
Gradient Disaggregation: Breaking Privacy in Federated Learning by
Reconstructing the User Participant Matrix

Maximilian Lam 1 Gu-Yeon Wei 1 David Brooks 1 Vijay Janapa Reddi 1 Michael Mitzenmacher 1

Abstract
We show that aggregated model updates in fed-
erated learning may be insecure. An untrusted
central server may disaggregate user updates from
sums of updates across participants given repeated
observations, enabling the server to recover privi-
leged information about individual users’ private
training data via traditional gradient inference at-
tacks. Our method revolves around reconstruct-
ing participant information (e.g: which rounds
of training users participated in) from aggregated
model updates by leveraging summary informa-
tion from device analytics commonly used to mon-
itor, debug, and manage federated learning sys-
tems. Our attack is parallelizable and we suc-
cessfully disaggregate user updates on settings
with up to thousands of participants. We quanti-
tatively and qualitatively demonstrate significant
improvements in the capability of various infer-
ence attacks on the disaggregated updates. Our
attack enables the attribution of learned proper-
ties to individual users, violating anonymity, and
shows that a determined central server may un-
dermine the secure aggregation protocol to break
individual users’ data privacy in federated learn-
ing.

1. Introduction
Federated learning is a method for collaboratively learning
a shared model across multiple participants and enhances
privacy by limiting data sharing (McMahan & Ramage,
2017; Hard et al., 2018; Bonawitz et al., 2019; Konečný
et al., 2017; 2015). Participants’ data privacy is preserved
by sending model updates rather than raw data, which limits
the amount of information that is exposed to the central
server. In the context of applications, federated learning
participants are edge devices such as users’ smart phones

1Harvard University, Cambridge, MA. Correspondence to:
Maximilian Lam <maxlam@g.harvard.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

or wearables, and maintaining the integrity of their data is a
critical issue. Already, federated learning has been deployed
by many major companies in various privacy sensitive appli-
cations including sentiment learning, next word prediction,
health monitoring, content suggestion, and item ranking
(Hard et al., 2018; Li et al., 2020; Bonawitz et al., 2019).
Guaranteeing data privacy in these scenarios is becoming
increasingly important as the topic of privacy becomes more
heavily scrutinized by the greater public and by government
regulations (McMahan & Ramage, 2017; McCabe, 2013;
FTC, 2019).

Recent research has shown that model updates may unin-
tentionally leak information about their respective training
examples (Geiping et al., 2020; Melis et al., 2019; Zhu et al.,
2019). A central server that obtains participants’ model
updates may perform inference attacks to learn significant
information about participants’ training data, violating the
core privacy principles of the federated learning paradigm.
To address this critical privacy flaw, researchers have intro-
duced methods leveraging secure multiparty computation
to limit the central server’s visibility into individual partici-
pants’ model updates. Notably, secure aggregation (Segal
et al., 2017; So et al., 2020) has emerged as a standard se-
curity protocol which ensures that the central server may
see only the final sum of model updates, rather than any
individual update by itself. Thus, information learned from
the aggregated model update may not be attributed to a spe-
cific user, which offers a layer of privacy against the central
server. Additionally, by aggregating updates over tens to
hundreds or thousands of users, updates are obfuscated to a
point where most inference attacks are rendered ineffectual
(Melis et al., 2019; Geiping et al., 2020; Zhu et al., 2019).

The secure aggregation protocol is secure only to the degree
that it hides individual participants’ model updates. A pro-
cedure that disaggregates individual participants’ updates
or gradients from their sum would undermine the secure
aggregation protocol and unveil the aforementioned privacy
vulnerability. In this work, we develop a method for gradi-
ent disaggregation, showing that secure aggregation offers
little privacy protection against an adversarial server seeking
to undermine individual users’ data privacy. Our key insight
is that participant information (e.g: which rounds of training

ar
X

iv
:2

10
6.

06
08

9v
1

 [c
s.C

R
]

10
 Ju

n
20

21

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

...
...

Figure 1. Our gradient disaggregation attack observes multiple
rounds of aggregated model updates and leverages side channel in-
formation in the form of summary analytics collected by federated
learning systems (how often users participated across certain train-
ing rounds) to uncover individual users’ private model updates,
undermining the secure aggregation protocol. Code: https:
//github.com/gdisag/gradient_disaggregation.

users participated in) is derivable from aggregated model
updates, when observing multiple rounds of training and
leveraging summary analytics. We can reconstruct this infor-
mation and use it to recover participants’ individual model
updates (see Figure 1). Our contributions are as follows:

• We introduce and formulate the gradient disaggrega-
tion problem as a constrained binary matrix factoriza-
tion problem. Leveraging summary analytics collected
by federated learning systems, we demonstrate that
our disaggregation attack can exactly recover the user
participant matrix on up to thousands of participants,
revealing the model update of each user. Additionally,
we show that gradient disaggregation works even in
the presence of significant noise and allows us to disag-
gregate aggregated model updates that were generated
by federated averaging.

• We leverage gradient disaggregation to significantly
improve the quality of traditional inference attacks
on model updates. We show that without gradient
disaggregation, inference attacks often fail to recover
meaningful information on updates aggregated across
tens to hundreds of users; with gradient disaggregation,
we show successful recovery of users’ privileged data
from their disaggregated model updates.

2. Related Work
2.1. Secure Aggregation

Secure aggregation is a method based on secure multiparty
computation and is a key privacy measure deployed in fed-
erated learning systems. Secure aggregation ensures that
the central server sees only the final aggregate of model
updates across users while guaranteeing that no participants’
updates are revealed in the clear (Segal et al., 2017). The se-
cure aggregation protocol enhances privacy by obfuscating

a user’s model update with many other users’ updates, lim-
iting inference attacks such as those in (Melis et al., 2019;
Geiping et al., 2020; Zhu et al., 2019). This obfuscation
also ensures that information learned from the aggregated
model update may not be attributed to an individual user.
Concretely, on the issue of attribution, the secure aggrega-
tion paper states: ”Using a Secure Aggregation protocol
to compute these weighted averages would ensure that the
server may learn only that one or more users in this ran-
domly selected subset wrote a given word, but not which
users” (Segal et al., 2017).

Our work on gradient disaggregation undermines the secure
aggregation protocol by showing that, through observing
multiple rounds of collected data and leveraging side chan-
nel information (specifically, user participation frequency
as collected by federated learning systems), individual up-
dates may be reconstructed from their overall sums. While
secure aggregation has been proven to be cryptographically
secure, leaking no information which is not leaked by the
aggregated model update itself (Segal et al., 2017), the key
insight of our attack is that participant information (e.g:
which rounds each user participated in) is derivable from
the aggregated model updates and reconstructing it allows
us to in turn recover individual model updates.

2.2. Analytics in Federated Learning Systems

Infrastructure to support, debug, and manage federated learn-
ing systems is critical to their functioning. (Bonawitz et al.,
2019) outlines the design of Google’s federated learning
systems and describes its core components and protocols. A
key aspect of their infrastructure is the collection of device
analytics. Notably, (Bonawitz et al., 2019) collect several
important device metrics such as how often devices per-
formed training, how much memory devices used during
training, etc (Bonawitz et al., 2019). These metrics ensure
that users’ devices are not oversubscribed (draining bat-
tery) and may be used to debug device performance issues.
Device analytics play a critical role in maintaining user
experience quality: ”Device utility to the user is mission
critical, and degradations are difficult to pinpoint and easy to
wrongly diagnose. Using accurate analytics to prevent feder-
ated training from negatively impacting the device’s utility
to the user accounts for a substantial part of our engineering
and risk mitigation costs.” (Bonawitz et al., 2019)

In our work, we leverage summary information from device
analytics – specifically how often a user performed training
– to assist disaggregating gradients, breaking privacy. Note
while (Bonawitz et al., 2019) points out that device analytics
contain no personally identifiable information, these reports
nevertheless provide crucial information that links gradient
information collected across rounds, facilitating our attack
on disaggregating gradients.

https://github.com/gdisag/gradient_disaggregation
https://github.com/gdisag/gradient_disaggregation

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

2.3. Product Identification by Solving Linear Inverse
Problem

Recently, independent of our work, research has shown that
individual item product prices may be recovered given cus-
tomer’s transaction history by optimizing a linear inverse
problem (Fleder & Shah, 2020). Under certain conditions
(e.g: assuming that in the transaction history each item was
purchased by itself at least once) their approach recovers
these item prices with high precision and allows them to
reveal customers’ spending habits. Specifically, given a
corpus of sums of item prices from customers’ transaction
histories, (Fleder & Shah, 2020) utilizes a subset sum algo-
rithm to uncover the individual prices of the transaction and
to identify the products themselves.

Our work on gradient disaggregation and the work in (Fleder
& Shah, 2020) solve the same core problem: uncovering
individual values given observations of their sums. While
their work recovers prices of items, our work analogically
reconstructs participants’ model gradients. However, a key
distinction in (Fleder & Shah, 2020) is the assumption that
each item must be purchased individually at least once. This
makes their approach unsuitable for disaggregating aggre-
gated model updates as, under the secure aggregation proto-
col, each aggregated update is composed of more than one
participant’s model updates.

2.4. Data Leakage from Model Updates

Recent research has shown that model updates and gradi-
ents leak significant amounts of information. Information
leaked by model updates ranges from specific properties
to entire data samples (Melis et al., 2019; Zhu et al., 2019;
Geiping et al., 2020; Shokri et al., 2017; Qian & Hansen,
2020; Wei et al., 2020; Lyu et al., 2020; Athalye et al., 2018;
Mengkai et al., 2020; Hitaj et al., 2017). Methods to recover
this information from gradients are broadly categorized as
inference attacks, and prior works have demonstrated the
effectiveness of inference attacks on small batches of gradi-
ents, across various modalities ranging from image to text
(Shokri et al., 2017), on both shallow and deep networks
(Geiping et al., 2020).

In the context of federated learning, these methods suffer
decreased efficacy with larger aggregates (> 100) (Melis
et al., 2019; Zhu et al., 2019; Geiping et al., 2020). Our
work on gradient disaggregation facilitates these attacks by
de-obfuscating these updates and by enabling attribution of
learned properties to specific users.

2.5. Privacy Attacks in Federated Learning

Recent works have introduced various privacy attacks on
federated learning. Broadly, these attacks are performed by
a malicious central server or by participants with influence

over model training (Lyu et al., 2020). Threats from an
adversarial central server typically involve extracting pri-
vate information via inference attacks as described in the
previous section. Attacks by adversarial participants, on the
other hand, involve influencing the model training process
to alter the behavior of the trained model (e.g: model poi-
soning, backdoors)(Wang et al., 2020; Bagdasaryan et al.,
2019; Fung et al., 2020; Blanchard et al., 2017).

Our work on gradient disaggregation falls under the cate-
gory of an attack performed by a malicious central server.
Specifically, gradient disaggregation breaks the secure ag-
gregation protocol and enables a central server to perform
inference attacks on individual participants’ model updates.

3. Gradient Disaggregation
3.1. Problem Statement, Threat Model and

Assumptions

Gradient disaggregation involves uncovering individual par-
ticipants’ model updates given observations of their sums.
Concretely, on round r the central server receives

Gaggregated[r,:] =
∑
s∈Sr

M(s)

where Sr is the selected participants on round r, and M(s)
are the model updates. The goal of gradient disaggregation
is, acting as an adversarial central server, to recover M(s)
given Gaggregated (aggregated gradients across n rounds).

Our threat model and assumptions are as follows:

• The central server is adversarial but is limited in its
ability to modify the training protocol. Specifically,
we assume the central server may fix its model across
rounds. Such a scenario is realistic in a case where an
attacker has read access to corporation servers (e.g: to
collect round model update data) and limited influence
over when the global model is updated (e.g: to fix the
model across rounds). An adversarial central server is
a major threat model in federated learning (Lyu et al.,
2020; Li et al., 2020; Kairouz et al., 2019)

• Client selection / device participation (Sr) is somewhat
random and is a subset of the total number of users.
This matches the federated learning protocol which se-
lects a random fraction of devices to participate in each
round of training (Bonawitz et al., 2019; McMahan &
Ramage, 2017; Li et al., 2020).

• The central server has access to side channel informa-
tion in the form of summary analytics (specifically,
how often users participated across certain federated
learning rounds). Device and summary analytics are a

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

core part of federated learning systems and infrastruc-
ture (Bonawitz et al., 2019).

3.2. Gradient Disaggregation by Reconstructing the
User Participant Matrix

A central server that observes aggregates of users’ updates
that are constant across rounds obtains

Gaggregated = PGindividual (1)

where Gaggregated ∈ Rn×d are the final aggregated di-
mension d gradients the server collected across n rounds;
P ∈ {0, 1}n×u is the user participant matrix across the n
rounds with u total participants specifying which users par-
ticipated in which rounds; andGindividual ∈ Ru×d contains
per user individual gradients. Hence, recoveringGindividual

may be viewed as a matrix factorization problem where the
left term is binary.

To approach this matrix factorization problem, we start with
the method introduced in (Slawski et al., 2013), which, to
the best of our knowledge, is one of the only works to
address matrix factorization where the left term is binary.
(Slawski et al., 2013) first reconstructs the binary user par-
ticipant matrix P , then recovers Gindividual by inverting P
from Gaggregated. As observed by (Slawski et al., 2013),
columns of P lie in the image of Gaggregated. Hence, with
Nul(M) as the kernel of a matrix, an approach to solving
this factorization problem would be to recover each column
pk of P :

Find pk s.t Nul(GT
aggregated)pk = 0

pk ∈ {0, 1}n
(2)

In the context of federated learning, this attempts to recover
individually for each user which rounds they participated in.
Note that such an optimization procedure can be solved us-
ing standard mixed-integer programming frameworks such
as (Gurobi Optimization, 2020) and can additionally be
parallelized across each user.

However, this approach is not sufficient for gradient dis-
aggregation due to three issues: 1) failure to distinguish
between the numerous binary vectors in the image of
Gaggregated, 2) inability to distinguish between user so-
lutions and 3) computational difficulties due to the exponen-
tial nature of the optimization problem (recovering pk is NP
hard and (Slawski et al., 2013) reports only being able to
solve up to n = 30 vectors). To address these issues, we
incorporate summary analytics to assist factorization.

3.3. Leveraging Summary Analytics to Reconstruct P

We leverage summary information from device analytics
as collected in (Bonawitz et al., 2019) to assist reconstruct-
ing P . Specifically, summary analytics that are collected

periodically by the central server log how often a specific
user participated in training and can be used to narrow down
pk by limiting the total number of participations across
certain training rounds (see our Related Works section for
details). We capture partial information on participations
across rounds by introducing linear constraints: the i’th con-
straint Ci

k ∈ {0, 1}n specifies for the k’th participant the
training rounds for which total number of participations cik
is known. For example, knowing that a user participated in
training 3 times between rounds 1-5 and 2 times between
rounds 6-10 yields C1

1 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0], c11 = 3,
C2

1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1], c21 = 2.

We therefore add the individual constraints.

Ci
kpk − cik = 0 (3)

After collecting all j constraints and counts across all users,
we combine them into

Ck =

 C1
k
...
Cj

k

 , ck =

c
1
k
...
cjk

 (4)

Incorporating them into the optimization, we obtain

Find pk s.t. Nul(GT
aggregated)pk = 0

pk ∈ {0, 1}n

Ckpk − ck = 0

(5)

We note that it is possible that devices timestamp the ex-
act moment they perform a round of training; in this case,
P may be revealed directly through the specificity of the
constraints (making the disaggregation problem solvable
through a simple linear regression). However, even if de-
vices log only the total number of times they performed
training (with no timestamped data) and send these analyt-
ics back to the server once every few rounds of participation,
the central server may piece together these constraints and
incorporate them into the formulation above. In other words,
just knowing the number of times particular users performed
training and collecting this information periodically (both of
which are reasonable based on (Bonawitz et al., 2019)), the
central server may obtain enough information to carry out
the gradient disaggregation attack. Incorporating summary
analytics into the gradient disaggregation attack is signif-
icant as it greatly reduces the problem space, allowing a
solution to a previously intractable problem.

3.4. Disaggregating Noisy Model Updates

Previously, we assumed users submitted the same model
update across every round. However, participants may per-
form updates composed of multiple steps (e.g: FedAvg) or

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

their data may change, leading to differences in the updates
they submit across rounds. We treat these differences as a
form of injected noise.

Accounting for noise, our formulation becomes

Gaggregated = PGindividual avg + noise (6)

and our goal is to recover for each user the average model
update they submitted across rounds Gindividual avg. We
introduce two changes to reconstruct P in the presence of
noise: 1) we use hard-threshold SVD with u singular values
to approximate the low rank product PGindividual avg and
2) we relax our constraint satisfaction problem to minimize
the distance of the user participant column to the image of
Gaggregated:

min ||Nul(GT
aggregated)pk||2

pk ∈ {0, 1}n

Ckpk − ck = 0

(7)

These two changes allow reconstructing P even when the
updates user submit across rounds are noisy.

Note that we may have incomplete information for each user;
for example, we may have constraints for a user over certain
rounds but not others if the infrastructure only provides that
information sporadically (or hides it). Additionally, if round
participations are inexact (e.g: off by some small error), we
may relax the hard constraint Ckpk − ck = 0 to be a soft
constraint: min||Ckpk − ck||2 and reweight the objective
accordingly. Additionally, we can check whether our solu-
tion exactly recovers P by probing the number of optimal
solutions returned by the mixed integer programming solver;
if the solver returned only one optimal solution (and proved
that it is the only one), then this indicates that our recon-
struction of P is exact. Our full gradient disaggregation
attack which works both for noisy and non-noisy updates is
presented in Algorithm 1.

4. Results
4.1. Capabilities and Limitations of Disaggregation

We experimentally validate the capabilities and limitations
of our gradient disaggregation procedure across various
parameter settings. Note that unlike prior works performing
server side attacks on privacy in federated learning, our
method leverages participant information and rounds of
aggregated gradients. Hence in our experiments we generate
this information (across various settings) to understand how
our attack behaves under different conditions. We evaluate
the following parameters:

• Number of Rounds: Number of rounds of training n

Algorithm 1 Gradient Disaggregation

Input: Aggregated gradients Gaggregated; constraint
windows C; constraint sums c, number of users u
Output: Disaggregated gradients Gindividual avg

U,Σ, V ←− SV D(Gaggregated)
Gdenoised ←− UΣ[0 : u]V
for i = 1 to u do
pi ←− min ||Nul(GT

denoised)pi||2 s.t. pi ∈
{0, 1}n and Cipi − ci = 0

end for

P ←− [p1, ..., pu]
return LeastSquares(P,Gaggregated)

• Number of Users: Number of users in system u.
• Participation Rate: Fraction of participants chosen to

participate in each round.
• Constraint Granularity: Granularity of windows

across rounds with known participation sums, per user.
(E.g: granularity of 10 means we know how many
times each user participated across every 10 rounds).

• Gradient Noise: Noise of user model updates across
rounds.

We run all experiments on a 64-core cpu and use the Gurobi
optimizer (Gurobi Optimization, 2020).

Number of Users
We validate the maximum number of users and rounds
we can disaggregate on synthetically generated matrices.
Gindividual is sampled from N (0, 1), P is sampled with
sparsity = participation rate = .1, and constraint granular-
ity=10, with no noise between submitted gradients. For
users ∈ {16, 32, 64, 128, 256, 512, 1024} we scan over
rounds ∈ {16, 32, 64, 128, 256, 512, 1024, 2048} and
report the minimum number of rounds to successfully dis-
aggregate P with 100% accuracy over 30 trials. Figure
2(a) shows the number of rounds required to exactly re-
cover P across number of users; data shows that we can
disaggregate matrices with thousands of user participants
with enough observed gradients. Additionally, we plot suc-
cess rate of reconstructing an individual column for users ∈
{256, 512, 1024} which is shown in Figure 2(b) which fur-
thermore reinforces that more rounds of observed gradients
can increase reconstruction success rate. We also evaluate
the relation that rounds vs users has on the runtime of the
solver, shown in Figure 3, where we measure the runtime
to exactly recover columns of P (with a maximum time
limit of 180 seconds per column). Results show that larger
P require more time to solve. Additionally fewer rounds
leads to slower reconstruction as there are fewer constraints,
while too many rounds leads to slower optimization due to
large matrix sizes. Note we report time per column, as each

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

column is solved in parallel.

(a) Rounds required to recon-
struct P with 100% accuracy
vs number of users.

(b) Success rate of recovering
columns of P versus rounds.

Figure 2. Relationship between rounds vs number of users in gra-
dient disaggregation. We successfully disaggregate settings with
thousands of users with enough observed aggregated updates.

Figure 3. Mean, min, and max times to reconstruct columns of
P vs rounds. More users require more time to recover P ; too
few rounds slows optimization due to lack of constraints; too
many rounds slows optimization due to large vector sizes. We
disaggregate thousands of users’ gradients in minutes on a 64-core
cpu.
Participation Rate
We evaluate the effect of participation rate – the probability
that a user is selected to take part in a round of training
– on gradient disaggregation. We use the same parameter
settings as in the previous section and scan participation
rate ∈ {.10, .20, .30, .40, .50} across various numbers of
user participants, measuring number of rounds of observed
aggregated gradients required to successfully reconstruct P
with 100% accuracy across 30 trials. As shown in Figure
4(a), higher participation rate requires more rounds to recon-
struct P . Intuitively, more participants per round leads to
higher obfuscation of user updates, requiring more rounds to
decode. However, as indicated, by observing more rounds
of collected gradients, P is eventually reconstructed ex-
actly. We additionally evaluate participation rate’s effect
on runtime which is shown in 4(b). Higher participation
rate makes the reconstruction problem more difficult and
hence requires longer to solve. Note that federated learning
settings have between tens to hundreds of round participants
(Li et al., 2020; Bonawitz et al., 2019) and we have chosen
these points to reflect this as accurately as possible.

Constraint Granularity
We evaluate the effect of constraint granularity on
gradient disaggregation. We consider granularities ∈

(a) Rounds required to recon-
struct P with 100% accuracy
vs participation rate.

(b) Mean, min, and max run-
time to reconstruct columns of
P vs participation rate.

Figure 4. Effect of participation rate in gradient disaggregation.
Higher participation rate can be compensated for by observing
more rounds of aggregated gradients. We recover P even in the
presence of many round participants.

{10, 20, 30, 40, 50}. Figure 5(a) shows that coarser con-
straints make reconstruction more difficult, requiring more
rounds of observed aggregated gradients. Additionally, for
reference Figure 5(b) shows the histogram of the number
of times a user participates within a granularity window at
different constraint granularities. Eventually, with enough
observed rounds of aggregated gradients, the participant
matrix P is exactly recoverable. Our results indicate that
less detailed analytics may be compensated for by observing
more rounds of aggregated model updates.

(a) Rounds required to recon-
struct P with 100% accuracy
vs constraint granularity.

(b) Histogram of number of
user participations across con-
straint windows.

Figure 5. Effect of constraint granularity in gradient disaggregation.
Coarser constraints can be compensated by observing more rounds
of aggregated gradients.

Noisy Model Updates / FedAvg
We address the scenario where model updates submitted
by users are noisy across rounds, which may be due to
the stochasticity of the optimization (e.g: the FedAvg al-
gorithm). Initial experiments synthetically generate user
ground truth gradients and inject noise into them at aggrega-
tion time. We initialize user vectors sampled from N (0, 1)
then inject noise sampled fromN (0, σ) to each user’s vector
at aggregation time, measuring the gradient dimension re-
quired to exactly reconstruct P . We perform the experiment
with 100 users, a participation rate of .1 and constraint gran-
ularity of 10, with a 600 second time limit on reconstructing
each column of P .

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

Figure 6(a) shows the minimum gradient dimension (d) that
is required to exactly reconstruct P with 100% success rate.
Note that unlike prior experiments, increased noise may
be compensated for by incorporating a higher number of
the parameters of the model update (rather than observing
more rounds of gradients). As even the smallest neural net-
work models contain thousands or millions of parameters
(Han et al., 2016; 2015; Howard et al., 2017), this indi-
cates that the attack may handle significant levels of noise.
Furthermore, note that the dimension of the model update
does not significantly affect solver time as the nullspace of
Gaggregated is computed only once and reused across users.

(a) Number of parameters of
the gradient dimension re-
quired to recover P exactly.

(b) Relative noise of FedAvg
updates on Cifar10 LeNet;
batch size b, momentum m,
dataset fraction f .

Figure 6. Effect of noise on gradient disaggregation.

Dataset Size D Batch Size b Local Epochs e
1 2 4 8 16 32 64

64
8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

128
8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

64 (momentum=.9)
8 .99 1.0 1.0 1.0 1.0 1.0 1.0

16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

128 (momentum=.9)
8 1.0 1.0 1.0 1.0 1.0 1.0 .96

16 1.0 1.0 1.0 1.0 1.0 1.0 1.0
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

64 (fraction=.9)
8 .06 .66 .97 .99 .98 .99 .85

16 1.0 1.0 1.0 1.0 1.0 1.0 .99
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

128 (fraction=.9)
8 1.0 1.0 1.0 1.0 1.0 1.0 .90

16 .59 .96 1.0 1.0 1.0 1.0 .99
32 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 1. Fraction of P reconstructed with FedAvg model updates
(users=100, rounds=200, Cifar10 LeNet, participant rate=.1, gran-
ularity=10, time limit per column=10 min). We exactly reconstruct
P in the majority of FedAvg settings.

Additionally, we perform experiments on gradient disag-
gregation using model updates generated by the FedAvg
algorithm (McMahan et al., 2017), on Cifar10 (Krizhevsky,
2009) with a LeNet neural network (SGD lr=.01). FedAvg
performs multiple epochs of training over the participant’s
dataset before sending the final model difference back to
the central server. We evaluate gradient disaggregation on
updates generated by FedAvg over various parameter set-

tings: local batchsize b, epochs e, user dataset size D (see
(McMahan et al., 2017) for more details on these parame-
ters); additionally, we simulate a shift in data distribution by
randomly sampling a fraction f of participants’ total data
set during computation of model updates; finally we test
disaggregation on updates generated with and without SGD
momentum m. Figure 6(b) shows that relative variance of
model updates (D = 128) increases with epochs of train-
ing, with momentum and with a shifting data distribution.
However, as Table 1 shows we can reconstruct P exactly
in nearly all cases. The failure cases happen at lower (≤
1) or higher epochs (≥ 64) of training. At lower epochs,
we believe parameters of the update are smaller and less
distinguished from each other, making reconstruction more
difficult; at higher epochs, reconstruction is more difficult
as updates are more noisy. With 2 − 32 epochs, we are
generally able to exactly recover P across the settings.

4.2. Gradient Inversion Attacks with Disaggregation

We evaluate the benefits of gradient disaggregation
on two methods to invert images from their gradi-
ents. Generally, gradient inversion methods optimize
image data x′,y′ to match the target gradient ∇W :
arg minx′,y′ ||∂l(F (x′,W),y′)

∇W − ∇W ||2 (Zhu et al., 2019).
This optimization grows exponentially more difficult with
larger aggregates (Geiping et al., 2020; Zhu et al., 2019);
we use gradient disaggregation to reduce the aggregate and
improve the quality of the inverted images. To quantitatively
measure quality, we use PSNR as in (Geiping et al., 2020).
In our results we only show the reconstructed image with
the smallest corresponding PSNR to a ground truth image
for space.

We perform the attack in (Zhu et al., 2019) on an MLP
network on Cifar100 and show the effect of inversion with
and without gradient disaggregation across multiple users
with each user having 1 image in their dataset (submitting
full gradients of that image). Figure 7 shows the closest
reconstructed image to a user’s data example and Table 2
shows the corresponding PSNR achieved. With gradient dis-
aggregation, we recover the target user’s exact gradient and
hence the reconstructed image is high quality. Without dis-
aggregation, reconstruction quality degrades significantly.

We furthermore perform the attack in (Geiping et al., 2020)
to invert noisy FedAvg updates. Figure 8 and Table 3 show
the results of inverting fedavg updates with local epochs =
4, batch size = 16, user data set size = 64, with and without
gradient disaggregation (100 users, 2 layer MLP). With gra-
dient disaggregation we achieve similar quality as inverting
a single model update, whereas inverting an update aggre-
gated over multiple users (users=10) significantly degrades
reconstruction quality.

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

(a) users=1
(or with
disaggrega-
tion)

(b) users=2
(no disaggre-
gation)

(c) users=4
(no disaggre-
gation)

(d) users=32
(no disaggre-
gation)

Figure 7. Recovered images from gradients across users (top im-
age is the closest ground truth). Gradient disaggregation recovers
individual users’ exact gradients, hence, performing the gradient
inversion attack with gradient disaggregation on multiple users
yields the same quality as performing the attack on just one user.
Without disaggregation, gradient inversion fails on gradients ag-
gregated across more users.

users=1 users=2 users=4 users=32
PSNR 36.5 18.8 13.9 6.1

Table 2. Corresponding PSNR scores against ground truth for Fig-
ure 7

(a) users=1 (no
disaggregation)

(b) users=10 (no
disaggregation)

(c) users=100
(disaggregated)

Figure 8. Recovered images from FedAvg updates across users
(top image is closest ground truth). Gradient disaggregation en-
ables high quality inversion on noisy FedAvg updates aggregated
across many users; unlike disaggregation on exact gradients, disag-
gregation on noisy updates recovers the average update submitted
across rounds, and we are able to reconstruct high quality images
on noisy updates aggregated across many users. Without disag-
gregation, inversion on updates aggregated over multiple users
(users=10) significantly degrades quality.

users=1 users=10
users=100

(disaggregated)
PSNR 16.0 13.3 18.6

Table 3. Corresponding PSNR scores against ground truth for Fig-
ure 8.

4.3. Property Inference Attacks with Disaggregation

We demonstrate gradient disaggregation on property infer-
ence attacks as in (Melis et al., 2019). We train a gen-
der model on the LFW dataset (Huang et al., 2007) and
a model to predict whether participants’ FedAvg updates
(local epochs=4, batchsize=8, data size per user=32) on the
gender model contain people of a specific race (hence the
attacker’s goal may be to learn a participants’ images’ race
from the application). As in (Melis et al., 2019) only the
target’s dataset contains a significant proportion (p=.5) of
images with the specific race and the goal is to determine
whether the target’s update is present in the aggregated up-
dates over various numbers of users.

Figure 9 shows the AUC score of the attack across various
numbers of users with and without gradient disaggrega-
tion. AUC score quickly degrades with more users; how-
ever, with gradient disaggregation high AUC score is main-
tained across increased numbers of participants as each
user’s model update is disaggregated exactly, allowing the
property inference attack to be performed on each user sep-
arately. We note that the requirement in (Melis et al., 2019)
that only the target has the particular data distribution is
a limiting assumption, as many participants’ data may ex-
hibit the property of interest. With gradient disaggregation,
learned properties are attributed to individual participants,
enabling the central server to build profiles of users, violat-
ing anonymity.

Figure 9. Property inference with and without gradient disaggrega-
tion (main task: gender classification, auxiliary task: identifying
images of specific race) on FedAvg updates. Gradient disaggrega-
tion enables property inference on individual model updates and
maintains high AUC score across increased number of users.

5. Discussion
We introduce gradient disaggregation, a method to disag-
gregate model updates from sums of model updates given
repeated observations and access to summary information
from device analytics. Our attack is capable of disaggregat-
ing model updates over thousands of users and we apply
it to augment existing attacks such as gradient inversion
and property inference. Our attack undermines the secure
aggregation protocol.

Our findings show that summary metrics such as participa-

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

tion frequency may, when combined with gradient informa-
tion, be used as an attack vector to undermine individual
users’ data privacy in federated learning systems. Ways
to mitigate this attack include: injecting noise into model
updates to reduce efficacy of disaggregation, using differ-
ential privacy on the collected device metrics to make re-
construction more difficult, and reducing or eliminating the
collection of device analytics. These mitigation strategies
may hinder the management of federated learning systems,
and employing these techniques to increase privacy must
be balanced with the costs to utility. We hope that bringing
awareness to the privacy risks of side channel information
in federated learning infrastructure will assist in designing
secure federated learning systems.

6. Acknowledgements
We are grateful for the helpful discussions with members of
Harvard Edge Computing group and VLSI group. This work
was supported by the Application Driving Architectures
(ADA) Research Center, a JUMP Center cosponsored by
SRC and DARPA. Michael Mitzenmacher was supported
in part by NSF grants CCF-1563710, CCF-1535795, and
DMS-2023528, and by a gift to the Center for Research on
Computation and Society at Harvard University. Maximilian
Lam was supported by the Ashford Fellowship.

References
Athalye, A., Carlini, N., and Wagner, D. Obfuscated gra-

dients give a false sense of security: Circumventing de-
fenses to adversarial examples. In Proceedings of the 35th
International Conference on Machine Learning, ICML
2018, July 2018. URL https://arxiv.org/abs/
1802.00420.

Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., and
Shmatikov, V. How to backdoor federated learning, 2019.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., and
Stainer, J. Machine learning with adversaries: Byzantine
tolerant gradient descent. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30, pp. 119–129. Curran As-
sociates, Inc., 2017. URL https://proceedings.
neurips.cc/paper/2017/file/
f4b9ec30ad9f68f89b29639786cb62ef-
Paper.pdf.

Bonawitz, K. A., Eichner, H., Grieskamp, W., Huba, D.,
Ingerman, A., Ivanov, V., Kiddon, C. M., Konečný, J.,
Mazzocchi, S., McMahan, B., Overveldt, T. V., Petrou, D.,
Ramage, D., and Roselander, J. Towards federated learn-
ing at scale: System design. In SysML 2019, 2019. URL

https://arxiv.org/abs/1902.01046. To ap-
pear.

Fleder, M. and Shah, D. I know what you bought at chipo-
tle for $9.81 by solving a linear inverse problem. Proc.
ACM Meas. Anal. Comput. Syst., 4(3), November 2020.
doi: 10.1145/3428332. URL https://doi.org/10.
1145/3428332.

FTC. Ftc privacy restrictions facebook. https:
//www.ftc.gov/news-events/press-
releases/2019/07/ftc-imposes-5-
billion-penalty-sweeping-new-privacy-
restrictions, 2019.

Fung, C., Yoon, C. J. M., and Beschastnikh, I. Mitigating
sybils in federated learning poisoning, 2020.

Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M.
Inverting gradients – how easy is it to break privacy in
federated learning?, 2020.

Gurobi Optimization, L. Gurobi optimizer reference manual,
2020. URL http://www.gurobi.com.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
In Advances in Neural Information Processing Systems
(NIPS), pp. 1135–1143, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. International Confer-
ence on Learning Representations (ICLR), 2016.

Hard, A., Kiddon, C. M., Ramage, D., Beaufays, F., Eichner,
H., Rao, K., Mathews, R., and Augenstein, S. Federated
learning for mobile keyboard prediction, 2018. URL
https://arxiv.org/abs/1811.03604.

Hitaj, B., Ateniese, G., and Perez-Cruz, F. Deep models
under the gan: Information leakage from collaborative
deep learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’17, pp. 603–618, New York, NY, USA, 2017. Asso-
ciation for Computing Machinery. ISBN 9781450349468.
doi: 10.1145/3133956.3134012. URL https://doi.
org/10.1145/3133956.3134012.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications, 2017.

Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller,
E. Labeled faces in the wild: A database for studying
face recognition in unconstrained environments. Techni-
cal Report 07-49, University of Massachusetts, Amherst,
October 2007.

https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1802.00420
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://arxiv.org/abs/1902.01046
https://doi.org/10.1145/3428332
https://doi.org/10.1145/3428332
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
https://www.ftc.gov/news-events/press-releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-restrictions
http://www.gurobi.com
https://arxiv.org/abs/1811.03604
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1145/3133956.3134012

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., D’Oliveira, R. G. L., Rouayheb, S. E.,
Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B.,
Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He,
L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi,
T., Joshi, G., Khodak, M., Konečný, J., Korolova, A.,
Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P.,
Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova, M.,
Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich,
S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P.,
Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H.,
and Zhao, S. Advances and open problems in federated
learning, 2019.

Konečný, J., McMahan, B., and Ramage, D. Federated opti-
mization:distributed optimization beyond the datacenter,
2015.

Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P.,
Suresh, A. T., and Bacon, D. Federated learning: Strate-
gies for improving communication efficiency, 2017.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future direc-
tions. IEEE Signal Processing Magazine, 37(3):50–60,
May 2020. ISSN 1558-0792. doi: 10.1109/msp.2020.
2975749. URL http://dx.doi.org/10.1109/
MSP.2020.2975749.

Lyu, L., Yu, H., and Yang, Q. Threats to federated learning:
A survey, 2020.

McCabe, K. E. Just you and me and netflix makes three:
Implications for allowing ”frictionless sharing” of per-
sonally identifiable information under the video privacy
protection act. Act, 20 J. Intell. Prop. L. 413, 2013.

McMahan, B. and Ramage, D. Federated learning google.
https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html,
2017.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data, 2017.

Melis, L., Song, C., De Cristofaro, E., and Shmatikov, V. Ex-
ploiting unintended feature leakage in collaborative learn-
ing. In 2019 IEEE Symposium on Security and Privacy
(SP), pp. 691–706, 2019. doi: 10.1109/SP.2019.00029.

Mengkai, S., Wang, Z., Zhang, Z., Song, Y., Wang, Q., Ren,
J., and Qi, H. Analyzing user-level privacy attack against
federated learning. IEEE Journal on Selected Areas in

Communications, PP:1–1, 06 2020. doi: 10.1109/JSAC.
2020.3000372.

Qian, J. and Hansen, L. K. What can we learn from gradi-
ents?, 2020.

Segal, A., Marcedone, A., Kreuter, B., Ramage, D., McMa-
han, H. B., Seth, K., Bonawitz, K. A., Patel, S., and
Ivanov, V. Practical secure aggregation for privacy-
preserving machine learning. In CCS, 2017. URL
https://eprint.iacr.org/2017/281.pdf.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els, 2017.

Slawski, M., Hein, M., and Lutsik, P. Matrix factorization
with binary components. In Burges, C. J. C., Bottou,
L., Welling, M., Ghahramani, Z., and Weinberger, K. Q.
(eds.), Advances in Neural Information Processing
Systems, volume 26, pp. 3210–3218. Curran Asso-
ciates, Inc., 2013. URL https://proceedings.
neurips.cc/paper/2013/file/
226d1f15ecd35f784d2a20c3ecf56d7f-
Paper.pdf.

So, J., Guler, B., and Avestimehr, A. S. Turbo-aggregate:
Breaking the quadratic aggregation barrier in secure fed-
erated learning, 2020.

Wang, H., Sreenivasan, K., Rajput, S., Vishwakarma, H.,
Agarwal, S., yong Sohn, J., Lee, K., and Papailiopoulos,
D. Attack of the tails: Yes, you really can backdoor
federated learning, 2020.

Wei, W., Liu, L., Loper, M., Chow, K.-H., Gursoy, M. E.,
Truex, S., and Wu, Y. A framework for evaluating gradi-
ent leakage attacks in federated learning, 2020.

Zhu, L., Liu, Z., and Han, S. Deep leakage from gradients,
2019.

http://dx.doi.org/10.1109/MSP.2020.2975749
http://dx.doi.org/10.1109/MSP.2020.2975749
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://eprint.iacr.org/2017/281.pdf
https://proceedings.neurips.cc/paper/2013/file/226d1f15ecd35f784d2a20c3ecf56d7f-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/226d1f15ecd35f784d2a20c3ecf56d7f-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/226d1f15ecd35f784d2a20c3ecf56d7f-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/226d1f15ecd35f784d2a20c3ecf56d7f-Paper.pdf

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

S1. Experiments on ”Honest but Curious” Disaggregation Attack (neural network is updated,
not fixed)

Prior experiments assumed that the central server fixed the neural network model. In the following experiments, we eliminate
this assumption and update the neural network model with model updates computed from participants (via FedAvg). In this
scenario, the attack becomes honest but curious as the attacker no longer has to modify the learning protocol (specifically,
via fixing the model), but instead only needs to observe the gradient information and summary analytics collected by the
server.

Dataset Size D Batch Size b Local Epochs e
1 2 4 8 16 32

64
8 1.0 1.0 .30 0.0 0.0 0.0

16 1.0 1.0 1.0 .35 0.0 0.0
32 1.0 1.0 1.0 1.0 .35 0.0

128
8 1.0 .52 0.0 0.0 0.0 0.0

16 1.0 1.0 .46 0.0 0.0 0.0
32 1.0 1.0 1.0 .49 0.0 0.0

Table S1. ”Honest but curious” gradient disaggregation on FedAvg updates: neural network model is updated with participants’ updates
via FedAvg (SGD lr=1e-3) every round. Even with extra added noise from the changing model, our gradient disaggregation attack may
reconstruct P exactly in a good portion of settings.

We run our experiments using FedAvg model updates, on Cifar10, with 100 users, 200 rounds, participation rate of .1,
constraint granularity of 10, SGD lr of 1e-3, on a LeNet CNN model. Table S1 shows the fraction of P reconstructed
across various FedAvg settings. Results show that with lower lr (1e-3), gradient disaggregation can exactly reconstruct P
when FedAvg updates are small (1-4 epochs). With more epochs of FedAvg (and larger dataset size or smaller batch size),
increased noise prevents reconstruction of P . We additionally tried the experiment with higher lr (1e-2), and disaggregation
typically failed due to high noise, even with lower epochs of FedAvg. Our results indicate that under the right set of
circumstances, the gradient disaggregation attack can be used in an honest but curious scenario; however, more robust results
are achieved if the attacker can fix the neural network model.

S2. Experiments on Partial Constraints
We perform experiments showing our gradient disaggregation attack with partial sets of constraints. Specifically, constraint
granularity determines the rounds across which number of participations is known (e.g: if granularity is 10, we know how
many times each user participated between rounds 0-9, 10-19, 20-29, etc) and we drop a specific fraction of these constraints
(e.g: in prior setting, only knowing participation counts between rounds 0-9, 40-49, etc). Testing this scenario shows the
degree to which our method works when only partial summary analytics is given. We enforced a time limit of 10 minutes
for solving each column

Table S2 shows the fraction of P reconstructed across various proportions of dropped constraints. Results indicate that
even when significant proportions of constraints are dropped, P may be exactly recovered with more rounds of collected
aggregated updates. Note that, when rounds < users reconstruction fails due to the rank being less than the number of users.

S3. Experiments on Inexact ”Noisy” Constraints
We perform experiments showing our gradient disaggregation attack when the constraints are inexact. For example, if
analytics specified that a user participated 5 times between rounds 0-10, when the user actually participated 4 times. To
handle noisy constraints, we relax our formulation and convert participation constraints into soft constraints:

min ||Nul(GT
aggregated)pk||2+λ(Ckpk − ck)

pk ∈ {0, 1}n
(8)

Where λ is a reweighting factor for the participation constraints.

Table S3 shows the results of gradient disaggregation when constraint noise N (0, µ) is added to each constraint. As
indicated, even in the presence of noise, gradient disaggregation may exactly recover P with enough rounds.

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

Users Rounds Constraint Fraction
1 .9 .8 .7 .6 .5 .4 .3 .2 .1

128

256 1 1 1 1 1 .97 .71 .26 .08 .03
512 1 1 1 1 1 1 1 1 .99 .38
1024 1 1 1 1 1 1 1 1 1 .99
2048 1 1 1 1 1 1 1 1 1 1
4096 1 1 1 1 1 1 1 1 1 1

256

256 0 0 0 0 0 0 0 0 0 0
512 1 1 1 .98 .94 .63 .09 .02 0 0
1024 1 1 1 1 1 1 1 .99 .70 .10
2048 1 1 1 1 1 1 1 1 1 .96
4096 1 1 1 1 1 1 1 1 1 1

512

256 0 0 0 0 0 0 0 0 0 0
512 0 0 0 0 0 0 0 0 0 0
1024 1 .99 .99 .93 .53 .09 0 0 0 0
2048 1 1 1 1 1 1 1 .99 .55 .01
4096 1 1 1 1 1 1 1 1 1 .85

1024

256 0 0 0 0 0 0 0 0 0 0
512 0 0 0 0 0 0 0 0 0 0
1024 0 0 0 0 0 0 0 0 0 0
2048 1 1 .99 .95 .41 .01 0 0 0 0
4096 1 1 1 1 1 1 .99 .81 .1 0

Table S2. Fraction of P recovered with gradient disaggregation on partial constraint information. With more rounds, we can exactly
recover P even when a significant fraction of constraints are missing.

Number of Users Rounds Constraint Noise

32

.3 .5 1
128 1 1 .63
256 1 1 .97
512 1 1 1

1024 1 1 1
2048 1 1 1

64

128 1 1 .34
256 1 1 .97
512 1 1 1

1024 1 1 1
2048 1 1 1

128

128 0 0 0
256 1 1 .7
512 1 1 .99

1024 1 1 1
2048 1 1 1

256

128 0 0 0
256 0 0 0
512 1 1 .48

1024 1 1 1
2048 1 1 1

Table S3. Fraction of P recovered with gradient disaggregation when constraints are inexact/noisy. Participation rate=.1, λ=.1, constraint
granularity = 10. Reconstruction is more successful with more rounds.

S4. Extended Experiments on Participation Rate
We provide extended data on gradient disaggregation against various parameter values of participation rate. Participation rate
is the proportion of users that participate in sending model updates per round and impacts how many updates are summed to
yield the aggregated update that is observed by the central server. Unless stated, we enforced a time limit of 10 minutes for
solving each column; we use a constraint granularity of 10. We show our extended results in Table S4.

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

Users Rounds Participation Rate
.1 .2 .4

128

256 1 1 .05
512 1 1 1

1024 1 1 1
2048 1 1 1
4096 1 1 1

256

256 0 0 0
512 1 .73 0

1024 1 1 1
2048 1 1 1
4096 1 1 .31

512

256 0 0 0
512 0 0 0

1024 1 .34 0
2048 1 1 1
4096 1 1 .03

1024

256 0 0 0
512 0 0 0

1024 0 0 0
2048 1 .02 0
4096 1 .48 0
5120* 1 1 0

Table S4. Fraction of P recovered via gradient disaggregation for various participation rates. * indicates settings where the time limit for
solving each column was increased to 60 minutes (vs 10 minutes). Generally, using more rounds facilitates more successful reconstruction;
note that with larger number of users and rounds, success rate decreased due to exceeding the 10 minute time limit.

S5. Extended Experiments on Constraint Granularity
We provide extended data on gradient disaggregation against various parameter values of constraint granularity. Constraint
granularity is how precise summary statistics capture user partipation frequency (see main paper for details). Unless stated,
we enforced a time limit of 10 minutes for solving each column; we use a constraint granularity of 10. We show our extended
results in Table S5.

Users Rounds Constraint Granularity
10 20 40 80

128

256 1 1 .99 .95
512 1 1 1 1

1024 1 1 1 1
2048 1 1 1 1
4096 1 1 1 1

256

256 0 0 0 0
512 1 .94 .27 .02

1024 1 1 .97 .44
2048 1 1 1 1
4096 1 1 1 .86

512

256 0 0 0 0
512 0 0 0 0

1024 1 .5 0 0
2048 1 1 .98 .24
4096 1 1 .38 .035

1024

256 0 0 0 0
512 0 0 0 0

1024 0 0 0 0
2048 1 .23 0 0
4096 1 .91 0 0

Table S5. Fraction of P recovered via gradient disaggregation for various constraint granularities.

S6. Extended Experiments on FedAvg Updates (Cifar10)
We provide extended experiments on gradient disaggregation on FedAvg. We show our results in Table S6 and S7.

Gradient Disaggregation: Breaking Privacy in Federated Learning by Reconstructing the User Participant Matrix

User Dataset Size Batch Size Local Epochs

384

1 2 4 8 16 32 64
8 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1
64 1 1 1 1 1 1 1

384 (mom.=.9)

8 .96 .88 .78 .97 .83 .19 .01
16 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1
64 1 1 1 1 1 1 1

384 (fraction=.9)

8 .98 1 1 1 .99 1 1
16 1 1 1 1 1 1 1
32 1 1 1 1 1 1 .99
64 1 1 1 1 1 1 1

384 (fraction=.8)

8 1 1 1 .99 .83 .92 1
16 .91 .95 .99 1 .97 .84 .95
32 .99 .99 1 1 1 1 1
64 1 1 1 1 1 1 1

Table S6. Fraction of P recovered on FedAvg updates using larger LeNet model (last hidden layer size=512), across various settings
(mom.= SGD momentum, fraction=fraction of data sampled from the 384 examples to perform FedAvg over). Users=100, rounds=200,
participation rate=.1, constraint granularity=10.

Number of Users Batch Size Local Epochs
1 2 4 8 16 32

512 16 1 1 1 .996 1 1
1024 16 .998 1 .999 1 1 1

Table S7. Fraction of P recovered on FedAvg updates using larger LeNet model (last hidden layer size=512), With more users.
(rounds=200, participation rate=.1, constraint granularity=10). With many users, P is still reconstructable.

