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Abstract

The connection between Markov’s theory of minima of indefinite binary quadratic
forms and hyperbolic geodesics is well-known. We introduce some new analogues of
the Markov spectrum defined in terms of modular billiards and consider the problem
of characterizing that part of the spectrum below the lowest limit point.

1 Introduction

The abstract triangle group usually denoted by A(2, 3, 0o) is generated by A, B, C
subject to the relations A2 = B> = C? = (AB)? = (AC)? = 1. The extended
modular group I' = PGL(2, Z) gives a faithful representation of this triangle group
when we make the identifications:

0 1 -1 0 -1 1
aes(® D) mma(P ) cox(3 D). an

The usual modular group PSL(2, Z) is the subgroup of index 2 consisting of all
matrices in I' with determinant one.
Let H be the upper half-plane with its hyperbolic metric given by ds = |d}—zl Itis

well known that M = + (‘Z Z) € I' with det M = 1 acts as an orientation preserving
isometry of H through
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Fig. 1 The modular triangle 7 and a modular billiard

, (1.2)

while when det M = —1 it acts through z — M (z) as an orientation reversing
isometry. The generators A, B, C give reflections across the unit circle, the y-axis, and
the line x = %, respectively; I' acts as a reflection group. A convenient fundamental
domain for I is the solid hyperbolic triangle

T={zeH;0<Rez<1i|zI>1},

whose sides are fixed by the generating reflections and which is the shaded region
depicted in Fig. 1.

Let S be an oriented geodesic in H. Thus S is given either by a directed vertical
half-line or a directed semi-circle that is orthogonal to R and is uniquely determined
by ordering its endpoints, say «, B8, which are distinct elements of R U {co}. More
generally, for z1, 7o € HURU{oo} let (z1, z2) denote the geodesic segment connecting
71 to z2. Hence we may write S = («, ) with o, 8 € R U {oo}.

The set of all geodesics splits into orbits I''S under the action of I', where S is any
geodesic in the orbit. Let B denote the set of distinct directed geodesic segments in 7°
of an orbit I'S. We will refer to B as the trajectory of a modular billiard, but usually
call it simply a modular billiard. We will say that B is induced by S for any S in the
orbit. Note that B can be thought of as the path of a point acting like a billiard ball
bouncing off the sides of 7, with well-defined bounces from the corners of 7", which
are at

z=1 and z:p:%—}—@.
Unlike trajectories of the geodesic flow on PSL»(Z)\H, which hit the vertical bound-
aries Re(z) = +1/2 and have to jump under z — z &£ 1, geodesics on the reflective
triangle 7 really are billiards.

Suppose that B is induced by («, 8). Define its reversal B* to be the billiard induced
by (B, o). We say the billiard B is non-orientable if B = B*, orientable otherwise.
If B contains a vertical segment we say it is improper, otherwise proper. If the total
hyperbolic length of the segments in B is finite, we call the billiard periodic. Clearly
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Fig.2 Increasing segments of a billiard exhibiting generic behavior

a periodic billiard is proper. The billiard illustrated in Fig. 1 is non-orientable and
periodic.

Trajectories of the geodesic flow on PSL,(Z)\H corresponding to improper bil-
liards are called cuspidal in the literature, while those corresponding to periodic
billiards are closed. We remark that the reciprocal geodesic trajectories on PSL,(Z)\H
studied by Sarnak in [23] give rise to some, but not all, non-orientable billiards.

The simplest modular billiard, which we will denote Cyp, is that induced by the
imaginary axis (0, 0o). It covers the segment connecting i to infinity. The billiard
induced by (%, 00), denoted C 1, covers the rest of the boundary of 7. Both Cy and C 1
are improper and non-orientable.

In a prescient article of 1924, Artin [2] observed that properties of continued frac-
tions imply that a generic modular billiard is dense in 7" (Fig. 2). On the other hand, the
behavior of a non-generic billiard is subtle and can be quite interesting arithmetically.
For instance, a modular billiard B has a maximal height, possibly infinite, defined to
be the supremum of imaginary parts of points on B. Let L. (B) be twice this maximal
height. Consider the set

Moo = {hoo(B); B is a modular billiard}.

This is the Markov spectrum, which is usually defined (equivalently) in terms of the
minima of indefinite binary quadratic forms. The Markov numbers are those positive
integers p for which there are ¢, r € Z™ such that

pr4q*+r* =3pqr.

These may be ordered into an infinite increasing sequence whose nth term is denoted
by pn:

{1,2,5,13,29,34, ..., pn,...}.

The following result is a consequence of the fundamental work of Markov [21,22]:
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Fig. 3 Billiards associated to the points V5,48, 7&521’ 7‘11317 € Muo

Theorem 1 For any fixed k < 3 there are only finitely many modular billiards B with
Aoo(B) < k. The points in M, less than 3 are given by the sequence

g o e N

V221 /1517 /7565 V/9pi—4
{\/g,\/g, 3 P} 13 3 29 3 P ,....}

which is monotone increasing to the limit 3 € M.

It is also known that each of the points < 3 in M, is actually attained by a
non-orientable periodic billiard (see Theorem 75 of [11]) and it was conjectured by
Frobenius [14], but is still open, that the multiplicity of each of these points is one,
meaning that the associated billiard is unique. The part of the Markov spectrum that
is > 3 is less understood but has been the subject of much research (see [9,20]). It is
not hard to show that any open interval around 3 contains uncountably many points of
M and that M is closed, but there are few completely definitive results known.
Building on pioneering work of Hall [15,16], Freiman [13] obtained one such result.
He showed that [p, 00) C My, where

2221564096 + 283748+/462

_ — 4.527829566 . . ..
® 491993569 ?

with no smaller value of u being possible.

We remark that the seminal work of Harvey Cohn, beginning with his 1955 paper [7],
greatly enhanced our understanding of the connections between the Markov spectrum,
hyperbolic geometry and combinatorial group theory. Work of Cohn and several others
revealed a completely unexpected relation between the Markov spectrum and the
length spectrum of simple closed geodesics on the modular torus (see e.g. [8,17-19]
and the references therein). This work has had a lasting impact on the study of simple
closed geodesics on Riemann surfaces. It has also led to a better understanding of the
Markov spectrum itself. As can be seen in Fig. 3, the modular billiards induced by the
Markov geodesics are not simple in general, but if they are unfolded in the modular
torus they become simple.

The value Aoo(B)~' may be thought of as a measure of how close the billiard B
gets to the corner of 7 at the cusp i co. It is natural to ask how close a modular billiard
must get to each of the other corners i and p of 7. By the distance of a billiard from
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Fig.4 Billiards Cy, C; and C3
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a point z € 7, denoted by §,(53), we mean the infimum of the hyperbolic distance
between points on the billiard and z. Let

—

A-(B) = (sinh 8, (B)) . (1.3)
A natural analogue of the Markov spectrum is
M, = {A;(B); B is a modular billiard} (1.4)

forafixedz € 7.
In this paper we will give results about M, and M; that correspond to Markov’s
for M. The result for z = p is quite easy to prove.

Theorem 2 The smallest value in M, is /3, which is attained by Co. The value V3
is a limit point of M.

The result for z = i is deeper and most of this paper is devoted to its proof.

Theorem 3 The three smallest values in M; are
{%\/21, V14, 13+ ¢21)} ={2.29129..., 2.49444 ..., 2.52753...}.

These three values are attained, respectively, by unique billiards Cy, Co and Cs, each
proper and non-orientable. Here C1 and Cy are periodic billiards, while C3 is not
periodic. The value %(3 + +/21) is a limit point of M,;.

Explicitly, Cy is induced by the geodesic (3 (1 —+/21), $(1 ++/21)), C; is induced
by the geodesic (1(2 —+/14), (2 + /14)) and C3 is induced by the geodesic (1 (3 —
V21), % (5++/21)) (Fig. 4). We remark that C3 is an example of a non-periodic billiard

that is not dense in 7, which is a reflection of the fact that %(3 —+/21) and %(5 +4/21)
are not Galois conjugates. One can see from the doubly-infinite sequence K3 which
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Fig.5 Ford circles

we use to represent C3 in (7.6) below that C3 is essentially a concatenation of two
periodic billiards with a small perturbation in between.

In both cases the rest of the spectrum invites investigation. It is also of interest to
consider the Markov spectrum M, for other points in 7, in particular CM points. In
addition to distances from a fixed point, there are other geometric quantities associated
to non-generic modular billiards whose sets of values define Markov-type spectra. The
purpose of this paper is to initiate a study of these generalizations by concentrating on
the simplest and most natural examples and giving the analogues of Markov’s results
for them.

In the next section we give a geometric interpretation of Theorems 1-3 in terms of
the packing of discs in tessellations formed by geodesic segments and prove the first
statement of Theorem 2. In Sect. 3 we recall the connection between modular billiards
and real indefinite binary quadratic forms and then in Sect. 4 give a formula for the
hyperbolic distance between a billiard and a point. This formula is written in terms
of the minimum of an indefinite quaternary quadratic form and is used to complete
the proof of Theorem 2. In Sect. 5 we introduce reduced forms and express ; (B) in
terms of them. Then we give in Sect. 6 the correspondence between proper modular
billiards and doubly-infinite sequences of positive integers that connects billiards to
simple continued fractions. This connection is exploited in Sects. 7-9 to complete the
proof of Theorem 3.

2 Packing discs in hyperbolic tessellations

Elementary geometric considerations provide some useful insight into Theorems 1-3
and serve to establish “trivial” bounds for A, (3). The problem of finding points of
M is equivalent to the problem of fitting geodesics in H between discs of varying
radii around the images under I" of z.

Consider the case of the original Markov spectrum M. A Ford circle is the
horocycle around the reduced rational number p/q with radius 24%' Together, these
circles form the I'-orbit of the horocycle Im(z) = 1. The set of all Ford circles form
a packing of the tessellation I'(i, p). See the left hand side of Fig. 5. It is obvious
that every geodesic S must intersect infinitely many Ford circles. This gives that
Aoo(B) = 2, or My, C [2, 00). Ford [12] proved that if we reduce the radii of the
Ford circles to any
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Fig.7 Disks around images of i
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it still forces intersection but if » < rg there are geodesics that intersect no circle. This
is equivalent to shifting the cuspidal horocycle to Im(z) = 3/2. See the right hand
side of Fig. 5.

Proof of first statement of Theorem 2 The first statement of Theorem 2 may be proven
this way. To show that A ,(B) > /3 first observe that the hyperbolic circles of radius
%log 3 around the points I'p form tangent sequences that approach a dense subset
of R. It is straightforward to show that they are tangent to the Farey triangulation
I'(0, oo). Any geodesic must intersect these circles if their radius is made any larger
since its endpoints will be separated by a sequence of circles. See the left hand side
of Fig. 6.

As we will prove below and is illustrated in the right hand side of Fig. 6, if the radii
are reduced by any positive amount there are infinitely many inequivalent geodesics
that intersect no circle.

Turning to Theorem 3, we can pack I' (i, oo) by geodesic circles centered at the

points I'i of radius log(HT‘ﬁ) = 0.481212.... This implies that A; (B) > 2, as is
illustrated in the left hand side of Fig. 7. This is weaker than the consequence of
Theorem 3 that A; (B) > 2.29129.... as the right hand side of Fig. 7 illustrates.
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Fig. 8 Disks around images of

=)

This point of view sheds light on why the Markov-type result for the distance
problem is easier for z = p. The corresponding tessellation in this case comprises
complete geodesics, while in the other two cases only geodesic segments.

For example, we easily get the first statement of the following result using the
tessellation F(%, oo) =TI'(i, p) UT (p, 00), whose associated billiard is C%. Figure 8

illustrates the packing of this tessellation by disks around images of +/—2 of radius
log2
5

Theorem 4 The smallest value in M ;= is V8, which is attained by C%. The value
V8 is a limit point of M j=.

3 Binary quadratic forms and billiards
To go beyond this basic geometric method we need a usable formula for the distance
between a billiard and a point. Binary quadratic forms provide the key. In this section

we establish their relation to modular billiards of the various kinds.
For a, b, ¢ € R with d = disc(Q) = b* — 4ac # 0 let

O(x, y) = ax* + bxy + cy?,

which is a non-singular real binary quadratic form. Sometimes we will write 0 =
(@, b, ¢). Now M = + (gf gi) € I’ = PGL(2, Z) acts on Q by

(OIM)(x, y) & (det M)Q(a'x + by, c'x +d'y). (3.1)

Clearly Q|(M1M>) = (Q|M1)|M> for M|, M, € T'. We say that two such forms Q
and Q> are equivalent if there is an M € I" such that

(Q1IM)(x, y) = Qa(x, y).
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If M € PSL(2, Z) then we say that Q| and Q; are properly equivalent. The class
of forms that are equivalent to Q, but not necessarily properly equivalent to Q, will
be denoted by [Q]. The discriminant disc(Q) is an invariant of [ Q].

If Q9 =(0,b,c) withb > Oletag = —% and Bp = oo, while if b < 0 with let
Bo = —% and ap = oo. Otherwise the roots of Q(z, 1) = 0 are given by

—b—d
2¢

—b++/d
aQ:T and IBQZ

(3.2)
In all cases ap will be called the first root and B¢ the second root of Q. One checks
that d, ap and B¢ uniquely determine Q. Furthermore, using the generators A, B, C

from (1.1), it follows that for each j = 1,2 and forany M = + (’Z,/ Z;) el

agm = M (ag) and Bom =M~ (Bo),

with M (z) given in the definition around (1.2) extended to all of C. It is important
that the action of I on quadratic forms defined in (3.1) preserves the first and second
roots.

The proofs of the following two results are straightforward.

Proposition 1 (i) The map Q +— g determines a bijection between classes [ Q] with
a fixed negative discriminant that are represented by positive definite Q and points
of T.
(ii) The map Q +— (ag, Bo) determines a bijection [Q] <> B between the classes
[Q] with a fixed positive discriminant and the set of all modular billiards, where
the associated billiard B is induced by (ag, Bg).

Say Q represents zero if Q(x,y) = 0 for some x,y € Z not both zero, that Q
is reciprocal if Q is equivalent to —Q and that Q = (a, b, ¢) is primitive integral if
a, b, c € Zwithged(a, b, c) = 1. We have the following characterization of improper,
non-orientable and periodic billiards in terms of quadratic forms.

Proposition 2 Under the bijection [ Q] <> B of (ii) of Proposition 1, for any Q € [Q]

(a) Q represents zero if and only if B is improper,

(b) Q is reciprocal if and only if B is non-orientable,

(c) For some non-zero real k the form k Q does not represent zero and is primitive
integral if and only if B is periodic.

The study of periodic billiards is the same as that of (primitive) integral binary
quadratic forms. It follows from Proposition 2 (c) that each periodic modular billiard
B may be assigned a unique positive integer given by

d = disc(B) & «2disc(Q)

for any Q € [Q]. There are only finitely many periodic billiards with a given discrim-
inant d and each has the same length.
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A formula for the length of 5 is determined by finding that solution (z, u) with
t,u € Z* of t2 — du?® = 44 for which ¢ = %(t + u+/d) is minimal. Then the length
is 2loge. If 1 — du?> = —4 has a solution then proper equivalence is the same as
equivalence. Otherwise each ordinary class consists of two proper classes.

Classically one says that a primitive integral Q is improperly equivalent to itself
when Q|M = —Q where M € I" with det M = —1 since then the change of variables
(x,y) = (x,y)M' preserves Q. It follows from Theorem 90 of [10] that this holds
if and only if some (a, b, ¢) € [Q] has a|b. These forms are called ambiguous and
one may say that the billiard B associated to [Q] is ambiguous. By Proposition 2 (b)
we have that an ambiguous B3 is non-orientable. If #> — du? = —4 has a solution then
every non-orientable billiard is ambiguous. Otherwise it is possible for a billiard to
be non-orientable without being ambiguous. This happens when an associated Q is
properly equivalent to —Q. Markov’s billiards are examples. If d is fundamental, the
number of non-orientable billiards is 22~ where w(d) is the number of distinct
prime factors dividing d.

4 Quaternary quadratic forms
A consequence of Proposition 2, one that is crucial for us, is a formula for
sinh 8. (B) = (A (B))~!
from (1.3). This involves finding the minimum of a certain indefinite quaternary
quadratic form. For a fixed z € 7 let Q'(x, y) = a’x> + b'xy + ¢'y?> witha’ > 0

and d’ = b'’> — 4a'c’ < 0 represent z. Also, let Q(x, y) = ax? + bxy + cy? with
d = b* — 4ac > 0 represent the modular billiard 5.

Proposition 3 Notation as above,
sinh §,(B) = (dld/|)_% Féf] |2c’a +2a’c — b'b|.

Proof A standard exercise in hyperbolic geometry shows that the hyperbolic distance
8(z, §) from z to the geodesic S = (ap, Bp) satisfies

sinhé(z, S) = (d|d’|)_% [2c’a + 2a’c — b'b. 4.1)

See e.g. [3, p. 162]. The result follows. O

We are now able to justify the second statements of Theorems 2 and 4. For fixed
¢ € Z* let A, be the billiard associated to the quadratic form

Q(x,y) =2 — txy = y*.
The case when ¢ = 5 is illustrated in Fig. 1, which is typical in that of those

geodesics in the orbit intersecting 7, the one corresponding to Q is the one that gives
the closest approach to p. By Proposition 3 we have

@ Springer



Markov spectra for modular billiards 1161

14

sinh 3,0(./4[) = 3@2—4_12

Therefore A,(A;) = —V%Z“z, which decreases to the limit +/3 as £ — oo. This
completes the proof of Theorem 2. The second statement in Theorem 4 follows in like
manner.

Note that we may rewrite (4.1) using (1.3) as

1
AB)'=@dhz  inf 197G x, x5, 5, (4.2)

X1 X4—X2X3=
where for a fixed choice of Q(x, y) = ax? + bxy + cy? representing B we have

0" (x1, x2, X3, X4) = 2a'cx]2 + Za/axg + ZC/cx32 + ZC/axf
+ 20 axaxs + 20 cx1x3 — 2¢'bx3xa
—2a'bx1x2 — b'bx1x4 — b'bxrx3.

Here Q” is an indefinite quaternary quadratic form of signature (2, 2). Observe that
we must minimize Q" (x1, x2, x3, x4) subject to

X1x4 — x2x3 = £1 “4.3)
whereas it is more usual to only require that (x1, x2, x3, x4) # (0,0, 0, 0).
The formula for Ao, (53) from the Markov spectrum corresponding to (4.2) is simply

1 .
rooB)'=d7z inf  |Q(x1, x2)l. (4.4)
(x1,x2)#(0,0)

In this sense the problem of finding A; (3) is more difficult than that of finding A, (5).
The study of the minima of certain indefinite quaternary forms subject to (4.3) goes
back at least to a 1913 paper of Schur [24], which was an inspiration for this paper
and deserves to be better known.

At this point we may obtain a good lower bound for A;(B) when B is improper.
It is easy to check that an improper billiard is determined by some (¢, 0o), where
0<ac< % or equivalently by the form Q = y(x — ay) for this a.

Proposition 4 For B an improper billiard we have that
ri(B) =3
and this is attained by the billiard determined by (%, o0).

Proof Let Q(x, y) = y(x —ay). Then A;(B)~! < min(e, 1 — 2), which is found by
applying Proposition 3 in the form (4.2) to

1 2 2
50" (x1,x2,x3, x4) = — a(xi +x3) — X3x4 — X1 X2
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and taking (x1, x2, x3, x4) = (1,0,0, 1), (1, —1, 1, 0). Thus « = 1/3 gives the mini-
mum. o

5 Proper billiards and reduced forms

We say that a form Q = (a, b, ¢) with discriminant d > 0 that does not represent zero
is reduced if

—1<Bp <0 and ap > 1,

where ap and Bo were defined in (3.2). A classical argument given in the proof
of Theorem 76 in [10] may be adapted to prove that for any proper billiard 55 the
corresponding class [ Q] (as in Proposition 2) contains such reduced forms.

Given a form Q = (a, b, ¢), let

0" (x,y) = — Q(=y, x). (5.1)

If Q is reduced then Q* is a reduced form that is properly equivalent to —Q.

Note that the geodesics associated to the reduced forms do not necessarily account
for all of the geodesic segments comprising a modular billiard. This fact is illustrated
in Fig. 1, where the single geodesic associated to a reduced form is shown in black. In
the proof of Markov’s Theorem 1 the maximal height of a billiard B will be approached
by the heights of geodesics associated to reduced forms. Thus by (4.4) it follows that
we have the simple formula

1

AoB) ' =d 2 (5.2)

inf la
Qe[Q] reduced

To obtain an analogous formula for 1i(B)~! we must consider some transforms
of reduced forms. This motivates the following definition. For any for Q = (a, b, ¢)
with discriminant d > 0 define

v(Q):df% min(la +c¢|, |2a + b +¢|, |2¢ + b + al). (5.3)
Proposition 5 For a proper B we have

AxB)7'= inf  v(Q),
Qe[ Q] reduced

where the class [ Q] corresponds to B.

Proof To prove this we will show that for any geodesic in H that intersects 7', we can
find a form Q = (a, b, c¢) such that either Q or —Q is reduced and that the geodesic
corresponding to Q(x, y), Q(x+y,y),or —Q(x,x —y) is as close or closer to z = i.
The result then follows by Proposition 3 applied with Q' = (1, 0, 1) since the terms
in (5.3) correspond exactly to these three cases.
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Note that we may restrict our attention to geodesics S that either (i) cross both
vertical sides of the boundary of 7 or (ii) cross the right vertical side and the circular
arc of this boundary. This is because the reflection across the y-axis of a geodesic that
crosses the left hand vertical side and the circular arc will cross both vertical sides and
will also have the same distance from z = i.

In case (i) we may assume that the apex of the geodesic S lies on or to the right of
the y-axis; if not, the reflection across the y-axis of S will have that property and be
the same distance from i. Let o, ﬁ be the roots of a form Q associated to S. Then we
have

, B<0, a—B>2, and @+p >0.

D=

o >

Thus there is a unique integer n > 0 such that the form Q(x, y) = é(x —ny,y),
obtained by shifting S to the right » units, is reduced. If n = 0 or 1 then we are done
because either Q is reduced already or Q(x, y) = Q(x + y, ¥). Suppose that n > 2.
Then E < —2 and @ > 2 which implies that the roots «, 8 of Q satisfy

—1<pBf<0 and «a > 4.

If (o, B) intersects the y-axis above i, then a simple geometric argument shows that
(o, B) is closer than S to the point z = i. If not, then the geodesic (¢ — 1,8 — 1)
associated to Q(x + y, y) crosses the y-axis above i (since (@ — 1)( — 1) < —2);
hence either (« — 1, B — 1) or (&, B) is closer than S to the point z = i.

In case (ii) we may assume that either Q = é is reduced or that

<B < % and o > 1,
in which case Q(x, y) = —é(x, x — y) is reduced. Since this is equivalent to the
identity
0(x,y) == Q(x,x =),
we are done. O

6 Billiards and sequences

Simple continued fractions are crucial in Markov’s proof of Theorem 1 and in our
proof of Theorem 3. We denote one by

k1, ko, k3, ks, ...1 =k + ,
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1164 N. Andersen, W. Duke

whose finite version ending in kL is written [kq, k2, ..., k,]. Here we will present

the beginnings of Markov’s method in a form that we adapt in the next section to
prove Theorem 3. The method relates chains of reduced quadratic forms to doubly-
infinite sequences of positive integers. We give a somewhat novel treatment of this
correspondence based on equivalence rather than proper equivalence.

For a reduced Q define the doubly infinite sequence Ko by expanding

ag = ki, ka, k3,...] and — Bo =1[0,ko,k_1,k2,...] (6.1)
into simple continued fractions and setting
Ko=C(..,k_1,ko, k1, ko, ...).

We shall refer to k; as the first entry of K.

Say two doubly infinite sequences of positive integers K = (k,) and L = (¢,)
are equivalent if there is a j € Z such that k, = €,y for all n € Z and properly
equivalent if there is a j € 2Z such that k, = £, j foralln € Z. If K = (k;) define
the reversal of K tobe K* = (k1_p).

Proposition 6 The map Q — Ko determines a bijection between classes of forms
with a fixed positive discriminant that do not represent zero and equivalence classes of
sequences of positive integers. It also determines a bijection between proper equiva-
lence classes of forms with a fixed positive discriminant that do not represent zero and
proper equivalence classes of sequences of positive integers. Furthermore K, = K g+.

Proof For eachn € Z let
rn = kn, kny1,...1 and s, = [0, kp—1, ky—2, ... 1. (6.2)

Thus 1 = ap and s1 = —Bp and also

1 1
Fpn1=—+ky_1 and s,_1=— —k,_1. (6.3)
T'n Sn
Define a,, b,, > 0 for each n € Z by
an 1 bn n — Sn
— =——— and —=——. (6.4)
\/3 p—1+Sn—1 \/3 T'n + Sp

It can be seen that using (6.3) that d = disc(Q) = bﬁ + dayayy foralln € Z. Let
On = (ant1, —bn, —an).
A calculation shows that
ag, =1, and — Bg, = s,.
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It follows that each Q,, is reduced and equivalent to Q. We claim that every such
form occurs asa Q. Further, each Q2,41 is properly equivalent to Q and every reduced
form that is properly equivalent to Q is one of the Q2,1. Again, these statements
follow from variations on the arguments given in Chaper VII of [10]. That the claimed
bijections are well-defined and injective follows. Clearly every sequence K arises
from some reduced form so the maps are also surjective.

Turning to the last statement, recall that Q* was defined in (5.1) and observe that

1
ﬂQ* = —@ and OlQ* = —%.

Let r)* and s, correspond to Q* as in (6.2). By (6.1) we have

rik = —i = ko, k—1,k—3,k_3,...] and ST = i = [0, ki, ka, k3 ... 1,
giving the result.
This completes the proof of Proposition 6. O

Say that a sequence K = (k,,) is periodic if there is an N € Z* so that k,, .y = k,
for all n € Z and palindromic if K* is equivalent to K. Combining Propositions 2
and 6 we derive the following correspondence.

Theorem 5 There is a bijection between proper modular billiards and equivalence
classes of doubly infinite sequences of positive integers. Under this correspondence
a billiard is periodic precisely when the sequence is periodic and non-orientable
precisely when the corresponding sequence is palindromic.

From the first formula of (6.4) and (5.2) we have

Aoo(B) = sup(ry, + sp). (6.5)

nez

This is the starting point of the proof of Markov’s Theorem 1. The main difficulty is in
understanding which K cannot have any small values of r,, 4 s,,. The first observation
is that if any k,, > 2 we must have Ao (8) > 3. The complete result requires an
ingenious analysis of continued fractions all of whose partial quotients are either 1 or
2. A treatment of Markov’s method and a proof of Theorem 1 based on it can be found
in Dickson’s book [11]. Other useful references are [1,4—6].

7 Sequences and the spectrum

To return to the proof of Theorem 3, recall from (1.4) that M, is defined in terms of
Ai (B), which was given in (1.3). We now find a formula for 1; (5) that is analogous
to (6.5) when B is a proper modular billiard. For our problem we are led to estimate
certain quantities involving pairs of successive values of r,, and s, from (6.2), rather
than simply r, + s,.
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Let K be a doubly-infinite sequence of positive integers. The quantities we need
are the following:

1 1

"(K) = — 7.1

Mn( ) T'n + Sp Fn—1 + Sn—1 1)
2—rp+s 1

"(K) = LT - 7.2
Mn( ) T'n + Sp n—1+ Sn—1 7.2)
/'LW(K): 2 rn_sn_l‘ (1.3)

" Tp—1 + Sp—1 Iy + Sy . .

Also set
W(K) = nf i, (K), w"(K) = inf i, (K), p"(K) = inf 10;/(K)  (7:4)
and
w(K) = min (' (K), " (K), /" (K), ' (K*), " (K*), /" (K*)).  (1.5)
Proposition 7 Let K correspond to a proper B. Then we have
1 (B) = u(K).
Proof By Proposition 6 and (6.4)

_1 _1

/L;,(K) =d " 2|ap+1 — anl, /LZ(K) =d"2|2ap+1 — by — anl,
1

MZ/(K) =d"22a, + by — ap+1l-

The result follows from Proposition 5 since every reduced form of the class [Q] is
found among the Q,,. O

In the following proposition we show that
[$var, 3via Je+van)em,

and that each value is attained. For j = 1, 2, 3 and some fixed choice of the first entry
in each, define doubly-infinite sequences

Ki=(1,3), K»=(1,2,1,6), K3=3,1,4,1,3). (7.6)

Here an overlined subsequence adjacent to a parenthesis indicates that one must con-
catenate the subsequence infinitely many times in the direction of the parenthesis.

Proposition 8 Let C; be the modular billiard associated to K for j = 1,2, 3. Then
Ai(C) =321, 1(C) = 3V14, 1;(C3) = 13 +V21). (1.7)
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Eachvalue ); (C;) is attained. All three billiards are proper and non-orientable; Cy, Cy
are periodic, while C3 is not periodic.

Proof That (7.7) holds and that each X; (C;) is attained is a straightforward application
of Proposition 7. Clearly K1, K are periodic and palindromic and K3 is not periodic
but is palindromic. Thus the final statement follows from Theorem 5. O
8 Exceptional sequences

In this and the next section we complete the proof of Theorem 3. By Proposition 4 we
may assume that the billiard B is proper. The main result of this section is the following
proposition, which (together with Proposition 7) shows that the only proper billiards
that stay farther away from z = i than C3 are C; and C;. The method is completely

elementary and amounts to finding inequalities determined by continued fractions.

Proposition9 Unless K is equivalent to K j for j = 1,2, 3 we have that
(k) < § (V21 -3) =0395644 ...

We will say that any K with u(K) > 0.395644 ... is exceptional. The proof of
Proposition 9 consists of a series of results that successively eliminate configurations
of subsequences in a K that force it to not be exceptional. Since u(K) = u(K™), it
is clearly permissible to only prove it for either K or K*. Hence we will often only
provide estimates for one of them and might not mention when reversals must also be
considered in order to cover all cases.

Proposition 10 An exceptional K must have the form
K=(...,1,m,1,mp,1,...)
where m; > 2. If any m j = 2 then K is equivalent to K, = (m).
Proposition 10 will be proven in the four lemmas that follow.

Lemma 1 Given any K, if K contains any subsequence of the form
(1,1),(2,2),(2,3),(2,4),(2,5), (2,6), (m,m') 8.1

for3 <m < m' then W/ (K) < % and therefore K is not exceptional.

Proof If K contains the subsequence (m, m’) for any m, m’ € 7% thereis ann € Z
so that
/ /

rn,lz[m,m,...], rl’L:[m5"~]a Sn,]Z[O,...], snz[O,m,...].
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Thus[m,m’, 1] <rp_1 <[m,m'], 0 <s,-1 <1, [m'] <r, <[m', 1], [0,m,1] <
sp < [0, m] and so it follows that

m 1 m+ 1
< <
mm' +m + 1 In + Su mm' +m’ +1

and

m’ 1 m' +1

mm/+m’+l<r + = ! '
n—1 T Sp—1 mm’ +m + 1

The result now follows from (7.1) and (7.4) since for the pairs in (8.1) it can be easily
verified that

m—m' —1 m —m—1
b S

1
mm’ +m+ 1" |\mm' +m’ + 1 3

m}

A useful consequence of Lemma 1 is that (1, 1) cannot occur as a subsequence in
an exceptional K. We will in several places use this fact without further mention.

Lemma 2 If K contains the sequence (£',2, ) where £ # 1 or £’ # 1 then K is not
exceptional.

Proof By Lemma 1 we may assume that either (i) £, ¢’ > 7 or (ii) that £’ = 1 and
£ > 7. In case (i) there is an n € 7Z so that

rpm1=10,2,€,...1, rm=124...1, sp—1=100,...1, s, =1[0,¢,...1,
hence

rn—1>17,2,7] = 112

I5 0<sy1 <1,
2<rn<[2,7]7=%, O<sn<[0,7]=%_

It follows that

1 2—r,+s
O<—<% and —%<#<ﬁ
Fp—1 + Sp—1 e )

so that by (7.2) we have that u, (K) < % =0.196429. ...

In case (ii) either (a) K contains (m’, 1, m, 1,2, £) where m,m’ > 2 or (b) K
contains (m, 2, 1,2, £) where m > 7.

In case (a) there is an n € Z so that

Fn—t=1[m, 1,2, 6, ...], rm=1[1,2,¢...1],

Sn—1=10,1,m',...1, s, =1[0,m,1,m,...].
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Thus
m+%<r,,_1<m+g, %<sn_1<1, %<rn<%, m+rl<sn< 3
2

Hence

(m+3)(Bm +2) 2—rp+ s, (m+ 1)(24m + 61)

< <

3(m+ 1)(Bm + 4) rn + Sy (Bm +2)(22m + 37)

and
1 1 1
37 < < i

m+ 55 Tn—1~+ Sp—1 m+x

It now follows easily that u// (K) < % =0.363636....
The same kind of computation shows that in case (b) we have

8 59 1 22 3 7 1
3 <Tu-1< 53, O<sn_1<7, BT <m<3 13<Sn<3

and so u//(K) < g5 = 0.18046. . ..
By (7.4) and (7.5) the result follows.

Lemmas 1 and 2 prove the first statement of Proposition 10.

Lemma 3 Suppose that K contains the subsequence (1,2, 1, m). If m # 6 then K is

not exceptional.

Proof Suppose that 1 < m < 5. By Lemmas 1 and 2 we may assume that for some

new

Fpmt =12, L,m, 1,m', ..., s,m1 =10, 1,m",...],

rpn=1I[1,m,1,m' ...] and s, =10,2,1,m",...],
where m’, m" > 2. It follows that

2,1,m, 1,2] <rp_y <[2,1,m, 1] and 3 <5,y < L,

while
[1,m, 1] <r, <[l,m,1,2] and [0,2,1] <s, <[0,2,1,2].
Hence
m+2 1 9m + 15 8(3m +2) 1 3(m+1)

< < an < < .
dm +7  rp—1+ Sp—1 33m + 46 33m + 46 In =+ Sp dm +7
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A calculation now shows that for m < 4

1 1 2m + 1

<
T'n + Sp Fn—1+ Sn—1 4m +7

< 2 =0.391304...
23

and the statement of the Lemma in this case follows by (7.1), (7.4) and (7.5).
Now assume that m > 7. For this we will apply (7.3) to the reversed sequence
(m, 1, 2, 1). By the above we may assume that

rnfl = [m9 172’ 17m/7 17 "']9sn71 = [O’ lym”7"']a

r=11,2,1,m,...1,8, =[0,m, 1,m",...]
where m’ > 5 and m” > 2. Then a calculation using

rp—1>1[m,1,2,1,5], [1,2,1] <r, <[1,2,1,5],
sp—1>10,1,2], [0,m,1] <s, <[0,m,1,2]

gives

2 2 3m—7 rp—sa—1 36m—11)
<

0< < 57 an < .
Tn—1+ Sn_1 m+ g 9m + 6 Tn + Sy 17(4m 4+ 7)

Thus we have
2 Lrmsm=l] 3 (414m? +2951m + 4407) 2721

<
it o1 s, | 17@m+7)(69m 1 97)  — 6902
— 0394234 ..

form > 7.

Suppose now that K contains (1,2, 1, 5). By the above we may assume that K
contains (1,5,1,2,1,5,1)or (1,6,1,2,1,5,1).

If K contains (1,5, 1,2, 1,5, 1) we have for some n that

[1’27 1’59 1] < rnfl < [1’27 1755 172]’ [0’57 1] < snfl < [0557 1’2]

and
2,1,5,1,2] <r, <[2,1,5,1], [0,1,5,1,2]<s, <[O,1,5,1].
This gives
1
969 60
0269231 = 1 < — 1 19 _ (27007
. S =3 57 =0.

T'n + Sp
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and hence
o (K) < {35 =0.39011....

Similarly, if K contains (1, 5, 1,2, 1, 6, 1) we have for some n the same inequalities
for s,—1 and s, while

[1,2,1,6,1] <rp—1 <[1,2,1,6,1,2] and [2,1,6,1,2] <r, <[2,1,6,1].

This gives
0.655757... = 1343 < ﬁ < 138 =0.669856... and
0.267943... = 35 < - JlrSn < 80 =0.268849. ...
This gives
1, (K) < 2 =0392344 ...,
Hence by (7.4) and (7.5) we are done. m]

If we now assume that K contains (1, 2, 1, 6) then in fact we may assume that K
contains (1,2,1,6, 1, m, 1) where m > 2.

Lemma4 Suppose that K contains (1,2,1,6,1,m, 1) where m > 2. Then K is not
exceptional.

Proof We may assume that for some n
[6,1,m,1,2] <ry—1, [0,1,2] <s,-1
and
[1,m, 1] <r, <[l,m,1,2], [0,6,1,2,1] <s, <[0,6,1,2].

Thus we have that

2 6(3m +5)

0< <
Fn—1+ Sp—1 69m + 106

and

—Om2 +45m+34 1y —sy—1 (m + D(12m — 73)
< < — .
(m + 1)(69m + 106) o + Sn (B3m +2)(31lm + 58)
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Hence
2 LT = 1| 846m> +9975m2 + 20671m + 11218
<
Fn—1 + Sn_1 o+ Sn (3m +2)(31m + 58)(69m + 106)
185848

< =0.357474 . . ..
~ 519893

form > 3. O

This gives the second statement and thus completes the proof of Proposition 10.
Suppose now that K = (..., 1,my, 1,mp, 1,...) is exceptional with K # K; and
K # K>. By Proposition 10 and (7.6) we have that m; > 3 for all j with at least one
mj > 3. Now for K3 given in (7.6) we have that

(var-3).

2 rn— S, — 1 1
! (K3) = n S ' :

Tp—1+ Sp—1 Fn =+ Sn
when

r,=1[1,3,1,3,1,...] and s,=1[0,4,1,3,1,3,...].

"

Since p(K) < u, (K) by (7.4) and (7.5), Proposition 9 is a consequence of the
following lemma, which implies that

) (K) < ) (K3)
unless K is equivalent to K3.
Lemma5 Suppose that
rm=1[1,my, 1,mp, 1,...], s, =[0,mg, ,m_q,1,...]
and
rp=[1,m, 1,my)1,...1, s, =[0,mgp 1,m |, 1,...]

with m’j >mj > 1forall j € Z. Then

2 ry—sp—1 2 rp—Sp— 1

/ ! ’ /
rn—l+sn—l rn+sn

=

3

Tp—1+ Sn—1 T'n + Sp

with equality if and only lfm’j =mjforall j € Z.
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: / / 1
Proof Under our assumptions we haver, | <r,_,andr, > r,.Nows, | = 5 Mo

andry,_| = rin + myg and similarly for r’, s’. Thus
2 rn— S, — 1 2rpSpy +rpn —sp — 1
Tp—1 + Sn—1 T'n + Sy I'n + Sy

The result now follows since the function

2xy+x—y—1
Fx,y)= —————
xX+y
satisfies 0 < F(x1, y1) < F(x2,y2) whenever | < xj <xp <2and0 <y <y <
1, with equality if and only if x; = x; and y; = y,. To see this, use that the gradient
of F(x, y) is given by

_ (2yO+D+1 2(x=Dx+1
VF(xs y) - ( (Xer)Z bl (ery)Z )

9 Approximating C3

We conclude by justifying the final statement of Theorem 3. For £ > 1, let

Ke=G,1,4,1,3,1,...,3,1,4,1,3), ko=ky =4,

where the number of 1’s between the 4’s is given by £. Propositions 7 and 9 show that
the billiard B, associated to K, satisfies A; (B¢) > %(3 + V21).

Proposition 11 Let By be the billiard associated to the class of Ky by Theorem 5.
Then

lim A;(By) = £(3 + v/21).
£—00

Proof For a fixed ¢, define r, = r,(£) and s, = s,(£) as in (6.2) for the sequence K.
Then

ri=[1,31..314T13] and s =[04,1,3]=3(5-+2D),
where the bar indicates a repeated sequence, and the number of 1’s before the 4 in r|

is given by £. One can easily compute an explicit formula for r; using the recurrence
relation

r1(£+1)=1+;1, ri(l) = 17— V21). 9.1)
(0
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Lete = %(5 + +/21) denote the fundamental unit in Q(+/21). Then by (7.3) and (6.3)
we have the formula

(=3 4+ 2/21)et — 3!t
(11 + /2D)et — Le=t

wi'(K¢) =

We claim that u(K¢) = wp/’(K¢); the result then follows easily since A;(By) =
(K™t
Itis straightforward tocheck that u(K;) = u” (K,) for small £, so we assume £ > 3.

To prove that u(Kp) = u” (Ky), we first show that u, (K¢), un(K¢) > 34;@ =
395 for all n and that s/ (K¢) > =321 if n £ 41,20 + 1. If n is odd, then

l+f [1 4] <r, < [1 3] 3+«/ﬁ
—1+f =10.41) <5, <[0,3,1] = 2£2L

If n is even and k,, = 4, then

while if n is even and k,, # 4, then

MY 3T <, <13, 1,5 11 =1+2V2,
—3+@_[o,1,—3 <5, <[0.T.4] = —2 4 242,

—_

It follows from (7.1), (7.2), and (6.3) that in each case, u, (K¢), u,(K¢) > .399.
Similarly, u)"(K¢) > .399 if n is even. If n is odd and ky41, kn—1 # 4 then

P> (13,14 = S22 5 50,3, 1,4 1] = =322,

from which it follows that !/ (K) > .399.
It remains to show that p_1(K;) > p1(Kg) since, by symmetry, we have
m2e41(Ke) > pm2e—1(Ke) = n1(Ke). By (6.3) we have

6(4r1s1 +s1—r1)
W (Ke) = p'(Ke) + .

r1 + 81
Thus u—1(K¢) > p1(Ke) if and only if r; < lf—jm = é(S + +/21). This inequality
follows from the relation (9.1), which completes the proof. O
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