stack.

Proposition 4.1 Let X be a smooth algebraic k—stack which is perfect, ie X is
quasicompact with affine diagonal, and QC(X) = Ind(Perf(X)), and let A: X — X xX
be the diagonal. Then we have an identification

C.(Perf(X)) = RT'(Iy, Op,).

Proof Morita theory for perfect stacks [4] identifies the identity functor with A,Oy
in the category QCoh(X x X). To compute C,, we use the Morita invariant definition
of the Hochschild homology of a compactly generated dg-category as the trace of the
identity functor. Thus we must compute the trace

fr: QCoh(X x X) — QCoh(Spec k).

On sheaves of the form 7} (Py) ® 75 (P>), with Py, P, € Perf(X), we have that the
trace is given by
tr(ry (P1) ® 7, (P2)) := RHom(Hom(Py, Ox), P2)
~ RT(X, A*(w} (P) ® 3 (P))).
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Since the category QC(X x X) is the colimit completion of sheaves of this form, we
have that for an arbitrary object F € QC(X x X), the trace can be computed by

(©)) F — RT(X, A*(F)).
It follows that we have an isomorphism

C.(Perf(X)) = RT(X, A*AxOx). O

Now let X/G be a global quotient stack. We consider the scheme P := G x X x X.
Denote by A: G x X — P the map (g, x) — (g, x,x) and by I': G x X — P the map
(g,x)— (g,x,g-x). Both are closed immersions, and we will also use the notation
A and T to denote the corresponding subschemes of P.

Lemmad.2 Let X/G be a smooth quotient stack. Both T' and A are equivariant with
respect to the G—action on P which sends h - (g, x1, x2) — (hgh™', hxy, hx,), and

C.(Perf(X/G)) = RT(X, 03 ®F 0r)°.
Proof By Proposition 4.1 we must compute the derived global sections of the structure

sheaf of the derived inertia stack. First note the alternate presentation for the stack
X/G ~ G x X/G?, where the G2—action in the second presentation is given by

(h1,h2) - (g, x) = (haghy' hyx).

In this presentation the diagonal X/G — X/G x X/G corresponds to the G*—
equivariant map G x X — X x X given by (g, x) — (x, gx).

Let G2 act on P by
(hy,ha)- (g, x1,X2) = (haghy ' hyx1, haxs).

Then T is G?—equivariant, and using the presentation above we see that the diagonal
factors as the closed immersion I': G x X/G? — P/G? followed by the projection
P/G? — X x X/G?, which is smooth and affine. It follows that the derived inertia
stack is the derived intersection of pl_1 I and p; IT in Pxy2P/G2.

Now P xy2P ~ G x G x X x X with G?-action given by

(h1,h2)- (g1, g2, X1,x2) = (hagihy ' hagoh' hixy, haxs).
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The projections pq, p2: P xy2 P — P are given by forgetting g, and g; respectively.
We claim that P xy> P/G? ~ P/G, where G acts on P as in the statement of the
lemma. Indeed we can present P/G as the quotient of G x P by the G2—action

(h1,h2) (g1, 82, X1, %2) = (hagihy ' higahT ! hyxt, hyxa),

and we have a G?—equivariant isomorphism G x P — P x x> P given by

(81,82, X1, x2) = (g1, 8182 X1, 81X2).

The resulting isomorphism P/G — P xy> P/G? is given by the map (g, x1,x2) >
(1, g,x1,x3), which is equivariant with respect to the diagonal homomorphism
G — G2.

To finish the proof, we must identify the closed substacks pl_1 (I'/G?) and 123 T/ G?)
in P x y2 P/G? under the isomorphism with /G. The first is the closed subscheme
pl_1 I'N ({1} xP) = A, regarded as a G—equivariant closed subscheme of P, and the
second is p5 IM)N ({1} xP) =T, as a G—equivariant closed subscheme of . O

The case when X is a vector space V, and G acts on V via a linear action, is of
interest in two-dimensional gauge theory. In this case we make the above derived
intersection explicit using a Koszul resolution. Denote by «: G x V — V the action
morphism (g, v) — g-v. We choose linear coordinates on V and identify V x V
with Spec(k[x;, yi]).

The Koszul complex for the regular sequence Kyxvy(x; — y;) gives a resolution of
the diagonal on V x V. An important point is that, in this case, this resolution is
G-equivariant with respect to the diagonal G—action because the G—action on V is
linear. Then

Kexvxv(xi —yi) = 03

is a resolution of Oz over P.
Corollary 4.3 C.(Perf(V/G)) = (Kgny (xi —a*(x;)) % .

Proof By the above lemma, C,(Perf(V/G)) is isomorphic to

(KGxvxv(Xi — yi) ®op Or)% =~ (T* Ky xv (xi — 1)) C.

Pulled back to G x V, T'*(y;) = a*(x;), and therefore T* Kgxvxv(xi — yi) =
Kexv (xi —a™*(x;)). O
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Remark 4.4 We expect that one could describe similar models for the Hochschild
homology of general gauged linear sigma models (V /G, W). The key step needed
to do this would be to generalize [55, Theorem 4.2.3] to quotient (or more generally
QCA) stacks.

4.2 An HKR theorem and quotients of affine varieties

In [10], Block and Getzler construct for any compact smooth A -manifold X an
explicit model for the M —equivariant cyclic homology of the algebra C°°(X) using
differential forms on X. Our goal is to translate their construction into algebraic
geometry and establish their version of the equivariant Hochschild—Kostant—Rosenberg
theorem when X = Spec(A) is smooth and affine, G is a reductive group, and X /G
is formally proper, which is equivalent to the condition that A€ is finite-dimensional
over k. Our proof is an application of Theorems 1.8 and 2.17. For simplicity, we
let k = C throughout this section.

To compute the derived intersection appearing in Lemma 4.2, we may use the bar
resolution B(A) of A as an A — A bimodule. Namely,

Bi(A):=AQ A®" R A4,

where the differential can be described as the sum b = X;(—1)?9;, where

aya; ®---Qapay if i =0,
di(dy®a; ®-+-ay ®ay) 1= ay® - Qajaip1 Q- @ay if i #0,#n,
ay ® - ®apay if i =n.

Our notation is meant to highlight the fact that the first and last variables in the bar
complex play a distinguished role from the other @;. We then have that Og ® B(A4) is
a resolution of Oz which we may restrict to I'. The result is a complex where the n®
graded piece is

Cu(A,G):= 06 @ A®" T = T(G x X", 06y ynt1).

For any ¢ € I'(O gy yn+1), the differentials d; above now take the form

c(g,x0,X0, X1, ..., Xp—1) if i =0,
0ic(g, X0, X1,...,Xp—1) =3 ¢(g, X0y, Xi, Xiy.., Xp—q) if i #0,5# n,
c(g, X0, Xn—1,8"X0) if i =n.

We define the A—module C, g(A4) := C,(4, G), and note the following corollary
of Lemma 4.2.
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Corollary 4.5 C.(Perf(X/G)) = C, g(A4).

Let C,,g(A4) g denote the completion of C, g(A4) as a complex of modules over the
representation ring Rep(G) ® C = I'(9)? at the conjugacy class [g]. Let us work
for the moment with a fixed normal element g € G. Let Y = Spec(A4)# denote the
fixed-point locus of g and B =1"(Oy). The letter Z will designate the centralizer of g
and 3 denotes its Lie algebra, and normality of g ensures that Z is the complexification
of Z,:=Z N M for a maximal compact subgroup M C G. We have embeddings
jiZ—->Gand k: Y — X.

Lemma 4.6 When Spec(A)/G is formally proper, the natural restriction map gives
rise to an isomorphism k*: C, g(A)y — C, z(B)y -

Proof Note that because Spec(A4)/G is formally proper, each C, G(A) is a coherent
Rep(G) ® C—module, so completion commutes with taking homology in this case, and it
suffices to prove the result on the level of homology. It is known [20, Proposition 3.10]
that the map k*: Ky (X*", C)p — Kz, (Y*",C), is an isomorphism. The comparison
maps

K3 (X™,C) —— Hu(Cl'G(A))

B |+

K (Y™, C) == Hu(C}%(B))

are maps of (Rep(G) ® C)-modules, and therefore we conclude that the map
k*: Hi(CYG(A))g — Hi(CY%(B))g is an isomorphism as well. By Theorem 2.20,
the vector spaces Hyx(CLG(A)) and H«(ClZ (B)) admit compatible Hodge structures.
We observe that the Hodge decompositions
Ho(CPe(A) = @ HalCog(4)., Hu(C'L(B)= @ H(C.z(B)
n=x mod 2 n=:x mod 2

are decompositions of Rep(G)— and Rep(Z)-modules respectively. This follows
because both the Hodge filtration and the conjugate filtration are filtrations of Rep(G)—
modules as can be seen for example by examining the explicit model for CJ'G (4). The
lemma now follows by taking completions of these decompositions. a

Next we construct a model for C, z(B) Q based on the algebraic differential forms Q7,,
regarded as a projective B—module. Recall that the Cartan differential

i: Sym(3*) ® Q% — Sym(;*) ® Q%!
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is the unique extension of the contraction map Q% — 3* ® Q’)’,_l to a differential
satisfying the Leibniz rule. Alternatively, regarding w € Sym(3™) ® 2%, as a section of
a quasicoherent sheaf over 3, we have

(iw)(z) =i;0(z2).

We thus have a chain complex, in fact a CDGA,
Q1] = (@ Sym(;*) ® Q] i).
n

Note that i is Z—equivariant and that it descends to the quotient Sym(3)* /m¥ . Thus
we can define

QT = (GB Sym(s") /243
Q17 = (@(Sym(a*)/m" ® sz’;,[n])Z,i).

Proposition 4.7 The comparison map of Construction 4.8 is a quasi-isomorphism of
A—modules
HKR}: C, z(B)} — LikLn(Q}ﬂg*]]f).

Hence, when Spec(A)/G is formally proper, we have a quasi-isomorphism of A—
modules
HKR} ok*: C, g(A)y — %1(9;[[3*]],{).

Let Z ) denote the k™ infinitesimal neighborhood of the identity in Z. The expo-
nential map provides a compatible system of isomorphisms

expy: Spec(Sym(3*)/mk)) — Z (k)

Note that, under this equivalence, G, acts algebraically on Z ) by scaling, and this
action actually extends to an action of the monoid A !. This is encoded algebraically
via a coaction map Sym(3*)/m¥ — Sym(;*)/m* ® C[r].

Construction 4.8 For any b € B, the coaction of Oz on B, the exponential map expy,
and the G,,—action on 3 define an element

expg(—1-2)-b € B®Sym(3*)/mk ® C[r].
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We define C, (B, Z) :=0z,, ® B"*1 ie the reduction of C,(B, Z) modulo mk,
and introduce the map HKR, ;: C, (B, Z) — Q'I'/[[Za*]]k given by
(10) v ®by®b1® - Qby
= ¥ (g - expy(2))
X /A by d(expy(—t112) -by) A+ Ad(expy (—tnz) - by) dty dty - - - dty.

Here d(—) denotes the (Sym(3*)/m* ® C[t])~linear extension of the exterior derivative
d: B®Sym(3*)/mk ® C[r] - Q) ® Sym(3*)/mk ® C[1].

The integrand is regarded as an element of Sym(3*)/mf ® QY ®Clry,.... 1y, and
the integral over the standard n—simplex A, is regarded formally as a linear map
Clt1,....ty] = C. This formula is identical to the one used in [10], so it follows
formally from the computations there that HKR, ;. is a chain map (see for instance
[10, Theorem 3.2]). This map is Z—equivariant, so it restricts to a chain maps

HKR, i: C, 4 (B, 2)% — Q3 [3* 17
and
HKR} := %nHKRg,k: Coz(B)y — likLlQ;/[[g*]]]g.

Proof of Proposition 4.7 By the compatibility of the HKR maps with translation by
the central element g, it suffices to consider the case g = id. The maps
HKRid,k: Co,k(Bv Z) g Q.Yﬂé*]]k

are a compatible family of maps of bounded complexes with coherent homology over
B ® Sym(3*)/m¥ . The map HKRjq,; is the classical HKR map

I
Dy ® -+ ® by > — by dby -+ dby,
n:

which is an equivalence of A—modules. Hence by Nakayama’s lemma each HKR;4
is a quasi-isomorphism, and the same is true after taking Z-invariants. Hence HKR/}
is a quasi-isomorphism. The final statement of the proposition combines this with the
previous lemma. |
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