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1 Introduction

The Kronecker limit formulas have been studied intensively and have inspired several
generations of mathematicians since Kronecker’s paper [30] of 1863. Weil devoted a book
[52] to their historical development. Siegel’s lucid treatment [44] makes their significance
in number theory, especially in the study of L-functions, apparent. They directly influ-
enced works by Weber [50], Lerch [34], Landau [32], Hecke [21], Herglotz [25], Chowla
and Selberg [7], Ramachandra [37], Siegel [45], Stark [47], Ray and Singer [38], Zagier
[54] and Shintani [42], to list chronologically a dozen prominent ones published at least
40 years ago. The last 40 years has mostly seen a (substantial) development of various gen-
eralizations of the classical limit formulas and the application of these generalizations in
number theory, geometry and physics.

In this paper, we confine our attention almost exclusively to results closely connected to
Kronecker’s classical first limit formula (KLF for short). After stating KLF, we will illustrate
its application in some very special (and pretty) cases. Then, we will sketch its proof and
recall its relation to certain L functions for quadratic fields. This build-up is to motivate
and place into context some new results we will present in the real quadratic case. In
a sense, this paper is a companion piece to [15], where other new results on geometric
invariants associated with real quadratic fields can be found.

2 The first limit formula
Kronecker’s first limit formula is a two-dimensional version of a familiar one for the
Riemann zeta function {(s) = ) o, n Sats = 1:

lim (¢6) - 511) =0 (1)

s—>1t

where yp = 0.577216. ... is Euler’s constant. Let
Qx, y) = ax* + bxy + cy2
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be a real binary quadratic form with discriminant D = b — 4ac. In case Q is positive
definite, thatisa > 0 and D < 0, Kronecker obtained a limit formula analogous to (1) for
the zeta function

o) =3 Qumn). (2)
mneZ

Here the prime indicates that (0, 0) is omitted from the sum. Since Q is positive definite,
the sum defining {q(s) converges absolutely for Res > 1, yet it blows up at s = 1, as does
the Riemann zeta function. Kronecker’s limit formula has the same shape as (1), except
that on the right-hand side we have a term that depends on Q in a non-trivial way. This
dependence is necessarily modular in that {o(s) = ¢, (s) for y € I' = PSL(2, Z) with yQ
arising from Q by a unimodular change of variables. When the form Q is represented by

_—b+vD _
B 2a
H the upper half-plane, it can be checked that z,,-15 = yzq where y € T" acts as usual on

zZ Q H}

z € 'H as alinear fractional map. The modular function that appears is

H(z) = —log(yIn(2)|*) (3)
(H for height) where, for g = e(z) = exp(2miz),

) =q"** [0 —-q™

m>1

is the Dedekind eta function. This H is a counterpart to the usual modular j-function
j(@) = q ' + 744 + 196844 + - - -.

Although itis non-holomorphic, H is bi-harmonic with respect to the hyperbolic Laplacian
(Fig. 1).

Theorem 1 (KLF) Fora > 0 and D < 0 we have
. s 2
lim (1D1320() = ) = 27 (200 — log 4 + H(zq)), 4)

where yy is Euler’s constant.

Fig. 1 The function H(z)
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Fig.2 Ellipsesx? —xy + &'y? = nforg=7,23,31andn =2

Some examples
Before describing a proof, here are some attractive classical applications of KLF that do
not require a lot of preparation to appreciate. All of these examples involve an interplay
between ¢q(s) and Dirichlet L-functions.

Consider for a prime g = 3 (mod 4) the positive definite integral quadratic form

Qwy) = 2% — xy + Lty

whose discriminant is D = —q. For a positive integer # plot the ellipse in R? determined by
the equation Q(x, y) = n. It is a lovely fact that for some g we have a simple exact formula
as a function of # for the number r,(#) of lattice points in 72 that lie on the ellipse:

ra(n) =rg())_ (4), (5)
d\n
where (5) is the Legendre symbol. Since the nineteenth century it has been known that
formula (5) holds for all # when

q € {3,7,11, 19,43, 67, 163}.

Unfortunately, (5) does not work for all g. It obviously does for n = 1. For n = 2 the
right-hand side of formula (5) gives the value 4 when g = 7 (mod 8) and Fig. 2 illustrates
that this works when g = 7 since there are four lattice points on the outermost ellipse,
which is given by x? — xy 4+ 2y = 2. However, it fails for any larger g = 7 (mod 8) as the
resulting narrowing ellipses (illustrated for ¢ = 23 and 31) cannot possibly contain any
lattice points. It is instructive to try to extend this method to show that for any fixed g = 3
(mod 8) other than g = 3,11, 19, 43, 67, 163, formula (5) must fail for some integer n > 0.
For fixed q € {3,7,11, 19, 43, 67, 163} we can translate (5) into the form

£Q(s) = rq(1)¢ (s)L—g(s)s (6)
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where for any fundamental discriminant D the Dirichlet L-function is defined by
Lp(s) =) xplmn™,
n>1
with xp(-) = (2) the Kronecker symbol. Here we have applied quadratic reciprocity. Of
course r4(1) = 2 unless g = 3, when r3(1) = 6. To avoid writing 7,(1) we now leave out
the case g = 3 and also, for the rest of this section, write L(s) for Lp(s), as long as the value
of D is understood.

For these forms Q, KLF together with (1) and (6) implies both the evaluation L(1) = %
and the deeper fact that
SLL(1) = yo — § logdg + H(*Y=0), 7)
One way to go further with (7) is to utilize the Euler product
L(s) = 1_[ 1- (s)p_s)_s.
p prime
Write %EL’(I) = Dlog L(s)|s=1 in (7) and observe that it implies
> (B)*L =logg — H(*'4=1) + O(1) = —Z /g + log g + O(1). (8)
p prime

pg

Roughly speaking, since the negative term —%.,/g on the RHS of (8) dominates, this
asymptotic formula indicates that for (6) to hold for large g, there must be many quadratic
non-residues modulo ¢ among the first few primes. For instance, the first 12 primes are
non-residues modulo 163. This is one way to become convinced that formula (5) cannot
remain true for large g, since the resulting imbalance in the distribution of quadratic
residues should contradict the generalized Riemann hypothesis.

A different kind of application of KLF to (7) makes use of the identity

q—1
“/TqL/(l) = y0 + log2m — Z (2) log F(g), )
n=1

which was derived in 1883 by Berger [2] and independently by Lerch [34] in 1897 using
Kummer’s formula

log (\/%7 I'(x))=(3 — x)(yo + log 277)+ 3 log(2 sin 7rx)+ * Z n~tlogn sin(2mnx).

n>1
(10)
Taken together, (9) and (7) give for g = 7, 11, 19, 43, 67, 163 some remarkable evaluations:
4 a1 "
()| = A [T, (a1
n=1

also due to Lerch [34]. Chowla and Selberg [7,8] later independently derived (11) and
applied it to evaluate elliptic integrals having singular moduli, a connection already
glimpsed by Landau in 1902 [32, p. 313]. An equivalent formulation can be given in
terms of certain hypergeometric series:

Fabcx)=1+) (@)n(D)n 5"

‘)
per i OPR

where (@), = a(a+ 1) ...(a + n — 1). Their result can be put into an elegant form using
the Schlifli modular function

n(=HL)
f(@) =e(—2) Tl(i) .

(12)
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Forq =7,11,19,43,67,163 and f = f(,/—¢q) it can be shown that (11) yields

q71 1/n
R ) I w
n=1
Weber (see Tabelle VI. of [51]) computed explicitly all these values of f. Thus f (W=7) =

/2 and the others are algebraic integers of degree 3 over Q that may be expressed in the
(shockingly) simple form

3 (v=0) = aq + (B, + 3y/30)% + (B, — 3//3q)",
wherea; = 2exceptthataig = 0and f11 = 17, B19 = 27, a3 = 35, B7 = 53, f163 = 135.
In fact, diophantine properties of f are crucial in “resurrections” of Heegner’s proof
([24]) that 163 is the largest g for which (5) holds. See Stark’s ICM paper [46] for such
a proof and also [48] for his recent description of some of the drama surrounding this
result. See also Birch’s papers [3,4] and that of Deuring [12].
Weber’s table of values of f also gives that for g = 5,13, 37

YW/=0%=t+uyq, (14)

where (t, u) = (3, 1), (11, 3), (146, 24), respectively. It turns out that these (¢, «) solve the
Pell equation

T qu2 =4
with £ minimal among all solutions with £ # > 0. These give samples of Kronecker’s

“solution” of the Pell equation using modular functions. The connection with KLF comes
from the fact that for

Q@ y) =%+ q* and Q%) = 24 — 2xy + T1y>

when g = 5, 13, 37 we have that
2L_4(s)Lg(s) = £qls) — o (s)-

Now apply KLF to the right-hand side and the famous result of Dirichlet
VaLy(1) = log 5(t + uy/q)

to the left-hand side to get (14).

3 Proof of KLF

There are a number of proofs, starting with Kronecker’s own. See [52] for a discussion.
Here, we will give a brief treatment of one of the most transparent ones. For z € H and
Res > 1 define E(z, s) by

(29E@s) = 3y Y Im+ nz| 7, (15)

mnez

We may work with ¢ (2s)E(z, s) to prove KLF since
IDI2¢q(s) = 2 ¢ (25)E(zq, 5). (16)

The key input is the Fourier expansion of ¢(2s)E(z, s), which was found by Deuring [12]
and Chowla—Selberg [8]. We simply state the result; an excellent source for its proof is
[33]. It is convenient to state the result for the completion

E*(zs) = 1 °T(s)¢(25)E(z, s). (17)
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S
As usual set A(s) = 7~ 2T'(5)¢ (s). Then we have the Fourier expansion
E*(z5) = AQ2s)y’ + A2 — 2s)y!~*
+4912 Y ni o 1 (0K,

n>1

(27 ny) cos(2m nx), (18)

1
2

where o5(n) = ) 4 d° and K(y) is the usual Bessel function. By making use of (16) and
(17), the proof of KLF can be reduced to the following statement:

1
2E*(z, s) = Y + yo — log(4my) — 4log |n(z)| + O(s — 1). (19)

To obtain (19), first note that

[
= [V
K%(y) = 2ye .

By (18) it follows that

1
2E*(z, s) = 1 + yo — log(4my) + %ny + 4Re( erlol(n)q”) + O(s — 1).

n>1
Now apply

Re( Y n'o1(m)q") =Re( Y n’lqm”> = —(log @l +33)
n>1

mn=>1

to finish the proof of (19), hence of KLF.

Remark A quite different kind of proof was given by Shintani [43] using the Barnes double

gamma function.

Expansions arounds = 0

It turns out to often be advantageous to have expansions of KLF-type around s = 0.
An added bonus of the Fourier expansion (18) is that it renders as obvious the analytic
continuation and functional equation of E*(z, s). Using that A(1 — s) = A(s), Ks(y) =
K_¢(y) and

n'o_o5(n) = n"*oy(n)
it follows from (18) that s(s — 1)E*(z, s) is entire and that
E*(1 —s,z) = E*(z9). (20)

This makes it easy to compute the Laurent expansion of ¢g(s) around s = 0, which no
longer contains the mysterious Euler constant that occurs in the formulas around s = 1.
By the functional equation (20) and (19) we have

2E*(z,8) = —s L 4y — log(4m) + H(z) + O(s) hence (21)

1
Zols) = —1 — (log <8n2|D|_?> - H(zQ))s 1 O(s). (22)
There is a connection of E(z, s) to the spectral theory of the Laplacian on I'\’H hinted

at by the occurrence of the Bessel function in the Fourier expansion (18), one that is
somewhat miraculous with hindsight. In fact, we can write

Ezs)= Y (Imyz), (23)

Y€l \T
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where Iy is the usual parabolic subgroup generated by + (} }). Let
A =507 +07) (24)

be the hyperbolic Laplacian. Now Almz = s(s — 1)Imz and A commutes with linear
fractional action. It follows that E(z, s) is an eigenfunction of —A :

— AE(z s) = s(1 — s)E(z ). (25)

ForRes = % it happens that E(z, s) gives the continuous part of the spectral decomposition
of A on I'\'H. Consider the following expansion of E(z, s) around s = 0:

E(z s) = Ho(z) — Hi(2)s + Hy(z)s*> — - - -. (26)

From (21) and (17), we see that Hy(z) = 1 and H; = H. Furthermore, upon using (25) in
(26), we also have that AH = 1 and

AH, =H, >+ Hy, 1,

for n > 2. In particular, H is bi-harmonic with respect to A. For related work, see [31].

L-functions with genus characters

Perhaps, the most important applications of Kronecker’s limit formulas are to L-functions
associated with quadratic fields and their abelian extensions. The first limit formula applies
to abelian extensions that are unramified. In fact, we will only consider L-functions associ-
ated with unramified quadratic extensions, namely those with genus characters, for which
there is already an extremely rich theory.

Suppose that D # 1 is a fundamental discriminant and K = QD). Leto : K —> K
generate the Galois group of K/Q and for « € K let N(o) = a®. Let Clg be the group
of (narrow) fractional ideal classes in K. Thus, two ideals a and b are in the same class if
there is @ € K with N(«) > 0 so that a = («)b. Let

h(D) = #CL},

be the class number and w = wp be the number of roots of unity in K so that w = 2
unless D = —3, —4 when w = 6,4, respectively. If D > 1 let €p be the smallest unit of
norm 1 that is > 1 in the ring of integers Ok of K.

Associated with an ideal class A is the partial zeta function

fr(s A) = £, A) =y N(a)™,

where a runs over all nonzero integral ideals in A. Note that ¢ (s, A) = ¢ (s, A~!). Dirichlet
applied his geometric method to evaluate

. s I ifD<0,
lim (s — 1)|D]|2¢(s, A) = (27)
s—>1* logep ifD > 1.

Given a character y of Clt, we have the L-function
Lisx)= Y x@N@ ™= > x(A)(sA). (28)
acOg AeClf
A genus is an element of the group of genera, which is (isomorphic to) the quotient
group
Gen(K) = CI}/(CLf)? (29)
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It is known that Gen(K) = (Z/ZZ)“’(D)’1 so if Gp is a genus in Clg then

#Gp = 217*OIp(D), (30)
where w(D) is the number of distinct prime factors of D. The characters of Gen(K) descend
from the real characters of Clg and are in one to one correspondence with co-prime

factorizations D = d’d where d and d’ are fundamental discriminants (including 1).
Kronecker discovered a factorization of L(s, x) for such a x that corresponds to D = d'd:

L(s, x) = Lag(s)Ly(s). (31)
In particular, the Dedekind zeta function of K satisfies
¢k (s) = L(s, 1) = ¢(s)Lp(s). (32)
By (27) and well-known functional equations we get
2h(D
Lp(0) = (D) if D<0 and Lj(0) = %h(D) logep if D> 1. (33)

The Hurwitz zeta function
A useful tool to study Dirichlet L-functions at s = 0 is the Hurwitz zeta function, which
is defined for x > 0 and Re(s) > 1 by
C(s,x) = Z(n +x)7%
n=0
For fixed x > 0, it has an analytic continuation in s to an entire function except for a
simple pole at s = 1. It has the expansion due to Hurwitz [28] (see also p. 269 of [53]):

rl—s)/ . . CoS 2 nx s sin 27 nx
L o X Iy S
n>1 n>1

L% s) =

s
valid for 0 < » < 1 and Re s < 0. This can be used to find the Laurent expansion of ¢ (x, s)
around s = 0. In particular we have
[(x0)=3—x
and from Kummer’s formula (10)
95 (x,0) = log ((271)_% F(x)).

Since for any D, we have
|D|

Lp() = 1017 Y xptn)¢ (s )
n=1

we immediately deduce the following for D # 1:

|D|—-1
Lp(0) = —|D|™" >~ nxp(n) and
n=1
|D|—1
Lj,(0) = —Lp(0)log DI+ Y xp(m)log T'(17)- (34)
n=1

Also, for D = 1 we have ¢(0) = —%, ’0) = —% log 27. If D > 1, we have that Lp(0) =0
and

L(0) = —% Z xp(n)log (sin 2T, (35)
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by using the identity I'(x)['(1 — x) = <2 in the second formula of (34). Thus by (34), (35)

sinx
and (33) we recover Dirichlet’s results

|D|-1
h(D) = —% Z nxp(n) and
n=1

D
h(D)logep = — ZXD(VI) log (sin 7)

n=1
for D < 0 and D > 1, respectively. The function
R(x) = —32¢ (%, 0) (36)

was studied by Landau [32] and Ramanujan [37, Chapter 8] and applied to KLF by Deninger
[10]. We have for D # 1

ID|-1
Lj(0) = —Lp(0)log? [D] = 2L, (0)log D] =2 >~ xp(mR () (37)
n=1

KLF applied in the imaginary quadratic case

Happily, KLF applies directly when D < 0. The examples we outlined above had K
imaginary of class number 1 or 2. The general case when D < 0 and with a genus character
is very similar. To start,

t(sA) = 756Q0) (38)

for some positive integral Q of discriminant D. Here A is represented by a = Z + zQZ. Set

z4 = zq for any such choice, for instance that z4 € F, the standard fundamental domain

for I". This point z4 is often called a CM point, the CM short for “complex multiplication”.
It follows from (16) and the duplication formula for the gamma function that

A(s A) = D3 T ()T ()¢ (5, A) = DEE*(zq,9) (39)

Thus ¢ (s, A) is entire but for a simple pole at s = 1 and by (20) satisfies the functional
equation

A(s,A) = A(1 — s, A).
A direct application of KLF in the form (22) to (38) gives the next result.

Theorem 2 (Kronecker) For D < 0 we have

(0, A) = —% and
¢'(0,A) = — - log (872|D|"2) + & H(za).

Given any character x of Clg we can use this to give a formula for L'(0, x). In case yx is
a genus character we obtain the following generalizations of the examples (11) and (14)
from above.

Corollary 1 Suppose that D < 0. Then for w = wp the following holds:

|D|—1
Y H(za) = 3h(D)log(167°|D)) — ¥ >~ xp(n)log () ~ (Lerch). (40)
AeClh n=1

20
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For D = d'd withd" > 1 and d < 0 co-prime fundamental discriminants and y the
associated genus character we have

Z X(A)H (z4) = %h(d)h(d’) loges  (Kronecker). (41)
AeClE

Chowla and Selberg [8] reproved (40) independently and applied it to show that a period
of an elliptic curve defined over an algebraic number field with CM by an order in K of
discriminant D < 0 is an algebraic multiple of

Note that (41) can be put in the form of an average:

(h(d)/wa)(h(d")log €;)
h(D)/wp

woy O X(AH(z) =
AeClg

Indefinite binary quadratic forms: Zagier’s limit formula

From now on, we assume that D > 0. Since real quadratic field norms comes from
indefinite binary quadratic forms, KLF does not apply directly to compute ¢ (s, A) when K
is real quadratic. To address this problem, Zagier [54] gave an analogue of KLF for zeta
functions associated with certain indefinite forms, which we will state here without proof.
Let now

Qxy) = ax® + bxy + cy2

be a real binary quadratic form with positive coefficients and positive discriminant D =
b* — 4ac. Then the roots w' < w of Q(1, —x) = 0 are positive. Define

Zo(s) = ) Qmm) ™.

n>1m>0
Theorem 3 (Zagier’s limit formula) The function Zo(s) has an analytic continuation to
the half-plane Res > % with a simple pole at s = 1 and

1 w
3log 5

. s _ ,
gl_r)r} (DzZQ(s) — 1 ) =P(w,w'),

where P(x, y) = F(x) — F(y) + Lig(f’—c) — ’%2 + (log ’y—c)(y - %Iog(x -9+ % log §) and

F(x) = Z M)

n
n>1

where ¥ (x) = 2,((;6)) is the digamma function.

Infact, by [56, Satz 1, p. 132] we have that Z(s) has an analytic continuation toRe s > — %

with a (possible) additional simple pole only at s = % and that
Zo(0) = 5 (2 +2 ) (43)

To proceed, we must relate Zg(s) to {(s, A). Each A € Clg contains fractional ideals
of the form wZ + Z € A where w € K is such that w > w?. Consider the minus (or
backward) continued fraction of w:
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w = [ag, a1, az ... =ao — (44)

ay —
1

ﬂg —_— e
where a; € Z with a; > 2 for j > 1. This continued fraction is eventually periodic and has

a) —

a unique primitive cycle (7, . . ., n¢)) of length ¢, only defined up to cyclic permutations.
Different admissible choices of w lead to the same primitive cycle. The continued fraction
is purely periodic precisely when w is reduced in the sense that

O<w’ <l<w

(see [54,56]). The cycle (ny, ..., n¢) characterizes A; it is a complete class invariant. The
length £ = €4, which is also the number of distinct reduced w, is another invariant as is
the sum

m=my=mn+ - +nyp (45)

It is convenient to define a third class invariant
W(A) = my — 3L4. (46)
Note that the cycle of A~! is given by that of A reversed:
(ne, ..., m). (47)

To see this observe that A~! is represented by (1/w°)Z + 7 and by [56, p. 128] the
continued fraction of 1/w” has (47) as its cycle. Thus

WA = w(A). (48)

Similarly, using the relation between the minus continued fractions and regular simple
continued fractions, it is shown in [27, p. 49] that

V(A) =Lag — L4, (49)
where J denotes the class of the different (v/D) of K. Hence we also have that
VAT = W(A)) = —¥(A),
using the conjugacy invariance of ¥, (48) and that J2 = I, where [ is the principal class.
Let wy, wo, ..., wg be the reduced values, which may be obtained from (44) and the cyclic
permutations of the cycle. For each wy, we define the indefinite binary quadratic form
Qk(xy) = WkiW](; O+ xwi)(y + awy),

which has positive coefficients and discriminant one. Then Zagier gave the following

important decomposition:

£
L5, A) =Y Zqg,(s). (50)
k=1

By evaluating the corresponding limit for each Zg, (s), we get a formula for the constant
term in the Laurent expansion of |D|%C(S,A) around s = 1 that involves a summation
over the roots wy and wy of the fixed function P from above.

Theorem 4 (Zagier) For D > 0

. s logep ‘
lim (D3¢(5,4) - 222 = 3P0 (51)
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Remarks 1. To get the residue in (51), Zagier showed directly that
¢ Wi
b=[]- (52)

In particular, this together with (51) gives an apparently non-geometric proof of
Dirichlet’s (27) when D > 1.

2. In a recent paper [49], Vlasenko and Zagier generalize (51) to s = 2,3,... and
interpret that in terms of the cohomology of I

Hecke’s results

Zagier’s paper followed earlier work of Hecke on the problem of extending Kronecker’s
ideas to real quadratic fields. Hecke’s approach to KLF for a real quadratic field K was
to integrate the definite version over appropriate cycles coming from the unit group of
Ok. His method is a direct descendent of that used by Dirichlet to prove his class number
formula.

A subtlety about real quadratic fields, which turns out to be crucial, is the possible
existence of units with negative norm. As above we denote by I the principal class and by
J the class of the different (v/D) of K, which coincides with the class of principal ideals («)
where N (o) = aa® < 0. Then, Clg /J is the class group in the wide sense, which is trivial
iff Ok is a UED. Clearly, J # I iff Ok contains no unit of norm —1. In this case, each wide
ideal class is the union of two narrow classes, say A and JA. A sufficient condition for J # I
is that D is divisible by a prime p = 3 (mod 4).

For a fixed narrow ideal class A € Clg and a = wZ +7Z € A withw > w?, let S,, be
the geodesic in H with endpoints w” and w. The modular closed geodesic C4 on I'\'H is
defined as follows. Define y,, = + (‘Cl Z) € ', where a, b, ¢, d € 7Z are determined by

epw =aw + b,

€p =cw +d, (53)

with €p our unit. Then y,, is a primitive hyperbolic transformation in I" with fixed points

w? and w. Since
(w+d)t=¢% <1,

we have that w is the attracting fixed point of y,. This induces on the geodesic Sy, a
clock-wise orientation. Distinct a and w for A induce I'-conjugate transformations y,,.
If we choose some point zg on Sy, then the directed arc on S,, from zg to y,,(z0), when
reduced modulo T, is the associated closed geodesic C4 on I'\'H. It is well-defined for the
class A and gives rise to a unique set of oriented arcs (that could overlap) in F. We also
use C4 to denote this set of arcs.

It is not difficult to show that the closed geodesic C4-1; has the same image as C4 but
with the opposite orientation. The arcs of C4 retrace back over themselves when A=1] = A
or, equivalently, A = J, i.e., ] is in the principal genus. Sarnak [41] gave a nice account of
these reciprocal geodesics.

It is possible to compute y,, associated with a reduced w as above simply using the
ordering of the cycle (1, ..., n¢)) that corresponds to w. In fact, if as usual we set T =
+(11),5=%( %) €T then
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Yw = T™ST™S ... T™S, (54)
A nice treatment of this is given by S. Katok in [29, p. 11.]. The class invariant W(A) can
now be computed in terms of the entries in y,,. The Rademacher symbol is defined for
any y :i(‘C’Z) e I' by

V(y) = ®(y) — 3sign(c(a + 4)). (55)
Here ®(y) is the Dedekind symbol given forall y = (¢ 2) e I' by
ifc=0,

d . .
% —12signc-s(a,¢) ifc #0,

QUS

where s(g, ¢) is the Dedekind sum, defined for gcd(a, ¢) = 1, ¢ # 0 by
4

w0 =2 ()

As usual, (x) = 0 if x € Z and otherwise (x)) = x — |x| — 1/2. Rademacher showed that
W(y) is invariant under conjugation in I'. We also have that

W(A) = V(yw). (57)

This follows from a well-known formula for W(y ) given by Rademacher [19] which, when
applied to the expansion of y,, in (54) gives W(A) as defined in (46).

Even and odd characters

Say a character y of Cl;g is even if x(J) = 1 and odd if x(J) = —1. In the more general
terminology of [20], the odd characters are norm class characters of norm-signature type.
Clearly, the even characters are precisely those that induce wide class characters. It can
be checked that a genus character coming from a decomposition D = d'd is odd if and
only if d and d’ are both negative.

In order to adapt (39) for the presence of an infinite groups of units, Hecke invented
his famous trick of dividing out the action of the unit group on generators of principal
ideals. For real quadratic fields this procedure amounts to either integrating the Eisenstein
series with respect to arc length over the associated closed geodesic C4 or integrating its
derivative over this geodesic. In case I # J, it is necessary to define

r+(s,A) = 5(¢(s A) £ ¢(s, JA))

and their completions

At(sA) = D2 °T($)%¢4 (s A) and A_(s A) = D2 T (531)2¢_(s, A). (58)
In general
Lis )= Y x(A)x(s A),
AeClf

where x(J) = £1.
Hecke found the following integral representations (see [44, Chap. I1& 5 pp. 114-149.]):

AslsA) = /c E*(5 5)y~\[dzl, (59)
A_(s,A) :/ i9,E*(z 5) dz. (60)
Ca

These show, in particular, that s(1 — s) A (s, A) are entire and invariant under s > 1 —s.
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First, we examine the even case. By (59) and (21), we derive the following theorem.

Theorem 5 (Hecke) For D > 1 we have that (0, A) = 0 and

7L (0,A) = —%/C ylde| = —%log €D; (61)
A
¢l(0,4) = 1 / (H(z) + 5 log ( (21;)4) )y~ ldzl. (62)
Ca

Given any even character x of Clg, we can use these to give a formulas for L'(0, x) and
L"(0, x). In case yx is a genus character the resulting formulas imply the following. Recall
the definition of R(x) from (36) and (37).

Corollary2 ForD > 1

> f y~'|dz| = 2h(D)logep and (63)
Aectl O

> | H()y '|dz| = (log D + 2log 27 )h(D) log €
Aectt 7oA
D—-1

+4)  xpmR(%). (64)

n=1

For D = d'd withd',d > 1 co-prime fundamental discriminants and x the associated
genus character,

> xA) | H()y '|dz| = 2k(d)h(d') log ez log €. (65)
AeClh Ca
D

Of course (63) is due to Dirichlet. The formulas (64) and (65) seem to have been first
written down by Deninger [10] and Siegel [44, p. 97.], respectively.

In response to Hecke’s paper, Herglotz [25] managed to express the integral
ch H(z)y~!|dz| in terms of integrals of elementary functions, but in general the result-
ing formula is pretty complicated. Before becoming aware of Herglotz’s papers, Zagier
applied his more general formula (51) to {4 (s, A) to give another (equivalent) version. As
an interesting application of his formula, Herglotz applied it to (65) in special cases to
evaluate some elementary integrals that seem to defy other proofs. Recently, Muzaffar
and Williams [35] found another equivalent formulation and gave several more examples,
including

x=—(1—+/3)+ log 2log(1 + V3).

/1 log(l + x2+\/§)d 7.[2
0 1+x 12

Finally, note that (65) can be put in the form
(h(d)logey)(h(d')log ey)

—— A H(z)y '|dz| = ) 66
Yale, v 'dzl AngX( ) Ca =)y 1dz| h(D)log ep (66)
D

which is a real quadratic average analogous to (42).
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Expansion of {_(s, A) around s = 0: the value ¢_(0, A)

From now on, we consider only the remaining cases of {_(s, A) and L(s, x) with odd genus
characters yx. In view of the second formula of (58) and the functional equation we wish
to evaluate _(0, A) and ¢’ (0, A).

As far as we know, of these only ¢_(0, A) has been evaluated before. We review this here
and consider ¢’ (0, A) in the following section. There are several approaches to ¢_(0, A).
Probably the most direct is that of Zagier in [56], where it is evaluated in terms of the
invariant W of (46). Using (43), (49) and (50), it is elementary to deduce the following (see
[56, Satz 2, p. 132]):

Theorem 6 For A a narrow ideal class in the real quadratic field K = Q(/D)
£-(0,4) = HW(A).

Given any odd character x of Cl; we can use this to give a formula for L(0, x). In case x
is a genus character the resulting formula implies the following.

Corollary 3 ForD =d'd > 1 withd',d < 0 co-prime fundamental discriminants and x

the associated genus character,
48h(d)h(d’)
0 xAYMA) = ———. (67)

Waw g
AECIZS d*7d

A nice special case is when D = 4q where ¢ = 3 (mod 4) is prime and 4(4g) = 2, which
is equivalent to Z[,/q] being a UFD. This happens for the g of our first set of examples
and, according to a well-known conjecture of Cohen and Lenstra [9], occurs for > 75%
of all primes g = 3 (mod 4). For these g > 3, (67) gives

¢
h—q) =3 m—¢
k=1

where (#1, ..., n¢)) is the cycle of  /g. Alternatively, using (49), we have

h(—q) = 3 —0),
where ¢’ is the length of the cycle of —, /7. For example, /163 has the cycle given by:

((5) 2} 2) 4} 3} 2) 2} 2} 2} 2) 2} 3} 21 2} 2) 2}
2,22222322222234225,26))
so h(—163) = % - 108 — 35 = 1. One may check that the cycle of —+/163 has length 38.
See [26] and [56] for more insight into these examples.
Given (57) we can use Hecke’s representation (60) for another way to prove Theorem

6. The Fourier expansion of E*(z, s) from (18) yields Hecke’s limit formula
lim 0. E"(z,5) = —ZLEX(2),
where E5(z) = Eax(z) — %] and

Exz)=1-24 Z o1(n)q".

n>1

Therefore by (58) and (60), we have

((0,4) =L /C Ei() dz. (68)
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Now apply Dedekind’s [10] evaluation of the transformation law for logn(z). For any
y—( )GF we have

log n(yz) —logn(z) = 1 log(—(cz + d)*) + T ®(y), (69)
where ®(y) is given by the formula (56) and where we choose arg(—(cz + d)?) € (-, 7).
Since

LB = L Liogn()

a careful evaluation of the integral of — ﬁ shows that

[ £ ¢z = v

This is in essence the first proof of Theorem 6 historically, modulo identity (57). Hecke
[23, p. 416] indicated how the evaluation of {_(0, A) depends on the transformation for-
mula for log 1(z) (see also [22,36], [44, p. 134] and [55]).

We propose yet another proof of Theorem 6, one that will adapt well to computing
¢’ (0,A) in terms of an integral of H(z). Let j(z) be the usual modular j-function as before.

Write j/ = 2 = dz . and let dpu(z) = dxdy and F be the standard fundamental domain for I.
The kernel function
_J
Kz 1) = (70)
j@) —j@)

which is weight 0 in z and weight 2 in 7, shows up a lot in the theory of modular forms
(see, e.g., [1,14]). It has the expansion, convergent for Imz < Im 7,
K@T)= ) jm@ql, (71)
m=>0
where g = e(t) and ji,(z) = g7 + O(q) is weakly holomorphic.
Define
./
T
ne = [ IO 72
ca /(@) —j(T)
This function is I'-invariant and is zero for Im z sufficiently large. The value of v4(z) for z
not on C4 is an integer that counts with signs the number of crossings that a path from ico
to z in F makes with C4. This is easily verified using the winding number and well-known
properties of ;.
We claim that Theorem 6 is equivalent to the statement that

2 [ m@dut = v (73)
f

This equivalence may be deduced from (68) and the following elegant formula, which is a
consequence of Lemma 1 proven below and is obtained from it by taking s — 0 :

Ej(r) = 3//(x) ff mdu(Z) (74)

Here is an example illustrating the formula (73). Take D = 12 = (—3)(—4) as above
with 4(12) = 2. We have the reduced root w; = 2 + +/3 = €12 with wZ + Z = Ok and
with cycle (4). Thus ¥ (I) = 4 — 3 = 1. In Fig. 3, we have plotted C;, where the arcs are
all oriented left to right and are given by the equations

y=+3—-22 and y=+3—(x£1)>2
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Fig.3 The function v/(z) for D = 12

The values of v;(z) are also shown. It can be checked that (73) holds in this case since

% / vr(z)du(z) = A(0) + A1) + A(—1) = 1, where
f

1/2  pa/3—(x+u)?
Aw) = £ f /
0

du(z). (75)
Vi-a?

In general, (73) was obtained in [5] for certain surfaces using topological arguments
(Gauss—Bonnet) and adapted in [6] to I"'\’H, but without using the analytic expression for
v4(z) in (72). Partially motivated by their work and also by a desire to combine Zagier’s
approach using continued fractions with the more geometric methods of Dirichlet/Hecke,
in [15] we constructed a hyperbolic surface F4 (an orbifold, actually) associated with A
thatis bounded by C4 and has area £47, also a consequence of the Gauss—Bonnet theorem.
This surface is a partial cover of F with m 4 — v4(z) points of F4 over z € F. In particular,
we get a more analytic proof of (73) by combining this counting interpretation with (46).

The Rademacher symbol has many other geometric/algebraic/topological interpreta-
tions. See Hirzebruch’s article [26] for relations to Hilbert modular surfaces. More recently,
Ghys [18] gave the beautiful result that the Rademacher symbol gives the linking number
of a modular knot (a lift of C4 to the unit tangent bundle) with a certain trefoil knot. See
also [16].

Evaluation of ¢’ (0, A): new results

We now turn to the problem of computing ¢’ (0, A), Returning to Hecke’s representation
(60), we see that to evaluate ¢’ (0, A) using it directly we must integrate 9,H>(z) from
(26) over C4. Following the example of the third proof of Theorem 6 given above, we
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will instead integrate H(z) against v4(z) over F. The following result appears to be a new
contribution to the classical theory of KLF.

Theorem 7 For A a narrow ideal class in the real quadratic field K = Q(«v/D), where
D = d'd with d and d’' negative co-prime fundamental discriminants, we have

- 0.4)= 3 [ va@dte) and

rL(0,A) = -4 i va(2)(H(2) + 1+ 3 log(527))du(z),

where v4(z) is defined in (72).

When applied to an odd genus character this yields an analogue of Lerch’s formula (40).

Corollary 4 Write h = h(d) and b = h(d') and similarly w = w,; and w' = w. For
D =d'dwithd',d < 0 co-prime fundamental discriminants and x the associated genus
character,

3 48hk
2 ) [ @) = 4 and
AeClJr

|d]—1
2 @ / va(2)H (2)dpu(e) = —24<w, > xa(m)log ()

AeClf n=1

1|1
PEY de(nﬂogf(di))

n=1

+ A8 (Llog D — 1+ log(1672)).

This corollary implies, after some computation, an identity that is somewhat analogous
to (42) and (66) and is the main new result of this paper. It gives a surprising geometrical
relationship between the CM points associated with the imaginary quadratic fields Q(+/d)
and Q(v/d’) and the winding number functions v4(z) coming from the closed geodesics
associated with the real quadratic field Q(v/D) = Q(v/d'd).

Corollary 5 Assumptions as above,

Y cears X(C) [z ve@)H* (2)du(z)

= ZH*ZA)+h(d) Z H ZB
Y cears x(C) [ ve(2)du(z) AE o becty

where H*(z) = H(z) — 1.

In case d and d’ are prime discriminants there are exactly two genera, one containing /
and the other containing J. If #(D) = 2, Corollary 5 simplifies to

T /F"I(Z)H*(Z)d“(z) =wn O H'@)+mm Y H(s). (76)

AeClt BeCIY,
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For example, when D = 12 we have numerically
% / H*(z)vj(z)du(z) = B(0) + B(1) + B(—1) = 0.0882075.. .,
f

where

1/2 3— (x+u)2
Bu) = / f H*@)duz).

By (76) and (75) this must equal

- <3F(§)6F(i)4

H*(i H* 1+/=3 _ _

’

as may be verified numerically.
Given (73), the proof of Theorem 7 comes down to Hecke’s representation (60) and the
following result.

Lemma 1 Fort € int F and K(z, ) defined in (70) we have

i8.E*(z,5) = 1 / K(z 7)E*(z s)du(2).

Proof Note that for fixed 7 € F and y > Im 7 + 1 we have that K (z, ) = O(e~2"”) where
as usual z = x + iy. Clearly

4y%3:0, = A

for A from (24). Thus by (25) we need to show
glr) = —/ K(z 1)d7 g(z)dzdz,
f

after using that dzdz = 2idx dy and writing g(z) = 9,E*(z, s) for fixed s # 0, 1.
Foré > 0,letD;(8) ={ze€C:|lz—1| <bland F(Y) ={z € F :y < Y}. Since K(z, 1)
is holomorphic, for T € int 7 we need to show

g(t) = — lim ¥(g(2)K (z, 7))dzdz.
Yo JFON\D: )

§—

For t € int F choose Y large enough and § small enough so we may apply Stokes’ theorem
to get

/ %(g(z)l( (z t))dEdz = / g(2)K(z t)dz — / g(2)K(z 1)dz
F(Y)\D.(8) 0Fy 9D (8)

Now limy_, o faﬂ g(2)K(z, t)dz = 0 and lims_,o faDr(a)g(z)K(z, 7)dz = g(7), giving the
result. O

The main goal of our companion paper [15] was to study the distribution properties
of the surfaces F4 when A is averaged over a genus. For this, we needed to make use of
integrals over F4 of Maass cusp forms as well as the Eisenstein series E(z, s), but only for
Res = %, since these are the eigenfunctions that occur in the spectral expansion of A. It
is notable that H(z), which comes from s = 0, is not integrable on F4 with respect to du.
This is one reason for our use here of v4(z) and the singular kernel K(z, t) in Lemma 1,
instead of simply integrating H (z) over the surface F4.
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4 Concluding remarks

We have only looked at the applications of KLF to L-functions for quadratic K with genus
characters. Already here there are interesting applications to certain quadratic extensions
of K giving class number relations, but this is just the beginning, even when one is only
interested in abelian extensions of quadratic fields (see [44]). A lot of attention has been
devoted to finding elaborations of the ideas originated by Kronecker with his limit formula
to other L-functions and other values of s.

A rather different theme, one that we have emphasized without actually saying so, is the
use of KLF to study averages of the height function H, like in (42), (66) and Corollary 5.
The height function H(t), thought of as being defined through KLF, gives the height of
the torus C/L, where L = (Im t)~Y/2(Z + tZ). This definition has been generalized using
spectral zeta functions of curves of genus greater than one. The corresponding higher
dimensional versions of KLF and their applications to Riemann surfaces and in physics,
pioneered in papers of Ray*-Singer [38], Fay [17], D’Hoker—Phong [13] and Sarnak [39,40],
represent another major topic initiated by Kronecker’s ideas.
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