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Background: Pollution — unwanted waste released to air, water, and land by human activity - is the largest
environmental cause of disease in the world today. It is responsible for an estimated nine million prema-
ture deaths per year, enormous economic losses, erosion of human capital, and degradation of ecosystems.
Ocean pollution is an important, but insufficiently recognized and inadequately controlled component of
global pollution. It poses serious threats to human health and well-being. The nature and magnitude of
these impacts are only beginning to be understood.

Goals: (1) Broadly examine the known and potential impacts of ocean pollution on human health.
(2) Inform policy makers, government leaders, international organizations, civil society, and the global
public of these threats. (3) Propose priorities for interventions to control and prevent pollution of the

seas and safeguard human health.
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Methods: Topic-focused reviews that examine the effects of ocean pollution on human health, identify
gaps in knowledge, project future trends, and offer evidence-based guidance for effective intervention.
Environmental Findings: Pollution of the oceans is widespread, worsening, and in most countries poorly
controlled. It is a complex mixture of toxic metals, plastics, manufactured chemicals, petroleum, urban
and industrial wastes, pesticides, fertilizers, pharmaceutical chemicals, agricultural runoff, and sewage.
More than 80% arises from land-based sources. It reaches the oceans through rivers, runoff, atmospheric
deposition and direct discharges. It is often heaviest near the coasts and most highly concentrated along
the coasts of low- and middle-income countries. Plastic is a rapidly increasing and highly visible compo-
nent of ocean pollution, and an estimated 10 million metric tons of plastic waste enter the seas each year.
Mercury is the metal pollutant of greatest concern in the oceans; it is released from two main sources
— coal combustion and small-scale gold mining. Global spread of industrialized agriculture with increasing
use of chemical fertilizer leads to extension of Harmful Algal Blooms (HABs) to previously unaffected
regions. Chemical pollutants are ubiquitous and contaminate seas and marine organisms from the high
Arctic to the abyssal depths.

Ecosystem Findings: Ocean pollution has multiple negative impacts on marine ecosystems, and these
impacts are exacerbated by global climate change. Petroleum-based pollutants reduce photosynthesis in
marine microorganisms that generate oxygen. Increasing absorption of carbon dioxide into the seas causes
ocean acidification, which destroys coral reefs, impairs shellfish development, dissolves calcium-containing
microorganisms at the base of the marine food web, and increases the toxicity of some pollutants. Plastic
pollution threatens marine mammals, fish, and seabirds and accumulates in large mid-ocean gyres. It breaks
down into microplastic and nanoplastic particles containing multiple manufactured chemicals that can
enter the tissues of marine organisms, including species consumed by humans. Industrial releases, runoff,
and sewage increase frequency and severity of HABs, bacterial pollution, and anti-microbial resistance.
Pollution and sea surface warming are triggering poleward migration of dangerous pathogens such as the
Vibrio species. Industrial discharges, pharmaceutical wastes, pesticides, and sewage contribute to global
declines in fish stocks.

Human Health Findings: Methylmercury and PCBs are the ocean pollutants whose human health
effects are best understood. Exposures of infants /in utero to these pollutants through maternal con-
sumption of contaminated seafood can damage developing brains, reduce 1Q and increase children’s
risks for autism, ADHD and learning disorders. Adult exposures to methylmercury increase risks for
cardiovascular disease and dementia. Manufactured chemicals — phthalates, bisphenol A, flame retard-
ants, and perfluorinated chemicals, many of them released into the seas from plastic waste — can
disrupt endocrine signaling, reduce male fertility, damage the nervous system, and increase risk of
cancer. HABs produce potent toxins that accumulate in fish and shellfish. When ingested, these toxins
can cause severe neurological impairment and rapid death. HAB toxins can also become airborne and
cause respiratory disease. Pathogenic marine bacteria cause gastrointestinal diseases and deep wound
infections. With climate change and increasing pollution, risk is high that Vibrio infections, including
cholera, will increase in frequency and extend to new areas. All of the health impacts of ocean pollu-
tion fall disproportionately on vulnerable populations in the Global South — environmental injustice on
a planetary scale.

Conclusions: Ocean pollution is a global problem. It arises from multiple sources and crosses national
boundaries. It is the consequence of reckless, shortsighted, and unsustainable exploitation of the earth’s
resources. It endangers marine ecosystems. It impedes the production of atmospheric oxygen. Its threats
to human health are great and growing, but still incompletely understood. Its economic costs are only
beginning to be counted.

Ocean pollution can be prevented. Like all forms of pollution, ocean pollution can be controlled
by deploying data-driven strategies based on law, policy, technology, and enforcement that target
priority pollution sources. Many countries have used these tools to control air and water pollution
and are now applying them to ocean pollution. Successes achieved to date demonstrate that broader
control is feasible. Heavily polluted harbors have been cleaned, estuaries rejuvenated, and coral reefs
restored.

Prevention of ocean pollution creates many benefits. It boosts economies, increases tourism, helps
restore fisheries, and improves human health and well-being. It advances the Sustainable Development
Goals (SDG). These benefits will last for centuries.

Recommendations: World leaders who recognize the gravity of ocean pollution, acknowledge its growing
dangers, engage civil society and the global public, and take bold, evidence-based action to stop pollution
at source will be critical to preventing ocean pollution and safeguarding human health.

Prevention of pollution from land-based sources is key. Eliminating coal combustion and banning all
uses of mercury will reduce mercury pollution. Bans on single-use plastic and better management of
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plastic waste reduce plastic pollution. Bans on persistent organic pollutants (POPs) have reduced pol-
lution by PCBs and DDT. Control of industrial discharges, treatment of sewage, and reduced applica-
tions of fertilizers have mitigated coastal pollution and are reducing frequency of HABs. National,
regional and international marine pollution control programs that are adequately funded and backed
by strong enforcement have been shown to be effective. Robust monitoring is essential to track
progress.

Further interventions that hold great promise include wide-scale transition to renewable fuels; transi-
tion to a circular economy that creates little waste and focuses on equity rather than on endless growth;
embracing the principles of green chemistry; and building scientific capacity in all countries.

Designation of Marine Protected Areas (MPAs) will safeguard critical ecosystems, protect vulnerable
fish stocks, and enhance human health and well-being. Creation of MPAs is an important manifestation of

national and international commitment to protecting the health of the seas.

Introduction

The oceans are vast. They cover more than 70% of the
earth’s surface, hold 97% of the world’s water, host some
of the planet’s most diverse ecosystems, and support
economies in countries around the world [1, 2]. Micro-
scopic organisms in the seas are a major source of atmos-
pheric oxygen [3, 4, 5, 6]. By absorbing more than 90%
of the excess heat released into the earth’s environment
and nearly one-third of carbon dioxide emissions, the
oceans slow planetary warming and stabilize the global
climate [7].

The oceans are essential to human health and well-
being [8, 9, 10-13]. They provide food to billions, live-
lihoods for millions and are the source of multiple
essential medicines [14]. They have traditional cultural
value and are a source of joy, beauty, peace, and recrea-
tion [15, 16]. The oceans are particularly important to the
health and well-being of people in small island nations
[17], the high Arctic, and coastal communities, especially
those in the Global South [1]. The very survival of these
vulnerable populations depends on the health of the
seas [10, 12].

Despite their vast size, the oceans are under threat,
and human activity is the main source of the threat [1,
2]. Climate change and other environmental disruptions
of human origin have caused sea surface temperatures
to rise, glaciers to melt, and harmful algal species and
pathogenic bacteria to migrate into waters that were
previously uncontaminated. Rising seas and increasingly
violent coastal storms endanger the 600 million people
worldwide who live within 10 m of sea level [1]. Rising
concentrations of atmospheric CO, have caused acidifi-
cation of the oceans, which in turn destroys coral reefs,
impairs development of oysters and other shellfish, and
dissolves calcium-containing microorganisms at the base
of the food web [1, 18, 19]. The oceans are losing oxygen
[1]. Fish stocks are declining [20, 21, 22]. Dredging, mech-
anized trawling, oil exploration, and planned deep under-
sea metal mining threaten the seabeds [23].

Pollution — unwanted, often hazardous waste mate-
rial released into the environment by human activity — is
one of the existential challenges of the present age [24].
Like climate change, biodiversity loss, and depletion of
the world's fresh water supply, pollution endangers the

stability of the earth’s support systems and threatens the
continuing survival of human societies [8].

Pollution is also a great and growing threat to human
health. It is the largest environmental cause of disease
in the world today, responsible for an estimated 9 mil-
lion premature deaths per year [24]. It causes enormous
economic losses, undermines national trajectories of
economic development, and impedes attainment of the
Sustainable Development Goals (SDGs) [22].

Pollution has until recently been overlooked in inter-
national development planning and largely neglected in
the global health agenda [25]. For too long, pollution has
been regarded as the unavoidable price of economic pro-
gress [25], a view that arose out of the experience of the
19th and 20th centuries when combustion of fossil fuels
— coal in particular — was the engine of economic growth
and pollution was seen as unavoidable. Today, however,
the claim that pollution is inevitable and that pollution
control costs jobs and stifles economies is no longer ten-
able. It has been disproven by the experience of the many
countries that have more than doubled their GDPs in the
past half century while greatly reducing pollution [24—
26]. It has become irrelevant with the increasing availabil-
ity of low-cost, renewable sources of energy and advances
in green chemistry.

Ocean pollution is a critically important but under-
recognized component of global pollution [26, 27]. It has
multiple direct and indirect impacts on human health
[28-35]. The nature and magnitude of these effects are
only beginning to be understood.

The purpose of this review is to examine the impacts
of ocean pollution on human health and well-being,
identify gaps in knowledge, project future trends, and
offer scientifically based guidance for effective inter-
ventions. Information presented in this review will
guide attainment of the Sustainable Development Goals
(SDGs), in particular, SDG 14, which calls for prevention
and significant reduction of all marine pollution, and
SDG 3, which calls for improvement of human health
and well-being.

The ultimate aim of this report is to increase awareness
of ocean pollution among policy makers, elected leaders,
civil society and the public and to catalyze global action
to monitor, control, and prevent pollution of the seas.



Art. 151, page4 of 64

By focusing our analysis on human impacts, we under-
score the fact that pollution of the oceans poses a clear
and present danger to human health. It is causing disease,
disability, and premature death in countries around the
world today.

On the positive side, pollution of the oceans is not inevi-
table. It is a problem of human origin, and the successes
in pollution control that have been achieved in many
countries show that it can be controlled and prevented.

World leaders who recognize the great magnitude of
ocean pollution, acknowledge its grave dangers to human
health, engage civil society and the global public, and take
bold, evidence-based action will be key to stop ocean pol-
lution at its source and safeguarding human health.

Methods
This report consists of a series of topic-focused reviews
that critically examine current knowledge of each ocean
pollutant — its sources, magnitude, geographic extent,
populations at greatest risk, and its known and potential
effects on human health. We examine the strength of the
evidence linking pollutants to health effects [29].

To the extent possible, we consider health effects not
only of individual pollutants, but also of the complex mix-
tures of chemical pollutants and biological contaminants

OCEAN POLLUTION

Pollution of the oceans is widespread, worsening,
and in most countries poorly controlled. Human
activities result in a complex mixture of
substances entering the aquatic environment

PLASTIC WASTE

0 million metric tons of plastic
h year. Plastic pollution

OIL SPILLS

Oil spills kill beneficial marine
microorganisms that produce oxygen. They
lead also to adisruption of food sources and
destruction of fragile habitats such as
estuaries and coral reefs

Figure 1: Ocean Pollution — A Complex Mixture.

More
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found in the seas today. We examine interactions and
synergies among pollution, climate change and ocean
acidification. Because the effects of pollution are dispro-
portionately concentrated in low-income countries in the
Global South, small island nations, and indigenous popu-
lations in the far north [12], we specifically examine ocean
pollution’s impacts on these vulnerable populations.
Finally, we consider the prospects for prevention and con-
trol of ocean pollution and present case studies of success
in pollution control.

Findings
The Current State of Ocean Pollution
Pollution of the oceans is widespread, it is worsening, and
its geographic extent is expanding [26, 27, 30]. Ocean pol-
lution is a complex and ever-changing mixture of chemi-
cals and biological materials that includes plastic waste,
petroleum-based pollutants, toxic metals, manufactured
chemicals, pharmaceuticals, pesticides, and a noxious stew
of nitrogen, phosphorus, fertilizer, and sewage (Figure 1).
Some ocean pollutants are “legacy” pollutants, mate-
rials deposited in the seas decades ago, while others are
new. The relative concentrations of pollutants vary in dif-
ferent regions of the oceans and at different seasons of
the year. Plastic pollution is the most visible component

It reaches the oceans through rivers,
runoff, atmospheric deposition and direct
discharges. Ocean pollution has multiple
negative impacts on ecosystems and
human health, particularly in vulnerable
populations

Wl
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of ocean pollution. It is growing rapidly, but it is only the
obvious tip of a much larger problem.

Land-based sources account for approximately 80% of
ocean pollution, while discharges from marine shipping,
offshore industrial operations, and waste disposal at sea
account for the remaining 20% [26]. Pollution is most
severe along coastlines and in bays, harbors, and estuaries
where wastewater discharges, industrial releases, agricul-
tural runoff, and riverine pollution cause massive in-shore
contamination. Some of the world's worst ocean pollution
is seen along the coasts of rapidly developing countries in
the Global South [26].

The European Environment Agency (EEA) reports that
pollution by toxic metals, industrial chemicals and plastic
wastes is at problem levels in 96% of the Baltic Sea, in 91%
of the Black Sea, in 87% of the Mediterranean Sea, and in
75% of the North-East Atlantic Ocean [27]. Pollution by
plastic waste has become a global threat [31].

The drivers of ocean pollution are rapid industrializa-
tion; continuing increases in the manufacture and release
into the environment of chemicals and plastics; expansion
of chemically intensive agriculture; massive releases of
liquid and solid waste into rivers, harbors, and estuaries;
and insufficient re-use and recycling of feedstock materi-
als [16, 32]. Specific sources of ocean pollution are:

- Coal combustion and gold-mining are the two main
sources of marine mercury pollution [33].

- Exponential growth in chemical production coupled
with inadequate controls on chemical releases are the
main drivers of pollution of the oceans by manufac-
tured chemicals [34].

- Marine pollution by plastic waste reflects massive
global growth in plastic production, which now ex-
ceeds 420 million tons per year [35].

- Uncontrolled economic development and rapid
population growth along the world's coasts has led
to pollution of in-shore waters by industrial releases,
agricultural runoff and sewage [36, 37, 38, 39]. Many
populated coastal areas are now covered by build-
ings and impervious surfaces, which increases runoff.
This runoff as well as discharges of wastewater and
storm water, much of it inadequately treated, further
increases pollution. The consequences are increasing
abundance of pathogenic bacteria, viruses, and para-
sites [40], eutrophication, and increased frequency
and severity of harmful algal blooms (HABs) — “red
tides”, “brown tides’, and “green tides" — some of
which produce potent disease-causing toxins.

Despite the great magnitude of ocean pollution and
growing recognition of its effects on human and ecosys-
tem health, great gaps remain in knowledge about pollu-
tion sources, levels of pollution in many areas of the seas,
the sizes of high-risk populations, the extent of human
exposure, and the magnitude of health effects. Because
of these gaps, the impacts of ocean pollution on human
health and well-being are underestimated, and it is not yet
possible to fully quantify the contribution of ocean pollu-
tion to the global burden of disease [41].
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Climate Change, Global Warming, Ocean Acidification,
and Pollution

Since the 1970s, the oceans have warmed steadily in con-
cert with global climate change [42]. They have taken up
more than 90% of the excess heat released into the cli-
mate system [1]. Mean sea surface temperature is rising
by 0.13°C per decade [43]. The frequency of marine heat-
waves has more than doubled [1].

Further impacts of climate change on the oceans
are increases in the intensity and frequency of extreme
weather events such as heat waves, heavy rainstorms, and
major hurricanes, and changes in large-scale planetary
phenomena such as El Nifio events [44] and the Indian
Ocean Dipole [1, 45, 46].

Ocean acidification is another consequence of climate
change. The oceans absorb nearly one-third of the car-
bon dioxide (CO,) emitted into the atmosphere, and the
amount of CO, absorbed by the seas has increased in
recent decades as CO, emissions of human origin have
increased. Ocean acidification is the result [7]. Since the
late 1980s, the surface pH of the open ocean has declined
by about 0.1 pH units relative to preindustrial time (i.e.,
a 26% increase in acidity [hydrogen ion concentration]),
and the rate of increase is 0.017-0.027 pH units per dec-
ade [1].

Ocean acidification threatens the integrity of coral reefs.
It impairs the development of oysters and other commer-
cially important shellfish, thus impacting commercial
fisheries. It endangers the survival of calcium-containing
microorganisms at the base of the marine food web [1,
47]. Ocean acidification may also increase the toxicity of
certain heavy metals and organic pollutants [1, 48].

Global warming liberates legacy pollutants from ice and
permafrost, alters the geographic distribution of chemi-
cal pollutants in the oceans, and increases exposures of
previously unexposed populations. All of these effects
have potential to magnify the ocean pollution’s impacts
on human health [49].

Rising sea surface temperatures and increasing ocean
pollution result in greater abundance and expanded geo-
graphic ranges of naturally occurring marine pathogens,
such as Vibrio species, among them Vibrio cholerae, the
causative agent of cholera [50, 51] (Figure 2). The likely
consequences will be increases in the frequency of Vibrio-
associated illnesses and spread of these infections to new,
previously unaffected areas. Risk is especially high in low-
income countries where coastal development is intense
and sanitation systems are dysfunctional due to civil
unrest, conflict, sea level rise, coastal over-development,
and natural disasters [52].

In a similar manner, climate change, sea surface warm-
ing, and ocean pollution appear to be increasing the fre-
quency, severity, and global geographic extent of harmful
algal blooms (HABs) [53, 54]. Some dangerous algal spe-
cies are moving poleward in response to the warming of
coastal waters [54, 55], changes in ocean stratification,
alteration of currents, changes in nutrient upwelling,
and changes in land runoff and micronutrient availability
[56, 57]. The likely consequences will be the occurrence
of HABs in previously unaffected areas and exposures of
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Figure 2: Areas considered suitable for Vibrio cholerae [50].

Source: Escobar et al., (2015) (https://doi.org/10.1016/j.actatropica.2015.05.028) CC BY 4.0.

previously unexposed populations in the circumpolar
regions to HAB toxins.

Impacts of Ocean Pollution on Human Health
Chemical Pollutants

Toxic Metal Pollutants

Releases of toxic metals to the environment began mil-
lennia ago with the inception of mining and smelting.
These releases have increased since the beginning of the
Industrial Revolution and risen especially in the past two
centuries [58, 59, 60].

Mercury is the metal pollutant in the oceans of greatest
concern for human health [34]. Over the past 500 years,
human activities have increased total environmental mer-
cury loading by about 450% above natural background.
About 70% of the mercury circulating in the environment
today consists of mercury emitted from human sources in
the past, termed legacy mercury [61] (Figure 3). The pres-
ence of large quantities of legacy mercury in the global
environment and the potential for climate change to
remobilize this mercury complicate projections of future
exposures and health impacts.

Current Sources of Mercury Pollution
An estimated 2,220 tons of mercury are currently emit-
ted to the environment each year as the direct result of
human activity. These emissions account for about 30%
of current mercury emissions. Another 60% of current
mercury emissions result from environmental recycling of
anthropogenic mercury previously deposited in soils and
water. The remaining 10% comes from natural sources
such as volcanoes.

Combustion of coal and artisanal/small-scale gold-
mining (ASGM) are the two principal human sources of

current mercury emissions. All coal contains mercury and
when coal is burned, mercury is released into the atmos-
phere where it can travel for long distances until ulti-
mately it precipitates into rivers, and lakes and the oceans.
In ASGM, mercury is used to form an amalgam to sepa-
rate gold from rock. The amalgam is heated to boil off
the mercury leaving the gold behind. ASGM operations
release mercury to the environment through vaporiza-
tion and through runoff of spilled mercury into water-
ways [34]. Metal mining and oil and gas exploration can
be additional sources of mercury release. In rivers, lakes
and the oceans, the metallic, inorganic mercury released
to the environment from these sources is converted by
marine microorganisms into methylmercury, an organic
form of mercury that is a potent neurotoxicant.

The largest fraction of global mercury emissions —about
49% — originate today in East and South-East Asia. Coal
combustion and industrial releases are the major sources
there. South America accounts for 18% of global mer-
cury emissions and Sub-Saharan Africa for 16%. In both
of these regions, ASGM is the major source of mercury
releases.

Methylmercury is a persistent pollutant in the marine
environment. It bioconcentrates as it moves up the food
web, so that top predator species such as tuna, striped
bass and bluefish as well as marine mammals can accu-
mulate concentrations of methylmercury in their tissues
that are 10 million or more times greater than those in
surrounding waters [34].

Mercury levels vary substantially in different regions
of the ocean. This variation is seen in a recent survey
of methylmercury concentrations in yellowfin tuna, in
which levels differed by 26-fold around the world. Highest
levels were found in tuna from the North Pacific Ocean
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Figure 3: Total global mercury releases and relevant historical factors, 1510-2010.
Source: Street et al., (2019) (https://doi.org/10.1088/1748-9326/ab281f) CC BY 3.0.
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Figure 4: Geographic differences in methylmercury concentrations of yellowfin tuna (Thunnus albacares).
Source: Reprinted from Nicklish et al., Mercury levels of yellowfin tuna (Thunnus albacares) are associated with capture
location. Environmental Pollution 2017: 87-93, doi.org/10.1016/j.envpol.2017.05.070 with permission from Elsevier.

(Figure 4), and these high concentrations reflect mercury
releases from coal-fired power plants and steel mills in
Asia that are carried northeastward across the Pacific on
the prevailing winds [62, 63].

Human exposure to methylmercury occurs primarily
through consumption of contaminated fish and marine
mammals [34, 64] Populations in the circumpolar region
are heavily exposed to mercury in their diets — principally
in the form of methylmercury — as a consequence of their

traditional consumption of a diet rich in fish and marine
mammals. Most of the mercury to which these popula-
tions are exposed originates from sources far away.

Neurobehavioral Toxicity of Methylmercury

The brain is the organ in the human body most vulner-
able to methylmercury. This vulnerability is greatest dur-
ing periods of rapid brain growth — the nine months
of pregnancy and the first years of postnatal life [65].
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There appears to be no safe level of methylmercury expo-
sure in early human development.

Prospective epidemiological cohort studies undertaken
in the Faroe Islands demonstrate that children exposed
to methylmercury in utero exhibit decreased motor func-
tion, shortened attention span, reduced verbal abilities,
diminished memory and reductions in other mental
functions. Follow-up of these children to age 22 years
indicates that these deficits persist and appear to be per-
manent [66].

A similar study conducted in Nunavik of child develop-
ment at age 11 years showed that methylmercury expo-
sure in early life is associated with slowed processing of
visual information, decreased 1Q, diminished compre-
hension and perceptual reasoning, impaired memory,
shortened attention span, and increased risk of atten-
tion deficit/hyperactivity disorder (ADHD) [67, 68]. Other
prospective studies have also reported neurobehavioral
deficits in children with elevated prenatal exposure to
methylmercury [69].

Mercury exposure later in childhood and also in adoles-
cence can also cause damage because the human brain
continues to develop throughout this time [70]. Genetic
factors may increase vulnerability to methylmercury in
some individuals [71].

Accelerated Loss of Neurocognitive Function in Adults
Exposed to Methylmercury

Recent studies have shown that adult exposures to meth-
ylmercury can also have negative effects on brain func-
tion [72]. Thus, in a cross-sectional study of 129 men and
women living in six villages on the Cuiaba River in Brazil,
elevations in hair mercury concentrations were associ-
ated with reductions in motor speed, manual dexterity,
and concentration [73]. Some aspects of verbal learning
and memory were also impaired. The magnitude of these
effects increased with increasing concentrations of mer-
cury in hair. The brain functions disrupted in adults by
methylmercury — attention span, fine-motor function, and
verbal memory — are similar to those previously reported
in children with prenatal exposures but appear to occur at
substantially higher levels of exposure.

Cardiovascular Effects of Methylmercury Pollution

Elevated concentrations of methylmercury in blood and
tissue samples are associated with increased risk for acute
coronary events, coronary heart disease, and cardiovascu-
lar disease [74]. The US National Research Council con-
cluded in 2000 that methylmercury accumulation in the
heart leads to blood pressure alterations and abnormal
cardiac function [75].

Subsequent research has strengthened these findings.
An expert panel convened by the US Environmental
Protection Agency in 2011 concluded that methylmercury
is directly linked to acute myocardial infarction and to
increases in cardiovascular risk factors such as oxidative
stress, atherosclerosis, decreased heart rate variability, and
to a certain degree, hypertension [76]. Likewise, a 2017
systematic review found that methylmercury enhances
production of free radicals resulting in a long-lasting
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range of effects on cardiac parasympathetic activity that
increase risk for hypertension, myocardial infarction, and
death [77]. Further research has confirmed these findings
[78,79].

The Contribution of Marine Mercury Pollution to the Global
Burden of Disease

Efforts have begun to estimate the contribution of mer-
cury pollution of the oceans to the global burden of dis-
ease (GBD). A recent estimate finds that between 317,000
and 637,000 babies are born in the United States each
year with losses of cognitive function that are the conse-
quence of prenatal exposures to methylmercury resulting
from consumption of mercury-contaminated fish by their
mothers during pregnancy. These losses range in magni-
tude from 0.2 to 5.13 1Q points depending on the severity
of exposure. These authors found additionally that popu-
lation-wide downward shifts in IQ caused by widespread
exposure to methylmercury are associated with excess
cases of mental retardation (IQ below 70), amounting to
3.2% (range: 0.2—5.4%) of all cases of mental retardation
in the United States [80].

Impacts of Ocean Acidification on Metals Toxicity

The alterations of carbonate chemistry in the seas —
i.e. decrease in pH, decrease in [CO,*] and increase in
[HCO,]) — that are the consequences of increasing CO,
absorption induce changes in the speciation of metals
that alter their solubility and bioavailability and therefore
their toxicity [48, 81].

For example, by 2100, the projected pH of the oceans
will be approximately 7.7, resulting in a 115% increase
in the mean free ionic form of copper (Cu*) in certain
estuaries [82]. Consequently, the biotoxicity of copper to
invertebrates [83] and to plankton photosynthesis and
productivity will be enhanced. At the same time, however,
ocean acidification will increase the concentration of dis-
solved iron, which could partially alleviate the inhibitory
effect of copper on photosynthesis [84]. Ocean acidifica-
tion appears in some instances to mitigate [85] or even
reduce [86] the toxicity of mercury. As metals may play a
role in the biodegradation of organic pollutants, changes
in metal speciation could slow these processes and there-
fore potentiate the toxicity of some organic pollutants
[87].

Prevention of Mercury Pollution

Evidence has shown that two actions will be key to pre-
venting further addition of mercury to the oceans. These
are a cessation of coal combustion and reduction of mer-
cury use in artisanal and small-scale gold mining (ASGM).
Cessation of coal combustion will not only slow the pace
of climate change and reduce particulate air pollution,
but will also greatly reduce atmospheric emissions of mer-
cury and thus reduce additional deposition of mercury
into the oceans. ASGM is a major source of mercury pollu-
tion of the oceans in the Global South. Actions underway
under the aegis of the Minamata Convention are seeking
to identify and control major sources of mercury pollution
from ASGM [34].
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Plastic Pollution of the Oceans

Plastic waste represents approximately 80% of all marine
litter [88]. An estimated 10 million metric tons of plastics —
range of estimate, 4.8 to 12.7 million — are released to the
oceans each year [89]. The total amount of plastic waste
circulating in the world’s oceans is projected to be 150 mil-
lion tons by 2025 [89, 90]. Marine plastic waste ranges in
size from floating barrels, plastic bottles and plastic sheets
down to sub-microscopic particles and fibers.

Recent increases in marine plastic pollution reflect mas-
sive growth in plastic production (Figure 5), which now
exceeds 420 million tons per year. Much of this plastic
goes into consumer products, and over 40% is used in
products that are discarded within one year of purchase
— often after only a single use [91]. The consequence is
massive global accumulation of plastic waste [92].

Plastics are produced by the polymerization of highly
reactive and often toxic chemical monomers, 98% of
them derived from fossil fuels. They are designed to be sta-
ble, durable and resistant to degradation [93]. Because of
these properties, discarded plastic that reaches the marine
environment can persist for decades and travel long dis-
tances. Plastic waste is now ubiquitous in surface waters,
on the coasts, in estuaries, on the high seas, and even in
the deepest and most remote parts of the ocean [94—100].

Sources of Plastic Pollution
The United Nations Joint Group of Experts on the Sci-
entific Aspects of Marine Pollution (GESAMP) [101] esti-
mates that land-based sources account for up to 80% of
the world’s marine pollution with 60-95% of this waste
comprised plastic debris.

Rivers are a major source of plastic waste in the oceans,
and riverine input is estimated to be between 1.15 and
2.41 metric tons per year, corresponding to between 9 and
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50% of all plastic transported to the oceans. Rivers drain-
ing densely populated, rapidly developing coastal regions
with weak waste collection systems are particularly
important sources [102], and it is estimated that between
88-95% of marine plastic comes from only 10 rivers
[103]. Largest inputs, accounting for approximately 86%
of the plastic waste entering the marine environment, are
from the coasts of Asia, mainly China [89, 104]. Additional
sources include aquaculture, fishing and shipping [27].

Plastic wastes are gathered by oceanic currents and col-
lect in five large, mid-ocean gyres located in the North
Pacific, South Pacific, North Atlantic, South Atlantic, and
Indian Oceans. The North Pacific gyre is a relatively sta-
tionary area twice the size of France that has waste from
across the North Pacific Ocean, including material from
the coastal waters of North America and from Japan.

Marine Pollution by Plastic Microparticles

Weathering, mechanical abrasion, and photodegradation
break plastic waste in the oceans down into smaller par-
ticles termed microplastics (<5 mm in diameter) and still
smaller particles termed nanoplastics (<1um in diameter;
defined as <100 nm by some authors) [105-107]. The
size distribution of ocean microplastics is highly skewed,
with increasing numbers of particles at smaller particle
sizes [108, 109]. Microplastic particles can sink downward
through the water column and accumulate on the ocean
floor. In contrast to microplastics, which have been meas-
ured widely in the marine environment (e.g., Text Box 1)
and in marine organisms, concentrations of nanoplastics
are poorly defined [110-115].

Microplastics are also manufactured. They are produced
in the form of microplastic beads — polystyrene spheres
0.5 to 500 pm in diameter. These beads are used in
industrial processes such as 3D printing. They also have
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Figure 5: Cumulative Plastic Production since 1960. Calculated as the sum of annual global polymer resin, synthetic
fiber, and plastic additive production. Most of this plastic still exists.
Source: Our World in Data (https://ourworldindata.org/plastic-pollution), CC BY 4.0).
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multiple applications in human and veterinary medi-
cal products to enhance drug delivery to tissues, and in
cosmetics such as toothpaste, abrasive scrubbers and
sunscreen. Manufactured microplastic beads are released
to the environment from these products. They enter the
oceans by way of urban runoff, sewage discharge, and
direct wash-off of cosmetics and sunscreens from the skin
of swimmers and surfers.

Microplastics degrade in the marine environment at
varying rates depending on the core material and weath-
ering conditions. Some petroleum-based plastics can take
hundreds of years to degrade, although under some cir-
cumstances photochemical degradation can be significant
[97, 116, 117].

Microplastic particles contain substantial quantities of
toxic chemicals. Toxic chemical additives are incorporated
into plastics during their manufacture to convey specific
properties such as flexibility, UV protection, water repel-
lence, or color [118-122]. These additives can comprise
as much as 60% of the total weight of plastic products.
They include plasticizers such as phthalates, brominated
flame retardants, antioxidants, UV stabilizers, and pig-
ments [106, 123]. Due to their large surface-to-volume
ratio, microplastic particles can also adsorb toxic chemical
pollutants from the marine environment — polycyclic aro-
matic hydrocarbons (PAHs), PCBs, DDT, and toxic metals
[106].

Some plastic additives such as synthetic dyes, are classi-
fied as mutagens and carcinogens [124—126]. Others such
as bisphenol A and phthalates are endocrine disruptors
— chemicals that can mimic, block, or alter the actions of
normal hormones. Perfluorinated additives, widely used
in plastic to make them water-repellent, are deleterious
to human reproduction. Still other plastic additives can
reduce male fertility and damage the developing human
brain [127, 128]. Also of concern are residual unreacted
monomers and toxic chemical catalysts that may be
trapped in plastic during its manufacture.

Chemical additives and adsorbed chemicals can leach
out of microplastic and nanoplastic particles. They can
enter the tissues of marine organisms that ingest these
particles, including species consumed by humans as sea-
food. Concentrations of some chemical additives have
been found to be orders of magnitude higher in micro-
plastic particles than in surrounding seawater [129].

Marine Pollution by Plastic Microfibers and Tire-Wear
Particles

Microfibers and tire-wear particles are distinct sub-cate-
gories of microplastics. Microfibers originate mainly from
the clothing and textile industries [130—132]. Tire-wear
particles are formed by the abrasion of car and truck tires.
These materials reach surface waters and ultimately the
oceans through runoff from roadways [133—135].

Plastic microfibers are distributed globally in both water
and air [129, 136, 137, 138]. They have become ubiquitous
in all ecosystems. They are found in seafood [139, 140].
Humans can be exposed to microfibers through consump-
tion of contaminated fish or shellfish. Inhalation of air-
borne microfibers may represent an even greater source
of human exposure [141, 142].
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Effects of Plastic Pollution on Marine Species

Elucidation of the toxicological impacts of microplastics,
including microfibers, is challenging because of their het-
erogeneity and great complexity [106]. Microplastics span
a wide range of sizes and shapes, they are comprised of
various polymer materials, and as noted above they con-
tain myriad chemical additives, the identity of which may
be proprietary and therefore not generally known. Once
in the marine environment, plastics undergo weathering
and adsorb additional contaminants, further enhancing
their complexity. Finally, marine species exhibit a range of
sensitivity to microplastics [143]. All of these factors com-
plicate assessments of toxicity and health hazard [144,
145).

Although there is evidence for transfer of additives and
adsorbed chemicals from plastics to organisms, the rela-
tive contribution of plastics to total chemical exposure
by all pathways is thought in most situations to be minor
[146—152]. Likewise, although some additives and sorbed
contaminants are able to bioaccumulate and biomagnify
in aquatic food webs, there is not yet strong evidence that
plastic particles themselves are able to undergo biomag-
nification [153].

Microplastics have potential to harm living organisms
through several mechanisms:

Physical toxicity. Macroscopic plastic wastes, such
as bottle caps, small bottles, and food packaging,
can be ingested by fish, seabirds, and marine mam-
mals that mistake them for food. Undigested plas-
tic accumulates in these animals’ gastrointestinal
tracts where it can cause obstruction that leads to
malnutrition, reproductive impairment and death
[129, 154—-160]. Marine species can also be harmed
and killed by becoming entangled in abandoned
fishing gear, plastic nets and plastic rings that are
caught on reefs or drifting in the water column. An
estimated 5.7% of all fishing nets, 8.6% of all traps,
and 29% of all lines are lost each year [161, 162].
Plastic pollution is a threat to coral reefs [163].
Large plastic debris such as plastic bags and sheet-
ing can smother coral colonies by preventing light
from reaching the phototrophic organisms that
build reefs and can also cause physical damage.

Particle effects. Microplastics can harm living
organisms by virtue of their ability to damage
cells, injure tissues, and cause inflammation [164].
While microplastics cannot easily pass through cell
membranes, nanoplastic particles can cross the gut
lining and accumulate in tissues [165-167] where
they may have the potential to cause deleterious
effects [168]. Leachates containing tire-wear parti-
cles have been associated with storm water-associ-
ated mortality in salmon [169].

Chemical Toxicity. The toxic chemical additives
and the sorbed pollutants in and on microplastics
and nanoplastics can leach from plastic particles
and enter the tissues of marine organisms [123,
170-172]. Although plastic particles may not be
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a major source of chemical exposure [146-152],
there is evidence that in some instances they can
be significant contributors to chemical body bur-
den [173].

The challenges associated with assessing the impacts of
microplastics on marine organisms are evident in the
divergent results of studies reported to date. A recent
meta-analysis and review of published research on the
effects of microplastics and macroplastics found similar
numbers of positive and negative results [174]. A major
conclusion from this and other reviews is that most of
the experimental work to date has been done using con-
centrations of microplastics that are not environmentally
relevant [144, 174, 175]. Future research should be con-
ducted under more environmentally relevant conditions
[174].

Microplastics as Vectors for Microbial Pathogens

An additional hazard of microplastic particles and fib-
ers in the marine environment is that they can transport
and shelter hazardous microorganisms, including vectors
for human disease [176]. Pathogenic bacteria have been
detected on sub-surface microplastics comprised of poly-
ethylene fibers, in plastic-containing sea surface films, and
in polypropylene fragments sampled in a coastal area of
the Baltic Sea [177]. Similarly, E. coli and other potentially
pathogenic species have been found on plastics in coastal
waters [178] and on public beaches [179]. Algal species
involved in HABs [180] and ciliates implicated in coral
diseases [181] have also been found attached to marine
microplastics.

These findings suggest that harmful microbes and algae
that colonize plastics in the marine environment may use
microplastic particles to expand their geographical range
(‘hitch-hiking’). Adhesion to marine plastic may also ena-
ble pathogens to increase their anti-microbial resistance
thus facilitating their spread to new areas where they may
cause disease and death in previously unexposed popula-
tions [177].

TEXT BOX 1: Microplastic contamination in Massa-
chusetts beaches and blue mussels, Mytilus edu-
lis.

Background. Microplastic particles have been increas-
ing in prevalence in the oceans since the late 1900s
and are found today on beaches across the world [101,
182]. The majority are produced through weathering
and fragmentation of larger macroplastics. Toxic and
endocrine disrupting chemicals such as phthalates and
bisphenol A may be incorporated into plastics during
manufacture, and microplastics can also absorb toxic
chemicals from seawater. Because of their small size,
microplastics are easily absorbed by microscopic marine
organisms and thus can enter the food chain where they
bioconcentrate [101]. Current studies are examining the
possible effects of microplastics on ecosystem dynamics
and also on the health of humans who consume fish
and shellfish.
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Goal. The two goals of this study were to examine (1)
the physical characteristics, spatial distribution and
abundance of microplastics on Massachusetts beaches,
and (2) the characteristics of microplastics in wild blue
mussels harvested in Massachusetts.

Methods. Six Massachusetts beaches were targeted
— beaches in and around Boston (high urban density)
and in more remote areas (Provincetown, Cape Cod, low
population density). Sediment samples were collected
from representative beaches and microplastics were
prepared by density separation [183]. Blue mussel (Myti-
lus edulis) samples were collected from Provincetown.
Samples were prepared following tissue digestion with
concentrated KOH [184]. All samples were visualized by
standard light microscopy and select samples were fur-
ther analyzed by Raman spectroscopy.

Findings. Microplastics were found in all beach sam-
ples examined and in most mussels screened. Micro-
plastics in select blue mussel samples showed Raman
spectra similar in appearance to those associated with
polycarbonate plastics.

Conclusion. This study demonstrates that microplastics
are ubiquitous on Massachusetts beaches and that they
can enter the human food chain through consumption
of blue mussels.

Further studies. Future studies are targeting additional
beaches (including freshwater beaches) and examining
species higher on the food chain (crustaceans and fish).
Laboratory-based weathering studies are underway to
examine the processes involved in microplastic genera-
tion. Studies in Drosophila melanogaster are examining
the effects of off-the-shelf and laboratory-generated
microplastic exposure via feeding on behavior, pheno-
type and gene expression.

Human Exposure to Plastic Pollution in the Oceans

Consumption of contaminated fish and shellfish is a major
route of human exposure to marine microplastics and
their chemical contaminants [140, 184, 185]. Microplas-
tic and nanoplastic particles are ingested by filter-feeders
such as oysters and mussels that are then consumed by
humans. Microplastic particles are found also in finfish
that have consumed smaller organisms below them in
the food web whose tissues are contaminated by micro-
plastics and nanoplastics [123]. Greatest risks of human
exposure are associated with consumption of small fish
such as sardines that are eaten whole, including the gut
[186]. The risk of microplastic ingestion may be especially
great in fishing communities and in indigenous popula-
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tions who rely heavily on seafood and marine mammals
for their diet.

A recent study based on assessment of commonly con-
sumed food items estimates that an average person con-
sumes between 74,000 and 121,000 microplastic particles
per year [161]. Particle consumption varies by age, sex and
diet. Microplastic particles have been detected in human
stool samples with about 20 particles detected per 10g of
stool, indicating that these particles can reach the human
gut [187]. Ingestion of contaminated drinking water and
inhalation of airborne microplastic fibers are additional
sources of human exposure, and inhalation may be an
especially important source [138, 141].

Human Health Effects of Plastic Pollution in the Oceans

The risks that marine microplastics may pose to human
health are not yet well understood and uncertainty about
their potential hazard is high [125, 186, 188, 189]. A
recent review by SAPEA, an arm of the European Acade-
mies of Science, concluded that at present there is “no evi-
dence of widespread risk to human health” of marine plas-
tic pollution [124]. This report goes on to state, however,
that as disposal of plastic waste into the oceans continues
to increase and more knowledge becomes available, the
assessment could change [125, 126, 128].

Protection of human health against the potential haz-
ards of marine plastic requires a precautionary approach.
While current knowledge of health hazards is incomplete,
there is sufficient information to justify urgent action to
prevent the continuing discharge of plastic waste into the
oceans [190, 191].

Pollution of the Oceans by Manufactured Chemicals
More than 140,000 new chemicals have been invented
and manufactured in the past 75 years. These synthetic
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chemicals are largely produced from fossil fuels — coal, oil,
and increasingly, gas. Some are used in the manufacture
of plastics. Others are incorporated into millions of con-
sumer goods and industrial products ranging from foods
and food packaging to clothing, building materials, motor
fuels, cleaning compounds, pesticides, cosmetics, toys,
and baby bottles [37].

Global chemical manufacture is increasing by about
3.5% peryear and is on track to double by 2045 (Figure 6).
More than 60% of current chemical production is in low-
and middle-income countries [192], where health and
environmental protections are often scant and waste dis-
posal not well controlled.

Manufactured chemicals have become widely dissemi-
nated in the environment and are found today in the most
remote reaches of the planet [193]. Humans are exposed
to these chemicals. In national surveys conducted across
the United States by the Centers for Disease Control and
Prevention, measurable quantities of more than 200 man-
ufactured chemicals are routinely detected in human tis-
sues [194].

The majority of manufactured chemicals have never
been tested for safety or toxicity. Their potential to dam-
age ecosystems or harm human health is therefore not
known. In most countries, manufactured chemicals are
allowed to enter markets with little scrutiny. Some are
found belatedly — sometimes only after years or even dec-
ades of use — to have caused damage to planetary sup-
port systems (Text Box 2), or injury to health. Examples
include DDT, asbestos, tetraethyl lead, and the chloro-
fluorocarbons. Even less is known about the possible com-
bined effects of exposures to mixtures of manufactured
chemicals [1, 2, 34, 195].

The thousands of manufactured chemicals that pollute
the world's oceans are variously classified by source (e.g.
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industrial), chemical structure (e.g. polycyclic aromatic
hydrocarbons [PAHs]), intended use (e.g. pesticides; flame-
retardants; pharmaceuticals), and environmental and bio-
logical properties (e.g., persistent, bioaccumulative), and
by mode of toxicity (e.g., endocrine disruptors) [196].
Many are “legacy” pollutants, deposited in the seas over
decades, while others are newly recognized.

TEXT BOX 2: Chemical Pollution of the Oceans and
Reduced Generation of Oxygen.

A novel mechanism by which petrochemical pollutants
in the oceans may endanger human and ecosystem
health is through reducing production of oxygen [197].
Beneficial marine microorganisms such as cyanobacte-
ria of the genus Prochlorococcus are major producers of
oxygen. Through photosynthesis, the billions of these
organisms in the earth’s oceans remove CO, from the
atmosphere and convert it to oxygen.

Recent experimental findings from the Atlantic, Pacific,
and Indian Oceans have found that mixtures of POPs
and aromatic hydrocarbons in seawater at concentra-
tions only two times above usual background levels can
reduce expression of photosynthetic genes in Prochloro-
coccus and thus impede oxygen generation [6, 198]. The
photosynthetic toxicity of pollutant mixtures exceeds
that of single chemicals by as much as three orders of
magnitude [5].

Major Classes of Marine Chemical Pollutants
- Halogenated aromatic hydrocarbons (HAHs): This
group includes most of the chemicals known as per-
sistent organic pollutants (POPs). The best-known
members of the group are the polychlorinated and
polybrominated biphenyls (PCBs and PBBs), polychlo-
rinated dibenzo-p-dioxins (PCDDs) and dibenzofurans
(PCDFs), polybrominated diphenyl ethers (PBDEs), and
organochlorine (OC) pesticides such dichlorodiphenyl-
trichloroethane (DDT). These and other POPs are the
focus of international efforts to restrict their produc-
tion and use, such as the Stockholm Convention [199].

PCBs are mixtures of related chemicals that are re-
sistant to extreme temperature and pressure. In the
past, PCBs were used widely in electrical capacitors
and transformers, in hydraulic fluids, as heat transfer
fluids, lubricants, and as plasticizers. Although pro-
duction has been banned since the 1970s and 1980s,
massive quantities are still present in electrical gen-
erators and capacitors and still larger amounts persist
in the environment as legacy pollutants. PBBs and PB-
DEs have been used as flame retardants.

Dioxins, including the highly toxic 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD), and furans are by-
products formed in the synthesis of chlorinated in-
dustrial chemicals and formed also in the incineration
of PCBs, polyvinyl plastics, and other manufactured
chemicals containing halogens.

Although the HAHSs of greatest concern are manu-
factured chemicals, the marine environment is also a
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rich source of naturally occurring HAHs, including hy-
droxylated PBDEs, halogenated bipyrroles, and halo-
genated indoles [200].

- Perfluoroalkyl substances (PFAS): This group con-
tains hundreds of related compounds, all containing
fluorine atoms on a carbon backbone. They are used
in manufacture of a wide range of products, including
non-stick cookware, stain-repellant carpets and furni-
ture, water-repellent clothing, and firefighting foam.
PFAS chemicals are highly persistent in the environ-
ment. They have caused extensive contamination of
surface waters and groundwater, especially near air-
ports and military bases where large quantities were
used in firefighting foams. PFAS compounds have
entered the oceans in substantial quantities and like
other persistent chemicals have been incorporated
into the marine food chain.

- Organophosphorus flame retardants (OPFRs): As
the persistence and toxicity of first-generation flame
retardants such as PBBs and then PBDEs became
known, manufacturers turned to OPFRs, which have
now also come to be contaminants in marine ecosys-
tems.

- Polynuclear aromatic hydrocarbons (PAHs): These
are multi-ring compounds that occur naturally in pe-
troleum and oil products and also are generated as
soot during incomplete combustion of organic mate-
rial. Alkylated PAHs are common in petroleum.

- Pesticides: The term ‘pesticides’ encompasses insecti-
cides, fungicides, and herbicides. These are a large and
diverse group of manufactured chemicals designed to
be toxic to target organisms (“pests”). Common classes
of insecticides are organochlorines (e.g., DDT, and its
metabolite DDE), organophosphates, carbamates, and
pyrethroids. Herbicides include phenoxyacetic acids
(2,4-D and 2,4,5T), atrazine, and glyphosate.

- Organometals: Alkylated tin products, especially
phenyltin compounds, were commonly used as an-
tifouling agents added to marine paints used on the
hulls of ships to prevent growth of barnacles.

Spatial and Temporal Distribution of Marine Chemical
Pollutants

The oceans are the ultimate sink for chemical pollutants,
and persistent pollutants that enter the seas from land-
based sources will stay in the oceans for years and even
centuries [201].

Concentrations of contaminants vary in different parts
of the oceans. Therefore, tracking the levels, fate and geo-
graphic distribution of chemical pollutants is a funda-
mental prerequisite to predicting patterns of exposure,
evaluating health effects, and designing evidence-based
strategies for pollution control and disease prevention.

With the exception of crude oil, almost all of the chemi-
cal contaminants considered in this report originate on
land and are transported to the ocean through atmos-
pheric transport, river deposition, runoff, and direct
discharges to the seas. In the oceans, pollutant concentra-
tions are influenced by proximity to source, global trans-
port patterns, and marine ecology. Highest concentrations
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tend to occur near population centers, industrial areas,
and centers of industrialized agriculture such as con-
centrated animal feeding operation (CAFOs). Large-scale
changes in ocean temperature and circulation induced by
global climate change appear to be important drivers of
pollutant distribution [202].

Atmospheric transport is a major factor governing the
movement of certain manufactured chemicals from land-
based sources to the sea [203]. For example, several classes
of persistent organohalogen compounds, such as PCBs
and fluorinated compounds volatilize at equatorial and
temporal latitudes, move poleward in the atmosphere,
and then precipitate to land and in water in the cool air
of the polar regions, a phenomenon termed “atmospheric
distillation” [204, 205]. The consequences are high con-
centrations of persistent pollutants in marine microorgan-
isms in the circumpolar regions as well as in top predator
fish species and marine mammals. Indigenous peoples in
the far north who rely heavily on marine species for food
are therefore placed at high risk of exposure to POPs.

Direct dumping of industrial wastes into the sea is
another source of pollution by toxic chemicals. For exam-
ple, an estimated 336,000—504,000 barrels of acid sludge
waste generated in the production of DDT have been
dumped into the Southern California Bight [206]. The dis-
posal process was sloppy and the contents of the barrels
readily leaked leading to localized contamination. Once
they are in the seas, chemical wastes can be further mobi-
lized through natural or human-caused disturbances. For
example, PCBs [207] in the Southern California Bight
[206] have been mobilized by dredging of contaminated
sediments from San Diego Bay.

Leaching from plastic waste is another route by which
toxic chemical pollutants can enter the seas. As was
described in the preceding section of this report, a wide
range of toxic chemicals can leach out of the 10 million
tons of plastic waste deposited in the oceans each year.
These manufactured chemicals can enter the marine food
chain, thus potentially resulting in ecosystem effects and
human exposure.

Global efforts to reduce or eliminate pollution have
resulted in some successes in control of ocean pollu-
tion, for example in reductions in PCBs and mercury in
the seas surrounding Europe (EEA) [27, 208]. In general,
however, halogenated organic compounds, such as those
governed by the Stockholm Convention, are highly resist-
ant to degradation in the marine environment, and these
persistent legacy pollutants remain widespread in marine
environments.

Human Exposure to Marine Chemical Pollutants
An estimated 1-3 billion people depend on seafood as
their principal source of dietary protein. Thus, contami-
nated seafood is the major route of human exposure to
marine pollutants. The chemical pollutants most often
identified in seafood are methylmercury, PCBs, dioxins,
brominated flame retardants, perfluorinated substances,
and pesticides.

Factors that influence concentrations of chemical pol-
lutants in fish include geographic origin, fish age, fish size,
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and species. Geographic origin is a highly important deter-
minant of pollutant load [209-211] and often outweighs
the influence of other factors (Figure 7). Thus, fish that
live and are caught near cities and major points of pollut-
ant discharge typically contain highly elevated concentra-
tions of POPs and other chemicals [193].

Predator fish species at the top of the food web generally
accumulate higher concentrations of chemical pollutants
than fish at lower trophic levels. Therefore, fish consump-
tion advisories typically focus on limiting consumption
of predator species. However, given the vast scale of the
oceans and wide geographic variation in pollutant con-
centrations, it is perhaps not surprising that that these
advisories do not always adequately protect consumers.
For instance, one survey found that sardines, a species
relatively low on the marine food web, can have higher
concentrations of PCBs than cod or salmon [212].

Human Health Consequences of Marine Chemical Pollutants
Toxic chemical pollutants in the oceans have been shown
capable of causing a wide range of diseases in humans.
Toxicological and epidemiological studies document that
toxic metals, POPs, dioxins [213], plastics chemicals, and
pesticides can cause cardiovascular effects, developmental
and neurobehavioral disorders, metabolic disease, endo-
crine disruption, and cancer (detailed references are pro-
vided in the following paragraphs). Effects in humans and
laboratory animals are generally similar. Independent, sys-
tematic reviews undertaken by the US National Academy
of Medicine and the International Agency for Research on
Cancer confirm and validate these findings [214, 215].
Appendix Table 1in the Supplementary Appendix to this
report summarizes the known links between exposures
to toxic chemicals in the oceans and a range of human
health outcomes. Key associations are the following:

- Cardiovascular disease. Multiple toxicological and
epidemiologic studies indicate that PCBs, dioxins,
PBDEs, OPs, OCs, PAHs and petroleum pollutants, can
increase cardiovascular risk factors, including hyper-
tension and atherosclerosis [216—219], and increase
prevalence of cardiovascular disease, stroke, and heart
failure. Powerful prospective cohort studies, such as
the Nurses’ Health Study Il and the Prospective Inves-
tigation of the Vasculature in Uppsala Seniors (PIVUS)
study [220] provide compelling evidence that POPs
exposures in humans are associated with a broad
range of cardiovascular conditions.

- Developmental defects: The core concept of devel-
opmental toxicity is that that exposures to extremely
low doses of toxic chemicals during windows of ex-
quisite vulnerability in early development can have
devastating, potentially lifelong effects on health
[221]. Genetic imprinting appears to be a mechanism
by which toxic exposures during vulnerable periods
injure health and increase risk of disease [222, 223].
The Developmental Origin of Human Adult Diseases
(DOHAD) hypothesis encapsulates this concept [224],
and DOHAD is now recognized to be a widespread
phenomenon that explains the toxicity of many man-
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Figure 7: Impact of geographic variation on risk-based fish consumption advisories. Ranges of risk-based consumption
limits for 11 sites, calculated in meals per month and based on multiple contaminant exposure with cancerogenic
health endpoints, including total PCBs (n = 209), toxaphene and dieldrin. The red hollow spheres to the left of each
box plot display the individual fish values. Letters in parenthesis represent subgroups of the sample population with
means that were significantly different from each other using Tukey's post hoc analysis. The U.S. Food and Drug
Administration (FDA) and American Heart Association (AHA) recommended minimum monthly fish consumption
levels and the U.S. Environmental Protection Agency (EPA) threshold for unrestricted (>16) fish meals per month are
shown as dashed lines. Note: GOM, Gulf of Mexico,lO, Indian Ocean; NCS, North China Sea; NEAO, Northeast Atlan-
tic Ocean; NEPO, Northeast Pacific Ocean; NPO, Northern Pacific Ocean; NWAO, Northwest Atlantic Ocean; NWPO,
Northwest Pacific Ocean; SCS, South China Sea; SEPO, Southeast Pacific Ocean; SWPO, Southwest Pacific Ocean.

Source: Nicklisch et al. (2017), https://doi.org/10.1289/EHP518.

ufactured chemicals [225, 226]. Some developmental
toxicants act by disrupting endocrine function while
others directly damage developing organs such as the
lungs and the brain.

The first well-described example of the unique sus-
ceptibility of infants and children to toxic chemicals
in the environment was in the Minamata disaster
in post-war Japan. In Minamata, prenatal exposures
of human infants in utero to high concentrations of
methylmercury in contaminated fish consumed by
their mothers during pregnancy caused profound
neurological impairment. The mothers, by contrast,
sustained little or no physical toxicity [227].

Manufactured chemicals now recognized to be de-
velopmental toxicants include:

- PCBs and dioxins, which have been linked to neu-
rological, behavioral, and metabolic effects [228,
229] and also to reduced fetal growth and low
birth weight [230].

- PBDEs, which have been linked to cognitive im-
pairment in children [231].

- Phthalates, which are linked to reduced birth
weight [232], behavioral abnormalities resem-
bling attention deficit/hyperactivity disorder
(ADHD), reproductive abnormalities in baby boys
and decreased male fertility [233, 234].

- Bisphenol A, which is linked to behavioral distur-
bances in childhood [235].

- Organophosphate compounds, which are associ-
ated with reduced head circumference at birth (a
measure of delayed brain development), develop-
mental delays, cognitive impairments, and autism
spectrum disorder (ASD) [236—-238].

- Perfluorinated compounds, such as PFOA and PFOS,
which have been linked to decreased fetal growth
[239, 240], decreased birth weight, reduced head
circumference in newborn infants and increased
risk of ADHD [241]. Exposures to PFAS compounds
are associated additionally with hepatic toxicity,
increases in serum lipid levels, increased risk of
thyroid disease, suppression of immune function
[242], and decreased fertility [239, 240, 243].

- p,p"-DDE, the principal metabolite of the insecti-


https://doi.org/10.1289/EHP518

Art. 151, page 16 of 64

cide, DDT, which affects birth weight [232].

- Organotin compounds, used extensively in anti-
fouling marine paints, have been linked to neuro-
toxicity, hepatotoxicity, and renal toxicity as well
as to ecosystem harm [244].

- Developmental neurotoxicity: The developing hu-

man brain is extremely sensitive to chemical toxicity.

Damage done to the brain early in development can

become evident at any point in infancy, in childhood,

or laterin life [245—247]. Systematic reviews have now
linked early life exposures to several POPs and pesti-
cides (e.g., OP pesticides) [248] to cognitive deficits,

ADHD, and autism. Ongoing prospective cohort stud-

ies continue to identify new, previously unsuspected

chemical causes of developmental neurotoxicity.

Analysis of NHANES data suggests that PBDE expo-
sure in early life is a major contributor to the burden
of intellectual disability in children, resulting in loss
of 162 million IQ points and more than 738,000 cases
of intellectual disability [249] in the United States
each year.

Prenatal and adult exposures to PCBs are linked to
a series of adverse neurodevelopmental outcomes re-
lated to cognition — IQ loss and deficits in language,
memory and learning — as well as to problems in
attention, behavior, executive function, and social
behavior. Early-life exposures to PCBs have been as-
sociated also with increased risk for attention-deficit
hyperactivity disorder (ADHD) and autism spectrum
disorder (ASD) [215].

The consequences of developmental neurotoxicity
in early life appear to persist across childhood and
adolescence and even into adult life [250]. Thus, the
association between prenatal PBDE exposure and at-
tention problems persists at least to age seven years
[251]. Likewise, early exposures to PCB 153, DDE,
B-HCH, and PFOS are associated with hyperactivity up
to at least age 13 years [241, 252]. Postnatal exposures
may also contribute to these effects and post-natal
exposure to PCBs are linked to deficits in fine motor
function in Inuit children at age 11 years [253].

- Endocrine disruption: An endocrine disruptor is de-

fined as “an exogenous substance that causes adverse

health effects in an intact organism, or its progeny,

secondary to changes in endocrine function” [254]. A

number of manufactured chemicals have been found

capable of damaging human and ecosystem health
through disruption of endocrine function. Chemicals
or chemical mixtures can interfere with natural hor-
mones by blocking, mimicking, or disrupting their ac-
tions in development, in maintenance of homeostasis

and in physiologic function [128].

Many POPs are EDCs. Because they are environ-
mentally persistent, these chemicals can continue
cause damage to living organisms for years or even
decades after their release to the environment [255].
Two examples are DDE, the stable metabolite of DDT
and PCBs. Both DDT and PCBs have been banned for
several decades, but both are still identified in most
human blood, milk, and adipose tissues as well as in
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top predator fish species and marine mammals.

- Immune toxicity: Halogenated aromatic hydrocar-

bons, in particular dioxin and dioxin-like compounds
have long been known to have harmful effects on the
immune system in animals and humans, especially
in the embryonic/developing stages [256—258]. Evi-
dence suggests that these effects may persist into ado-
lescence and adult life [259]. Some of the less highly
persistent PAHs may also have immune effects [260].
Recent evidence indicates that PBDEs and PFAS also
have negative effects on human immune function
[261, 262]. Thus, deficient vaccine antibody responses
at age five years were associated with PFAS exposures
prenatally and during early infancy [242]. Susceptibil-
ity to infectious diseases may also be increased.

- Increased Risks of Metabolic Syndrome and Dia-

betes: Consistent associations have been reported
between several POPs and increased risk for diabetes
and the metabolic disorder [263]. Altered lipid me-
tabolism is another outcome linked to several POPs.
A review of health effects linked to PFAS exposure
identified dyslipidemia as the strongest metabolic
outcome [262]. PCBs have been identified as possibly
diabetogenic in the Nurses’ Health Study II [264]. A
study in young adults examined changes in metabo-
lism over a 23-year follow-up from exposure [265].
The findings suggest that PCBs and OCPs effects on
glucose homeostasis may worsen after decades of ex-
posure to background environmental levels.

- Carcinogenesis: Numerous toxicological and epide-

miological studies have established that many PAHs
are carcinogenic, and these studies have also elucidat-
ed many of the underlying biochemical mechanisms
[266, 267]. PAHs are proven human carcinogens and
are linked to multiple human cancers, including lung
cancer, skin cancer, and bladder cancer [268]. Rodent
bioassays conducted by the US National Toxicology
Program (NTP) have concluded that PCBs and dioxins
are carcinogenic. Occupational and military exposures
to these compounds are linked to increased incidence
rates of lymphatic cancers, especially Non-Hodgkin's
Lymphoma (NHL), and also to diabetes [269]. Meta-
analysis of results from the Yusho and Yu-Cheng co-
horts report elevated lung, liver, and all cancers 30 to
40 years after prenatal poisoning by PCBs, chlorinated
dioxins, and furans [270].

- Mortality: Studies in the PIVUS cohort suggest that

mortality due to CVD is associated with higher body
burdens of POPs [220]. In the US NHANES survey,
some organochlorine pesticides have been found to
be associated with increased all-cause mortality and
others with increased non-cancer, non-cardiovascular
mortality [271]. Higher concentrations of POPs in
plasma are associated with decreased survival of
patients with amyotrophic lateral sclerosis (ALS)
[272]. Kim et al. found that an interaction between
POPs concentrations and total body fat mass affected
risk of mortality from chronic diseases [273]. Massive
exposures in early life to PCBs, dioxins, and furans in
the Yusho and Yu-Cheng episodes in Japan and Tai-
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wan have been linked to increased risk of mortality
from chronic diseases [273] and to elevated all-cause
mortality [234, 270].

Ocean Pollution by Pharmaceuticals and Personal Care
Products (PPCPs)

More than 10,000 chemicals are used in the manufacture
of pharmaceuticals and personal care products (PPCPs).
These products include therapeutic drugs with both med-
ical and veterinary applications, cosmetics, and cleaning
products. They are a subset of the manufactured chemi-
cals discussed in the preceding section. Like pesticides,
pharmaceuticals are specifically designed to have biologi-
cal effects, and thus even low-dose exposures can affect
living organisms, including humans.

With increasing manufacture and use of pharmaceu-
ticals by a growing global population, pharmaceutical
wastes have entered ecosystems in increasing quantities.
Pharmaceutical and cosmetic manufacturing plants, hos-
pitals, nursing homes, confined animal feeding opera-
tions (CAFOs), and aquaculture can all release PPCPs into
wastewater systems, rivers, and eventually the oceans.
Environmentally persistent pharmaceutical pollutants
(EPPPs) have been recognized as a “new and emerging
issue” under the United Nations’ Strategic Approach to
the International Management of Chemicals (SAICM)
since 2015.

Therapeutic drugs commonly found in measurable
quantities in urban wastewater and coastal waters include
ibuprofen and other painkillers, anti-depressants, ster-
oids, caffeine, estrogens and other hormone-containing
products, anti-epileptics, cancer drugs, antimicrobials
such as triclosan, and antibiotics [274-277]. Many phar-
maceutical and cosmetic products in current use contain
manufactured plastic nanoparticles [278].

Some PPCPs have potential to accumulate in fish and
shellfish species consumed by humans and thus have
potential to affect human health [279]. Concern is grow-
ing that pharmaceutical chemicals and their metabolites
can damage marine species through a range of toxico-
logical mechanisms, including endocrine disruption and
neurotoxicity. A recent case study suggests that the widely
used sunscreen chemical, oxybenzone (benzophenone-3)
may have toxic effects on the larval forms of several coral
species [280]. The study reports that these effects include
transformation of coral larvae from a motile state to a
deformed, sessile condition; increased coral bleaching;
leading to deformed skeleton formation; and DNA lesions.

Hazards of Combined Exposures to Multiple Chemical
Pollutants

Manufactured chemicals are rarely present in the envi-
ronment in isolation, but instead are found in complex
mixtures. This complicates assessment of health impacts,
because toxicological tests most often are conducted on
one chemical at a time, thus potentially missing additive,
antagonistic, or synergistic actions that could result from
simultaneous exposures to mixtures of POPs and other
manufactured chemicals that occur together in the oceans
as “chemical cocktails” [281, 282]. Future public health
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studies should pay additional attention to complex mix-
tures and cumulative risk assessment. The possibility of
interaction among multiple POPs raises the question as to
whether any one chemical that shows an association with
disease is really acting a “proxy” for the combined effect of
all the chemicals [283, 284].

Consideration of the susceptibility of exposed popu-
lations is also important. The safe limit for exposure at
sensitive life stages of development, in utero or in nurs-
ing infants, will be lower than for adults. And in the adult
population, underlying disease may modify risk. Finally,
“safe” levels for one pollutant may not pertain to the com-
bined risk from simultaneous exposure to the many pol-
lutants to which a person may be exposed.

Balancing Risks and Benefits of Exposure to Chemical
Pollutants in the Oceans

Because of widespread pollution of the oceans by toxic
metals and POPs and contamination by HAB toxins (dis-
cussed in the next section of this report), it is necessary
to balance the risks of chemical pollutants in seafood
against the benefits derived from nutrients unique to fish
and shellfish. Thus, the benefits of essential fatty acids
(EPA and DHA) in farmed and wild fish must be balanced
against the risks for adverse health outcomes from chemi-
cal contaminants in those same fish [285, 286].

To assess whether the beneficial effects of omega-3 fatty
acids in seafood may mitigate the adverse effects of meth-
ylmercury on brain development, IQ was measured in 282
school-age Inuit children in Arctic Québec whose umbili-
cal cord blood samples had been analysed for mercury and
DHA [287, 288]. The investigators found that prenatal mer-
cury exposure was associated with lower 1Q after adjust-
ment for potential confounding variables. Incorporation
of DHA into the model significantly strengthened the
association with mercury, supporting the hypothesis that
the beneficial effects of DHA intake can at least partially
offset the harmful effects of mercury [65].

Similarly, some studies have noted that the beneficial
effect of fish consumption on the cardiovascular system
appears to be reduced by co-exposure to PCBs [289]. The
risk differential between wild and farmed salmon is a
prime example of these concerns. While the abundance of
omega-3 as well as omega-6 fatty acids differ between wild
and farmed fish, both contain high levels of these benefi-
cial compounds. However, farmed fish tend to have higher
levels of PCBs and other contaminants than wild fish, and
contaminant burdens differ between fish farmed in dif-
ferent parts of world. Determining risk of those contami-
nants depends in part on which outcome is considered,
and whether the risk is from one or many chemicals.

Studies comparing relative risk of cancer and other
health outcomes associated with dioxin-like compounds
in salmon concluded that consumption of farmed salmon
would need to be limited to many fewer meals per month
than for wild salmon, to reduce cancer risk to a level near
the WHO “tolerable daily intake” for dioxin-like com-
pounds [290, 291].

A review examining the health risks and benefits of sea-
food consumption and the impact of fish consumption
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on sustainability of fish stocks concluded that “few, if
any, fish consumption patterns optimize all domains’,
but called for development of “‘comprehensive advice ..
to describe the multiple impacts of fish consumption”
[292]. Several groups have disseminated such guidance
[293-295].

Chemical Pollutants in the Oceans and the Global
Burden of Disease

Despite extensive knowledge of the toxicology of many
ocean pollutants, the contribution of chemical pollutants
in the marine environment to the global burden of dis-
ease (GBD) is, with the exception of mercury [296, 297],
largely unknown. A major impediment to developing
these estimates is that detailed, population-level studies
of human exposures to ocean pollutants have not been
conducted, although it is unarguable that fish and other
seafood are a major source of human exposure. Moreover,
POPs and other toxic chemicals that are found in ter-
restrial meat sources can in fact originate in the oceans,
because fish meal, containing POPs, is often used in ani-
mal feeds [298].

Oil Spills
Crude oil and petroleum products are complex mixtures
of light and heavy hydrocarbons, toxic metals, and other
chemicals. Polycyclic aromatic hydrocarbons (PAHs) are
a particularly hazardous component. When oil spills
and leaks release these toxic chemicals into the marine
environment, they can bioaccumulate in the food web;
kill fish, birds and marine mammals; destroy commer-
cial fisheries, aquaculture operations, and shellfish beds;
release toxic volatile toxic chemicals such as benzene to
the atmosphere; and foul shorelines.

Oil spills range in magnitude and visibility from massive
releases such as the Deepwater Horizon disaster in the

Table 1: Major Oil Spills [299].
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Gulf of Mexico or the Amoco Cadiz Oil Spill off the coast
of France down to chronic, slow leaks from pipelines and
aging tankers. Petroleum in the marine environment can
be either fresh or highly weathered, meaning that it has
undergone a variety of chemical and photochemical pro-
cesses that change its composition and toxicity.

Oil spills have occurred with increasing frequency in
recent years as the result of growing global demand for
petroleum. These spills have resulted in direct release of
millions of tons of crude oil and other petroleum products
into the oceans (Table 1, Figure 8).

Ecosystem effects of oil spills include disruption of food
sources, destruction of fragile habitats such as estuaries
and coral reefs, and fouling of beaches [300]. Marine and
coastal wildlife, including birds and mammals, can be
exposed to petroleum-based pollutants through inges-
tion, absorption, and inhalation. Ingestion of these mate-
rials can lead to digestive problems, ulcers, and bleeding;
kidney and liver damage; reproductive failure; and ane-
mia. Inhalation can lead to lung problems [301] that
appear to persist long after initial exposures [302]. Effects
on immune systems of fish predispose them to infec-
tions [303]. PAHs contained in oil spills have been shown
to cause DNA damage in marine species and have been
associated with hepatic, pulmonary and cardiac lesions in
Arctic seals [304-307].

Human health and well-being also can be seriously
affected by oil spills. Heaviest exposures and the most
severe health consequences occur among occupation-
ally exposed populations such as oil industry workers
and workers involved in cleanup efforts. Cohort stud-
ies suggest that respiratory effects may persist for 2+
years post spill in some responders [308]. DNA damage
has been documented in cleanup workers [309, 310].
Community residents can be exposed through con-
sumption of contaminated seafood and inhalation of

Spill Year  Description

VLCC Metula Oil Spill, Chile 1974 A very large crude carrier hit a shoal in the Straits of Magellan and
released nearly 200,000 tons of light Arabian crude oil.

Amoco Cadiz Oil Spill, France 1978 A very large crude carrier clipped shallow rocks off the coast of Brittany.
The resulting oil slick polluted 200 miles of the French coast and signifi-
cantly harmed wildlife (mollusks, crustaceans, birds).

Atlantic Empress Oil Spill, Trinidad 1979 Occurred 10 miles off the coast of Trinidad and Tobago. An estimated 90
million gallons of oil were released into the Atlantic Ocean.

Ixtoc Oil Spill, Mexico 1979 Spill occurred as a result of an explosion. 140 million gallons of oil were
released into the Gulf of Mexico.

Exxon Valdez Oil Spill, Alaska, USA 1989 Released 37,000 metric tons of crude oil into Prince William Sound,
Alaska, USA. Considered the worst oil spill worldwide in terms of environ-
mental damage.

Persian Gulf War Oil Spill 1991 Between 252 and 336 million gallons of oil were released into the Persian
Gulf during the Gulf War.

Deepwater Horizon Oil Spill, Texas, USA 2010 134 million gallons of crude oil were released into the Gulf of Mexico fol-
lowing an explosion and fire on a drilling platform.

Guarello Island, Patagonia, Chile 2019 40,000 liters of diesel fuel released into the Straits of Magellan from a

mining operation.
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Figure 8: Major Oil Spills, 1967-2010. From: World Ocean Review 3, maribus gGmbH, Hamburg 2015.

Source: Biicker et al. 2014 [314]. See also ITOPF 2019 [315].

volatile petrochemicals. Some studies have suggested
little long-term health risk for consumption of fish or
shellfish after the Deep Water Horizon spill. However,
assessments of the possible health hazards of abundant
alkylated PAHs have not been included in such studies
[311].

In addition to their effects on physical health, major
oil spills, like other disasters, can have serious impacts on
mental health. Populations in areas with lower income
are often at heightened vulnerability to such effects [312].
There is need for cohort studies on resilience to disasters
as well as on chemical stressors [312, 313].

Biological Contamination of the Oceans

Many toxin-producing algae, pathogenic bacteria, viruses,
fungi, and protozoa are native to marine and estuarine
environments. Other species can be introduced to the
oceans as the result of human activity.

Marine Algae and Harmful Algal Blooms (HABs)
Algae, microscopic and macroscopic, are the foundation
of the aquatic food web. They are the invaluable primary
producers of fixed carbon, a vital nutrient that supports
aquatic ecosystems, and of oxygen. Free-living planktonic
algal species dominate the world’'s oceans, and a small
number of species account for the great majority of the
global algal biomass. In coastal and estuarine systems,
cyanobacteria, as well as dinoflagellates, diatoms, and
cryptophytes emerge seasonally and are vital components
of these ecosystems. Floating tropical beds of brown mac-
roalgae (e.g., Sargassum) serve as habitats and nurseries
for many marine species. They also sequester CO, and thus
mitigate global warming and ocean acidification [316,
317).

Marine microalgae are of great importance to human
health and well-being not only because they support the
marine food web upon which all commercial fisheries
depend, but also because they provide food for aquacul-
ture, produce a range of pharmaceutical compounds [14],
and are potentially a source of renewable biofuels [318].

On the negative side, some algal species are noxious
[319] and produce powerful toxins have potential to cause
great harm [320]. When high densities of these species
accumulate in an area of the ocean, they can form harm-
ful algal blooms (HABs) — described as “red tides", “green
tides”, or “brown tides”. In these blooms, the great masses
of algae that have accumulated in an area of the sea
exhaust inorganic nutrients in the water column allowing
bacteria move in and decompose the senescing organic
material. The consequences are reduced dissolved oxygen
in the ocean, dead zones, fish kills, and a broad range of
adverse ecological impacts [321-323] (Figure 9).

HABs directly harm human health by producing toxins,
potent natural compounds that can cause disease and
death, most commonly through consumption of contami-
nated seafood [32, 323-326)].

Causes and Drivers of HAB Events

HABs are not a new phenomenon and some occur nat-
urally. However, the frequency and magnitude of HAB
events appears to be increasing [328]. These increases
have been linked to three factors:

(1) Increasing pollution of the oceans, and especially of
coastal waters by nitrogen and phosphorus which
leads to eutrophication. Sources of nitrogen include
agricultural runoff, septic tank leachate and effluent
from municipal deep injection wells [329-331];

(2) Sea surface warming; and

(3) Ocean acidification.

Increases in frequency and severity of HAB events have
been linked to increasing coastal pollution in the Seto
Inland Sea of Japan in the mid-1970s [332] and in the
northwestern Black Sea in the 1970s and 1980s [333].
Both of these situations have subsequently been remedi-
ated, and case studies describing these and other success-
ful remediation efforts are presented in the section of this
report on Successes in Prevention and Control of Ocean
Pollution [334].
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Figure 9: Frequency of Bottom-Water Hypoxia (‘Dead Zones'), Gulf of Mexico, 1985-2014.

Source: Rabalais et al., 2019, CC BY 4.0 [327].
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Figure 10: Geographical Distribution of Paralytic Shellfish Poisoning (PSP) Events, 1970 and 2017.

Source: US National Office for HABs, Woods Hole, MA.

A current example of the effect of increasing coastal
pollution on HAB frequency is seen at the mouth of the
Changjiang River in China, where nitrate concentrations
have increased four-fold in the past 40 years and phos-
phate concentrations have increased by 30%. The main
drivers are increases in population size and agricultural
production. Significant increases in algal biomass and a
change in the composition of the phytoplankton com-
munity have resulted. The frequency of local HABs has
increased dramatically [335].

Climate Change and HABs

Increases in the frequency and severity of HABs have been
linked to changing weather patterns such as major warm-
ing events, increased runoff, and changes in ocean cur-
rents (Figure 10). Examples include recent Alexandrium
blooms in the northeastern United States [336] and mas-
sive blooms of Pseudonitzschia on the US west coast asso-
ciated with a mesoscale warm-water anomaly termed “the
blob” [337]. These events presage projected future climate
scenarios [54, 338, 339].
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Sea surface warming leads to range extensions of HAB
species and to the appearance of algal toxins in previously
unaffected areas [53, 55, 340-342]. An example is seen
in the recent, first ever detection of HAB toxins in Arctic
waters [343]. The movement of harmful algae into the
Arctic coupled with northern indigenous peoples’ lack
of experience with HAB toxins put these populations at
high risk of exposure and disease. This risk is compounded
by lack of knowledge about uptake of HAB toxins by spe-
cies such as whales, walruses, seals, and seabirds used by
northern indigenous people as food sources.

Another example of climate-driven change in HAB
range that has already occurred is poleward extension
in the geographic ranges of the benthic dinoflagellates
responsible for ciguatera poisoning into warm-temperate
habitats, for example from the Caribbean Sea northward
into the Gulf of Mexico [55, 342, 344]. This range exten-
sion appears to be associated with warming sea surface
temperatures and higher storm frequencies, and destruc-
tion of coral reefs [345-349]. It is reflected in increased
numbers of calls about ciguatera poisoning to poison con-
trol centers in the United States.

An impact on HAB biology that appears to reflect syn-
ergy between global climate change and ocean acidifica-
tion is the observation that HAB toxins can become more
potent at higher temperatures or under more acidic con-
ditions [350, 351]. This change may reflect temperature-
induced shifts in the relative abundance of dinoflagellate
species [340, 352, 353].

Pathways of Human Exposure to HAB Toxins

Consumption of fish and shellfish that have ingested toxic
algae is a major route of human exposure to HAB toxins.
Filter-feeding shellfish such as oysters and mussels pose
an especially high risk because these species ingest toxic
algae and then accumulate algal toxins to high concentra-
tions that can cause acute disease and sudden death in
shellfish eaters. The poisoning syndromes caused by HABs
in shellfish include paralytic, neurotoxic, amnesic, diar-
rhetic, and other gastrointestinal poisoning [354, 355].
Consumption of finfish and shellfish containing ciguatera
toxin may also result in ciguatera poisoning.

Human exposure to HAB toxins can also occur through
skin or respiratory contact via swimming or visiting
beaches during algal blooms. People have reported skin
rashes, respiratory irritation such as sneezing, and a burn-
ing or itching in the nose or throat while swimming, vis-
iting, or working at the beach during Karenia brevis red
tide events [356, 357]. People with asthma appear to be at
particular risk [358]. Karenia brevis blooms are associated
additionally with increases in emergency room admis-
sions for respiratory, gastrointestinal, and neurologic
illnesses [359-361]. There is evidence that people experi-
ence adverse effects also during Sargassum blooms [362]
and from exposures to algal-derived palytoxins [363].

Macroalgal blooms, can harm human health by caus-
ing massive accumulations of algae in bays and on
beaches. When these piles of algae decompose, they
can release foul-smelling and hazardous gases, includ-
ing hydrogen sulfide, methyl mercaptans, and dimethyl
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sulfide [364]. Coastal populations exposed to decompos-
ing algal mats have reported eye and respiratory tract
irritation.

Syndromes Associated with HAB Toxins

HABs cause a variety of human diseases, some of them
extremely serious (Text Box 3). HAB-related illnesses are
for the most part acute, and acute reference doses (ARfD)
have been derived to protect the public against these
acute exposure events (See Appendix Table 2 in the Sup-
plementary Appendix). Little research has been done to
evaluate chronic illness after either acute or chronic expo-
sures to HAB toxins, and information on long-term health
effects is still insufficient to allow determination of tolera-
ble long-term daily intakes (EFSA opinions or FAO/WHO/
10C ad hoc expert consultation).

Children may be more likely than adults to be affected
by HAB toxins due to a combination of greater exposure,
riskier behaviors, and sensitive developmental stage.
Children also consume more food per unit body weight
than do adults and thus may receive higher relative
doses [365].

TEXT BOX 3: A Primer on Poisonings by HAB Tox-
ins. Consumption of contaminated seafood is the major
route of human exposure to HAB toxins. Many thou-
sands of poisoning episodes occur worldwide each year.

Paralytic Shellfish Poisoning (PSP) is caused by saxi-
toxins (STX), potent neurotoxins that act on voltage-
gated sodium channels as well on other nervous system
receptors [366, 367]. PSP typically begins with tingling
sensations or numbness of face, neck, fingers, and toes.
These symptoms progress within 30 minutes to weak-
ness, limb incoordination, and respiratory difficulty. In
severe cases, respiratory paralysis, cardiovascular shock,
and death may ensue. There is no antidote to PSP, and
the only available treatment consists of artificial res-
piration by ventilator [368, 369] and removal of non-
absorbed toxins from the gut with activated charcoal.
STX is listed as a Schedule 1 chemical intoxicant by the
Organization for the Prohibition of Chemical Weapons
(OPCW) [370]. The lethal oral dose is 1-4 mg [371].

Amnesic shellfish poisoning (ASP) is caused by domoic
acid (DA), a potent toxin produced by planktonic dia-
toms that targets glutamate receptors in the central
nervous system [372, 373]. After initial gastrointestinal
symptoms, affected persons develop confusion, leth-
argy, disorientation, and short-term memory loss. Severe
cases evolve to coma. Deaths have occurred [368, 369].
A persistent toxicity syndrome has been defined consist-
ing of episodic seizures and permanent loss of spatial
memory [374].

Diarrhetic shellfish poisoning (DSP) is associated
with exposures to okadaic acid and dinophysis toxins.
The syndrome presents with diarrhea, nausea, vomiting
and abdominal pain. Symptoms may be confused with
infectious intestinal diseases. No lethal cases have been
reported [368, 369].
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The azaspiracid group of HAB toxins also results in
diarrhetic symptoms. Its mechanism of action is not yet
known, but recent evidence suggests that mitochon-
drial dehydrogenase may be a major target of this toxin
group [375].

The yessotoxins are a group of lipophilic HAB toxins.
Although never associated with human illness, they are
controlled in seafood based on an acute reference dose
established through oral administration of yessotxins in
toxicological studies in experimental animals.

Neurotoxic shellfish poisoning (NSP) is caused by bre-
vetoxins (BTX), neurotoxins that target voltage-gated
sodium channels and cause depolarization of neuronal,
muscular and cardiac cells [376]. NSP produces a mix-
ture of gastrointestinal and neurologic symptoms —
nausea, vomiting, diarrhea, and abdominal cramps as
well as paresthesia, paralysis, convulsions, and coma
[377]. Symptoms begin within 30 minutes to three
hours following consumption of contaminated sea-
food.

Ciguatera Fish Poisoning (CFP) is caused by consump-
tion of fish and shellfish that have accumulated cigua-
toxins (CTX) in their tissues [378—380]. CTXs are neuro-
toxins that target voltage-gated sodium channels. They
are produced by benthic dinoflagellate plankton of the
genera Gambierdiscus and Fukuyoa that live on coral
surfaces and also by bottom-dwelling algae.

CFP is associated with higher sea surface temperatures
and the El Nino Southern Oscillation. In the United
States, the number of CFP-related calls to poison con-
trol centers appears to correlate with warmer sea sur-
face temperatures and higher storm frequencies.

CFP is estimated to affect 50,000 to 200,000 people per
year. It is the most commonly reported of the HAB-asso-
ciated illnesses globally. It an important health problem
in the Caribbean and Pacific regions and more recently
has been reported in the Mediterranean.

Symptoms of CFP include gastrointestinal distress that
may occur before or simultaneously with peripheral
neurological symptoms, neuropsychiatric, and cardio-
vascular symptoms [381]. Symptoms generally appear
within 12 hours after eating contaminated seafood
[382, 383]. Although rarely fatal, CFP symptoms have
been reported to persist in about 20% of cases, lasting
days, months or even years, with worsening symptoms
of anxiety or depression [381, 384].

Clupeotoxism is a form of HAB-related human poison-
ing caused by consumption of contaminated fish and
crustaceans contaminated by palytoxin (PTX) [385].
Exposure can also occur through handling zoanthid
corals in either private homes or aquarium shops [386].
Symptoms include gastrointestinal, neurological, and
cardiovascular symptoms, as well as weakness, cough,
and muscle pain.
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Prevention of HABs

The frequency and severity of some HAB events can be
controlled by reducing releases of nitrogen, phosphorus,
animal wastes, and human sewage into coastal waters.
(See Text Boxes 9—13). Additional actions that can be
taken to mitigate HABs are the following:

- Increase freshwater flows and tidal exchanges in
coastal waters to increase flushing, prevent stagna-
tion, and enhance the composition of coastal phyto-
plankton communities. In some instances, this will re-
quire modifying built structures such as breakwaters,
jetties, and dams that impede flow of fresh and salt
water [387] (See Text Box 4).

- Restrict activities that might result in the accidental
transfer of harmful algal species into environments
where they do not naturally occur (e.g., ballast water
discharge) [388, 389].

TEXT BOX 4: Reduced Water Flow and Increased
Frequency of HABs.

An example of an area where changes in freshwater
flow may be affecting HAB incidence is in the Bohai
Sea of China. The Bohai is one of several regions in
China where the number of HABs has increased in
recent years. Due to droughts and water diversions
for drinking water and agriculture, several of the riv-
ers that used to flow freely into the Bohai are now dry
for many days every year. This reduces the dilution of
pollution loads in nearshore waters and also reduces
stratification.

Dams are another factor that can increase frequency
of HABs by altering fresh water flow into the ocean.
Dams decrease turbidity and the availability of silicate
to downstream waters due to sediment trapping within
impounded waters. A decrease in the amount of silicate
reaching coastal waters, concurrent with increases in
water transparency can lead to shifts in the nutrient
ratios that regulate phytoplankton community com-
position [390]. An increase in HAB frequency has been
observed downstream of the massive Three Gorges Dam
in China, and this increase is linked to a decrease in sedi-
mentation and turbidity [391].

Prevention of HAB Poisoning

Routine monitoring for HAB toxins in shellfish is key to
the prevention of human illness caused by these toxins.
Monitoring programs are typically embedded within
comprehensive shellfish safety programs. Details are pre-
sented in the Monitoring of Ocean Pollution section of
this report.

Another strategy for mitigating the impact of HAB tox-
ins on human health is to process harvested shellfish in
such a way as to reduce toxicity to an acceptable level. An
example is the removal of scallop viscera and marketing of
only the adductor muscle, which generally contains little
or no HAB toxins [389].
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Economic and Social Consequences of HAB Poisoning

HABs have multiple negative economic and social effects.
In the US, it is conservatively estimated that the average
annual cost of marine HABs is USD $95million [392].
Health impacts are responsible for the largest component
of these economic loses [331]. Economic losses attribut-
able to HABs are estimated to $850 million (USD) annu-
ally in Europe and over $1 billion (USD) in Asia [392].
The costs of individual catastrophic HAB events can be
overwhelming. Mexico, for example, spent $17 million in
2018 to remove 500,000 tons of Sargassum from its Carib-
bean beaches and declared a state of emergency. Another
large HAB resulted in the largest fish farm mortality ever
recorded and a loss of USD $800 million [339]. Increased
frequency of respiratory ailments, aerosolized toxins, nox-
ious gas, dead fish, proliferation of biting sand fleas from
decaying piles of macroalgae, and discolored waters drive
tourists away from beaches, change recreational habits,
and thus reduce income from tourism in coastal commu-
nities [393-396].

Ocean Bacteria, Viruses, and Protozoa

Bacteria are abundant in the oceans. Every cubic centime-
ter of seawater contains, on average, one million microbial
cells and the global ocean harbor an estimated 4—6 x 10%
microbial cells [397]. Although the majority of bacteria
in the oceans are harmless to humans, some are patho-
genic. Naturally occurring marine pathogens of great sig-
nificance for human health include Vibrio cholerae, Vibrio
vulnificus, Vibrio parahaemolyticus, and Mycobacterium
marinum.

With climate change, sea surface warming, and worsen-
ing marine pollution, the geographic ranges of naturally
occurring marine pathogens as well as of microorganisms
introduced to the oceans from land-based sources are
expanding. Harmful bacteria are moving into estuaries,
bays, and regions of the oceans they did not previously
inhabit and moving poleward into cold, previously uncon-
taminated waters [22].

Microbial infections are contributing to degradation
of fragile marine environments such as coral reefs [398,
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399]. They contribute to shellfish mortality in both wild
and farmed areas, thereby affecting economies [400, 401].
Widening geographic ranges of human diseases caused by
marine microorganisms and the appearance of disease in
previously unaffected populations are additional conse-
quences [402].

Marine Vibrio Species and Human Disease

Marine bacteria of the genus Vibrio are particularly impor-
tant causes of disease and death [403]. Vibrio cholerae, the
causative agent of cholera, is the species of greatest con-
cern. Vibrio species exhibit strong seasonality, and warmer
water temperatures result in increased concentrations in
estuarine and coastal waters [50, 51, 404-408]. Further
warming of coastal waters caused by climate change is
likely to further increase abundance of Vibrio bacteria and
expand their geographic range [409]. These changes will
likely result in increased frequency of Vibrio infections
in coming decades and possibly to appearance of Vibrio
infections in previously unaffected areas [52]. There is
some indication that after extreme weather events such
as hurricanes, droughts, and tropical storms shifts occur
in the composition of Vibrio species and that these shifts
are driven by discharges of sewage and inorganic nutri-
ents into coastal waters [410].

Vibrio parahaemolyticus and Vibrio vulnificus are two
additional Vibrio species that pose grave risks to human
health [412, 413]. These organisms are now appearing
for the first time in previously cold waters at northern
latitudes with major peaks occurring during warm sum-
mers (Figure 11) [411]. This trend is particularly well
documented for the Baltic Sea, where the annual inci-
dence of Vibrio infections is reported to almost double
for every one-degree increase in sea surface temperature
(Figure 12) [402, 414]. Similar trends have been reported
in the United States where incidence of infections by
Vibrio species has increased by 115% in the past decade,
especially along the Gulf, Northeast, and Pacific Northwest
coasts [50, 414, 415].

Vibrio vulnificus can enter the human body either
through ingestion of contaminated seafood or through
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Figure 11: Trends in conditions favorable to Vibrio outbreaks in selected world regions [411].
Source: Reprinted from Watts et al. The 2018 report of the Lancet Countdown on health and climate change: shaping
the health of nations for centuries to come. Lancet 392: 2479-2514, 2018, with permission from Elsevier.
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Figure 12: Sea surface temperature and relative risk of clinically notified cases of Vibrio infection, Sweden, 2006-2014

[416].

Source: Semenza et al. (2017), https://doi.org/10.1289/EHP2198.

open wounds [417]. When V. vulnificus, known colloquially
as ‘flesh-eating bacteria’, enters an open wound it can cause
severe infections such as necrotizing fasciitis (Text Box 5).

Ingestion of shellfish contaminated by V. vulnificus,
especially oysters, causes more than 90% of cases of V. vul-
nificus gastroenteritis [418, 419]. This reflects the fact that
filter-feeding shellfish such as oysters, clams, and mussels
can concentrate Vibrio by several orders of magnitude
over concentrations in seawater [412, 418].

Vibrio vulnificus gastroenteritis can progress very rap-
idly to septicemia — sometimes within 24 hours after
ingestion of contaminated seafood [418, 420]. Even with
aggressive medical treatment, the case-fatality ratio for
Vibrio vulnificus septicemia is greater than 50%. Vibrio
vulnificus thus has the unlovely distinction of having the
highest case-fatality ratio of any foodborne pathogen
[418, 420]. It is the cause of 95% of seafood-borne deaths
in the USA [420].

Recent data suggest that rising sea surface temperature
may expand not only the temporal and spatial distribu-
tion of Vibrio species, but also increase the virulence and
antimicrobial resistance of some Vibrio strains [421-423].

TEXT BOX 5: Case Studies of Vibrio Wound Infection.

Vibrio wound infections are generally rare, even though
the bacteria are quite common in brackish, mesohaline
estuarine systems [424]. Unfortunately, these infections
can be very severe resulting in some cases in amputa-
tion of infected limbs and loss of life. The great majority
occur in males, especially in men over 40 years of age,
presumably reflecting occupational and recreational
activities [425, 426].

Case study. In 2011, a report was presented of three
elderly men in New Caledonia who developed severe
gastrointestinal illness after consumption of raw oys-

ters during a period of particularly heavy rainfall, and
regional flooding. V. vulnificus was confirmed as the
causative agent through PCR amplification of the
hemolysin gene.

Case study. In 2005, 18 cases of confirmed wound
infections with V. vulnificus and V. parahaemolyticus
were observed following Hurricane Katrina. Five of the
patients died [427].

Case study. Next-generation sequencing (NGS) was used
to diagnose V. vulnificus infection in a 55-year old man
who was admitted to a hospital in Wenzhou, China hos-
pital with severe wound infection. The man had been
selecting fish at the market at 6:00 AM and developed
a skin infection on his hand. The infection progressed
rapidly, and the patient was admitted to hospital 11
hours later. Even though blister fluids, and wound and
blood samples returned negative results by bacterial
culture, tissue analyses using NGS were able to confirm
Vibrio infection and guide treatment. After two weeks
of hospitalization, the man was released.

These cases and other published literature on the emer-
gence of pathogenic forms of Vibrio following flood-
ing and tropical events indicate the need for improved
warning systems in anticipation of the increased fre-
quency of extreme weather events that is expected to
accompany climate change [428-430].

Salinity is another factor that affects the abundance of
Vibrio species in marine environments. Typically, V. vulnifi-
cus and V. parahaemolyticus are not prevalent in waters
where salinity exceeds 25 parts per thousand. Recent
anecdotal reports from the UK, EU, and Brazil indicate,
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however, that shifts in the composition of Vibrio commu-
nities in estuarine systems and increases in Vibrio infec-
tions are now being recorded in waters where salinity is
greater than 30 parts per thousand [431], possibly reflect-
ing an interaction between salinity and sea surface warm-
ing. A decade-long study of Vibrio conducted in the Neuse
River Estuary in North Carolina, USA, has shown the tem-
perature is not increasing in that system, and that tem-
perature increase cannot therefore explain the significant
increase observed in Vibrio concentrations (Figure 13)
[424].

In some major river basins (i.e., the Amazon, the Ganges,
the Brahmaputra, and the Congo), increased incidence of
Vibrio infection is reported to coincide with high sea sur-
face temperatures and high discharge events, events that
typically are associated with abnormal phytoplankton
growth [432]. In other marine coastal areas, the global
abundance of Vibrio has been shown to correlate with
chlorophyll, acidity, maximum sea surface temperature,
and salinity [50].

Allochthonous Bacterial Pathogens in Marine Environments
Allochthonous bacteria are microorganisms not native
to marine environments that are introduced into coastal
waters from land-based sources. Allochthonous patho-
gens of greatest concern include virulent Enterococcus
species, Escherichia coli serotypes (e.g., 0157:H7), Campy-
lobacter species, Clostridium species, Shigella species, and
Salmonella species [433].

Pathogenic bacteria can enter coastal waters through
sewage effluent, agriculture and storm water runoff and
wastewater discharges from ships [434]. Rivers, especially
those near major population centers, are an important
source [434]. Through horizontal gene transfer, allochtho-
nous bacteria can introduce harmful new genetic traits
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into indigenous marine microorganisms thus increasing
their virulence and their capacity for anti-microbial resist-
ance [435].

Climate change is accelerating the introduction, dis-
persion, and growth of allochthonous bacteria in coastal
waters. For example, rising sea surface temperatures have
been shown to increase the abundance of Salmonella spe-
cies in Hawaiian coastal streams [436]. Warming may also
increase the variability of salinity gradients along coast-
lines [437] thus affecting the growth and persistence of
fecal-oral pathogens and increasing risk for major out-
breaks of diarrheal disease [438].

Fecal-derived bacteria in marine environments tend to
bind to particle surfaces (sediment, sand, plastics) where
they form biofilms that enhance their survival. In estua-
rine environments, for example, the concentration of
fecal bacteria is generally one or more orders of magni-
tude higher in surface sediments (per 100 g dry weight)
than in the water column (100 ml). The survival of fecal
bacteria in the oceans is thus positively linked to concen-
trations of pollutants and other suspended matter in the
water column [439-441].

Human Diseases Caused by Allochthonous Bacterial
Pathogens
Bacterial pathogens in the marine environment are
responsible for a wide range of acute and chronic dis-
eases. These include diarrhea and gastroenteritis, ocular
and respiratory infections, hepatitis, and wound infection.
Transmission of disease occurs mainly through ingestion
of contaminated water and consumption of contaminated
seafood [433].

From 1973 to 2006, 188 outbreaks of seafood-associ-
ated infections causing 4,020 illnesses were reported to
the Foodborne Disease Outbreak Surveillance System in
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Figure 13: Seasonal abundance of Vibrio species, Neuse River Estuary, NC, USA, 2003—-2017. (Autoregressive integrated
moving average of mean monthly abundance at a mid-water station). Dots are actual measurements. Red line repre-
sents model abundance. Blue lines are 95% confidence intervals.

Source: Froelich et al. (2019), https://doi.org/10.1371/journal.pone.0215254, Creative Commons, license CC BY 4.0.
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the United States [442]. Most of these outbreaks were due
to bacterial agents (76.1%), a significant proportion of
them linked to pathogens with a human reservoir such as
Salmonella and Shigella [443, 444] (Table 2).

Antimicrobial Resistance in Coastal and Ocean Environments
Antimicrobial resistance (AMR) is likely to have been pre-
sent for millions or billions of years in marine microbial
communities as the result of resistance mechanisms that
bacteria have evolved in response to naturally occurring
threats [446].

More recently, however, the prevalence of AMR has
been increasing in marine environments, especially in
coastal waters. These increases appear to reflect increasing
introductions from land-based sources of allochthonous
bacteria that carry resistance genes that can be passed
to marine bacteria through horizontal gene transfer [16,
447]. Such exchanges may account for the acquisition of
AMR by indigenous pathogens such as Vibrio.

The development of confined animal feeding operations
(CAFOs) to enhance livestock production and increase the
profits in the poultry, beef, and swine industries have fur-
ther promoted the development of AMR bacteria. These
facilities are associated with poor waste treatment prac-
tices, and the vast quantities of effluent they release into
waterways and directly into the ocean are associated with
increased genetic encounters across “promiscuous” bacte-
rial species able to transfer resistance genes horizontally.

An increasing body of evidence documents that signifi-
cant human exposure to AMR bacteria can occur in coastal
environments. A study in the UK reports that an estimated
6 million exposures occur per year to cefotaxime-resistant
E. coli [448]. Another study found an increased probabil-
ity of gut colonization by cefotaxime-resistant E. coli, a
known risk factor for infection, in persons such as swim-
mers and surfers heavily exposed to contaminated recrea-
tional waters [449]. Recent studies of near-bottom waters
from the Polish coastal zone reported multiple antibiot-
ics at ng/L concentrations, with enrofloxacin reported at
>200 ng/L [450, 451].

Marine Viral Pathogens and Human Health.

Viruses in coastal and estuarine systems that pose serious
threats to human health include the Picornaviridae (entero-
viruses, e.g., poliovirus, coxsackievirus, and echovirus), Ade-
noviridae (adenovirus), Astroviridae (astrovirus), Reoviridae
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(reovirus, rotavirus) and most significantly the Caliciviridae,
a genus that includes norovirus and calicivirus [452]. Noro-
virus infections represented 21% of enteric virus infections
reported from recreational water exposures across the USA
from 2000-2014 [453]. Noroviruses enter coastal waters
through stormwater, flooding, illicit boat discharges, and
sewage system leaks and spills (E.g., Text Box 6).

Dramatic improvements have been made in the past
decade in diagnostic technologies for direct quantifica-
tion of viral pathogens in marine environmental samples.
These include new molecular approaches such as digital
droplet PCR [454].

TEXT BOX 6: Case Studies of Gastrointestinal Illness
among Swimmers and Surfers Caused by Viruses
in Polluted Marine Environments.

A recent study of gastrointestinal infections among
surfers on the beaches near San Diego, California, USA,
found that during rainy weather there was increased
abundance of norovirus contamination in storm water
runoff along the beaches [454]. Rates of gastrointesti-
nal illness were increased among surfers during these
periods of high contamination [455].

Other studies of gastrointestinal illness among swim-
mers during periods of heavy storm water discharge to
coastal environments have found strong relationships
between disease incidence and proximity to storm
water pipes [36, 37].

Marine Parasites and Human Health

Parasitic infections associated of marine origin are increas-
ing in number and geographic range in response to cli-
mate change [456]. Cryptosporidiosis, giardiasis, and salt
water schistosomiasis are the most common of these
infections [453, 457—-459].

Two emerging human parasitic diseases of particu-
lar concern in the ocean environment are Anisakiasis (a
zoonosis caused by the fish parasitic nematode, Anisakis)
and Diphyllobothriasis (caused by the adult tapeworm,
Diphyllobothrium nihonkaiense) [460]:

- Thousands of cases of anisakiasis have been reported,
primarily from Japan but also from Europe and other
parts of the world since the first case was reported in
the 1960 [461, 462]. An extensive survey carried out in

Table 2: Optimal Temperature and Salinity Fecal-Oral Pathogens in Sea-Water [445].

Pathogen Related Diseases Salinity (ppt) Temp (°C) Notes

Vibrio spp Vibriosis 5-25 15-30 Vibrio species naturally thrive in warm
waters with moderate salinity

Campylobacter Campylobacteriosis 0-0.5 30-45

Jejuni

Shigella Shigellosis 0-20 4-37 Frequent outbreaks in US

E coli 0157:H7 Bloody diarrhea 0-34 4-37 Frequent outbreaks in US

Legionella sp Legionnaire’s Disease 0-0.5 25-47 High incidence in US

Typically found in freshwater, but can also
survive in marine environments
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the European anchovy Engraulis encrasicolus showed
that rates of infection are as high as 70% among an-
chovy taken from fishing grounds in the Mediterra-
nean Sea [463]. Spain is currently considered to have
the highest incidence of anisakiasis in Europe [464].

- Diphyllobothriasis is associated with the consump-
tion of raw Pacific salmon and is the most frequently
occurring foodborne parasitic infection in Japan.
Diphyllobothrium nihonkaiense, the causative agent,
can grow to lengths of up to 10 meters in the human
digestive tract and lay millions of eggs that are excret-
ed in feces [460].

Impacts of Ocean Pollution on Fish Stocks and
Fisheries

Increasing pollution of the oceans, climate change and
ocean acidification can cause changes in the marine food
web and these changes can influence the abundance and
geographic distribution of commercially significant fish
species that are important human food sources. Species
that are intolerant of pollution will decrease in num-
ber under the pressure of pollution and climate change,
while more pollution-tolerant species will increase
(Text Boxes 7 and 8).

A principal mechanism through which pollution alters
the marine food web and affects fisheries is by causing
changes in the abundance and composition of microalgae
and other species that are the foundation of the marine
food web [155, 298, 465, 466]. Pollution that enters coastal
waters through agricultural runoff and sewage discharges
is typically rich in nutrients — nitrogen, phosphorus, and
organic chemicals. Increased abundance of these materi-
als results in proliferation of some, but not all species of
microalgae. If the proliferating species are not the pre-
ferred food source of species above them, the composition
of the entire food web can be altered and follow-on adjust-
ments in the relative abundances of grazers and predators
can ripple through multiple trophic levels [467]. If the end
result is decreased species diversity, and the productivity of
the few pollution-tolerant species that remain can seldom
sustain food web, sharp reductions in catches of commer-
cially important fish and food shortages can result.

Estuaries are highly sensitive to marine pollution.
Estuaries are also vital nurseries for many commercially
important fish species. In South Africa, for instance, 60%
of exploited fish species inhabit estuaries as juveniles, and
small invertebrates, which are abundant in estuaries, are
the juveniles’ main food stock there [468]. The small inver-
tebrates that populate estuaries are well able to cope with
changing conditions of salinity and temperature caused
by riverine and marine tidal influences [469]. However,
these organisms can be highly susceptible to pollution,
and coastal pollution can reduce invertebrate abundance
and remove intolerant species entirely [470, 471]. In these
circumstances, the food security of the juveniles becomes
precarious, and stocks of key fish species can decline.
These estuarine effects are particularly important when
pollution is widespread.

Short-term, high-impact pollution events can also result
in food web alterations and reductions in seafood produc-
tivity. The most famous of these events in recent times have
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been the Deep Water Horizon oil spill in the Gulf of Mexico,
and the Fukushima nuclear power plant accident in Japan.
Both direct effects to individual species and indirect effects
on the food web were apparent in these two events [472].

Climate change can also affect the health of estuaries
and fish stocks. It can exert synergistic effects on marine
ecosystems in concert with pollution. Climate change
causes changes in rainfall that, in turn, alter runoff to
estuaries and nearshore environments. In nutrient-poor
areas, nutrients delivered from the land to the oceans via
rivers are very important to sustain local food webs and
fish production [473, 474]. With changes in the global cli-
mate, estuaries in arid and semi-arid regions may receive
less freshwater runoff, or receive large rainfalls over fewer
days or in the wrong season. All of these changes compro-
mise the nursery function of estuaries. These changes can
result in increased or decreased salinity, more frequent
or less frequent flooding, changes in energy supplies, fre-
quent closures of inlets that hinder migration of marine
species in and out of estuaries, and changes in the timing
of inlet closure and opening such that they no longer syn-
chronize with fish life stages [475-478].

TEXT BOX 7: Climate-related collapse of a South
African prawn fishery.

Amodelling study conducted off the coast of eastern South
Africa showed that compromised production of penaeid
prawns in the St Lucia estuary, an important nursery area,
and eventual collapse of this shallow water fishery was
associated with prolonged closure of an inlet [479].

The problem was that prolonged closure of an inlet
to the estuary hindered the movement of post-larval
shrimp into the nursery area and also blocked move-
ment of juveniles out of the estuary to the trawling
ground. Through feedback loops within the food web,
these changes had knock-on effects on other commer-
cially exploited species in the same fishing grounds,
even on species that did not directly depend on estuar-
ies, lowering their biomass and potential for commer-

Source: CF MacKay, Oceanographic Research Institute,
Durban, South Africa

This case study illustrates that food security for humans
can depend on the indirect effects of pollution and cli-
mate change that extend over several ecosystem types
and are influenced by the geographical distribution of
species across their life stages. In countries where sub-
sistence fishers are reliant on fishing in estuaries, the

effects on human food security can be devastating.
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Coastal marine ecosystems in and near cities, especially
near rapidly growing megacities in developing coun-
tries and those with emerging economies are constantly
exposed to pollution and other environmental stressors
of human origin [481, 482]. Losses and changes of habitat,
increasing light and noise levels, and industrial chemical
discharges impact fish populations in these areas, modify-
ing their behavior and ultimately reducing the amounts
of fish available to feed humans [483, 484]. Dredging
and coastal pollution increase turbidity, change the light
regime in the water column, impact primary produc-
tion, and affect migration and predator-prey interactions
[481]. Increased foraging activity in artificially lit areas
increases predation pressure on one trophic level, and in
turn releases predation pressure on the next trophic level
[485]. Noise pollution may affect fish and marine mammal
communication, as well as the behavior of invertebrates.
Artificial hard structures change habitat that might origi-
nally have been comprised of soft sediment. Such changes
in habitat provide opportunities for invasive species [481,
481]. All such modifications, especially when they are of
large scale, cause changes in the food web, resulting in
changed productivity patterns that alter ecosystem ser-
vices to humans. Although human modifications can
occasionally enhance habitat and increase fishery produc-
tion (e.g., around artificial reefs), the negative impacts of
human activity far outweigh their positive benefits on a
global scale [481].

Reduced content of dissolved oxygen in seawater —
ocean hypoxia — is another consequence of pollution and
climate change that has negative impacts on fish stocks
[486, 487]. Ocean hypoxia is the result of terrestrial runoff
that introduces nutrients to the seas, increases frequency
of HABs, and leads to eutrophication and the formation of
dead zones. Vast releases of organic matter from industry
and waste water systems further compound these effects.
Hypoxic areas and dead zones are increasing in seas across
the globe [488]. Additional contributory factors are sea
surface warming, which reduces oxygen solubility in the
oceans and changes stratification patterns that, in turn,
may reduce ocean mixing and prevent re-oxygenation
[489]. All of these effects are most pronounced in coastal
and continental shelf areas of the oceans — the regions of
the seas that produce 90% of commercially exploited fish
species [490].

Ocean acidification, a direct consequence of increasing
concentrations of atmospheric CO,, is another environ-
mental factor of human origin that can affect fish stocks.
By inhibiting the growth of calcified primary producers
(calcified phytoplankton such as coccolithophores or
foraminifera) or zooplankton (krill, pteropods) at the base
of the food web, ocean acidification may alter the food
chain production [491-493].

In addition to decreasing seafood production, ocean
acidification may also alter seafood quality. Researchers
asked 30 volunteer testers to assess the gustatory qual-
ity (appearance, texture, and taste) of shrimp raised at dif-
ferent pH levels [494]. The test was conducted under the
supervision of a chef. Decreased pH significantly reduced
appearance and taste scores. Thus shrimp maintained at
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a pH of 8.0 had a 3.4 times higher likelihood of being
scored as the best shrimp on the plate, whereas shrimp
maintained at a pH of 7.5 had a 2.6 times higher likeli-
hood of being scored as the least desirable shrimp on the
plate, a result that may have socio-economic implications.

Increased bioaccumulation of pollutants in the food

TEXT BOX 8: Marine Viruses and Declines in Salmon
Populations. Interaction with Pollution?

The last three decades have seen large declines in
salmon populations in both the Atlantic and Pacific
Oceans. Recent studies investigating these declines
using in situ hybridization, epidemiological surveys,
and sequencing technologies have led to discovery of
multiple new viruses. These viruses have been associ-
ated with disease among both wild and farmed salmon
from different populations [495].

In these studies, fish were screened against a viral dis-
ease detection biomarker panel (VDD) that elucidates a
conserved transcriptional pattern indicative of immune
response to active RNA viral infection. Individual fish
that were strongly VDD positive, but negative for any
known salmon virus were subject to metatranscriptomic
sequencing. This sequencing revealed viral transcripts
belonging to members of the Arenaviridae (Salmon
pescarenavirus: SPAV-1and 2), the Reoviridae (Chinook
aquareovirus: CAV), and the Nidovirales (Pacific salmon
nidovirus: PsNV), three divergent groups of highly path-
ogenic RNA viruses.

The distributions of the three viruses were markedly dif-
ferent:

Both SPAV-1 and 2 were relatively widespread along
the coast of southwestern British Columbia in ocean-
caught Chinook and Sockeye salmon.

CAV was not detected in any juvenile wild or hatch-
ery Chinook salmon, but was detected in farmed fish
on both the west and east coast of Vancouver Island.
PsNV distribution was strongly associated with
salmon-enhancement hatcheries, but was also
detected in 18% of aquaculture Chinook and 3%
wild Chinook. In hatchery fish, infection by PsNV was
primarily localized to gill tissue, a pattern reminis-
cent of the respiratory disease caused by the related
mammalian coronaviruses, such as MERS, SARS or
COVID-19.

An unresolved question is whether spread of these
viruses to salmon or severity of disease is enhanced by
marine pollution.

web will be a further impact of pollution, ocean acidifica-
tion, and climate change on fisheries. Concentrations of
PCB and MeHg in top predators such as killer whales are
projected to increase by 3% to 8% by 2100 under a high-
carbon-emission scenario compared to a control scenario
[496]. MeHg accumulation is particularly sensitive to vari-
ations in emission scenarios with a trophic amplification
factor generally ten times higher than for PCBs.
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Most of the world’s fish stocks are already either fully
or over-exploited [497]. Pollution, ocean warming and
ocean acidification add to these pressures. The warming of
the marine environment during the last two decades has
reduced the productivity of marine fisheries worldwide
and contributed to a 4.1% decrease of maximum sustain-
able yield of several fish populations, with some regions
showing losses of as much as 15 to 35% [498] (Figure 14).
Almost 90% of the large predator fish species have been
removed from all seas around the globe leading to the col-
lapse of certain species, such as Newfoundland Cod [499].
Increasing global demand for fish as a food source has
driven rapid increase of aquaculture, which has resulted
in high demands on capture of large wild fish used for
feeding of farmed fish [500].

Reductions in fish stocks have direct impacts on human
health by jeopardizing food security in coastal com-
munities in low-resource countries [501]. Declines in
fish catches deprive people of protein, as fish is a highly
important source for nearly 20-30% of the human popu-
lation [502]. Reduced fish consumption results not only
in protein malnutrition, but also in reduced consumption
of essential micronutrients, including Vitamin A, iron,
Vitamin B12, and omega-3 fatty acids among vulnerable
populations [502]. These impacts fall most heavily on
poor countries [503], but negative impacts are seen also in
areas of economically developed nations where shellfish
make up a substantial part of the commercial and tradi-
tional subsistence fisheries such as Alaska, USA [504].

Continuing reductions in fish stocks and in the produc-
tivity of the oceans may be anticipated in future years due
to the combined effects of pollution, sea surface warm-
ing, ocean acidification, and other wide-scale ecologi-
cal impacts. Poleward migration of many commercially
important marine species towards higher latitudes is
occurring already and will increase further. Ocean acidifi-
cation and pollution will damage tropical and subtropical
coral reefs thus reducing the abundance of reef fish spe-
cies [502].
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Additional effects on fish stocks could be mediated
through changes in major ocean currents. Thus, there is
growing concern that climate change could disrupt the
highly productive Eastern Boundary Upwelling Systems,
such as the Humboldt and Benguela currents in the South
Atlantic Ocean that rely on the upwelling of nutrient-
rich water to stimulate productivity and produce large
fish yields. These changes could jeopardize the security
of coastal fishing communities that depend on them for
their food and their livelihoods [505]. These grave dan-
gers justify the proactive policy of designating Marine
Protected Areas in critical areas of the seas.

Impacts of Ocean Pollution on Vulnerable Human
Populations

Ocean pollution, like all forms of pollution, has dispro-
portionately severe health impacts in low-income and
middle-income countries [24]. It especially affects coastal
communities in low-income countries that are dependent
on the oceans for their food and livelihood. The effects
of pollution and climate change fall especially heavily on
these populations because they do not have the resources
or the infrastructure to buffer diminished ecosystem ser-
vices. Thus they are highly vulnerable to the increasingly
frequent HAB events and HAB toxin exposures that are the
consequences of worsening coastal pollution. Poignant
examples are seen in small island nations [17] and in the
countries of the Western Indian Ocean region — Comoros,
Mauritius, Mozambique, and Somalia [506].

Indigenous peoples are another group highly vulnera-
ble to ocean pollution and its health effects. Their height-
ened vulnerability to ocean pollution reflects the fact that
these groups consume up to 15 times more seafood per
year as non-indigenous peoples [20, 507]. They are also at
high risk of exposure to plastic particles, methyl mercury,
POPS, and manufactured chemicals that concentrate in
marine species.

Populations in the circumpolar regions — indigenous
peoples as well as non-indigenous populations such as
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Figure 14: Global changes in maximum fish catch potential.

Source: IPCC.
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the people of the Faroe Islands [66] — are yet another
group placed at high risk by worsening ocean pollution.
The increasingly heavy atmospheric deposition in north-
ern waters of mercury, PCBs, and other POPs transported
poleward on the winds from distant population centers
has led to accumulations of hazardous chemicals in the
tissues of the predator fish species and marine mammals
that are major components of these populations’ diets.
This, in turn, has led to increasing toxicity — toxicity that
has been well documented through epidemiologic studies
(67, 68, 508-510].

Dietary Change. As seafood becomes increasingly
scarce and more contaminated by chemical pollutants
[66] and HAB toxins [343], people in low-income coun-
tries, indigenous areas, and the circumpolar regions are
forced to turn away from their traditional fish-based diets
and to eat more meat and poultry. This dietary change
places them at risk of all the health consequences of the
“Western” diet — obesity, type 2 diabetes, cardiovascular
disease, and cancer. This trend is evident in Alaska native
populations and appears to have contributed to the dete-
riorating health status of these groups [511].

In high-income countries, consumers’ perception of
the safety of seafood has led to a reduction in demand
for shellfish, and this change has had severe economic
consequences for the shellfish industry [512]. The lack of
diagnostic tools and treatment options for HAB-related
illnesses leads to increased psychological stress in fishing
communities [513, 514].

Ocean Pollution as a Risk factor for Migration.
Migration is another consequence of ocean pollution,
climate change and declining fish stocks. Study of envi-
ronmentally induced migration has grown in recent years
[515]. Of particular importance has been emergence of the
concept of “environmental refugees” [516], people who
have been forced to leave their homes because of pres-
sures created directly or indirectly by anthropogenic envi-
ronmental, ecological and climate change [517]. Migration
and conflict are now considered key mechanisms through
which climate change and other environmental stressors
increase frequency of migration and thus create environ-
mental refugees [517-520].

The 2015 Rockefeller-Lancet Commission on Planetary
Health has identified migration as a major concern for
human health and development and a priority area
of research [2]. Ocean pollution and other ecosystem
changes are already triggering environmental migration
and will continue to do so over the coming decades [497,
521, 522].

While global ecological trends and climate change
impacts have been a priority of the research community,
complex implications at local scales are less well under-
stood. Climate-induced triggers for migration include sea
level rise, salinization of fresh water supplies, changing
patterns of flooding and draughts, pest and alien species
invasion, changing weather patterns, and ocean acidifica-
tion [523]. These drivers can act concurrently and produce
synergistic effects on human health and well-being. In
combination with pollution, changes in land use, loss of
biodiversity, mismanagement of resources, and collapse of
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the fisheries on which coastal populations rely for food
and economic security [2, 524, 525], are multiple drivers
that lead to vulnerability, threatened livelihoods, culture
and political instability, and social injustice [523]. They
reduce food and water security and increase risk of starva-
tion [8, 526, 527]. These factors lead also to loss of prop-
erty, shelter and human life [504, 528, 529, 503, 530].

The Critical Importance of Ocean Monitoring

Robust monitoring of ocean pollution is important for
protecting human health and safeguarding marine ecosys-
tems. Need for monitoring will become increasingly great
as the global climate continues to change, seas continue
to warm, extreme weather events become more frequent,
and human impacts on coastal, estuarine, and deep-ocean
environments continue to grow.

Monitoring provides information on background levels
of pollution, tracks trends, maps geographical variation,
identifies ‘hot spots’, provides early warning of impend-
ing crises, guides interventions against pollution, and
evaluates the effectiveness of interventions. Monitoring of
chemical and physical processes in the oceans is essential
to tracking sea surface warming, ocean acidification, and
the consequences of these phenomena on marine ecosys-
tems, including their impacts on the frequency of HABs
and the spread of marine pathogens.

The great importance of ocean monitoring in guiding
the protection of human and ecosystem health was recog-
nized in a seminal 2002 report that recommended estab-
lishing programs to monitor ocean pollution [531]. That
report called for the establishment of multidisciplinary
research programs to address the intersection between
ocean and human health. Such programs have now been
established in the United States and Europe. They provide
an essential complement to ocean monitoring.

The Health of the Oceans (HOTO) Module of the Global
Ocean Observing Systems (GOOS) is a key international ini-
tiative in ocean monitoring [532]. HOTO employs a range
of sampling strategies across a variety of temporal and spa-
tial scales using agreed standards and methodologies to
track the effects of anthropogenic activities, ocean pollu-
tion in particular, on human health and marine resources.
HOTO and other global and regional ocean monitoring sys-
tems are generating data showing the impacts of maritime
and navigation activities; trends in ocean acidification and
coral reef destruction; trends in fish stocks; introductions
of invasive species; changes in sea surface temperature;
the spread of life-threatening bacteria and harmful algae,
and trends in plastic pollution [533, 534].

Improved monitoring of all forms of ocean pollution
and better documentation of pollution-related patterns
of human exposure and disease will improve estimates of
the contribution of ocean pollution to the Global Burden
of Disease [41].

Monitoring Toxic Chemicals and Plastics in the Ocean
Environment

Monitoring of chemical and plastic pollution in the
oceans has been ongoing for decades. One approach has
been direct measurement of discharges of pollutants such
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as waste plastics into the seas from land-based sources,
and tabulation of the number and frequency of discharge
events such as oil spills. Under the aegis of the Horizon
2020 Initiative for a Cleaner Mediterranean, the European
Environment Agency, and UNEP-MAP have defined a set
of indicators that will potentially enable an integrated
assessment of key land-based sources of pollution in Euro-
pean seas, including solid waste and marine litter.

A key monitoring strategy for toxic chemical pollutants
is to measure concentrations of indicator pollutants in
seawater or in organisms that are “sentinel species”. Since
the 1970s, the U.S., the European Environment Agency,
and the International Mussel Watch Program have meas-
ured geographic patterns and temporal trends in concen-
trations of organic chemical and heavy metal pollutants
along the coasts, through analysis of residues in bivalve
mollusks [535]. These programs have identified locations
where heavy metals, POPs, and pesticides are most highly
abundant and have highest potential to contaminate sea-
food. These programs have documented that pollutant
concentrations are highest near urban areas [536].

Evaluation of molecular biomarkers of exposure to
chemical contaminants is an important complement to
direct measurement of chemicals [531, 537]. Biomarkers
have been used to assess exposures and early biological
effects of exposures to oil spills, PCBs, dioxins, toxic met-
als, and endocrine disruptors [538]. Pollutant levels in
broad areas of the open ocean can be inferred by analysis
of tissue levels in large ocean species that serve as bio-
logical monitors. Thus, measurement of levels of chemi-
cal pollutants and of molecular biomarkers of exposure
has been done by analysis of skin biopsies of sperm whale
[536]. Studies in tissues of large sharks and finfish (yel-
lowfin tuna) provide similar data [210, 539].

Future Directions in Monitoring of Chemical and Plastic
Pollution in the Oceans.

- Airborne and satellite sensors hold great promise for
advancing the science of chemical and plastic pollu-
tion monitoring. There now exist many platforms and
sensor technologies with the potential to scan large
areas of the oceans continuously and to provide infor-
mation on a range of conditions in nearly real-time.
These sensors can map and track the distribution of
pollutants such as oil spills and plastic waste. Plastic
monitoring may be a proxy for monitoring POPs and
other toxic chemicals associated with plastic. Remote
sensors can also detect HABs [540, 541].

- To track ocean pollution by mercury and POPs, the
Group on Earth Observations (GEO) has developed
the Global Observation System for Mercury (GOS4M)
and is developing a Global Observation System for
Persistent Organic Pollutants (GOS4POPS).

- To store and analyze data on POPs levels in marine
biota, the Global Monitoring Plan (GMP) Data Ware-
house established under the auspices of the Stock-
holm convention is a growing resource. It could be
expanded and linked to data on POP levels in human
milk and serum in high-risk populations such as peo-
ple in the circumpolar regions.

Art. 151, page 31 of 64

- Systematic measurement of pollutant levels in mes-
opelagic or midwater fishes could be a means for
assessing the global status of ocean pollution in the
future, as a companion to studies of large fish and
marine mammals. Midwater fishes live in the seas at
intermediate depths, 200-1,000 m below the surface,
and are present in all the oceans of the world.

- Passive samplers and sensors are being developed and
applied to assess the distribution and concentrations
of pollutants in waters around the world, and to de-
tect new pollutant chemicals [540, 541].

Monitoring HABs

Several international and European systems currently
capture and disseminate information about HAB events,
their predisposing factors, and HAB- related illnesses [542,
543]. Other initiatives are being coordinated by the Inter-
governmental Panel for Harmful Algal Blooms (UNESCO,
IPHAB) collaboration. Specific initiatives are summarized
in the following, Tables 3 and 4:

Table 3: European Ocean Monitoring Programs.

- Data from the European Space Agency Copernicus Senti-
nel-3 satellite Ocean and Land Color Instruments (OLCI) are
used in near real-time to make initial water quality assess-
ments and quickly alert managers to potential problems and
emerging threats related to cyanobacteria [544].

- The 10C International Oceanographic Data Exchange Pro-
gramme (IODE) hosts the Harmful Algae Event Data Base
(HAEDAT) containing and summarizing complex quality-
controlled, regularly updated information on HAB events
worldwide. These curated open access databases are the
base of the Global HAB Status report supported by 10C-
UNESCO, ICES, PICES and the International Atomic Energy
Agency (IAEA) [323].

- The International Food Safety Authorities Network
(INFOSAN) facilitates rapid information exchange across
borders during events that threaten food safety [545].

- The Rapid Alert System for Food and Feed allows rapid
information sharing to protect food supplies and document
foodborne outbreaks across Europe [546].

Table 4: United States Ocean Monitoring Programs.

- CDC created the One Health HABs System (OHHABS) in 2016
to allow US states to report on both human and animal HAB-
related illness and information about the blooms themselves
[547]. Data collected through OHHABS will enable updating
of case definitions for HAB-related illness, treatment regi-
mens, and clinical analyses.

- The CDC's Environmental Public Health Tracking Program
[547] is collaborating with OHHABS to geographically track
HAB events and link these events to illness cases and out-
breaks.

- CDC is working with the American Association of Poison
Centers to identify outbreaks of HAB-related disease using
the National Poison Data System, which records data from
every call made to U.S. poison centers. An algorithm identi-
fies potential outbreaks [548].

- EPA created the Cyanobacteria Assessment Network (CyAN)
to support the management and use of U.S. lakes and reser-
voirs [549].

(Contd.)
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- The Food and Drug Administration has established the Haz-
ard Analysis and Critical Control Points (HACCP) program
[550]. Elements of this programs are: 1) classification of
areas for safe shellfish harvesting; 2) water quality moni-
toring; 3) marine biotoxin management; 4) monitoring of
procedures for processing, shipping, and handling of live
shellfish; 5) establishment of laboratory methods for moni-
toring microbiological contaminants and marine biotoxins;
and 6) enforcement of shellfish safety regulations. These
programs have been effective in minimizing human illnesses
from consumption of toxic shellfish while allowing fisher-
ies industries to persist in regions threatened by recurrent
HABs.

Monitoring Bacterial, Viral, and Parasitic Pathogens

Serious challenges impede the detection, quantification
and prediction of viral, bacterial, and parasitic pathogens
in seafood, shellfish, and oceanic waters as well as in
aquaculture operations. Although molecular diagnostics
and other tools have improved dramatically over the past
two decades [454, 551], additional advances are required
to better detect and quantify pathogens in water, sea-
food products, aquaculture facilities, and shellfish meats
[552].

The significant relationships observed between pol-
lution concentrations, rising sea surface temperatures,
Vibrio infections and HABs have catalyzed the develop-
ment of modeling efforts. These models incorporate mul-
tiple layers of geocoded data and are designed to generate
predictive forecasts [553]. New technologies such molecu-
lar and bioinformatics-based diagnostics [410, 425, 554],
metabarcoding, “big data” mining and machine learning
may be expected to contribute to further development of
these efforts [40, 555, 556]. Implementation of real-time
PCR-based approaches has already been shown to be a
useful tool for diagnosing V. vulnificus wound infections
[554].

A mapping tool developed by the European Centre for
Disease Prevention and Control (ECDC) [416] is now oper-
ational and is providing 24-hour updated Vibrio risk data
freely available to the community. However, this system
has not yet been implemented by all EU Member States.
Also, it needs to be further developed to incorporate rel-
evant variables associated to major climatic events that
have been proven to have an impact.

Successes in Prevention and Control of Ocean
Pollution

A key finding of the 2018 Lancet Commission on Pollu-
tion and Health is that much pollution can be controlled
and pollution-related disease prevented [24]. The Com-
mission noted that most high-income countries and an
increasing number of middle-income countries have
curbed their most flagrant forms of pollution by enacting
environmental legislation and developing regulatory poli-
cies. These policies are based on science and are backed by
strict regulation. They set targets and timetables, they are
adequately funded, and they are based on the “polluter-
pays principle”. Air and fresh water in these countries
are now cleaner, health has improved, and longevity has
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increased. The Lancet Commission concluded that pollu-
tion control is “a winnable battle” [24].

An additional benefit of pollution control is that it is
highly cost-effective. Rather than stifle economic growth
and depress job markets, as is often claimed, pollution con-
trol has, in fact, been shown to boost economies, increase
human capital and create prosperity. It creates these gains
by preventing disease and premature death, reducing pro-
ductivity losses, and preventing environmental degrada-
tion. In the United States, air pollution has declined by
70% since passage of the Clean Air Act in 1970, and every
$1 (USD) invested in control of air pollution has returned
an estimated benefit of $30 (USD) (range of estimate,
$4-88 USD) [24]. Likewise, the removal of lead from gaso-
line has boosted economies in countries around the world
by increasing the intelligence of billions of children who
have come of age in relatively lead-free environments and
who are thus more intelligent and productive [24].

The strategies used to control pollution of air and
fresh water are beginning to be applied to the preven-
tion and control of ocean pollution. Key to the effective-
ness of these efforts has been the recognition that 80%
of ocean pollution arises from land-based sources [29].
Accordingly, successful marine pollution control pro-
grams have identified, targeted, and reduced releases
from important land-based polluters. They have been
guided by multi-scale monitoring that tracks pollutant
discharges, measures pollutant levels in the seas and in
marine biota, and assesses human exposures and health
outcomes. They have been backed by strict enforcement.
They have engaged civil society and the public by mak-
ing their strategies, their data, and their progress reports
available on open-source platforms.

These strategies are beginning to make a difference.
As is described in the case studies presented below (Text
Boxes 9—13), industrial discharges have been reduced in
some areas, plastic pollution reduced, agricultural runoff
mitigated, and sewage more effectively treated. Coastal
contamination has been reduced, levels of toxic chemi-
cals in marine organisms have declined, the frequency
and severity of HABs have been reduced, polluted harbors
have been cleaned, estuaries have been rejuvenated, shell-
fish beds [557] and aquaculture operations [558] have
been protected, fish stocks have rebounded, and coral
reefs have been restored. The successes in control of ocean
pollution achieved to date demonstrate that broader pre-
vention is possible.

Programs for the control of ocean pollution cre-
ate multiple benefits. They boost economies, increase
tourism, bring back commercial fisheries, and improve
human health and well-being. These benefits will last for
centuries.

The following Text Boxes (Text Boxes 9—13) present
case studies of successes in control of ocean pollution. A
central element in each of these examples has been care-
ful documentation of progress against pollution through
robust monitoring. Five case studies are presented here
and additional studies are presented in the Supplementary
Appendix to this report.
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TEXT BOX 9: Control of Plastic Pollution in the Med-
iterranean.

TEXT BOX 10: Control of Persistent Organic and
Metal Pollutants in European Waters.

Plastic pollution is one of the most pervasive and
highly visible threats to the health of the oceans today.
Once discharged into the natural environment, plastic
can take up to 500 years to disappear. The Mediterra-
nean Sea is particularly vulnerable to plastic pollution
because of its semi-enclosed geographical location, and
the intensity of its maritime transport, fishing, industry,
and tourism. With more than 3000 billion microplastic
particles estimated to be in its waters, the Mediterra-
nean is the most polluted sea in the world.

In 2015, the Prince Albert Il of Monaco Foundation, the
Tara Ocean Foundation, Surfrider Foundation Europe,
the MAVA Foundation and the IUCN joined forces
to launch the Beyond Plastic Med (BeMed) Initiative.
BeMed's objectives are to bring together and support
the stakeholders involved in the fight against plastic
pollution in the Mediterranean, implement sustainable
solutions, encourage the search for new solutions, and
mobilize stakeholders and the general public through
knowledge and sharing of best practices.

To achieve its objectives, BeMed supports projects every
year that aim to reduce plastic pollution at source by
minimizing the use of plastic, finding alternatives,
improving waste collection systems, raising awareness,
collecting data, and helping to implement new regu-
lations. To date, 53 projects in 15 countries have been
supported.

In addition to providing financial support to these
efforts, BeMed works to build and coordinate the net-
work of active Mediterranean stakeholders by facilitat-
ing the sharing of experience and knowledge and by
creating links between organizations. Principal Investi-
gators of the projects supported by BeMed are gathered
every year for a day of exchange during Monaco Ocean
Week. In addition, stakeholders working on similar top-
ics or in the same region are put in contact with one
another to foster collaborations, share knowledge, and
thus reinforce the effectiveness of their actions. Replica-
tion of successful actions is strongly encouraged.

Since early 2020, BeMed has also engaged the private
sector in the fight against plastic pollution by forming
of a consortium of companies committed to preventing
plastic pollution of the Mediterranean. This consortium
includes players at every stage in the plastics value chain
— producers of plastic raw materials, plastic manufactur-
ers, producers of plastic-containing consumer products,
retailers, and waste management companies — in order
to draw companies into a common dynamic of pollution
reduction on a Mediterranean-wide scale. Activities of this
consortium are structured around two working groups: a
group promoting dialogue between scientists and indus-
trialists to clarify the key issues, and a group dedicated
to implementing pilot projects in the field. An advisory
committee of scientific experts ensures the effectiveness
and sustainability of the proposed solutions.

The European Environmental Agency [27] tracks con-
centrations of eight indicator pollutants in the waters
surrounding Europe. These include three metals — mer-
cury, lead, cadmium, and five persistent organic pollut-
ants (POPs) — hexachlorobenzene (HCB), lindane, PCBs,
DDT (using DDE as a proxy), and the polycyclic aromatic
hydrocarbon (PAH) BAP (benzo|a]pyrene).

The first seven of these substances have been banned
from use in Europe, and their discharges into the seas
have declined, in some cases sharply. Thus mercury con-
centrations in North Sea blue mussels have fallen, as
have PAH and PCB concentrations in monitored areas
in the North Atlantic [27, 208]. (See Figure)
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Figure 15: Concentrations of PCBs in archived her-
ring gull eggs from three locations on the North
German coast, 1988-2008 [208]
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These trends document the power of bans on hazard-
ous chemicals in reducing chemical pollution of the
oceans. However, despite these successes, levels of
all eight of these pollutants remain elevated in Euro-
pean waters and are anticipated to remain unaccept-
ably high for many decades to come. Pollutant lev-
els will be especially slow to decline in Arctic waters
where cold temperatures slow chemical degradation
[208].

TEXT BOX 11: Successful Control of Harmful Algal
Blooms in Japan’s Inland Sea.

A striking example of successful control of HABs
through a science-based prevention program is seen in
the case of the Seto Inland Sea in Japan.

In the Seto Inland Sea, the number of visible “red tides”
(high biomass blooms) increased seven-fold between
1960 and the mid 1970s. This increase paralleled
increases in industrial production and in chemical oxy-
gen demand (COD) from domestic and industrial wastes
discharged into the sea.
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In 1973, Japan instituted the Seto Inland Sea Law to
reduce COD loadings to half of the 1974 levels over a
three-year period. As a result, the number of red tides
began to decrease in 1977, dropping to, and remain-
ing at levels approximately one-third of peak frequency
[332, 559]. These data demonstrate an increase in
phytoplankton abundance due to over-enrichment of
coastal waters, followed by a proportional decrease in
blooms when that loading was reduced. Importantly,
toxic blooms (in this instance, those that caused fish
mortalities or other fisheries damage) also decreased
after the loadings were reduced.

The legislative or policy changes implemented in the
Seto Inland Sea demonstrate that control of sewage
and industrial discharges has the potential to prevent
some HABs. Nevertheless, there are other important
sources of nutrients to coastal waters, and these are
more difficult to control, given the increased popula-
tion pressures and the need to feed a growing world
population. In particular, the steady expansion in the
use of fertilizers for agricultural production represents
asignificant and worrisome source of plant nutrients to
coastal waters.

TEXT BOX 12: Boston Harbor Restoration: From
a “Harbor of Shame”’[560] to a “Great American
Jewel” [561].
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+ Construction of a new Deer Island Treatment Plant

+ Transfer of Nut Island Treatment Plant flows to
Deer Island

+ Creation of a 9.5-mile outfall to discharge treated
effluent from Deer Island into Massachusetts Bay

+ Conversion of sludge into fertilizer, rather than dis-
charge

+ Combined Sewer Overflow projects to protect sen-
sitive waters from overflows.

Results. The Boston Harbor cleanup strategy has had
many accomplishments. Most notably, sewage waste
that had previously undergone little or no treatment
before discharge into the Harbor is now subjected to
state-of-the-art treatment [561]. As a result, the harbor
has steadily become cleaner, as illustrated by data taken
from 70 locations throughout the harbor since 1989
[561]. The cleanup resulted additionally in elimination
of hepatic neoplasia in winter flounder in the harbor,
which had previously been highly prevalent [564].

Conclusion. The cleanup of Boston Harbor was effec-
tive, and the Harbor is now known as the “Great Ameri-
can Jewel” [561]. To continue the work, policymakers
are now addressing current threats to the health of the
harbor, including sea level rise, habitat destruction, and
invasive species [560].

Background. Boston Harbor is an estuary of Massachu-
setts Bay that provides services worth $30-100 billion
to society [562]. Beginning in the nineteenth century,
industrialization, urban development, and population
growth led to heavy pollution of the harbor [560, 562].
The construction of wastewater treatment plants at Deer
Island in the 1950s and Nut Island in the 1960s further
exacerbated this problem. The amount of wastewater
delivered to these plants often exceeded the plants’
capacities, and by the 1980s, they discharged 350 mil-
lion gallons of untreated wastewater into the harbor
daily. The wastewater devastated water quality, marine
habitats, and recreational activities [562]. Boston Harbor
became one of the most polluted harbors in the US [560].

Solution. Local organizations had already begun advo-
cating for a cleaner Boston Harbor when Congress
passed the Clean Water Act in 1972 [562]. This law cata-
lyzed the cleanup of the polluted harbor. The City of
Quincy and the Conservation Law Foundation sued the
Commonwealth of Massachusetts for failing to comply
with the Clean Water Act, and in 1986, a court-ordered
cleanup began [563].

The cleanup strategy consisted of several steps,
including [563]:

+ Improvements to the 1950s-era treatment plant on
Deer Island

TEXT BOX 13: Restoration of Coral Reefs in Ameri-
can Samoa.

Background. American Samoa is a US territory con-
sisting of seven islands in the South Pacific [565]. The
territory contains coral reefs that are both diverse and
essential: 2,700 marine species depend on the reefs
for shelter, and 55,000 people depend on the reefs
for sustenance and employment. Over the past several
decades, several disturbances have threatened the reefs
(Craig et al., 2005). In the latter half of the 20th century,
tuna canneries regularly released nutrient-rich waste-
water to Samoan coastal waters leading to an increase
in coral-eating plankton and a decrease in corals. By the
late 1970s, after an outbreak of crown-of-thorn star-
fish, only 10% of the corals remained. The problem was
further exacerbated by the overfishing of parrotfish,
which typically protect corals by consuming harmful
algae [565].

Solution. To address the problems confronting the
reefs of American Samoa, a suite of solutions was imple-
mented. In 1986, the Fagatele Bay National Marine
Sanctuary was created, thereby imposing restrictions
on pollution and fishing. Then, in 1991, the govern-
ment diverted wastewater pipes to combat the increase
in coral-eating plankton. In 2000, spearfishing was
banned to protect parrotfish [565].
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Results. The reefs of American Samoa have slowly but
surely recovered. In the past nine years, the reefs’ coral
cover (proportion of the reef’s surface covered in coral)
has increased from 25 to 36%. Compared to the Great
Barrier Reef's coral cover of 14%, the American Samoa
reefs are faring well [565].

Conclusion. The reefs of American Samoa are consid-
ered to be in “good” condition [566], but they continue to
face ongoing threats, such as pollution, red tides, coastal
sedimentation, and ocean acidification [565-567]. To
protect the reefs, these threats should be addressed.

Conclusions

Ocean pollution is a global problem. It arises from multi-
ple sources and crosses national boundaries. It is worsen-
ing and in most countries poorly controlled. More than
80% arises from land-based sources.

Plastic waste is the most visible component of ocean
pollution and has deservedly attracted much attention. It
kills seabirds, fish, whales and dolphins. It breaks down
into plastic microparticles and nanoparticles and fib-
ers containing myriad toxic and carcinogenic chemicals.
These chemical-laden particles are absorbed by fish and
shellfish, enter the marine food chain, and can ultimately
be consumed by humans. Their dangers to human health
are only beginning to be assessed.

Additional components of ocean pollution include mer-
cury released by the combustion of coal and from small-
scale gold mining; petroleum discharges from oil spills and
pipeline leaks; persistent organic pollutants, such as PCBs
and DDT; thousands of manufactured chemicals, many of
unknown toxicity; pesticides, nitrogen, and phosphorus
from animal waste and agricultural runoff; and sewage
discharges containing multiple microbial contaminants.
In concert with sea surface warming and ocean acidifica-
tion, ocean pollution leads to increasing frequency and
severity of HABs, destruction of coral reefs, and spread of
life-threatening infections.

Pollution of the oceans can be directly ascribed to the
“take-make-use-dispose” economic paradigm that Pope
Francis has termed, “the throwaway culture” [568]. This
linear, economic paradigm focuses single-mindedly on
gross domestic product (GDP) and on endless economic
growth [569]. It views natural resources and human capi-
tal as abundant and expendable and gives little heed to
the consequences of their reckless exploitation [2, 8]. It
ignores the precepts of planetary stewardship [102, 568,
570]. It is not sustainable [571].

Leaders at every level of government - city, regional and
national — as well as sustained engagement by the inter-
national community and civil society will be key to the
control of ocean pollution and the prevention of pollu-
tion-related disease.

Eight key conclusions that emerge from this analysis are
the following:

1.
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Pollution of the oceans is widespread, worsen-

ing, and poorly controlled. Human activity that

releases unwanted, often dangerous waste ma-
terials into the sea is the major source.

- Ocean pollution is a complex mixture of plastic
waste, toxic metals, manufactured chemicals, oil
spills, urban and industrial wastes, pesticides, fer-
tilizers, pharmaceutical chemicals, agricultural
runoff, and sewage. More than 80% arises from
land-based sources. Chemical and plastic pol-
lutants have become ubiquitous in the earth’s
oceans and contaminate seas and marine organ-
isms from the high Arctic to the abyssal depths.

Ocean pollution has multiple negative impacts

on human health and well-being. The magni-

tude, severity and geographic ranges of these
effects are increasing.

- Consumption of contaminated seafood is the
main route of human exposure to chemical pol-
lutants, HAB toxins, and plastic microparticles
and microfibers in the oceans.

Mercury, PCBs and other persistent pollutants ac-

cumulate to high concentrations in fish and ma-

rine mammals consumed by humans. Exposures
of infants in the womb to these toxic materials
through maternal consumption of contaminated
seafood can damage developing brains, reduce

IQ, and increase children's risks for autism,

ADHD, and learning disorders. Adult exposures

to methylmercury increase risks for dementia

and cardiovascular disease.

o Coal combustion is a major source of marine
mercury pollution.

o Artisanal, small-scale gold mining is a second
source of mercury pollution.

o Omega-3 fatty acids and other beneficial nu-
trients unique to seafood can partially miti-
gate the injuries caused by mercury and POPs.
Several groups have disseminated guidance
on safe, sustainable seafood consumption
[293, 294, 295].

Manufactured chemical pollutants — phthalates,

bisphenol A, flame retardants, organophospho-

rus compounds, organotin compounds, and per-
fluorinated chemicals, many of them released
into the oceans via plastic waste — are known to
have multiple negative effects on human health
that include cardiovascular disease, developmen-
tal disorders, endocrine disruption, depression of
immune function, decreased fertility, and cancer.
Plastic microbeads and microfibers formed by the
breakdown of plastic waste and manufactured as
plastic microbeads contain many of the above-list-
ed manufactured chemicals. These chemical-laden
microscopic particles appear capable of entering
the marine food web and concentrating in species
consumed by humans. The burden of disease asso-
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ciated with human exposures to these chemical-
laden particles and fibers is not yet known.
Coastal pollution by industrial discharges, agri-
cultural waste, and human sewage leads to in-
creasing frequency and severity of HABs — “red”,
“green”, and “brown tides”. These blooms produce
potent natural toxins such as ciguatera toxin and
domoic acid that can concentrate to high levels
in fish and shellfish. When ingested, these toxins
can cause severe neurological disease and rapid
death. HAB toxins can also become airborne and
trigger asthma and other respiratory diseases.
Coastal pollution in concert with sea surface
warming stimulates overgrowth of dangerous
pathogens, most notably Vibrio species. Coastal
pollution also increases antimicrobial resistance
(AMR) in marine pathogens. With worsening
coastal pollution and rising sea surface tempera-
tures, concern is great that diseases caused by ma-
rine pathogens could spread into new, previously
unaffected areas, especially places in the Global
South where infrastructure is poorly developed
and public health systems are weak.

Declines in seafood stocks caused by pollution,
ocean warming, ocean acidification and overfish-
ing threaten the health and well-being of the
millions of people worldwide who depend on the
seas for their food and their livelihood.

3. Ocean pollution has multiple harmful effects
on marine ecosystems. These effects can have
negative impacts on human health. Plastic pollu-
tion kills fish, seabirds, whales, and dolphins. Phar-
maceutical waste contributes to the destruction of
coral reefs. Increasing absorption of carbon dioxide
into the oceans causes ocean acidification, destroys
coral reefs and dissolves calcium-containing plank-
ton at the base of the marine food web. Petroleum-
based pollutants and POPs impede the production
of oxygen by beneficial marine microorganisms.

4. Ocean pollution is deeply unjust. Ocean pollu-
tion and all its negative impacts fall disproportion-
ately on people in small island nations, indigenous
communities, coastal communities in the Global
South, and fishing communities worldwide. These
are populations that create only miniscule amounts
of pollution. Most of the pollution to which they are
exposed arises from sources far away. This is envi-
ronmental injustice on a global scale.

5. Ocean pollution is inadequately charted. Cur-
rent knowledge of ocean pollution and its impacts
on human health is still at a relatively early stage.
Information on the geographic distribution and
concentrations of pollutants in the oceans is frag-
mentary and confined mostly to the seas that bor-
der high-income countries. Likewise, information
on the sizes of the human populations exposed to
ocean pollution and their levels of exposure is scant.
Data that could support the development of esti-
mates of the contribution of ocean pollution to the
global burden of disease (GBD) are only beginning
to be developed.
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6. Ocean pollution can be prevented and con-
trolled. Like all forms of pollution, ocean pollution
can be prevented. The most effective prevention
strategy is to control the land-based sources respon-
sible for 80% of the pollutants that enter the seas.

Prevention is achieved through identifying and
quantifying pollution sources and then deploying
data-driven control strategies that are based on law,
policy, and technology and backed by enforcement.
Many countries have used these tools to successfully
control air and water pollution, and these programs
have proven effective as well as cost-effective. The
same strategies are now being applied to prevention
and control of ocean pollution. The case studies in suc-
cessful control of marine pollution presented in this
report demonstrate that broader control is feasible.

Prevention of ocean pollution will require recog-
nition by policy-makers and the global public that
pollution can indeed be prevented — that it is not
the unavoidable price of economic progress. It will
require understanding additionally that pollution
control creates many benefits. Control of ocean pol-
lution improves the health of the oceans, boosts
economies, enhances tourism, restores fish stocks,
prevents disease, extends longevity, and enhances
well-being. These benefits will last for centuries.

Ultimate and sustainable prevention of chemical
pollution of the oceans will be achieved through
wide-scale adoption of non-polluting, renewable fu-
els, transition to a circular economy, and adoption
of the principles of green chemistry (Text Box 15).

TEXT BOX 14: Principles of a Circular Economy

In a circular economy, economic, and social develop-
ment is decoupled from the consumption of non-
renewable resources. The generation of pollution and
other forms of waste is minimized and replaced by recy-
cling and reuse [2]. The focus is on stability and equity
rather than endless growth.

The core principles of a circular economy are preserva-
tion of natural capital by reducing use of non-renewable
resources and ecosystem management; optimization of
resource yields by circulating products and materials
so that they are shared and their lifecycles extended;
and fostering system effectiveness by designing out pol-
lution, greenhouse gas emissions, and toxic materials
that damage health [2].

Evidence of global movement towards a circular econ-
omy is seen in policy-related recommendations to
control plastic pollution of the oceans that have been
proposed by the UN Food and Agriculture Organiza-
tion (FAO) and the Group of Experts on the Scientific
Aspects of Marine Environmental Protection (GESAMP).
These bold and visionary strategies call for sweeping
change in current, highly wasteful practices of plastic
production and consumption and for a global move
toward biodegradable, non-persistent polymers [572].
They provide a model for interventions against other
marine pollutants.
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TEXT BOX 15: The Promise of Green Chemistry

Green chemistry is “the design of chemical products
and processes to reduce and eliminate the use and gen-
eration of hazardous compounds” [573].

Adoption of the principles of green chemistry will
require a paradigm shift away from narrow considera-
tion of the properties and economic viability of new
molecules and chemical products towards considera-
tion and avoidance of their potential negative impacts
on humans, ecosystems, and society. This reorientation
will need to take place in every stage in the design and
development of new chemicals and new chemical prod-
ucts from their earliest inception.

Green chemistry takes special note of the potential
of new chemicals to cause low-dose toxicity through
mechanisms such as endocrine disruption and devel-
opmental toxicity, and it avoids new products that will
persist in the environment or in living organisms. The
goal is to create safe, nontoxic materials and technolo-
gies and thus prevent future health and environmen-
tal catastrophes while building a sustainable chemical
economy [574].

Wide-scale adoption of the principles and practices
of green chemistry coupled with broad movement
towards a circular economy could reduce pollution of
the world's oceans by manufactured chemicals and
plastic waste and end the need to balance the dangers
of toxic chemicals in seafood against the clear benefits
of seafood for human health.

7. Proposals for Removal of Pollutants from the
Oceans are of Limited Value. Various strategies
have been proposed for removal of plastic waste
from the oceans [575]. Removal of plastic pollution
by passive collection or vacuuming is not a viable
strategy because of the extremely wide distribution
of plastic waste in the oceans, their varying sizes
from visible to submicroscopic, and the likelihood
of by-catch of marine species.

Other remediation strategies have explored
breaking down synthetic microplastic polymers
in the oceans through the use of microorganisms
[576]. A number of fungal and bacterial strains
possess biodegradation capabilities and have been
found capable of breaking down polystyrene, poly-
ester polyurethane, and polyethylene. A special-
ized bacterium is able, for example, to degrade
poly(ethylene terephthalate) (PET) [577]. Such mi-
croorganisms could potentially be applied to sew-
age discharges in highly localized environments,
but scrupulous due diligence will be required prior
to their wider deployment to avoid unintended
consequences [578].

Bloom control — actions taken to suppress or de-
stroy HABs — has been proposed, but is challenging
and controversial. The science in this area is rudi-
mentary [331]. Physical removal of algal cells from
the water column using clay flocculation is current-
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ly the only strategy in routine use. In South Korea a
clay called “yellow loess” has been used since 1996
to control HAB blooms that threaten aquaculture
[579]. Likewise the Chinese have used clay to con-
trol algal blooms for over 20 years, with wide-scale
applications covering up to 100 km? [580].

In sum, it is far more effective and also more cost-
effective to prevent the entry of pollutants into the
world’s oceans than to try to remove them from the
seas after they have become dispersed.

8. Control of Ocean Pollution Will Advance the
Sustainable Development Goals (SDGs). All
actions taken to control and prevent pollution of
the oceans will advance attainment of multiple
SDGs.
- Most directly, control of ocean pollution will

advance SDG 14, which calls on all countries to

“prevent and significantly reduce marine pollu-

tion of all kinds, in particular from land-based

activities, including marine debris and nutrient

pollution” by 2025.

Control of ocean pollution will advance SDG 3,

which calls for improvement of human health

and well-being;

Additionally, control of ocean pollution will ad-

vance:

» SDG1, which calls for an end to poverty;

» SDG2, which calls for an end to hunger;

> SDG 6, which calls for clean water and sanita-
tion;

> SDG 8, which calls for decent work and sus-
tainable economic growth; and

» SDG12, which calls for responsible consump-
tion and production.

Recommendations - The Way Forward
Policy Priorities

- Prevent Mercury Pollution of the Oceans. Two
actions will be key to preventing further addition of
mercury to the oceans. These are:
1) Cessation of coal combustion; and
2) Control of inorganic mercury, especially in arti-

sanal and small-scale gold mining (ASGM).

Cessation of coal combustion will not only slow the
pace of climate change and reduce particulate air
pollution, but will also greatly reduce the atmos-
pheric emissions of mercury, thus reducing deposi-
tion of mercury into the oceans. Actions ongoing
under the Minamata Convention on Mercury are
seeking to identify and control major sources of
mercury pollution [34].
End Plastic Pollution of the Oceans and Con-
sider a Global Ban on Production of Single-Use
Plastic. Marine plastic pollution has become one of
three top priorities in global pollution identified by
UN Environment [581]. Many countries have taken
regulatory and social actions to control the use and
disposal of plastics and reduce plastic waste. These
include bans of single-use articles such as plastic
bags and straws and bans on the use of cosmetic
microbeads. In 2015, the United States banned the
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manufacture and distribution of cosmetic products
containing plastic microbeads. The EU parliament
has voted to ban several single-use plastic categories
(cutlery, cotton buds, straws and stirrers) by 2021.
Promote Effective Waste Management. Improve-
ment in collection and management of solid waste
is a key strategy for prevention and control of ma-
rine plastic pollution. UNESCO reports that seven of
the EU Member States plus Norway and Switzerland
now recover more than 80% of their used plastics.
These countries have adopted integrated waste and
resource management strategies to address each
waste stream with the best options. Rwanda, Ken-
ya, and some jurisdictions in the United Sates have
banned single-use plastic bags. These are model pro-
grams and have potential to extend to other coun-
tries.
Reduce Releases of Nitrogen, Phosphorus, Ani-
mal Waste, Industrial Discharges and Human
Sewage into Coastal Waters. Proper manage-
ment of coastal pollution can reduce the frequency
of HABs, prevent eutrophication, and alleviate the
burden of disease associated with HABs and marine
pathogens. Monitoring seafood, including farmed
fish, for human pathogens is a proven strategy for
tracking the efficacy these control efforts and reduc-
ing risk of disease. The UNESCO Blueprint for Ocean
and Coastal Sustainability includes proposals to
green the nutrient economy and achieve these goals
[578].
Create Marine Protected Areas. Designation of
new Marine Protected Areas around the world will
safeguard critical ecosystems, protect vulnerable
fish stocks, and enhance human health and well-
being. Creation of Marine Protected Areas is an
important manifestation of national and interna-
tional commitment to protecting the health of the
seas.
Support Robust Monitoring of Ocean Pollution.
To safeguard human health in all countries against
pollutants in the oceans and to protect consumers
against pollutants in seafood, pollutant monitoring
programs and monitoring capacity need to be ex-
tended worldwide. Specific needs are the following:
- Assist countries with the establishment and cer-
tification of monitoring programs for chemical
pollutants, algal toxins, microplastics, and micro-
bial pathogens in seafood products.
Build and sustain strong transdisciplinary teams
of scientists and strengthen analytical capabili-
ties at the national level to provide countries
with capability to respond to new and unexpect-
ed marine pollutants.
Develop new monitoring capabilities using net-
works of in situ sensors that can detect toxic
chemical pollutants, HAB cells and their toxins,
microplastics and pathogenic bacteria.
Support the global efforts of the IOC-UNESCO In-
tergovernmental Panel on Harmful Algal Blooms
(IPHAB) [389)].
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Enhance communication, literacy and outreach

efforts so that the risks of human illness and

death from ocean pollutants is recognized and

understood throughout all levels of society.
Extend Regional and International Marine
Pollution Control Programs to all Countries.
A number of regional and international pollution
control strategies have been developed and im-
plemented in recent decades. (See Text Box 16).
These policies recognize the reality that pollution
of the oceans transcends national boundaries and
that mitigation must therefore involve not only
efforts within countries, but also transnational,
regional and even global efforts. Effective monitor-
ing strategies in support of these programs need
to link ecological and human health data, and not
keep these two streams of information separate
[582, 583]. In the years ahead it will be important
that these beneficial programs be extended to all
countries and that they be adequately funded by
national governments and international organiza-
tions [12].

TEXT BOX 16: Regional and International Marine
Pollution Control Programs.

» The London Convention on the Prevention of
Marine Pollution by Dumping of Wastes and Other
Matter (1975) and its Protocol (1996)

» The United Nations Convention on the Law of the
Sea (1982)

» The OSPAR Convention for the Protection of the
Marine Environment of the North-East Atlantic
(1992)

» The Bucharest Convention on the Protection of the
Black Sea against Pollution (1992)

» The Helsinki Convention on the Protection of the
Marine Environment of the Baltic Sea Area (1992)
and its Action Plan (2007)

» The Barcelona Convention for the Protection of the
Marine Environment and the Coastal Region of the
Mediterranean (1995) and its Protocols (2005)

» The Stockholm Convention on Persistent Organic
Pollutants (2001)

» The Strategic Action Plan for the Environmental Pro-
tection and Rehabilitation of the Black Sea (2009)

» The Minamata Convention on Mercury (2013)

» The United Nations Decade of Ocean Science for
Sustainable Development (2021-2030)

Ultimately, prevention and control of ocean
pollution can be achieved by transition to a
circular, more efficient, less wasteful economy
and embracing the precepts of green chemis-
try [572, 584]. This is a high-level strategy that will
take years to accomplish. It is, however, an essential
requirement for the prevention of ocean pollution
and mitigation of global climate change (See Text
Boxes 14 and 15).
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Research Priorities

The overall goal of the following research recommenda-
tions is to increase knowledge of the extent, severity, and
human health impacts of ocean pollution. A second goal
is to better quantify the contributions of ocean pollution
to the global burden of disease (GBD). Findings from the
GBD study have become powerful shapers of health and
environmental policy and are used by international agen-
cies and national governments to set health and environ-
mental priorities and guide the allocation of resources. It
is therefore critically important that accurate information
on the disease burden attributable to ocean pollution
be accurately and fully captured in the GBD analysis and
made available to policy-makers. Specific recommenda-
tions are the following:

Improved mapping of ocean pollution and its
health impacts. A major impediment to estimating
the GBD attributable to pollution of the oceans is a
lack of comprehensive, geospatially coded measure-
ments that display current information on the types
and concentrations of pollution in seas around the
world and their impacts on human health and well-
being. Absent this information, it is not possible to
estimate the sizes of the populations exposed to
ocean pollutants or their levels of exposure. Oppor-
tunity exists here to apply new technologies such
as satellite imaging and ocean sampling by marine
saildrones and autonomous underwater vehicles
coupled with big data analyses that integrate data
from multiple sources.

Monitoring for all of the chemical and biological
hazards in the oceans should increase in scope and
be coordinated globally. It is possible to monitor for
some biological hazards, ocean pH, and temperature
in sensors that are part of the Global Ocean Observ-
ing system (GOOS) within the UN system. Enhanc-
ing this capability and adding sensors for chemical
hazards that incorporate new technologies and ca-
pabilities is an objective that may be achieved by
partnering with programs such as the Partnership
for Observation of the Global Ocean (POGO).
Enhanced sampling of pollutant concentrations
in fish, shellfish, and marine mammals. Because
consumption of contaminated seafood is the major
route by which chemical pollutants in the ocean as
well as HAB toxins reach humans, better informa-
tion is needed on concentrations of key pollutants
in seafood. High-quality data are available from
high-income countries, but much less information
is available from the countries of the Global South.
Improved tracking of biomarkers that are early
indicators of damage caused to human health
and marine ecosystems by chemical pollutants.
Expanded coverage of ocean sampling for ma-
rine pathogens. Techniques have been developed
for monitoring the global spread of pathogenic bac-
teria, such as Vibrio species, but these techniques
have been deployed to date in only a few areas of
the world. Expanded geographic coverage of marine
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bacterial sampling — especially into areas important
for commercial fishing, shellfish harvesting and ag-
uaculture — coupled with real-time information on
sea surface temperature will be important for track-
ing, and predicting the spread of life-threatening
bacteria and for mobilizing early responses to new
outbreaks of diseases.
Improved studies of human exposure to ocean
pollutants. A major impediment to developing esti-
mates of the GBD attributable to ocean pollutants is
lack of detailed, population-level studies of human
exposures to marine pollutants. Conducting such
studies in a number of countries will elucidate the
importance of such factors as geographic variation
in background exposure to pollutants, in seafood
consumption, in pollutant concentrations in sea-
food, and in exposures to toxic chemicals via routes
other than consumption of contaminated seafood.
Improved assessments of combined effects of
exposures to multiple ocean pollutants. Humans
are seldom exposed to pollutants one at a time. In-
stead, people are typically exposed to complex mix-
tures of pollutants. The limited available evidence
indicates that these combined exposures can pro-
duce additive, synergistic, and antagonistic effects.
Implementation research. Transdisciplinary in-
ternational cooperative implementation research
is needed to identify best practices and feasible,
cost-effective solutions to prevention and control
of ocean pollution. This research will build upon
and codify the findings that have emerged from the
case studies in success against ocean pollution pre-
sented in this report. Continuing research and de-
velopment into biodegradable polymers will be an
important component of this research [572].
Enhanced capacity in ocean research and moni-
toring. The building of professional capacity in all
countries will be of great importance to safeguard-
ing human health against ocean pollution and its
health consequences. Key elements of building pro-
fessional and scientific capacity building are:
Build and sustain strong teams of scientists at the
national level to provide each country with ca-
pacity to respond to new and unexpected marine
pollutants and assess their health impacts.
Establish lines of communication and collabora-
tion between marine scientists and public health
agencies and institutions [531].
Support the global efforts of the IOC-UNESCO In-
tergovernmental Panel on Harmful Algal Blooms
(IPHAB), which coordinates actions at a policy level
and that relies on the work of institutions in many
countries, and contributes to achieve the SDGs.
Develop new monitoring capabilities using net-
works of in situ sensors that can detect toxic
chemical pollutants, HAB cells and their toxins,
microplastics, and pathogenic bacteria.
Deploy improved analytical capabilities to docu-
ment health and economic benefits of programs
to control and prevent ocean pollution.
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Assist countries with the establishment and cer-
tification of monitoring programs for chemical
pollutants, algal toxins, microplastics, and patho-
genic bacteria in seafood products.

Strengthen analytical capabilities at the national
level.

Support research and application of technologies
for control of marine pollutants.

Enhance communication, literacy and outreach
efforts so that the risks of human illness and
death from ocean pollutants is recognized and
understood throughout all levels of society.

Additional Files
The additional files for this article can be found as follows:

- Supplementary Appendix. This Supplementary
Appendix contains additional references and docu-
mentation supporting the information presented in
the report, Human Health and Ocean Pollution. DOI:
https://doi.org/10.5334/aogh.2831.s1

- Declaration of Monaco. This Declaration summa-
rizes the key findings and conclusions of the Monaco
Commission on Human Health and Ocean Pollution.
It is based on the recognition that all life on Earth
depends on the health of the seas. It presents a Call
to Action — an urgent message addressed to leaders in
all countries and to all citizens of Earth urging us to
safeguard human health and preserve our Common
Home by acting now to end pollution of the ocean.
DOI: https://doi.org/10.5334/a0ogh.2831.s2
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