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Abstract

Measurement in quantum simulations provides a means for extracting meaningful information
from a complex quantum state, and for quantum computing, reducing the complexity of measure-
ment will be vital for near-term applications. For most quantum simulations, the targeted state will
obey several symmetries inherent to the system Hamiltonian. We obtain an alternative symmetry
projected basis of measurement that reduces the number of measurements needed by a constant
factor. Our scheme can be implemented at no additional cost on a quantum computer, can be
implemented under various measurement or tomography schemes, and is reasonably resilient under

noise.
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I. INTRODUCTION

One of the fundamental challenges in quantum simulation is the storage and propagation
of exponentially scaling many-body quantum states. Many classical computational meth-
ods treat these states approximately, using perturbative and truncated approaches or local
approximations, and result in polynomial algorithms which potentially sacrifice key char-
acteristics of the quantum state [Il 2]. Reduced density matrix (RDM) methods focus on
reducing the required state information to the k—body interaction inherent in the system
(such as the 2-RDM for fermionic simulations) [3HI5]. In these cases, the 2-RDM then is
subject to its own set of criteria, such as N —representability, but can deal with many-body

phenomena in an easier manner [3|, [16-1§].

An easy way to reduce the required amount of information to describe the state is through
utilizing symmetries. Symmetries are conserved quantities, preserved through the prepara-
tion and propagation of a state [2, 19, 20]. For molecular systems, particle number, total
and projected spin, invariance under time-reversal, and often molecular point groups are
examples of symmetries. These can be used in classical electronic structure calculations to
substantially reduce the number of resources necessary to simulate a system [2, 21, 22]. On
a quantum computer, the exponentially scaling state can be prepared efficiently for many
applications. For systems with a k—body interaction, tomography of the k—RDM is suf-
ficient to describe the system’s physical properties. Storage of the state (which is critical
for near-term applications) can be reduced to the tomography of the &~-RDM based on the
k—body interaction [15, 23H26]. In contrast to classical RDMs method, a pure quantum

state would automatically satisfy the N —representability problem.

In quantum computing, symmetries are utilized in a wide range of settings. There is
ongoing work to utilize number-preserving gate sequences [27, 28], design algorithms for
preparing symmetry preserving ansatz [29H35], reduce symmetry violations through varia-
tional constraints [36H38], reduce the simulated Hilbert space through varied applications of

symmetries [39-41], and to utilize symmetries as a form of error mitigation [42-44].
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Despite potential reductions in the state complexity using symmetries or other meth-
ods, tomography still can require a large set of measurements. For molecular systems, the
Hamiltonian and 2-RDM scale as O(r?), where r is the number of basis functions, and many
heuristic and systematic ways involving graph-theoretic or combinatorial approaches have
been introduced to lower this number, which in some cases can render an apparent scal-
ing of O(r®) or O(r?) with swap networks [24, 45-47]. Within quantum simulation as a
whole, fermionic tomography is particularly challenging due to the nonlocal characteristics
of fermionic operators and prevents a logarithmic reduction in complexity seen with other
qubit systems [24].

In this work we present a method of lowering measurement and tomography costs for
quantum states and RDMs by exploiting the quantum state’s symmetries. By finding the
symmetry projected form of our measurement operators, we can re-express our operators
in a minimal basis on the quantum computer. The method leads to a constant scaling
improvement in the number of terms which has to be measured, and can be combined with

other measurement techniques to reduce circuit preparation costs for near-term calculations.

II. THEORY

A symmetry for a quantum system can be defined mathematically as a non-zero operator

S which commutes with the system Hamiltonian H,
[H, 5] = 0. (1)

Consider a set of n symmetries S = {51, S5, ..., S,} where each symmetry commutes with
all other symmetries (note that the most common set in fermionic simulation of N, S, and
S2 obeys this). We can find a basis which is a mutual eigenbasis of each element of S, and

then we denote a wavefunction which obeys each of these symmetries:

) = cala, 1,52, .., $n), 2)
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where each s; represents the eigenvalues of the i-th symmetry. Now, let A be an operator

acting on this state in this symmetry basis:
A § a,t1t2,...tn
A - aﬁfulauQ»---un

Then, if we are interested in the expectation of A, we can evaluate it as:

oz,tl,tg,...,tn><ﬁ,u1,u2,...,un|. (3)

() =D eyt (4)
.3
and so we have projected A into the specific subspace of each symmetry, despite that A
does not necessarily commute with S. Note that if each symmetry did not commute, our
eigenvectors would not be simultaneous eigenstates, and we could instead apply the operators
in terms of increasing restrictions as relevant to the quantum state.

In quantum simulation, often we measure operators which likely do not violate these
symmetries individually but often cannot be directly measured on the quantum com-
puter.Instead, we map these operators to a set of measurable operators on the quantum
device, which commonly today are projective measurements onto eigenvectors of the Pauli
matrices. The basis of operators will not always commute with the state’s symmetries, and
so will be projected by the wavefunction.

To find the projected form, we could explicitly calculate the operator form in Eq. for
small systems, but this quickly becomes unfeasible with increasing system size. By noting
that most operators we are interested in act non-trivially on a few local sites, we can find a
projected form acting on the local space. The form of this operator can be found relatively
easily for particular symmetries, and we derive our approach in Appendix A. Instead of
focusing on one symmetry state s, we project our operator onto a symmetry conserving

subspace:
(A) :Z P,AP,) ZZCZCJCL]S, (5)

where P, is a projection onto a single symmetry s. The projected form can be viewed as

a mixed operator resulting from projecting onto different pure symmetry states. Notably,
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TABLE 1. Example procedure for finding a set of symmetry projected operators. The vector

representation of A is given as A.

Given operators sets for measurement (M), symmetries (S) and the computational basis (A);

ind a set of projection operators Pi;
0) Find t of projecti tors P,
(1) For each measurement operator m € M:
(a) Transform 7 in A, = 3., a; 4;
(b) For each Ai, find symmetry projected computational operators Af

(¢) Choose linearly independent A}- as columns of U and solve for UZ,,, = m (2) Apply further processing

both A and the projected A will generally contain significantly less terms than the native

qubit operators.

With these points in view, our approach is as follows. Given an operator M, we express

it in the Pauli basis using some transformation:
i

where A; are typically Pauli strings. Then, we apply our symmetry projection to the indi-
vidual Af =, ﬁ’sﬁi]f’s. We represent both the operator and the Pauli strings in a vector
form (m, and /Tf) and then using fff as columns, form a matrix of linearly independent

vectors, U.

Finally, we solve the linear system of equations for a vector Z:
Ur=m (7)

to obtain a new basis of measurement for M which is equal to or lower in dimension. In
general, this will not be unique, and we can order our selection process or bias it to affect
the set of terms. The process here is summarized in Table 1 and an example is included in

Appendix B.



III. RESULTS AND APPLICATIONS

A. Application to Reduced Density Operators

This work’s inspiration is centered on molecular and fermionic systems, which only need
characterization of the particles pairwise interactions. These are completely captured in the
two-electron reduced density matrix, or 2-RDM, which represents a partial tomography of

the quantum state. Elements of the 2-RDM are measured according to:
ik
"D}y = (Wlalaja;aly) (8)

where 7, j, k, and [ are spin orbital indices. On the quantum computer, the most basic
mapping from fermions to qubits is the Jordan-Wigner transformation. This transforms the

creation and annihilation operators as [48)]:

1 o

al = 5 (X5 —iY) ) ., (9)
k=1
1 P

a; = 5(X; +iY)) ) Z. (10)
k=1

where X;, Y}, and Z; indicate a Pauli operator acting on qubit j. The local aspect of the
operation on a qubit is defined by the X and Y gates, whereas the Z portion generates parity-
conserving gates. The parity mapping [49, [50] exchanges the storage of orbital occupations
and parity, and the Bravyi-Kitaev mapping stores both in a tree-like diagram [51]. Both of
these schemes form linear combinations of operators which act differently on local sites and
identically on nonlocal sites, and thus can be symmetry projected with our technique.

For higher order RDMs (which can be used for exploring states in a linear- or quadratic-
expansive subspace or in other methods [52]), similar advantages can be seen. We show
the effect of our symmetry projection technique in reducing the number of measurements
for 1, 2, and 3-RDMs in Table II. We specify cases with different number of excitations
because particle and hole operators commute with the given molecular symmetries, whereas

excitations (or de-excitations) will transform to operators in the computational basis that
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individually may not conserve a given symmetry. The set of measurements in performing
tomography of the 2-RDM contains the set required for molecular Hamiltonians, and thus
can be used in Hamiltonian based measurement. An advantage of focusing on the 2-RDM
is that it enables systematic approaches in the tomography and that the 2-RDM itself can

be used as a tool in error-mitigation [24, 25| 35], 52 [53].

One technique to lower measurement costs involves using the qubit-wise commutation
relation, which relates Pauli strings which can be concatenated and thus simultaneously
measured through local measurement schemes. Finding the optimal grouping is a NP hard
problem, but by characterizing the set of measurements as a graph problem connected
by this relation, we can use coloring algorithms to reduce the number of colors (or cliques)
needed [47,54]. To consider the advantage in using our projected technique, we can compare
the number of cliques obtained with the default tomography to number obtained with our
method. We explore this for obtaining 2-RDMs of differing sizes in Figure 1. Additionally,
the worst-case scaling of the number of tomography terms is O(r?), and we look at overall
scaling coefficient (") under the grouping technique with both measurement schemes. If one
used the maximally commuting method [46], [47], which for the most part finds larger groups
of operators that can be simultaneously measured, the circuit depth scales polynomially
with the number of terms in a group, and so our scheme would lead to reductions in the

transformation required.

B. Effects of Noise on Particle Count

One implicit assumption in the above work is that the quantum state is of decent quality
and that it preserves the proper symmetries throughout the simulation. Due to noise, this
will almost certainly never be the case, so we are interested in how noise can affect our

symmetry projected scheme’s quality.

From a theoretical perspective, we can envision two broad cases. In the first, we have a



FIG. 1. (Left) Ratio of the number of total required terms in the 2-RDM versus the number of
required circuits following a grouping procedure, and (right) the scaling coefficient of the number
of circuits with respect to the number of qubits. The color denotes the fermionic mapping (Jordan-
Wigner, Parity, and Bravyi-Kitaev), and the symbol denotes the set of symmetries applied in the
projection procedure. The grouping procedure involves grouping terms according to qubit-wise
commutation following Ref. [54]. The black line on the right refers to total number of terms. See

Appendix C for more details.
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mixed state which is a sum of weighted states:

p= Zzasi|i7s><i7s|'

In this case the symmetry projection is still exact, as the states are orthogonal to each

(11)

other, and our method will not be affected by errors. The second case involves a state that
is a mixture of different symmetry states, in which case our reduced tomography no longer
represents the true tomography. Yet, whether or not standard tomography would offer
significant advantages in this case is unclear, as significant errors still corrupt the system in

a variety of ways.

To investigate the effects of noise, we simulated a minimal two-fermion in four-spin orbital



TABLE II. Dimension of the number of Pauli measurements required for tomography of the 1- and
2-RDMs in the traditional (naive) and symmetry projected (reduced) approaches for given spin and
spatial configurations of the second quantized measurement operators with N, and S, symmetries
under the Jordan-Wigner transformation. We also give examples of the sets of operators in the
naive (N) and reduced (R) methods corresponding with operators marked with a (x). Note, R
is not unique in any of these cases. The cases including the 52 symmetry do not greatly affect
the results, but require covering the many permutations of the spatial orbitals. A bar across
spins indicates an excitation or de-excitation between these orbitals, and only the unique spin
configuration is shown. x indices the Cartesian product of two sets. 7 indicates a tensor product

of Z gates which is constant across all operations.

k—RDM  Spin  ¢—Sites|Naive Reduced| Example Operator and Sets of Measurement Operators
1 Oja 1 2 2 aZaj, {i,j} € a
aa* 2 4 2 . . ~
af ) ) 0 N={X,,Y;} x {X;,Y;}Z, R={X;X;Z,X,;Y;Z}
2 aaao 2 4 Pt Pt
. 3 4 a; aga,a; + a;a; aga;
aooo 4 16 6 {i,j} €a{kl} €p
aaaf . . 0 N = {X; X}, iVi} x {X;X;,V}Y;}Z U
acff 2| 4 4 (XiVe, ViXo} x (XY}, YiX;} 2,
aafp 3 4 . R
B’ 4 16 4 R={X; X X\ X;Z, X;Y;,V1X,Z}
3 acaaoo 3 8 8
aoaaao 4 16 8 a;faLa:rnanalaj + a;[a;failamakai
acaooo ) 32 12 {i,ik 0} €a, {m.n}€p
[a%a%eYe 610" 6 64 20 _
acaaaf ) ) 0 N = {X; X, YiVi} Z x ({ X0 X0, Y Yo } x {X1X;, V1Y U
aaaafBfS 3 8 8 {Xn Yo, Y X0} x {X1Y;,Y1X,}) U
acdafBB 4 16 8 {(XiV3, YiXi} Z x ({XonYa, Y X0} x { X1 X5, Y1V} U
aaafaﬂfﬁ ! 16 i { X Xn, Y Yo} x {X1Y;,V1X;}),
aaaafp 5 32 8 R
qocin BB 5 39 19 R ={{(XiXpV1 X;, Vi X:. X X;, Xi Vi X) X} x Y, X Z U
qacoff 6 | 64 12 (XX XX, ViV XX, ViXp Vi X} x X X, Z}
aaaBpB - - 0




system on a quantum device and with an accompanying noise model. The results are seen
in Table III. Importantly, the distance between the RDMs produced by the tomography
methods is comparable to statistical noise, and is always less than then the distance from
the true 2-RDM, when noise is present. In the case of the noise-free result, the larger variance
between the two tomography methods is likely a result of propagation of sampling error,

which is absent with the ideal 2-RDM.

TABLE III. A comparison of 2-RDMs of a two-electron system under varying levels of simulated
noise (simulated and experimental) through the Frobenius norm of the difference matrices at ran-
domly sampled points. 2D refers to the ideal 2-RDM, 2D refers to standard tomography of the
2-RDM under a noise model, and 2D¢ refers to the 2-RDM constructed from symmetry projected
tomography under a noise model. Values represent averages of the Frobenius norms of difference
matrices over 25 random states of Hy in a minimal basis where the ansatz includes 3 parameters.
In general, the differences between the noisy tomography methods are consistently much smaller
than the difference to the ideal state, and are almost indistinguishable from stochastic effects (seen

at the n = oo limit). More details regarding these results are included in Appendix C.

A — °2p_2p | 2p _2pc | 2P _2pe
Noise Strength, (3)" | ||Allr 1AllF 1Al
n=20 0.68(6) 0.69(5) 0.05(1)

n=1 0.39(4) | 039(4) | 0.049(9)
n=2 0.22(2) | 0.23(3) | 0.05(1)

n=3 0.17(1) | 0.17(2) | 0.046(9)
n=4 0.13(1) | 0.14(1) | 0.05(1)
n = oo 0.027(5) | 0.036(8) | 0.05(1)
Experimental 0.87(5) 0.87(4) 0.05(1)
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IV. CONCLUSION

Modern quantum computing has advanced drastically in the past decade, with a surge of
incremental improvements in experimental and algorithmic improvements. Circuit optimiza-
tion, qubit reduction, reducing the required parameter space in the classical optimization,
or lowering tomography and measurement costs all have attempted to capitalize on the
available quantum resources maximally. Work in utilizing system symmetries explores a
fascinating aspect of quantum mechanics, and we hope that future work will continue to
apply these ideas in lowering costs.

Our approach in utilizing symmetry projected operators provides a simple way to reduce
the number of measurements needed, and when combined with other techniques can lead
to large reductions in the effective scaling of the system. The routine can be performed
in one step before the calculation, and adds no additional cost to the quantum or classical

algorithm.
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Appendix A: Derivation of Local Symmetry Operators

In Section IT we noted we would like to use a symmetry which exists on the local subspace

of the system instead of the entire system for our method. While in general this will not
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hold for every symmetry, we discuss ways to identify and utilize these symmetries here.

If we consider a state as being in an eigenstate s of a symmetry S, as seen in Eq. (5) the

projection of the state of s onto an operator A is:

(P,AP,) ZCZSJHS. (A1)

Let the state exist in the Fock space of M orbitals, F(M). Assume that we have symmetry
operators T; and Ty which act on subspaces F; = F(N) and Fy = F(M — N) respectively,

and that we can express an eigenstate of S as:

i, 5) ZZRZ%\OM ®18,t) (A2)

where t is an eigenstate of T 1, t' is an eigenstate on Ty such that the direct product of
vectors will be eigenvectors of the symmetry value s, and R is a rank-three tensor providing
an index between the total space and the two smaller subspaces. We can also imagine a
reduced representation, where we omit some of the exact state information, considering only

blocks in different symmetries (as the orthogonality of the states is not used here):

ZR“/ t) @ |t) (A3)

. Now, let A be an operator which acts primarily on F; and only adds a phase onto elements

of F,, which in denoted as:

A ZAabc b|®’ >< ‘ (A4)

a,b,c

where A is also a rank-three tensor, indicating the phase for a given state in Fy. For non-
fermionic operators this would is unity across all states, whereas for fermionic operators

there will be some phase changes depending on the states . Using this to evaluate the

12



expectation of A we find:

Tr Ap :TIZ Z Z & Scj sAgchRiZEd/R*igz |OZ7(I> <5a b|57 d> <C76| (A5)

i7j 04767776767{777 a’7b7c7d78

® |7, e) (v, cle, d')(n, €|

=Tri Y D Y e AN RIVIRYS o, a) (8,616, ) (¢ ¢ (A6)
t,j 8,76, a,b,c

—ZTI‘IZ Z zs ]s ggZ’RziZ’ giz/|a k><57k|57k><<7k‘ (A7)
4,J ,B3,7,0,¢

In the last two steps we used the fact that following the partial trace over F5 the total spin of
the system must still give s, yielding a mixed state of pure symmetry states of 7. Through
linearity we can extract a projection operator and apply it to elements of A, which leads to
a greatly simplified form of the operator. This is equvialent to Eq. (5) in the main text,
and this projected form can be found for our set of transformed measurement opeartors.
The symmetries discussed in the text relating to molecular systems, N , Sz, and 5’2, all
can be described in this way, and thus can be applied using this method. Symmetries which
are elements of the Pauli group (i.e. tensored products of Pauli matrices) also satisfy these

conditions.

Appendix B: Examples of Symmetry Projection

To illustrate our method, let |1)) be a two-electron system in four a—spin orbitals and

M be defined as:

M = ciala, + craba,. (B1)
M here is a linear combination of 1-RDM operators. The system as a whole will obey the

but we can apply a reduced symmetry N, = 22 ala,

i=1 "1

number symmetry N = 37

zlzz?

to our operator. The reduced symmetry operator will have projections operators onto the

N =0, N =1, and N = 2 subspaces, which can be written as:
Fo = 100)(00[, Py = [01){01] + [10){10], P, = [11)(11]. (B2)
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Using the Jordan-Wigner transformation we can express M in terms of Pauli matrices yield-

ing:
| 0000
M= Yo+ o)X+ YY) + Lo — o)y, —vixy) = [0 0@ 0 (B3)
4 1 2 122 142 4 1 2 142 122 00100
0000

One of the operators in the Pauli basis, Axx, can be projected as follows:

(B4)

S OO o
O, OO
oSO~ O
S o OO

5x =Y P(XiXo)P =

To express this as a vector in the computational basis in the operator space, let e; ; denote

a basis element where 7, 7 denote the row and column index, which gives:
Axx = e10,01 + €o1,10- (B5)

Similar vector forms can be found for the other Pauli matrices:

_’C . .
Axy = —1€10,01 T ?€01,10 (B6)
_’C . .
Ayx = 1€10,01 — %€01,10 (B7)
_»C

Ay = €10,01 + €o1,10- (B8)

Clearly, we are limited by the dimension of the span of these vectors, leaving us to choose
two vectors. Using ffﬁ( v and /Yg(y as the column vectors of U, and 7 as the target vector,

we can find the solution to the system of linear equations Uz = m:

1 —2 r1y [ G - 1 c1+ ¢y
(1 i ) (xg) - <02) = 92 (icl — 'iCQ) : (B9)

Thus a measurement of the form:

C1 + Co
2

(c1 — )

X: X1X2+l

X1Yy (B10)

yields equivalent information as the traditional measurement due to symmetries of the sys-

tem.
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Appendix C: Computational Details

Figure 1 was created by first generating the set of 2-RDM operators for a given molecular
system and transforming them into a set of Pauli operators using fermionic-to-qubit trans-
formations followed by our symmetry projection technique. To efficiently group terms, we
expressed the set of operators as a graph utilizing the qubit-wise commuting relationship,
and used an algorithm to attempt to find the minimimum clique cover [54]. The graphs were
stored using the graph-tools (v 2.29) Python package [55]. A sequential coloring algorithm
was used where we selected the vertices with the largest number of edges first, as this proved
to be a reliable approach which was scalable to larger qubit systems which did not yield
significantly worse results than the related recursive method [54].

Table 3 was generated with the help of Qiskit (v 0.15.0) [56], and simulates a two-
electron system in a minimal basis (STO-3G) under the Jordan-Wigner transformation on
four qubits. We prepared 25 random states parameterized by a double excitation and two
single excitations. The experimental results were obtained on the IBMQ Bogota device.
The noise model was based on the backend-centered model in the Aer module of Qiskit,
which approximates the noise channels mainly as a product of depolarizing and thermal
relaxation channels acting locally on single- and two-qubit gates. The parameters were
based on averages of the experimental devices, and were scaled down according to 7 to

model a decrease in the strength of the noise.

Appendix D: Further Computational Details

For the quantum computation and noise simulation in Table III of the main text, we
used the quantum computer IBMQ Bogota (5-qubits) provided through the IBM Quan-
tum Experience, as well as a noise model based on the device. The quantum device has
fixed-frequency transmon qubits with co-planer waveguide resonators [57, 58]. The Python
package Qiskit (v 0.15.0) [56] was used to interface with the device. Device properties can

be found in Supplemental Table IV.
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Supplemental Table IV. Calibration data for the ibm-bogota device taken on November 27,
2020, from benchmarking. Us and Us represent single qubit gate errors containing one and two
Xr/2 pulses and two and three frame changes respectively. RO;); represents the probability of
measuring the state 7 given a prepared state j. T and 75 are the given thermal relaxation times
for each qubit. Frequency refers to the qubits opeartional frequency, and influences the excited
state population based on the device temperature. [j] specifies the target qubit with control qubit

i, and the number in paranthesis after each entry in the CNOT column indicates the gate length.

The gate lengths for the Uy and Uz gates were 35 ns and 71 ns respectively.

Qubit|Frequency| U,  U;s |ROgy; ROy T1 T [j] CNOT!
i GHz  |(107%) (107%)|(1072) (1072)| (us) (us) (1072)
0 5.000 3.7 45 | 36 80 |93.6 133.3|[1] 2.0 (690)
1 4.845 3.2 6.5 | 17.3 151 |59.9 58.5 |[0] 2.0 (654) [2] 1.0 (498)
2 4.783 1.7 33 | 57 3.6 |77.7 120.6|[1] 1.0 (533) [3] 1.0 (626)
3 4.858 24 48 | 3.0 0.9 [131.1 187.1|[2] 1.0 (590) [4] 4.8 (370)
4 4.978 138 275 | 52 26 |101.7 3] 4.8 (334)

The circuit used is based on the Jordan-Wigner transformation and uses exponentials of
anti-Hermitian operators. Because of the size of the system and the indistinguishablity of
the action of the different Pauli operators on the state, we can use a single term to describe

each of the relevant excitations [35, 43]. The target circuit can be written as:

U= [exp 91(aloama}go%l_a}naﬁoallaao)} [exp QQ(GLOGQI_GTQIQQO)} [exp(%aloaal—allaao)}

(D1)

which can be simulated with limited Pauli terms as:
UI = [exp i61EX2X3X4] [exp i92Y1X2] [exp ?;63}/;3)(4], (DQ)

and then simplified according to normal procedures. Our resulting circuit had 8 CNOT
gates and 9 single qubit gates prior to measurement. We performed tomography of both the
real and imaginary elements of the 2-RDM despite having only a real wavefunction. The list

of measurement circuits generated for the normal circuit (following the grouping procedure)
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18:

N = { V1 XoZ324, X1 X0 2324, Y1Y2Z3 24, X1YoZ3 24, Z1 Z5Y3 X4,
2129 X3 Xa, Z125Y3Yy, Z1 29 XYy, Y1 Xo Y3 Xy, X1 XoY3 Xy,
Y1YoYs Xy, XqYoV3 Xy, VI Xo X3 Xy, Xy Xo X3 Xy, V1Yo X3 Xy,
X1Yo X3 Xy, Y1 XoY3Yy, Xa XoV3Yy, V1Yo Y3Yy, X1Y5Y35Y),

YiXo XYy, X Xo XaYy, V1Yo XYy, X0 Yo XYy, 212523 2,4,

whereas the set of reduced circuits (with the same grouping procedure) is given by:

R = { XlXZZSZ47 KX2Z3Z47 ZIZQX3X47 ZIZQX/SX47 X1X2X3X47

XiXoYs Xy Vi Xo X3 Xy, V1 Xo Y35 Xy, Z1 252524}

Appendix E: Noise Model

The noise model used in generating the results in Table III is adapted from the provided
noise model in Qiskit [56], and consists of a depolarizing channel followed by a thermal
relaxation channel on each gate, with a readout error applied at measurement. Information
on the model is adapted from the documentation provided in Qiskit [56]. Wood et al.
is also referenced in the documentation and contains useful information regarding error
channel representations and transformations [59]. A useful online discussion of the benefits
(applicability to short 77 processes such as on single qubit gates) and limitations (non-7}
dominated behavior of CNOT gates, does not treat cross-talk errors, etc.) of the noise model
is included in the references [60].

In our adaptation of the model, we averaged over all qubits for many of the parameters
to reduce inconsistencies across the simulated device, and then scaled these parameters to
simulate a consistently decreasing noise. We found that using either our model, the given
model, or a model based solely on depolarizing noise did not result in signficant differences

in the Frobenius norms of the difference matrices between the obtained 2-RDMs.
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1. Thermal Relaxation Channel

The T; time describes the thermal relaxation of the qubit from the excited state to the

ground state and the T, time describes the coherence time of the qubit. Their respective

_Tg
T °

relaxation rates for a given gate length Tj are given as rp, = exp _T? and rp, = exp
For T, < Ti, T relaxation becomes the main consideration and the channel is expressed
as a mixture of reset operations (proejctive measurements to |0) or |1)) and unitary errors.

Consider a ground state population ng and an excited state population:

2h
ny = (1+exp k;B_blfﬂ)_l (E1)

where h is Planck’s constant, kp is the Boltzmann constant, 7" and f are the qubit temper-
ature and frequency, and ng + ny = 1. The probability of a reset error occuring is defined

as:
DPreset = 1-— rT. (EQ)
Using the populations we can obtain the probability to reset to the |0) state p,o, the prob-

ability to reset to the |1) state p,;, and the probability to apply a Z gate p, as:

1 T
Pro = NoPresety Pr1 = NM1Presets Pz = 5(1 - preset)( - 7’2) <E3)
T1

For the case where Ty > T7, the Choi-matrix representation is used. For a nosie channel &,

the Choi-matrix in the column representation C is defined by:
C = il &), (E4)
1,J
and the resulting action on the state can be determined as
E(p) = TriC(p" @) (E5)

where we trace over the first system. The Choi matrix used in the model is:

1—- N1 Preset 0 0 Ty
0 eMrese 0 0
= Pebresct (E6)
0 0 NoPreset 0
Ty, 0 0 1— NoPreset
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The Choi matrix is then converted to Kraus operators and then to Pauli gates to be imple-

mented in the simulation.

2. Depolarizing Channel

The depolarizing channel acting on n qubits is given as [61]:

Eaepor = (L = N)I + AD. (E7)
where [ is the identity channel, D is the completely depolarizing channel, and 0 < \ < %

(for n qubits) indicates the relative strength.
If we consider the total fidelity as a function of the thermal relaxation and depolarizing

channels, we have that:

F = F(Eaepot © Erelaa) (ES)
= (1 = N F(Eretaz) + AF(D 0 Eretaz) (E9)
= (1 = N F(&retaz) + AF(D) (E10)
= F(Erer) ~ A o) 21 (E11)

where d is the dimension of the system and the average fidelity of the depolarizing channel

is 1/d. From this we can solve for A:

F<grelax) —F

A= dW. (E12)
The gate fidelity of these channels is given by:
FulE.0) = [ dolUE (00 UI) (513
_h Pm(z fid 1 (F14)
T ot
S Ea e19)

where F),, indicates the process fidelity and S represents the superator representation of a
quantum channel. With all of these components, the model applies the depolarizing channel
onto the one- or two-qubit gate followed by the thermal relaxation channel applied to each

individual qubit.
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3. Readout Error

Finally, the readout errors on the devices are treated as single qubit errors. These modify
the output based on the probability of reading one output given another. For instance,
measuring the state for the qubit ¢ [0) will give |1) with a probability p = ROqjo(¢), and

will give |0) with a probability 1 — p.
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