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ABSTRACT. We present a non-iterative algorithm to reconstruct the isotropic
acoustic wave speed from the measurement of the Neumann-to-Dirichlet map.
The algorithm is designed based on the boundary control method and involves
only computations that are stable. We prove the convergence of the algorithm
and present its numerical implementation. The effectiveness of the algorithm
is validated on both constant speed and variable speed, with full and partial
boundary measurement as well as different levels of noise.

1. Introduction. This paper concerns numerical reconstruction of an isotropic
wave speed in the inverse boundary value problem (IBVP) for the acoustic wave
equation. Specifically, let T > 0 be a constant and 2 C R"™ be a bounded domain
with smooth boundary 0f2. Consider the initial-boundary value problem for the
acoustic wave equation:

O2u(t,z) — A(z)Au(t,z) = 0, in (0,27) x Q
(1) ou = f, on (0,27) x 02
u(0,2) = Ou(0,z) = 0 x e

Here c(z) € C*(Q) is a smooth wave speed bounded away from 0 and co. Denote
the solution by u(t,z) = u/(t, z).

Given f € C2°((0,2T) x 99), the well-posedness of this problem is ensured by the
standard theory for second order hyperbolic partial differential equations. Define
the Neumann-to-Dirichlet(ND) map:

(2) Acf =" |0 21)x00-
The IBVP for the acoustic wave equation aims to recover the wave speed ¢(z) from
the knowledge of the ND map A..

This inverse problem lies at the core of many imaging technologies. An important
example is the Ultra-Sound Computed Tomography (USCT). In USCT, a point-
like ultrasound source emits an acoustic pulse from a known location outside the
tissue. The acoustic wave travels through the tissue and the resulting wave field
is recorded by a collection of surrounding ultrasonic transducers. This process is
repeated many times for plenty of emitter locations, see Figure 1 for an illustration
with M transducers, The goal of USCT is to reconstruct the acoustic wave speed
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everywhere inside the tissue. Similar data acquisition scheme occurs in seismic
tomography, where one attempts to recover the underground wave speed to locate
oil reservoirs. In the continuous formulation of USCT and seismic tomography, the
measurement is the boundary values of the Green’s function. However, it is well
known [38] that such data is equivalent to knowledge of the ND map A. under mild
assumptions.

Emitter 0 Emitter 1 Emitter M-1
s . O,

FIGURE 1. Data acquisition scheme in USCT [36]

The IBVP for the acoustic wave equation has been extensively studied in the
literature. Among them, Belishev [3] proved that ¢ is uniquely determined using
the boundary control (BC) method combined with Tataru’s unique continuation
result [48]. The result has since been greatly extended to wave equations with lower
order terms on Riemannian manifolds with boundary [7, 17, 18, 19, 20, 22, 23, 24,
25, 26, 30, 31, 33, 42, 43, 44]. Stability estimates have been obtained in [1, 2, 8, 9,
14, 34, 37, 45, 46, 47].

The BC method has been numerically implemented to reconstruct the wave
speed [5, 6, 41]. The implementation typically involves solving a control problem.
This is achieved in [5, 6] using the so-called wave bases, and in [10, 16] using the
regularized optimization. In the 1 + 1 dimension, a discrete regularization strategy
is developed in [28] to recover ¢ from a single pulse-like source. A variant of the BC
method has also been applied to detect blockage in networks [12].

In this paper, we develop a BC-based algorithm to reconstruct the wave speed.
The derivation is inspired by the theoretical proofs in [34], see also [40]. The al-
gorithm has several favorable features from the computational viewpoint: (1) The
algorithm is direct. Conventional computational approaches to recover c relies on
minimization of a data misfit functional through iterations. These approaches suffer
from local minima, where gradient-descent-based iterations are trapped thus fail to
give the true solution to the imaging problem. An example is the cycle-skipping
effect in the full waveform inversion. In contrast, a BC-based method solves directly
for the solution and involves no iteration. (2) The algorithm converges globally to
the true speed. This is again in contrast to iterative algorithms, which converge to
the global minimum only when the initial guess is sufficiently accurate. A resulting
prospect is that our algorithm could be used to provide a reliable initial guess for
iterative methods. (3) The algorithm involves only computations that are stable.
Following the idea in [34], one can show that the algorithm is locally Lipschitz sta-
ble for a low frequency component of ¢~2. This is a distinction from the previous
BC method in [16]. (4) The algorithm is robust to random noise. The derivation
reveals that the ND map is naturally followed by a low-pass filter in the assembly of
the connecting operator (see (6)). This filter helps remove high-frequency content
in the ND map, leading to robust reconstruction with respect to random noises.
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The paper is organized as follows. In Section 2, we derive the reconstruction
algorithm and the convergence result using the boundary control theory. In Sec-
tion 3, we elucidate our implementation of the algorithm using the finite difference
scheme. Section 4 is devoted to numerical experiments, where the algorithm is eval-
uated on both constant speed and variable speed, with full and partial boundary
measurement as well as different levels of noise.

2. Derivation and convergence. We derive the reconstruction algorithm and
show its convergence in this section. Given a function u(t, x), we write u(t) = u(t, -)
for the spatial part as a function of z. Introduce the time reversal operator R :
L2([0,T] x 09Q) — L2([0,T] x 082),

(3) Ru(t,-) :=u(T —t,-), 0<t<Ty
and the low-pass filter J : L?([0,27] x 92) — L?([0,T] x 09)
1 2Tt
(4) Jf(t,-) ::5/ f(r,-)dr, 0<t<T.
t

We write Pr : L2((0,27T) x 9Q) — L2((0,T) x 99Q) for the orthogonal projection
via restriction. Its adjoint operator Py : L%((0,T) x 9Q) — L2((0,2T) x 99) is
the extension by zero from (0,T) to (0,2T). Let 7p and Ty be the Dirichlet and
Neumann trace operators respectively, that is,

Tpu(t,) = u(t, )|sq, Tnu(t, ) = dyult,-)|aq-
Lemma 2.1. Let u/ be the solution of (1) with f € C((0,2T) x 09Q). Suppose
v(t,x) € C((0,2T) x Q) satisfies the wave equation
(0 — A (x)A)v(t,z) =0, in (0,27) x Q
Then
(W (1), v(T)) r2(,e-2az) = (Prf, JTov) r2((0,1)x09) — (Pr(Acf), JTNV) 12((0,1)x 69) -

where v is the unit outer normal vector field on OS).

Proof. Define
I(t7 S) = (uf (t)7 U(S))Lz(ﬂ,cfzdm)-
We compute
(0F — O1(t,5)
:(Auf (t), U(S))Lz(g) — (uf (t), A’U(S))LZ(Q)
(5) =(f(t), Tov(s))r2(a0) — (Acf(t), Tnv(s)) L2 (89,
where the last equality follows from integration by parts. On the other hand,
1(0,s) = 9;1(0, s) = 0 since u/ (0, ) = dyu’ (0,z) = 0. Solve the inhomogeneous 1D
wave equation (5) together with these initial conditions to obtain

I(T,T)
T 27—t
:%/0 /t [(f(t)’TDv(a))LQ(aﬂ) - (Acf(t)aTNU(U))Lz(aQ)] dodt

T | Tt | Tt
=[5 [ Toue) ) en ~ (0.5 [ Ty de) e
=(Prf, JTpv)r2(0,1)x00) — (Pr(Acf), JTNV)L2((0,1)x09)-

O
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We will use the lemma to derive two results. The first is the Blagovescen-
skii’sidentity. To this end, denote by A. 7 the ND map defined as in (1) (2) yet with
2T replaced by T'. It can be easily verified from integration by parts that its adjoint
operator (with respect to the inner product in L2((0,T) x 99Q)) is A* 7 = RA. TR
where R is the time reversal operator (3). l

Introduce the connecting operator

(6) K := JA.P; — RA. 7 RJP}.

The operator K connects inner-products between waves in the interior to measure-
ments on the boundary. It is the principal object of the boundary control method [4].
Moreover, K is a compact operator since A, 7 : L2((0,T)x 9Q) — H2/3((0,T) x 9Q)
is smoothing, see [49].

The Blagoveééenskﬁ’s identity we will establish is slightly different from its orig-
inal form [11]. Instead, it is a reformulation that has been previously used in
[10, 39, 15].

Proposition 1. Let u/,u" be the solutions of (1) with Neumann traces f,h €
L2((0,T) x 09), respectively. Then

(1) (W (D), u"(T)) r2,e-2a2) = (f KR) p2(0,1)x00) = (K foh)r2((0.1)x09)-
In particular if h = f, one has
(8) Huf(T)HiQ(Q,c*de) = ([, Kf)r20,myx00) = (Kf, f)r2(0,1)x00)-

Proof. We first prove this for f,h € C°((0,T) x 99Q). Apply Lemma 2.1 to v/ and
v = u" and notice that Tpu” = A Pjh and Tyu” = Pih. One has

(! (T), " (T)) 120 2da)

(Prf, JAcPTR) 20,1y x00) — (Pr(Acf), JPrh)L2((0,1)x090)

(fs JAPrR) L2 0,1y x00) — (A f, JPTR) L2((0,7) % 09)
(
(f

[y JACPTRR) 20,1y 00) — (f; RAcr RIPrh) 20,1y % 09)
s Kh) 20,1y x00)

where we have used that Pr(A.f) = A.rf and that Al p=RA TR in L2((0,T) x
0Q). This establishes the first equality in (7). Interchanging f and h yields the
second equality in (7).

For general f,h € L%((0,T) x 02), simply notice that K is a continuous operator
and that compactly supported smooth functions are dense in L2. The proof is
completed. O

The Blagoveééenskﬁ’s identity relates inner products of waves to boundary mea-
surement. Next, we derive an identity that allows computation of inner products
between waves and harmonic functions from boundary data. We introduce another
operator B that is critical for our reconstruction:

9) B:=JTp — RA.rRJTx.

Proposition 2. Let u/ be the solutions of (1) with Neumann traces f € L?((0,T) x
00Q). For any harmonic function ¢ € C* (1), one has

(W (T), 8) 12(0,c-2d2) = (f, BO) 12((0,7)x0) -
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Proof. We only need to prove this for f € C2°((0,T) x 02) by the continuity of B
and density of compactly supported functions in L?. Apply Lemma 2.1 to u/ and
v = ¢ (since any harmonic function is a time-independent solution of the acoustic
wave equation). One has

(W (T), 8) 12(0,c-2d2) =(f, I TD®) 12((0.1)x09) — (Pr(Acf), JTNG) 12((0,1)x09)
(fs JTD®) 20,1y x09) — (Aer f JTNG) L2((0,1) x 00)
(fs JTD®) L2 ((0,1yx00) — (f; RAc T RITN®) L2((0,1) x 002)-

O

Proposition 2 suggests a way to reconstruct the wave speed ¢ from the ND map
A.: if for any harmonic function v, one can find an explicit sequence f, such that
ufa(T) = b as a — 0 in L*(Q, ¢ 2dz), then

(10) (¥, 9)r2(9,c2da) = iig})(uf" (1), ) L2(,c-2de) = iiLT})(fa7B¢)L2((o7T)xaQ)-

The right hand side can be computed from A, see (9). Thus the integral

(11) <w@mmfmwzlﬂ@a%wm

is known for all harmonic functions ¢ and ¢. For any fixed vectors £,n € R™ with
|€] = |n] and & L 7, choose the complex harmonic functions

(12) bla) = BT () = e e
Then ¢ = e and one recovers F(c~2) — the Fourier transform of ¢=2 — by
varying . This reconstructs c.

It remains to construct an explicit sequence f, such that uf~(T) — v in space

L2(Q, ¢ %dx) as a — 0. We will adopt Tikhonov regularization for the construction.
Before that, we record a lemma that will be used in the subsequent analysis.

Lemma 2.2 ([39, Lemma 1]). Let A: X — Y be a bounded linear operator between

two Hilbert spaces X and Y. For anyy € Y, let a« > 0 be a constant and o :=
(A*A+ a) 1 A*y. Then

Az, — as o — 0

Py
where Pmy denotes the orthogonal projection of y onto the closure of the range
of A
Next, we introduce the control operator
W =ul(T).
where u/ is the solution of (1). According to [32], W : L?((0,T) x 92) — L*(Q2)
is a bounded linear operator. Moreover, Tataru’s theorem in [48] implies that W

has dense range in L?((2). It follows from Proposition 1 that K = W*W. It is also
easy to verify that W*y = B for any harmonic function .

Proposition 3. For any harmonic function 1, the following minimization problem
with parameter a > 0:

fo i = argming |Wf = 9l[72(q c-2a0) + @l f1 7200,y x00-

has a unique solution fo, € L*((0,T) x 0K). This solution satisfies the linear equa-
tion

(13) (K +a)fa = By,
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Moreover, u/*(T) — 1 as a — 0 in L?(Q, ¢~ 2dx).
Proof. The functional to be minimized is
Fo(f) =W [ - ¢||%2(Q7c—2dm) +allFl1Z20.r)xo9)-

As W : L2((0,T) x 9Q) — L?() is bounded and linear, [27, Theorem 2.11] claims
that F,, has a unique minimizer, named f,, in L?((0,T) x 052).
To derive the normal equation the minimizer obeys, we rewrite

Fo(f)

=[lu/(T) - Iz (0.e-2d0) + NI T2 (0.1 %00
:Huf(T)||2L2(Q,c—2dw) - Q(Uf(T)ﬂ/’)LQ(Q,C*Zdw) + ||1/1H2L2(Q,c—2dx) + a||f||2L2(o,T)xaQ
=(f, Kf)r20.myx00) — 2(f, BY) 12 (0.1 x09) + 19117200240y + @l T2 (0.7 x 00
=(f, (K + ) f)r20.1)x00) — 2(f, BY) L2 ((0,1)x09) + 1¥11 72 (000 2d2)
where we have used Proposition 1 and Proposition 2 in the second but last line.
This is a bilinear form of f whose Frechét derivative is

F'(f)y=2(K+a)f —2B1.

The minimizer satisfies F’(f,) = 0, hence (13).

Finally, since K = W*W and By = W*1 (see the remark before Proposition 3),
We conclude from Lemma 2.2 that Wf, — Pramy? in L?(Q,c %dx) as a —
0. Tataru’s theorem [48] claims that the range of W is dense in L?(£2), hence
PRan(W)d} = w O

Summarizing the discussion in this section, we have proved global convergence
of the following reconstruction algorithm, see Algorithm 1.

Algorithm 1: Non-Iterative Reconstruction Algorithm for Acoustic IBVP.

Input: low-pass filter J, time-reversal operator R, projection operator Pr,
ND map A,
Output: wave speed ¢
1 Assemble the connecting operator K = JA.Pj — RA. rRJ P} (see (6)).
2 Assemble the operator B = JTp — RA. 7 RJTn (see (9)).
3 Construct the harmonic function ¢ (z) = e3(=6T¥)@ (see (12)) and solve the
linear system (K + «) fo = B, (see (13)).
4 Construct the harmonic function ¢(z) := e3¢~ (see (12)) and compute
the Fourier projection

/ e %3 (x) do = M (fo, BO)12((0,1)x00)
Q a—0

through the limiting process, (see (10)).

5 Repeat the above steps with various £ to recover the Fourier transform
F(c™2).

6 Invert the Fourier transform to recover c¢~2, and eventually c.

3. Algorithm implementation. In this section, we provide details of our imple-
mentation of the algorithm using finite difference discretization.
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3.1. Forward simulation. Computational Domain and Grid. We take the
computational domain Q = [-1,1] x [—1,1], and write ¢t € [0,T] for the temporal
variable and (z,y) € §2 for the two spatial coordinates, respectively. Let 0 = ¢ty <
t; <-.- <ty =T be a partition of the interval [0, 7] with uniform spacing At = %
Let —1 =29 < a1 <--- < x5 =1 be a partition of the interval [—1, 1] with uniform
spacing Ax = % Then the temporal grid points are t; = [At € [0,T],1=0,1,..., L.
The spatial grid points are (z;,y;) € Q with 2; = ¢ + iAz and y; = z9 + jAz,
i,7=0,1,...,1. The total grid size is (L + 1) x (I +1) x (I +1).
We denote the collection of interior grid points by

IGP::{(tl,xi,yj):—1<xi<1,1<yj<1, i,7=1,...,1, l:071,...7L},
and the collection of boundary grid points by
BGP:{(tla'r1ayj)|zl|:17 |y]|:17 7’7]:17’[’ ZZO,I,,L}

Let u be the solution to the initial-boundary value problem (1). The values of u on
the grid points are denoted by

ul; o= u(ty, i, y5), 1=0,1,...,L, i,j=0,1,...,1.

Forward Solver. We solve the inverse boundary value problem (1) by discretiz-
ing the acoustic wave equation using the second-order central difference scheme. For
the interior grid points, the second order temporal and spatial derivatives are ap-
proximated as

-1 I+1 l

u; o u —2ui7j.
At? '

ool ol —dul

uz—l,j uz+1,] u’L,j—l uz,j—i—l ui,]

Ax? ’

atzu(tlvxlayj) ~

A’U,(tl, Ty, yj) ~

thus we can update the interior grid points by
2
Az?
here we set ullj = u; jl for the initial condition d;ul;=9 = 0. For the boundary
grid points, the boundary normal derivative (i.e, Neumann data) is computed using

the forward/backward finite difference approximation with a second-order accuracy.
For instance, for i = 0,

141 _ o, 1 -1, 2 ! ! ! l 1
u s = 2w — s + (2, Y;) (w1, + Wiy j T gy +ug g — dug ],

_3u67j — 4u117j + ué’j
2Ax '
The restriction At = Y2 Az is imposed to fulfill the Courant—Friedrichs—Lewy

2Cmax
(CFL) condition. The forward simulation is implemented on the spatial grid with
I = 100. This grid is finer than the one used in the reconstruction to avoid the
inverse crime.

Assembly of the Discrete Neumann-to-Dirichlet Map. The spatial bound-
ary 02 consists of 41 boundary grid points, thus the temporal boundary [0, 7] x 9§
contains 41(L + 1) boundary grid points in total. These boundary grid points are
ordered in the lexicographical order to form a column vector, that is, a boundary
grid point (t;,z;,y;) is ahead of another (¢, z;/,y;) if and only if (1) I <U’; or (2)
I=0Uandi<ijor (3)l=10,i=4,j<j' In this way, the discretized ND map is a
41(L +1) x 4I(L + 1) square matrix, denoted by [A.] € R (LADX4(LAD) T order
to find the matrix representation [A.], we place a unit source f;; on each boundary
grid point (¢;,z;,y;) € BGP as the Neumann data and utilize the forward solver to

al/u(tla Zo, yj) ~
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obtain the resulting Dirichlet data on all the boundary grid points. Here f;; takes
the value 1 on (7, z;,y;) and 0 on all the other boundary grid points, see Figure 2

for an image of the ND map.

Structure of ND map

0 500 1000 1500 2000 2500 3000 3!
nz = 4463772

FIGURE 2. The structure of [A.] with I = 15 and L = 63. nz is
the number of nonzero elements in the matrix.

3.2. Reconstruction algorithm. Discretization of the Connecting Oper-
ator K. First, we discretize the operators in the definition of K, see (6). For
the filtering operator J, the integral in its definition (4) is discretized using the
boundary grid points and trapezoidal rule.

T—4, L—l-1
[ oyt S 100 0,
b k=l

2

With the arrangement of the boundary grid points in the lexicographical or-
der, the boundary vector consists of L + 1 small vectors of length 41, where each
small vector corresponds to the spatial boundary points at the moment ¢ = ¢;,1 =
0,...,L. According to the trapezoidal rule, we obtain the matrix representation
[J] € RHEAD>AIE+D) Tt can be partitioned into [£42] x (L + 1) blocks, where
f%] denotes the smallest integer no smaller than %, see Figure 3. Each block
is a 41 x 4I identity matrix [I] multiplied by the coefficients of the trapezoidal
integration formula. Specifically, if L is odd,

2] 2] ... ... ... ..oo2[) 21 ()
120 ... ... 2]

where [O] is the 4 x 41 zero matrix.
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Likewise, the time-reversal operator R defined in (3) and the restriction operator
Py are discretized to obtain their discrete counterparts [R] € R2[(E+1)x2I(L+1) a4
[Pr] € R2IIADXAI(LAY) " Thanks to the lexicographical order of the boundary grid
points, these matrices have block structures as well: [R] is a square anti-diagonal
block matrix where the blocks are 47 x 41 identity matrices, and [Pr] is a rectangular
matrix with 1 on the main diagonal:

1]

[Pr] = ([I][ur%w]x[u[%n [O]> [R] =
[1]

Structure of J

500
1000

1500

0 500 1000 1500 2000 2500 3000 3500
nz = 63360

Structure of R

200 \
400 QS
600 O
800 \
1000 Q
1200 O
1400 N

1600 N\

1800 F \N

0 500 1000 1500
nz = 1920

500

1000

1500

Structure of P,

500 1000 1500 2000 2500 3000 3500
nz = 1920

Structure of K

200

400

600

800

1000

1200

1400

1600

1800

0 500 1000 1500
nz = 3095000

FiGUrRE 3. The structure of [J],[Pr],[R],[K] with I = 15 and
L = 63. nz is the number of nonzero elements in the matrix.

The discretized adjoint [Pj] is taken to be [Pr]‘, the transpose of [Pr|. Finally,
the discretized K is the following matrix product, according to (6):

(K] = UAJ[Pr) — [R[Ac)[RIJ][Pr]" € RMEFDXEIEAD),

In general, [K] is not a sparse matrix. An image of [K] is illustrated in Figure 3.
Since K is a compact operator (see the remark below (6)), [K] is ill-conditioned.
Its singular values are plotted in Figure 4.

Discretization of the Operator B. With the aforementioned discretized oper-
ators, the discretized B is naturally the following matrix product, according to (9):

[B] = [J][Tp] — [R][Ac,r][R][J][Tn] € R2I(L+)XAI(L+1)

Here the matrices [Tp], [Ty] € RYEADXA(L+D) are of large size, thus their storage
takes up lots of memory. However, observing that the operator B is applied only to
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Singular values of K

N
\

. ‘ 3

0 500 1000 1500 2000
i

FIGURE 4. The singular values of [K] with I = 15,L = 63. [K]
has 60 zero singular values.

harmonic functions which are time-independent, we can reduce the cost of memory
by first computing these matrices at a specific time, then shifting them to other
times. Since the harmonic functions in our numerical experiments are all hand-
crafted, we can also compute their boundary values from the analytic expressions.

Solving for f,. The next step is to solve for [f,] from the discretized version
of (13):

(14) (K] + &)[fa] = [Bl[¢]oal-

Here [f4] is the discretized version of f, in (13); ¢ is an arbitrary harmonic function
and [t|pq] € RYUEADX1 denotes the vectorized boundary restriction 1]sq. Both
[fo] and ¥|sq are in the lexicographical order as before. Since [K] has zero singular
values, we solve (13) with Tikhonov regularization. Specifically, the equation that
we solve is

(15) ([KT'[K] + a)lfa] = [K]'[B][¢loc]

where [K]' is the transpose of [K].

Solving for [c72]. The last step is to solve for [c=2]. In the proof of Algorithm 1,
this is accomplished by constructing appropriate complex exponential harmonic
functions (12) and inverting the Fourier transform. Nonetheless, such harmonic
functions are not suitable for numerical implementation: they tend to blow up due
to their exponential growth in certain directions.

We instead exploit the fundamental solutions method (FSM) to construct har-
monic functions. This method, first proposed by Kupradze [29], features ease of
numerical implementation. Its applicability for general elliptic boundary value prob-
lems has been investigated in [13], see also the review paper [21]. In FSM, one uses
harmonic functions of the form

(16) > a;@(lz — 2V
j=1

Here a; are real scalars and ® is (up to a constant factor) the fundamental solution
of the Laplace operator: ®(r) = logr for n = 2 and ®(r) = % for n > 3. These
functions are harmonic except at the singularities z), which are chosen to be
outside the computational domain. It has been shown [35] that an arbitrary 2D
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function which is harmonic inside the unit disk and continuous up to the boundary
can be approximated to any prescribed accuracy using functions of the form (16).

We proceed to discretize the identity (10). On the right-hand side of (10), we
fix a small o > 0 and approximate the boundary integral over [0, T] x 992 using the
trapezoidal rule:

AT(L+1)

(17) (fa, Bo) L2((0,1)x00) =~ Z wjlfalj[Bolaals

Jj=1

where [f,] has been obtained from the previous step, and [B¢|sq] is computed from
the matrix multiplication [B¢|aa] = [B]l¢|an]. On the left-hand side of (10), we
approximate the interior integral over (2 by successively applying the trapezoidal
rule first to y and then to z. If we write w = (%,1,...,1,%) € Rt for the
coeflicient vector of the trapezoidal rule, then

1 1
(4, ) 2 202y = /_ 1 / (e )0l y)e ) dady
I

(18)

Q

> wiwd (g, yi) S, yr)e > (g, i) (Aa)®.

7,k=0

Finally, we equating (17) and (18) and inserting various harmonic functions of
the form (16). This gives rise to a system of linear equations on the unknowns
C*Q(xj,yk), 7.k =0,1,..., 1. If the number of harmonic functions is small, the
linear system will be under-determined. In this circumstance, we employ Tikhonov
regularization to solve for the regularized unknowns.

4. Numerical experiments. We validate the reconstruction algorithm in this sec-
tion with several numerical examples. All the numerical experiments are conducted
on a Windows 10 laptop with Intel Core i7-9750H 2.6GHz CPU and 16GB RAM.

For the forward simulation, we employ a computational grid of size (2L + 1) X
101 x 101 to generate the ND map. For the inverse problem, we re-sample the ND
map on a coarser grid of size (L 4+ 1) x 51 x 51 and implement Algorithm 1 there
to avoid the inverse crime. Here the value of L depends on the choice of c.

We construct the following harmonic functions in view of (16):

oM =In((z —2.3)2 4+ (y—2.2)3), 6@ =In((z+2.5)> + (y — 2.1)?),
o =In((z —2.7)% 4+ (y+1.9)%), oW =In((z + 1.5)% + (y + 2.5)?),
¢®) =In((z +1.2)2 + (y +2.5)), ¢© =1,
We denote the vector space generated by the products of these harmonic functions
by Sg, that is,
Sg :=span{¢Wp) i, 5 =1,...,6}.
If ¢=? is in the vector space Sg, we can decompose

2 = Z Cij¢(i)¢(j)~

1<i<j<6
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Take the inner product (-, -)2(q) with #"F ¢ respectively, k,1 =1,...,6, to obtain
the following linear system

2
c11 (c™2,0W7) 12(q)
(19) A7 2 (c7%,6W6@) 120
Ce6 (¢, ¢(7)2)L2(9)
where the 21 x 21 coefficient matrix A is
2 2 2 2 2
(o7, M) )21:2(52) (@M, 0We) 2y ... (¢, 9O )2L2(Q)
(¢(1)¢(2)7¢(1) )L2(Q) (¢(1)¢(2)’¢(1)¢(2))L2(Q) (¢(1)¢(2),¢(6) )LQ(Q)
2 1y2 2 : - 2 : 2
(07,617 2(q) (0O, 0We) 2y . (397,007 12

The coefficient matrix on the left-hand side can be directly computed, and the
components of the vector on the right-hand side are exactly the inner products on
the left hand side of (18). We then solve the discretized version of this linear system
to obtain the coefficients c;;.

If ¢=2 is not in the vector space Sg, the inner products on the right hand side
of (19) project ¢=2 orthogonally onto Sg. Solving the linear system just yields such
orthogonal projection. As the products of harmonic functions are dense in L?(),
one can expect the orthogonal projection to better approximate ¢~2 with increased
number of harmonic functions ¢,

Experiment 1: ¢c=1 and ¢ 2 € Si.

We test the reconstruction of a constant speed ¢ = 1 in this experiment. Notice
that ¢2 = 1 € Sg since $(®) = 1. The reconstructed images along with the errors
are illustrated in Figure 5, in the presence of 0%, 5% and 50% of Gaussian random
noises with zero mean and unit variance respectively. We observe that addition of
the random noise has almost negligible impact on the reconstructed images. This
is because in the definition (6) of K, the ND map is followed by the low-pass filter
J, which tends to smoothing out the random noise. As a justification, we also test
the impact of non-random noise on the reconstruction. We re-run the code with
constant noise 0.01, 0.02, and 0.05 added to the ND map. In this case, the filter
fails to smooth out the noise, and the reconstructions are significantly compromised.
The resulting errors in the discretized connecting operator [K] are shown in Table 1.

Random Noise | Relative Frobenius Error
10% 3.74%
20% 7.51%
50% 18.80%
Constant Noise | Relative Frobenius Error
0.01 119.01%
0.02 238.01%
0.05 595.03%

TABLE 1. Impact of random and constant noises on [K].
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Reconstructed ¢ Reconstructed ¢ Reconstructed ¢

1.008
1.006
1.004

1002

0908
0.9%
0.904

0992

FIGURE 5. Reconstructions of the constant speed ¢ = 1. Top row:
reconstructed c¢. Bottom row: error between the reconstruction
and the ground truth. First column: 0% noise; the relative L2-
error is 0.4769%. Second column: 5% noise; the relative L2-error
is 0.4873%. Third column: 50% noise; the relative L2-error is
0.5454%. Grid: 283 x 51 x 51, I = 50, L = 282.

Experiment 2: c is variable and ¢2 € S.

Next, we test the algorithm for a variable speed ¢ with ¢=2 € Sg. The random
Gaussian noise is fixed to be 5% in this experiment. The ground-truth speed is

6 .
-2 _ N\ L0
c ;10¢ :

see the leftmost of Figure 6. We perform the reconstructions with the first 2, 4,
and 6 harmonic functions ¢(9) | respectively, in order to show the improvement
of the image quality as the number of basis functions increases. We observe that
the reconstruction is increasingly accurate as the number of harmonic functions
increases, see the numerical validation in Figure 7.

Ground Truth ¢ Ground Truth ¢ Projection

057 108
056 " 106
055 104
105 0
054 102
053
N 1
052
K K 098
051 " §
~ 085 0.96
05
049 O -0 094
09
048 0. 0. 092
E 047 - B 09
E 05 0 05 1 4 05 0 05 1 4 05 0 05 1

6 .
FIGURE 6. Left: the variable speed ¢=2 = Y ¢V, Middle:
=1

the variable speed c(z,y) = 1 + 0.08sin7z + 0.06 cos my. Right:
orthogonal projection of ¢(x,y) = 1 + 0.08sin 7wz + 0.06 cos 7y on
Se.
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FIGURE 7. Reconstructions of the variable speed ¢ =2 = 21 f—oq,’)(’).
=

Reconstructed ¢ Reconstructed ¢

Top row: reconstructed c. Bottom row: error between the recon-
struction and the ground truth. First column: First 2 harmonic
functions; the relative L2-error is 15.6987%. Second column: First
4 harmonic functions; the relative L2-error is 0.7939%. Third col-
umn: All 6 harmonic functions; the relative L2-error is 0.7907%.
Grid: 323 x 51 x 51, I =50, L = 163.

Experiment 3: c is variable and c¢~2 ¢ Sg.
Next, we test the ability of the algorithm in recovering a variable speed ¢ with
c¢™2 ¢ Sg. The speed in use is

c(xz,y) =1+ 0.08sin 7 + 0.06 cos 7y,

as is illustrated in Figure 6. The reconstructions with the first 2, 4, and 6 har-
monic functions ¢(¥ are shown in Figure 8. In this case, we cannot expect to
reconstruct the exact discrete version of ¢~2. Instead, what the algorithm yields is
the L2-orthogonal projection of ¢~2 onto the subspace Sg. This is due to the use
of Tikhonov regularization when solving for [c™2]. See the numerical validation in
Figure 8.

Experiment 4: partial data.

We test the algorithm with only partial knowledge of the ND map. We use the
constant speed ¢ = 1, although the variable speed in Experiment 3 works almost
equally well. Recall that the computational domain €2 is a square with four sides
x ==+1 and y = 1. We remove the knowledge of the ND map from the three sides
y=—1,z =1, y =1 one after another. The reconstructions are shown in Figure 9,
where the algorithm performs quite well. This is due to the large stoppage T we
choose. No noise is imposed in this experiment.

Experiment 5: c¢ is discontinuous
This case is not covered by the theory, as Algorithm 1 is derived under the
assumption that ¢ is smooth. We still test it anyway. The wave speed is



STABLE DIRECT RECONSTRUCTION FOR AcoOUsTIC IBVP 15

Reconstructed ¢
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FIGURE 8. Reconstructions of the variable speed ¢(z,y) = 1 +
0.08sinx + 0.06 cos my. Top row: reconstructed c. Bottom row:
error between the reconstruction and the orthogonal projection of
the ground truth. First column: First 2 harmonic functions; the
relative L2-error is 12.3535%. Second column: First 4 harmonic
functions; the relative L2-error is 0.4139%. Third column: All 6
harmonic functions; the relative L2-error is 0.3104%. Grid: 323 x
51 x 51, I =50, L = 322.

Reconstructed ¢

Reconstructed ¢

-1 05 0 05 1

1 (z,y) € [-0.5,0.5)%,

0.5 (z,y) €Q\[-0.5,0.5)%,

see Figure 10. Again, the algorithm is able to reconstruct only the orthogonal
projection of the discontinuous speed on Sg. However, this project is smooth and
does not look like the original discontinuous speed, see Figure 11. No noise is
imposed in this experiment.

c(x,y) =
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