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The computation of strongly correlated quantum systems is challenging because of its poten-
tially exponential scaling in the number of electron configurations. Variational calculation of the
two-electron reduced density matrix (2-RDM) without the many-electron wave function exploits the
pairwise nature of the electronic Coulomb interaction to compute a lower bound on the ground-state
energy with polynomial computational scaling. Recently, a dual-cone formulation of the variational
2-RDM calculation was shown to generate the ground-state energy, albeit not the 2-RDM, at a
substantially reduced computational cost, especially for higher N-representability conditions such
as the T2 constraint. Here we generalize the dual-cone variational 2-RDM method to compute not
only the ground-state energy but also the 2-RDM. The central result is that we can compute the
2-RDM from a generalization of the Hellmann-Feynman theorem. Specifically, we prove that in the
Lagrangian formulation of the dual-cone optimization the 2-RDM is the Lagrange multiplier. We ap-
ply the method to computing the energies and properties of strongly correlated electrons—including
atomic charges, electron densities, dipole moments, and orbital occupations—in an illustrative hy-
drogen chain and the nitrogen-fixation catalyst FeMoco. The dual variational computation of the
2-RDM with T2 or higher N-representability conditions provides a polynomially scaling approach
to strongly correlated molecules and materials with significant applications in atomic and molecular

and condensed-matter chemistry and physics.

PACS numbers: 31.10.+z

I. INTRODUCTION

Strong electron correlation can be critically impor-
tant in the accurate prediction of energies and prop-
erties of molecules and materials including conjugated
organic molecules, transition-metal catalysts, spintronic
molecules, and superconductors. Strongly correlated
quantum systems arise when a linear increase in system
size produces an exponentially increasing number of elec-
tron configurations that contribute significantly to the
quantum-mechanical wave function [IH4]. Traditional
wave function methods that are based upon a single-
reference determinant such as density functional the-
ory [B] and coupled cluster theory [6] can have difficulty
in describing strongly correlated wave functions. Recent
advances in the description of such wave functions include
density matrix renormalization group [7] as well as sparse
configuration interaction methods [8HI0]. An alternative
approach to strong correlation is the direct variational
calculation of the two-electron reduced density matrix (2-
RDM) without the computation or storage of the many-
electron wave function [II, 2, TTH36]. The 2-RDM method
exploits the pairwise nature of the electron-electron in-
teraction in the electronic Hamiltonian. Variational cal-
culation of the 2-RDM has been applied to the accurate
computation of a range of strongly correlated phenomena
including polyradical character in conjugated polyaro-
matic hydrocarbons [19], non-innocent ligand effects in
transition-metal complexes[37, [38], entanglement-driven
non-superexchange mechanisms in bridged transition-
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metal dimers [39, [40], and exciton condensation in
molecular-scale electron double layers [4T], [42].

The 2-RDM must be constrained by conditions to en-
sure that it represents at least one N-electron density
matrix known as N-representability conditions[43H47].
Most applications of the variational 2-RDM method em-
ploy a set of N-representability constraints known as
the two-positivity conditions. The two-positivity con-
ditions are part of a hierarchy of p-positivity conditions
in which p-body metric matrices are constrained to be
positive semidefinite [I3] 43]. While the two-positivity
conditions typically generate an accurate lower bound
to the ground-state energy, the bound can often be
significantly improved through three-positivity or par-
tial three-positivity conditions such as the T2 condi-
tion [T} 13, 15, 23, 48, [49]. In the conventional (pri-
mal) formulation of the variational 2-RDM method in
which N-representability constraints are placed directly
on the 2-RDM, however, the computational cost 72 of the
three-positivity conditions including T2 is much greater
than the cost r® of the 2-positivity conditions [48] 49].
Recently, we proposed and implemented a dual formula-
tion of the variational 2-RDM method with an 7% scaling
for the T2 condition [29] in which the lower bound to
the ground-state energy is directly computed by fitting
the N-representability conditions to the Hamiltonian. In
its original formulation [29], however, this dual approach
generates only the ground-state energy. In this paper we
show theoretically and computationally how the dual-
cone approach can be extended to compute not only the
energy but also the 2-RDM.

To obtain the 2-RDM in the dual-cone approach, we

employ an extension of the Hellmann-Feynman theorem
for 2-RDM theory. While the proof of the Hellmann-
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Feynman theorem is well-known for wave functions [50],
it must be generalized for 2-RDM theory to treat not
only N-representable 2-RDMs but also approximately V-
representable 2-RDMs [51]. With this extension we show
that the derivative of the energy from the variational
2-RDM method with respect to the reduced Hamilto-
nian matrix generates the 2-RDM. Using this relation,
we prove the central result of the paper that in the La-
grangian of the dual-cone optimization the 2-RDM is the
Lagrange multiplier. This result allows us to compute
the 1- and 2-RDMs as well as all one- and two-body
properties efficiently in a dual formulation of the vari-
ational 2-RDM theory. To illustrate method, we apply
the dual 2-RDM method with the T2 condition to com-
puting the Mott metal-insulator transition of the hydro-
gen chain (Hy) as well as the electronic structure of the
strongly correlated, nitrogen-fixation catalyst FeMoco.

II. THEORY

After a review of the primal formulation of variational
2-RDM theory in section[[TA] we present a generalization
of the Hellmann-Feynman theorem for 2-RDM theory in
section [[TB] which we use in section [[TC|to derive a rela-
tion for the 2-RDM in the dual formulation of variational
2-RDM theory.

A. Primal Formulation of 2-RDM Theory

For a many-particle quantum system with only pair-
wise interactions the minimization of the ground-state
energy as a functional of the 2-RDM can be written
as [11 2 [T1H34] 44147

E*= min Tr(*K°D) (1)
2DeP%

where E* is the energy at the minimum for a given two-
electron reduced Hamiltonian matrix 2K. For a finite ba-
sis of r orbitals the two-particle reduced Hamiltonian and
density matrices are square Hermitian matrices of dimen-
sion 7(r — 1)/2. Minimization is performed with respect
to an approximate set ]5]%[ of ensemble N-representable
2-RDMs. We define P} to be convex and a superset
of the exact convex set PZ of ensemble N-representable
2-RDMs, that is P3 C P%. A 2-RDM is ensemble N-
representable if and only if it is representable by at least
one N-particle density matrix [2], 43 A5H47]. Because
P} C ]5]%,, the minimum energy E* is a lower bound to
the exact ground-state energy of the Schrodinger equa-
tion in the finite basis set with the N-particle Hamilto-
nian corresponding to 2K. As the approximate set P
approaches the exact set P%, the minimum energy E*
approaches the exact ground-state energy from below.

B. Hellmann-Feynman Theorem of the 2-RDM

We can derive an extension of the Hellmann-Feynman
theorem for approximate N-representable sets of 2-
RDMs. Consider the derivative of the minimum energy
in Eq. with respect to an arbitrary parameter R to
obtain

oE*  [(0(°K), ., 0 (2D*)
o Tr< o 2D>+Tr<2K8R> (2)
= Tr(a(;é() 2D*> : (3)

The second term in Eq. vanishes because the energy
E* has been minimized with respect to all variations
about the optimal 2-RDM 2D*. Hence, the derivative
of the energy E* with respect to R, given by Eq. (3),
depends only upon the derivative of the two-electron re-
duced Hamiltonian matrix with respect to R and the 2-
RDM 2D*.

This result extends the Hellmann-Feynman theo-
rem [50] to approximate N-representable sets of 2-RDMs
P%. If P} = P%, then the result is equivalent to the
conventional Hellmann-Feynman theorem. A similar re-
sult was previously presented by Schlimgen and the au-
thor [51] in the context of computing analytical gradients
for variational 2-RDM calculations. Substituting the el-
ements of the two-electron reduced Hamiltonian matrix
for R in Eq. yields

OE"
OE__ _2py (@)
o (2K3)
or
OE* .
98 _2p*,
9 CK) ©)

The response of the minimum energy £E* to a variation in
an element of the reduced Hamiltonian matrix generates
the 2-RDM 2D" in the approximate N-representable set
P% that minimizes the energy.

C. Dual Formulation of 2-RDM Theory

The minimization of the energy with respect to its 2-
RDM in Eq. (1)) can be recast in a dual (or polar) formu-
lation [29]

in £
B ®
subject to ZQBi— (2K — EQI) (7)

where the energy is treated as a variable and the two-
particle matrices 2B; provide the N-representability con-
ditions that define the set P%

P = {?D such that Tr(*B;*D) >0 foralli}. (8)



The collection of 2B; forms a special type of convex set in
which «2B; is a member of the set for all & > 0, known
as a convex cone [52]. Because the cone of 2B; determines
the approximate convex set of 2-RDMs ]5]%, by Eq. ,
it is said to be the dual (or polar) cone of the set of 2-
RDMs [43, 46] and denoted by (P%)*.
(15]2\,)* can represent the 2-positivity conditions [44] 45],
the 2-positivity plus T1 and T2 conditions [I5] [47) [48],
or higher-order N-representability conditions [13] [43] 49].
In the dual formulation the energy in Eq. (6)) is minimized
subject to fitting the extreme elements “B; of the dual
cone to the reduced Hamiltonian 2K shifted by the en-
ergy E [29]. For concreteness the dual-cone matrices 2 B;
of the T2 condition are derived in the Appendix.

The constraints of the dual formulation can be incor-
porated into the energy functional through a matrix 2X
of Lagrange multipliers

The dual cone

E* = min max L(E,? B;,* X). (9)
E2B; 2X

where the Lagrangian L(E,% B;,? X) is

LE’B;?X)=E—Tr <2X (Z 2B, -2 K)) (10)

7

K =2K - E°I (11)

Taking the derivative of the minimum energy E* with re-
spect to the elements of the reduced Hamiltonian matrix
yields

oF* 9

e = X" (12)

Comparison of Eq. with Eq. ( from the exten-
sion of the Hellmann-Feynman theorem reveals a crucial
result

2X* =2D*, (13)

namely that the optimal Lagrange multiplier matrix is the
2-RDM. The elements of the 2-RDM provide the cor-
rect weighting of the constraints to generate the sta-
tionary Lagrangian functional for the energy. Impor-
tantly, by Eq. the 2-RDM 2D* satisfies the approx-
imate N-representability conditions given by the 2B; in
Eq. (8) without any additional restrictions. Hence, while
Eqs. (6)) and involve the energy but not the 2-RDM,
the 2-RDM can be directly computed from its dual cone
through the determination of the Lagrange multipliers.
As shown in Ref. [29], because the interactions in the
Hamiltonian scale linearly with the size of the system,
the number of 2B; matrices from the G2 and T2 condi-
tions scales linearly with the rank r of the one-electron
basis set. The one-body part of the two-particle reduced
Hamiltonian is correctly described by only the 2B; ma-
trices from the D2 and Q2 conditions, which imply the
necessary and sufficient D1 and Q1 conditions [43], and
hence, the 2B; matrices from the remaining conditions,

G2, T2, and higher N-representability conditions, de-
scribe the two-electron Coulomb interaction which scales
linearly with system size. This is equivalent to a rank
reduction since the total number of 2B; matrices scales
as 2 and r? for the G and T2 conditions, respectively.
This important reduction from the physical scaling of the
interaction of electrons reduces the computational cost of
the DQGT calculation from 7° to . With the identi-
fication of the Lagrange multipliers in Eq. @ with the
2-RDM we can use the dual variational 2-RDM theory
to compute both the energy and one- and two-electron
properties of atoms and molecules at a substantially re-
duced computational scaling.

III. APPLICATIONS

After a discussion of the methodology, we present
applications of the dual variational 2-RDM (v2RDM)
method to the hydrogen chain H; and the nitrogen-
fixation catalyst FeMoco.

A. Methodology

The dual v2RDM method is implemented with 2B;
matrices that correspond to the DQGT conditions with
rank reduction as discussed in Ref. [29]; r 2B; matrices
are used for the G2 and T2 conditions. The computed 2-
RDM allows us to calculate both 1- and 2-electron prop-
erties and implement v2RDM-based complete-active-
space self-consistent-field (CASSCF) calculations [19] [37,
53]. In CASSCF a set of molecular orbitals in the va-
lence band, known as active orbitals, is treated by solving
the Schrodinger equation while the remaining (inactive)
orbitals are treated by a mean-field calculation. Typi-
cally, the solution of the Schrédinger equation with re-
spect to the space of active orbitals is accomplished by
a diagonalization of the Hamiltonian in the basis set of
N-electron determinants, known as configuration inter-
action; however, as shown in previous work [19], configu-
ration interaction can be replaced by a v2RDM method
without computation of the wave function. The v2RDM
method must produce the 2-RDM because the active-
space 2-RDM is required to perform the orbital rota-
tions of the active and inactive orbitals. The dual-cone
v2RDM method does not depend upon rotations among
the active orbitals because the objective and constraints
of the optimization problem are invariant to orbital ro-
tations. Calculations with only DQG conditions are per-
formed using the boundary-point algorithm in Ref. [22]
implemented in the Quantum Chemistry Package (QCP)
in Maple [54].
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FIG. 1. The (a) total energy and the (b) energy errors of
the potential energy curve of the Hy chain are shown for its
equally spaced dissociation in a [4,4] active space in the cc-
pVQZ basis set. Errors are relative to CASSCF. The vari-
ational 2-RDM energies with the DQG and DQGT condi-
tions agree with those from CASSCF to about 1072 a.u. and
1075 a.u., respectively.

B. Results
1. Hydrogen chain

Equally spaced metallic hydrogen chains, which exist
under high pressure conditions such as the surface of Sat-
urn, undergo a Mott metal-to-insulator transition upon
dissociation [55], 56]. The transition involves strong elec-
tron correlation that is difficult to treat with conventional
single-reference wave function methods. Consequently,
hydrogen chains have become a benchmark for treating
strongly correlated systems in quantum chemistry and

TABLE I. For the Hy chain the total energy as a function of
the distance R between the equally spaced hydrogen atoms
is shown with a [4,4] active space in the cc-pVQZ basis set.
Lower-bound energies from the variational 2-RDM method
with DQG and DQGT conditions agree with those from the
complete-active-space self-consistent-field (CASSCF) method
until the third and fifth decimals, respectively.

Energy (a.u.)
Wave Function Methods 2-RDM Methods

R (A) Hartree-Fock CASSCF DQG DQGT
0.8 22177825  -2.219294 -2.220533 -2.219308
1.0 22171201 -2.225488  -2.227122  -2.225493
1.2 -2.114056  -2.184800 -2.187026 -2.184811
1.6 -1.974969  -2.092035  -2.095296 -2.092048
2.0 -1.855050  -2.035218  -2.038315 -2.035226
2.4 -1.763186  -2.011306 -2.012997 -2.011307

TABLE II. For the Hs chain the metallic character as a func-
tion of the distance R between the equally spaced hydrogen
atoms is shown with a [4,4] active space in the cc-pVQZ ba-
sis set. The metallic character from the variational 2RDM
method with the DQG and DQGT conditions agrees with
that from CASSCF to the third and fifth decimals, respec-
tively. The metallic character is computed from the sum of
the squares of the atomic-orbital 1-RDM elements between
atoms.

Metallic Character
Wave Function Methods 2-RDM Methods

R (A) THartree-Fock CASSCF DQG DQGT
0.8 0.42226 0.33871  0.33493  0.33872
1.0 0.36429 0.28100  0.27623  0.28095
1.2 0.36311 0.24844  0.24214  0.24836
1.6 0.37279 0.15554  0.14674  0.15550
2.0 0.42410 0.07323  0.07024  0.07328
2.4 0.49635 0.02567  0.02700  0.02569

condensed-matter physics. Here we examine the dissoci-
ation of the Hy chain in a four-electrons-in-four-orbitals
[4,4] active space in the correlation-consistent polarized
quadruple-zeta (cc-pVQZ) basis set [57]. The active
space vV2RDM method with the DQG and DQGT condi-
tions is compared with the “exact” results in this active
space from the CASSCF method with the Schrédinger
equation solved by configuration interaction. Figure 1
shows the (a) potential energy curves and the (b)
potential-energy-curve errors of the equally spaced Hy
dissociation. The lower-bound v2RDM energies with
the DQG and DQGT conditions agree with those from
CASSCF to about 1073 a.u. and 107° a.u., respectively.

The Mott metal-to-insulator transition in the Hy chain
can be captured by examining the chain’s metallic char-
acter as a function of the distance R between the equally
spaced hydrogen atoms. While various criteria can be
selected for metallic character, here we define and com-
pute metallic character from the sum of the squares of the
atomic-orbital 1-RDM elements between atoms. These
elements will decay to zero as the metal becomes an in-
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FIG. 2. The metallic character of the H4 chain as a function of
the distance R between the equally spaced hydrogen atoms is
shown with a [4,4] active space in the cc-pVQZ basis set. The
metallic character is computed from the sum of the squares
of the atomic-orbital 1-RDM elements between atoms. Based
on this criterion, the Hartree-Fock theory predicts that the
chain remains a metal upon dissociation while the variational
2RDM method with the DQG and DQGT conditions and
CASSCF predict a Mott metal-to-insulator transition.

TABLE III. The average charges for each atom type in
FeMoco, based on the Mulliken populations computed from
the 1-RDM, are shown with the atoms arranged from most
positive to most negative. With the exception of N and O,
the electron correlation decreases the absolute values of the
charges.

Average Atomic Charge (a.u.)

Atom Hartree-Fock DQG DQGT
Mo 1.2450 1.1659 1.1812
Fe 0.5763 0.5359 0.5446
H 0.2022 0.1882 0.1882

S —0.3289 —0.2961 —0.3027
(0] —0.5156 —0.5268 —0.5267
N —0.5455 —0.5593 —0.5596
C —1.4243 —1.2843 —1.2943

sulator. Based on this criterion as shown in Fig. [2| the
Hartree-Fock theory predicts that the chain remains a
metal upon dissociation while the v2RDM method with
the DQG and DQGT conditions and the CASSCF pre-
dict a Mott metal-to-insulator transition. The metallic
character data from the v2RDM method with the DQG
and DQGT conditions, shown in Table [[I, agree with
that from CASSCF to the third and fifth decimals, re-
spectively.

TABLE IV. Natural-orbital occupations of the lowest singlet
state of FeMoco are reported from the active-space variational
2-RDM method with DQG and DQGT conditions for a [30,30]
active space as well as Hartree-Fock (HF) in the DZP basis
set. While many orbitals become slightly less correlated—
with occupations closer to 0 and 2—from DQG to DQGT,
orbitals 207 through 213 with the exception of 212 become
more correlated with the addition of the T2 condition.

Orbital ~ NO Occupations  Orbital NO Occupations

Index HF DQG DQGT Index HF DQG DQGT
195 2 1.9113 1.9233 210 0 0.7475 0.7782
196 2 1.8970 1.9073 211 0 0.6039 0.6278
197 2 1.8855 1.8948 212 0 0.5286 0.5255
198 2 1.8658 1.8776 213 0 0.3784 0.3886
199 2 1.8493 1.8617 214 0 0.3089 0.3062
200 2 1.8317 1.8491 215 0 0.2781 0.2801
201 2 1.8277 1.8454 216 0 0.2229 0.2084
202 2 1.8145 1.8297 217 0 0.2182 0.2062
203 2 1.7935 1.8038 218 0 0.2053 0.1886
204 2 1.7816 1.7931 219 0 0.1806 0.1670
205 2 1.7035 1.7073 220 0 0.1605 0.1442
206 2 1.6881 1.6953 221 0 0.1471 0.1371
207 2 15597 1.5504 222 0 0.1405 0.1273
208 2 1.2548 1.2136 223 0 0.1318 0.1187
209 2 1.0490 1.0163 224 0 0.0344 0.0275

FIG. 3. The (a) structure of FeMoco and the (b) atomic
charges of FeMoco are shown. The Mulliken charges are com-
puted from the 1-RDM of the variational 2-RDM method
with DQGT conditions. The red indicates positive charge
while blue denotes negative charge with the magnitudes of
the charges given in Table [[T]]

2. Nitrogen-fizxation catalyst FeMoco

Nitrogen fixation, the reduction of nitrogen to am-
monia, occurs in bacteria by the FeMoco catalyst in
the nitrogenase protein [58, [59]. Despite being mainly
treated by density functional theory (DFT), FeMoco is



FIG. 4. The fractional occupations of the natural orbitals of
the lowest singlet state of FeMoco are shown visually from
the active-space variational 2-RDM method with the DQGT
conditions for a [30,30] active space in the DZP basis set. The
blue and red lines correspond to orbitals that are occupied or
unoccupied in the Hartree-Fock limit, respectively.

FIG. 5. The electron density of the 209" natural orbital of
FeMoco from the (a) Hartree-Fock method and the (b) vari-
ational 2-RDM method with DQGT conditions is displayed.
The highest occupied molecular orbital of the Hartree-Fock
method becomes half-filled and much more localized on the
Fe centers in the variational 2-RDM method.

known to be strongly correlated [60] 6I]. We recently
used the v2RDM method with DQG conditions in a
thirty electrons in thirty orbitals [30,30] active space in
the polarized double-zeta (DZP) basis set [62] to com-
pute and study the electron correlation in FeMoco [60].
The experimental FeMoco was modified by capping the
terminal sulfur, nitrogen, and two oxygen with hydro-

gens, as shown in Fig. Bh. The v2RDM method with
DQG conditions uses less than a million variables to rep-
resent a wave function with 10'° degrees of freedom.
Here we extend these results with a v2RDM -calcula-
tion with the DQGT conditions for a complete-active-
space configuration-interaction-like calculation with the
optimized orbitals from the DQG calculation. The ad-
dition of the T2 N-representability condition to the
2-positivity (DQG) conditions raises the energy from
—17031.7065 a.u. to —17031.5855 a.u., showing the im-
portance of the T2 condition. Correlation energy from
DQGT is —0.8634 a.u. With the computed 2-RDM
we can also compute both one- and two-electron prop-
erties. For example, the two-body property (1/r12) is
0.21219 a.u. and 0.21196 a.u. from the DQG and DQGT
conditions, respectively. Both values imply that on av-
erage in FeMoco two electrons are approximately 5 a.u.
apart. The electrons are slightly further apart with the
DQGT conditions than with the DQG conditions, which
is consistent with DQGT exhibiting less electron corre-
lation than DQG.

Mulliken atomic charges of FeMoco are shown
schematically in Fig. and numerically in Table [[TI}
The Mulliken charges [63, [64] are computed from the
1-RDM of the v2RDM method with DQG and DQGT
conditions as well as the Hartree-Fock method. Fig-
ure[3p shows the charges from DQGT conditions with red
and blue indicating positive and negative charges, respec-
tively. We observe that the Mo and Fe atoms are positive
while the S and C atoms are negative. The six-bonded
C atom is especially negative with Mulliken charges of
—1.4243 a.u., —1.2843 a.u., and —1.2943 a.u. from the
Hartree-Fock, DQG, and DQGT methods. Except for
the O and N atoms the electron correlation decreases
the absolute values of the atomic charges; in general, the
atomic charges from DQGT are slightly larger in magni-
tude than those from DQG. The net dipole moment de-
creases from 2.3799 debyes for the Hartree-Fock method
to 1.7495 debyes and 1.6549 debyes for DQG and DQGT
conditions, respectively.

Natural-orbital occupations of FeMoco in the [30,30]
active space are presented in Fig. [d] and Table [V] Fig-
ure [4] shows the highly fractional nature of the occupa-
tions from v2RDM with DQGT conditions with multiple
occupations deviating significantly from 0 and 2. The
blue and red colors, indicating orbitals that are occu-
pied or unoccupied in the Hartree-Fock limit, empha-
size that orbitals that are both occupied and unoccu-
pied in the mean-field limit become fractionally occu-
pied. Table [[V]reveals that while many orbitals become
less correlated—with occupations closer to 0 and 2—from
DQG to DQGT, orbitals 207 through 213 with the ex-
ception of 212 become more correlated with the addi-
tion of the T2 condition. The von Neumann entropy of
the occupation numbers [65], which is 0 for the Hartree-
Fock method, decreases slightly from 5.5689 for DQG to
5.4371 for DQGT. Figure [5| shows the electron density
of the 209*" natural orbital from the (a) Hartree-Fock



method and the (b) v2RDM method with DQGT con-
ditions. This orbital is the highest occupied molecular
orbital of the Hartree-Fock method, but in the v2RDM
method it is half-filled and much more localized on the
Fe centers.

IV. DISCUSSION AND CONCLUSIONS

The Hellmann-Feynman theorem yields the derivative
of a stationary-state energy with respect to an arbitrary
parameter without the derivative of the wave function.
Here we examine an analogue of the Hellmann-Feynman
theorem for variational 2-RDM theories. When the en-
ergy is variationally minimized with respect to a 2-RDM
that is constrained by approximate N-representability
conditions, the derivative of stationary-state energy with
respect to an arbitrary parameter does not depend on
the 2-RDM. The proof relies on the variational princi-
ple of the approximate N-representable set—specifically,
the stationarity of the energy with respect to varia-
tions in the 2-RDM constrained by the approximate V-
representability conditions. Because the proof is also
correct in the limit of the exact N-representable set,
it can be viewed as a generalization of the traditional
Hellmann-Feynman theorem [50]. Previously, this exten-
sion of the Hellmann-Feynman theorem was examined
and employed in the context of computing analytical gra-
dients for the v2RDM method. Here we use the extended
Hellmann-Feynman theorem to compute the 2-RDM in
the dual v2-RDM theory.

The v2RDM method has been employed extensively
as a polynomially scaling replacement for the configura-
tion interaction solver in CASSCF theory [19, B7H42].
The computation of the 2-RDM in the dual v2RDM
method, presented here, is crucial for its implementa-
tion as a solver in the CASSCF theory because at each
iteration CASSCF uses the 2-RDM of the active space
to perform the self-consistent-field orbital optimization.
While the conventional (primal) formulation of v2RDM
with DQGT conditions has a computational scaling of 7,
the dual formulation of the v2RDM method decreases
this scaling to 7. We illustrate the dual active-space
v2RDM method in the calculations of both the potential
energy surface and the Mott metal-to-insulator transi-
tion of a hydrogen chain. The reduction in computa-
tional cost of the v2RDM method in its dual formulation
arises from the fact that because the interaction of the
Hamiltonian scales linearly with system size, the number
of N-representability conditions from the G and T2 ma-
trices required to fit this interaction scales linearly with
the rank r of the orbital basis set [29]. This linear scaling
is valid for higher N-representability conditions [13| [43],
and hence, the dual v2RDM method provides a frame-
work for applying these conditions at reduced computa-
tional cost. Recent work on a variation of the v2RDM
method has explored applying a linear scaling number of
higher N-representability conditions in spin systems [35].

In summary, a dual-cone formulation of the variational
2-RDM method substantially reduces the computational
cost of implementing the T2 or higher N-representability
conditions in both floating-point operations and mem-
ory storage [29]. The central result of this paper is that
we can compute the 2-RDM in the dual v2RDM method
from a generalization of the Hellmann-Feynman theorem.
Moreover, in its Lagrangian formulation the 2-RDM can
be identified as the Lagrange multiplier of the Lagrangian
functional. We apply the method to computing the en-
ergies and properties of strongly correlated electrons—
including atomic charges, electron densities, dipole mo-
ments, and orbital occupations—in an illustrative hy-
drogen chain and the nitrogen-fixation catalyst FeMoco.
While there are improvements in upgrading from DQG
to DQGT, the degree of electron correlation does not
change appreciably, and hence, the DQGT computations
reinforce the qualitative understanding of strong correla-
tion in hydrogen chains [56] and FeMoco [60] from previ-
ous studies with DQG. The dual variational computation
of the 2-RDM with the T2 or higher N-representability
conditions provides a powerful approach to computing
strongly correlated molecules and materials with signifi-
cant applications throughout chemistry and physics.
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Appendix: Dual-Cone Matrices of the T2 Condition

For concreteness we explicitly derive the dual-cone ma-
trices 2B; of the T2 condition. The T2 condition can be
expressed as

(7" 2D) >0, Vi (A1)
where
1 = C,Cl + Cle, (A.2)
in which
G =Y catata (A.3)
jkl

The &) and a; are second-quantized operators that create
and annihilate a fermion in orbital j, respectively. Rear-
ranging the second-quantized operators, we can express
the T2 operators as

T = > 2R atal ama
Jjklm

(A4)



in which

" A A, . .
2ng,lm = % Z (ijkcplm + 4clkpcjpm) (A.5)
P
121 'kAlm k %
—+ mém Z Clququ. (AG)
Pq

The antisymmetrization operator Ajk antisymmetrizes

a tensor over the indices j and k by subtracting the
permuted tensor from the original tensor. Each B; in
Eq. is an extreme element of the dual cone, and col-
lectively, they enforce the T2 condition. The 2B; from
other N-representability conditions are derivable in an
analogous fashion.
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