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Abstract—Interlaced Magnetic Recording (IMR) is a promising technology which achieves higher data density and lower write

amplification (WA) than Shingled Magnetic Recording (SMR). In IMR, top tracks and bottom tracks are interlaced so each bottom track

is partially overlapped with two adjacent top tracks. Top tracks can be updated without any WA, but bottom track updates require

reading and rewriting of affected valid data on the two neighboring top tracks. There are few published studies discussing WA in IMR

drives. We propose TrackLace to reduce WA for IMR. TrackLace consists of three techniques: Z-Alloc allocates user data to the tracks

in alternating directions and spreads unallocated tracks among allocated tracks; Top-Buffer opportunistically utilizes unallocated top

tracks to buffer bottom track updates; and Block-Swap progressively swaps bottom track hot data with top track cold data during high

space utilization. To further optimize TrackLace performance, we propose a virtual frame design that can keep the relocated block (due

to Top-Buffer or Block-Swap) close to its original location and an adaptive bufferingmechanism that can avoid unnecessary

redirections depending on the write locality. Evaluations show that TrackLace can reduce WA by 45 percent and lower average latency

by 31percent compared with baseline schemes.

Index Terms—Interlaced magnetic recording, hard disks, data layout, allocation strategies, storage management
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1 INTRODUCTION

THE rapid growth of digital content from cloud, mobile
computing, social media, big data, and other emerging

applications calls for low cost, but large capacity, storage sys-
tems [1]. Energy-assisted technologies such as Heat-Assisted
Magnetic Recording (HAMR) [2], [3] andMicrowave-Assisted
Magnetic Recording (MAMR) [4], [5] enable further growth
of the areal data density of hard disk drives. Recently, a prom-
ising track layout, namely Interlaced Magnetic Recording
(IMR), has been proposed [6], [7] and tested inHAMR systems
[8], [9] that shows further increase in the data density. IMR can
also be applied toMAMRdrives.

In heat-assisted IMR, as shown in Fig. 1, track layout is in
an interlaced fashion with alternating bottom tracks (lighter
color) and top tracks (darker color). Compared with top
tracks, bottom tracks are wider and written with higher
laser power. The top (narrower) track is written on top of
the boundary of two adjacent bottom (wider) tracks. That is,
each bottom track is partially overlapped with two neigh-
boring top tracks. Thus, top tracks can be updated without
penalty, but updating a bottom track (bottom updates) may
require reading and rewriting the two affected top tracks
(write amplification). If in-place updates are used (meaning
data is written to its native location with reading/rewriting
of neighboring top tracks when necessary), in the worst
case, an update to data in a bottom track may require two

reads and three writes. Such extra reads and writes on the
top tracks seriously affect the I/O performance and hence
limit the practical use cases of IMR drives. Here we define
write amplification (WA) as the amount of actual writes to the
disk, including these extra writes, compared with the origi-
nally requested amount of writes. For example, in one real-
world workload we tested, using IMR causes a WA of 2.6�
and a 4� latency increase compared with the CMR case.
Note that if we can reduce write amplification, the extra
reads to the top tracks will also be reduced. Thus, the focus
of this paper is to answer: how can we reduce write amplifica-
tion and improve the performance of IMR drives?

To answer this question, we first make the key observa-
tion that if the top tracks do not contain any valid data, no
rewrites are required when bottom tracks are updated. We
define a bottom track with both the overlapping tracks con-
taining no valid data as a free bottom track as it can be
updated free of amplification. When the space utilization is
low, user data can be stored in bottom tracks with top tracks
left open. In this case, all bottom tracks are free, thus no
updates will have write amplification. As the capacity utili-
zation grows, data starts to be allocated on top tracks, bot-
tom tracks become non-free, and some of the update
operations will begin to experience write amplification.
Therefore, the performance of IMR depends on its space uti-
lization and how data is placed in its track layout.

Then, based on this observation, to handle this write
amplification problem of IMR disk drives, we propose
TrackLace, a data management design for IMR that is com-
prised of three key techniques: zigzag allocation (Z-Alloc),
top track buffering (Top-Buffer), and block swapping (Block-
Swap), as well as two optimizations: virtual frames and adap-
tive buffering. In TrackLace, the memory usage is capped by
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a pre-defined size. This enables us to adjust and implement
TrackLace for use in different layers in the I/O stack, e.g.,
the host system, storage controller, or inside the drive,
depending on the available memory space.

Z-Alloc numbers (i.e., assigns addresses) and allocates
disk space in a zig-zag pattern based on phases of space
usage of the IMR drive. Top-Buffer opportunistically takes
advantage of unallocated top tracks (top tracks that have
not yet been allocated for user data) and uses them to buffer
updates to the non-free bottom tracks. When the space
usage is high and there are fewer available unallocated top
tracks to be used as the Top-Buffer, Block-Swap can pro-
gressively swap hot (frequently updated) bottom track
blocks with cold (infrequently updated) top track blocks to
reduce the update overhead.

Finally, to further improve the performance of TrackLace,
we propose two optimizations: virtual frames and adaptive buff-
ering. To reduce seek time, a virtual frame sets the maximum
number of tracks that data blocks can be relocated from their
original track due to buffering or swapping. The adaptive buff-
ering scheme adapts Top-Buffer to the write hit ratio of the
workload. If the hit ratio is near zero, buffering and writing
back only introduce data redirection overhead without bring-
ing any benefits of accumulating bottom track updates. In this
case, the scheme will temporarily “close” the Top-Buffer to
avoid the unnecessary Top-Buffer redirection.

We implement TrackLace in an IMR simulator that we
built and validated against DiskSim [10]. Evaluation results
show that TrackLace is able to reduce the average latency by
31 percent and reduce write amplification by 45 percent com-
pared to the baseline in a high space utilization scenario.

2 BACKGROUND AND ASSUMPTIONS

2.1 Background

CMR and SMR. There are two common and established
track layouts for magnetic recording technologies: Conven-
tional Magnetic Recording (CMR) and Shingled Magnetic
Recording (SMR). In CMR (Fig. 1), tracks do not overlap
with each other, thus they can be written in any order and
updated in place without a write amplification penalty.
CMR is the oldest and most common track layout method
for hard drives. Demands for increased capacity spurred
the development of SMR as a newer and higher-density
track layout method. In SMR (Fig. 1), each track is inten-
tionally overlapped on one side by a subsequent track
like the layering of shingles on a roof [11], [12], [13]. This
process allows a wide write head and a narrower read
head to be used to obtain higher density than CMR. SMR
drives are typically written in the shingled direction and
suffer from expensive write amplification when an earlier
track needs to be updated. While there is ongoing research
into methods that attempt to mask or delay the poor

performance of SMR in update-intensive workloads (see
Section 7), production SMR drives are typically reserved
for backup, archive, or other applications where updates
are rare once data is written.

IMR. A novel third track layout method, IMR (Fig. 1) [6],
[7], is currently under development. HAMR-based testing
shows that IMR achieves much higher areal density than
CMRand slightly higher density, butwith significantly fewer
update constraints, than SMR [6], [8], [14]. In IMR technol-
ogy, there are two types of tracks: bottom tracks and top
tracks. Ideally, bottom tracks are written first, and then top
tracks are written afterwards between two bottom tracks.
Bottom tracks are partially overlapped with the two neigh-
boring top tracks leaving a narrower center part of the track
that can still be read. Note that “bottom” and “top” here is
only conceptual and does not imply physical layers [8], [15].
IMR works well with HAMR where wide bottom tracks are
made by writing with higher laser power, and narrow top
tracks are written with lower laser power [8], [9]. In such
heat-assisted IMR, the linear data density in the bottom
tracks is greater than that of the top tracks due to the
increased laser intensity. As a result, a bottom track will have
higher capacity than a neighboring top track. According to
Granz et al. [8], the average linear density of the bottom tracks
is about 27 percent higher than that of the top tracks.

Writing directly to a bottom track will destroy the data
blocks already written on neighboring top tracks. To avoid
this data loss, the data on the affected top tracks must first be
read before the bottom track is updated. After the bottom
update, the saved top track data is written back to its original
top track locations. This process causes write amplification.
Writing to top tracks, however, does not have any penalty.

Seagate Baseline. A three-phase data allocation scheme is
proposed by Seagate [7], [16] which numbers and allocates
disk space based on three phases of space usage. In the first
phase, if the usage is less than the total capacity of the bottom
tracks (0 � 56 percent space usage), all the data is assigned to
the bottom tracks sequentially. In the second phase, space
will be allocated from every other top track until half of the
total top track capacity is used (56 � 78 percent space usage).
In the third phase, the remaining top tracks will be used
(78 � 100 percent space usage). There is no penalty when in-
place updating a bottom track during the first phase because
no top tracks contain valid data. During the second utiliza-
tion phase, in-place updates to a bottom track will require
one rewrite in one of the adjacent top tracks (or no penalty if
neither of the two neighboring top tracks has affected valid
data). Similarly, a bottom update in the third phase will
require one or two top track rewrites.

2.2 Assumptions

We assume the space manager (e.g., file system, logical vol-
ume manager, storage controller, etc.) allocates an interlaced
set of consecutive physical top and bottom tracks, named a
Track Group or TG (Fig. 2), to the applications. An IMR disk
can have one or more TGs. In our high utilization experi-
ments, we mean that one TG is, for example, 99 percent full,
not necessarily the entire disk. How the space manager allo-
cates the space is beyond the scope of this paper since we
only focus on the data allocation and management within
one TG. We also assume all the allocated space of a TG is

Fig. 1. Track layout for CMR, SMR, and IMR.
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valid andmust be protected from being overwritten during a
bottom track update. Possible use of a TRIM command to
mark invalid data that can be safely overwritten is left for
future research.

Although there may be different track capacities within
one TG in real production disks due to factors such as zone
bit recording and sector defects, we assume the top tracks
within one TG have identical capacity and the bottom tracks
also have a uniform, but higher, capacity. The IMR configu-
rations that we use are based on testing data by Granz et al.
[8] (Table 1). Our data management principles can be easily
adapted to other IMR production settings.

3 TRACKLACE DESIGN

TrackLace has three core components: zigzag allocation
(Z-Alloc, Section 3.1), top track buffering (Top-Buffer,
Section 3.2) and block swapping (Block-Swap, Section 3.3).
TrackLace adapts to the changes in space utilization by
switching gradually from Top-Buffer to Block-Swap as utili-
zation grows. Both Top-Buffer and Block-Swap can mitigate
the write amplification of IMR drives.

3.1 Zigzag Allocation (Z-Alloc)

In the existing allocation scheme described by Seagate [7] (see
Section 2.1), the data allocation all follows the same radial
direction; i.e., all three phases are allocating fromouter diame-
ter (OD) tracks to inner diameter (ID) tracks. This patternmay
harm data locality by physically separating adjacent data
(e.g., the final track of the first phase and the first track of the
second phase). To improve this scheme, we propose our Zig-
zag Allocation or Z-Alloc design which reverses the allocation
direction of even-numbered phases (making it inner tracks to
outer tracks) to preserve data locality between phases (Fig. 2).
Block I/O typically exhibits spatial locality, and applications
expect logically adjacent data blocks to be physically close to
each other. Thus, our improved layout should reduce seek
time for datawritten across phase boundaries.

As we will explain in Section 4.1, there are cases when we
wish to extend the addressing and allocation to more than

three phases. This same layout pattern can be applied tomore
than three phases, but we will continue to show three phases
in the illustrations to ease visualization of the designs.

3.2 Top Track Buffering (Top-Buffer)

As top tracks can be updated freely, we propose to buffer
bottom updates (update operations targeted to bottom tracks)
to unallocated top tracks. Then such buffered blocks can
accumulate multiple updates before they are migrated back
to their original bottom tracks. This ability to amortize and
reduce write amplification motivates our design of Top
Track Buffering (Top-Buffer).

Fig. 3a shows the design of Top-Buffer in which the high-
est-numbered (meaning highest addressed, or the last to be
allocated, e.g., track 20, 21, and 22 in Fig. 3a) unallocated
top tracks are organized as the Top-Buffer region (or Top-
Buffer in short). Top-Buffer utilizes these unallocated top
tracks as buffers for updates to non-free bottom tracks
when the TG space usage is less than 100 percent.

When the Top-Buffer is full, we evict buffered blocks to
reclaim space using a Sequential Cleaning Policy (SCP). SCP
cleans a whole Top-Buffer track at a time by sequentially
reading the buffered blocks on the target track (victim blocks)
and writing them back to their original bottom track loca-
tions. The track to be cleaned is selected in a round-robin
fashion. Compared to other types of data reclamation poli-
cies like Least Frequently Used (LFU) or Least Recently Used
(LRU), SCP is able to reclaim a continuous space so that the
Top-Buffer region will never be fragmented. Thus, further
write requests redirected to the Top-Buffer will not be frag-
mented either. In thisway, SCP can reduce the fragmentation
of future read/write requests to the buffered data and avoid
extra disk seeks caused by fragmented I/O that would harm
the overall performance. Also, SCP has less metadata over-
head compared with LRU (see Section 5.1 for more discus-
sion). However, some frequently updated data blocks may
be cleaned early with SCP thus slightly harming perfor-
mance. This is addressed by Block-Swap (Section 3.3).

In our design, the LBA to PBA mapping entries for Top-
Buffer are fully loaded to the memory when system starts
and are persisted in the IMR drive each time updated. We
limit the size of the Top-Buffer to be at most a certain portion

Fig. 2. Zigzag Allocation. Numbers show the addressing and allocation
order of the tracks. Note that the even-numbered phases (i.e., the second
of three phases in this example) have reversed allocation direction for bet-
ter data locality. An IMR disk may have one or more Track Groups.

TABLE 1
IMR Disk Configuration

Fig. 3. Illustration of Top-Buffer and Block-Swap. Top-Buffer Max Size = 3 tracks in this three-phase example. (a) Even though there is one more unal-
located top track available (track 19), only the three highest-numbered unallocated tracks (20, 21, 22) are used as Top-Buffer. (b) Compared to the
figure in (a), the TG space utilization has grown, and Top-Buffer gave up two tracks to allocate more user data. (c) Top-Buffer and Block-Swap used
together and sharing the mapping table. Bottom tracks have four sequentially numbered blocks and top tracks have three. Three bottom track blocks
(36, 47, 27) are buffered in Top-Buffer, and one top-bottom pair has been swapped (24 and 76).
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(Bmax%) of the size of the TG, even if there are more unallo-
cated top tracks available. This buffer size limit reduces the
maximum size of the mapping table and allows it to be kept
in memory (within a memory table size budget for fast search-
ing. Besides, we have two ways to reduce the I/O overhead
of reading/writing the mapping table entry. 1) For read
operations, we cache all the mapping entries in memory to
eliminate extra disk reads for the index. 2) For write opera-
tions, we put the mapping table entries for each Top-Buffer
track at the end of the track (using 1.6 KB per track). By locat-
ing the buffered data and the correspondingmapping entries
in the same track, the seek time for making mapping entries
persistent is minimized duringwrite operations.

In our current implementation, we set the default
Bmax% ¼ 2%, which only needs a memory table budget
of 0.008 percent of the TG size (assuming 4 KB sectors and
64-bit addressing) but can still capture a good amount of
trace locality. Supposing a future IMR drive has a capacity
of 20 TB, the mapping table size will be roughly 1.6 GB
(based on 64-bit addressing, but this number will be
roughly 25 percent smaller if 48-bit addresses can be used).
However, the value of Bmax% in a real environment is
adjustable depending on the available memory space.

In Fig. 3a, the Top-Buffer is located at the highest num-
bered top tracks (however, we have an optimization dis-
cussed in Section 4.1 to enable bottom data to be buffered in
nearby top tracks that are not necessarily the highest num-
bered ones). When the TG utilization increases and the user
data tracks reach the Top-Buffer tracks, Top-Buffer will clean
using SCP and give up tracks for user data (as shown in
Fig. 3b). As TG space usage further increases, the Top-Buffer
size keeps decreasing. An extremely small Top-Buffer will
have very limited benefits or even worse performance than
the three-phase Z-Alloc scheme with no Top-Buffer. If the
Top-Buffer is too small, buffered data is evicted too soon to
bring any benefit from accumulating bottom updates but still
introduces redirection overhead. We propose our next tech-
nique, Block-Swap, to supplement Top-Buffer by helping
avoid this increased overhead as Top-Buffer shrinks and
reducewrite amplification at very high space utilization.

3.3 Block Swapping (Block-Swap)

As mentioned above, the benefits of Top-Buffer diminish as
the TG utilization grows close to 100 percent and Top-Buffer
gives tracks back to user data. To improve performance
when the size of the Top-Buffer decreases, we propose block
swapping (Block-Swap) which progressively swaps hot (fre-
quently updated) bottom track blocks with cold (infre-
quently updated) top track blocks. There are three benefits
of Block-Swap. 1) Unlike Top-Buffer, Block-Swap is not lim-
ited by the availability of unallocated top tracks, so it is able
to reduce the write amplification when the utilization is too
high for Top-Buffer to perform effectively. 2) Block-Swap
can aid Top-Buffer when used together in that the data on
bottom blocks that is very hot can be swapped to top tracks,
so fewer updates will go to the buffer and the cleaning cost
is reduced. 3) Hot blocks identified and selected to be
swapped by Block-Swap will stay in top tracks longer with-
out being evicted prematurely from the Top-Buffer by the
indiscriminate SCP. More details of this design are pre-
sented in the remainder of this subsection.

Block-Swap and Top-Buffer will be used simultaneously
during very high space utilization. In such situations, Block-
Swap occurs during SCP eviction of the Top-Buffer. Hot bot-
tom blocks chosen from the victim blocks evicted by SCP are
swapped with cold top blocks selected from the TG. In our
design, a block evicted by SCP will not be swapped with a
top track block if the evicted block was last written before all
the currently swapped hot blocks were last written. Com-
pared to Top-Buffer, Block-Swap has a higher overhead,
which requires eight I/Os (one read and one write each for
the top block, the bottom block, and its two neighboring top
tracks). In this case, two block hits on the hot block swapped
to the top track can offset the overhead, because one bottom
update introduces four extra I/Os on the two neighboring
top tracks when they both contain valid data. If only one
neighboring top track has valid data, four block hits are
needed to offset the Block-Swap overhead.

During the swapping, a hot bottom block and cold top
block pair will be read and then written to each other’s loca-
tion using in-place update. Two new mapping entries will
be created to record the physical locations of the two blocks.
It is unrealistic to construct an all-to-all block level mapping
for the TG. We make a design decision that the total size of
the Block-Swap mapping table combined with the Top-
Buffer mapping table will be bounded by a memory table
budget size so that it can be cached in the memory (see
Section 3.2).

Block-Swap consumes more mapping table entries (two
entries) when relocating a hot block to a top track compared
with Top-Buffer (one entry). For better mapping table effi-
ciency, we favor Top-Buffer over Block-Swapwhen consum-
ing the mapping table budget. Therefore, when the
unallocated space is greater than Bmax% of the TG, Top-
Buffer takes all of the mapping table budget and Block-Swap
is not used. Block-Swap will start when TG space usage goes
beyond ð100�BmaxÞ%, which is when Top-Buffer starts to
give up tracks to user data and cannot make full use of the
mapping table size budget. Fig. 3c shows a simplified exam-
ple where each of the the bottom tracks has four sequentially
numbered blocks and the top tracks have three (recall that
bottom tracks are roughly 27 percent more dense than top
tracks). As shown, Top-Buffer and Block-Swap share the
mapping table and its memory budget. When usage is 100
percent, the Top-Buffer is completely disabled and only
Block-Swap is operational. Data will be directly written
using in-place updates. Here, as there is no space for Top-
Buffer, Block-Swap will maintain a virtual Top-Buffer that
only collects update statistics to aid swapping decisions.

To keep the mapping simple, we only select blocks to
swap that have not been swapped before; i.e., a block that
has already been swapped once will not be chosen to swap
with another block. If a previously swapped pair of blocks
both become hot, they will first be unswapped, and then
the hot bottom one will be swapped with a different cold
top block.

The Block-Swap mapping entry is updated and synchro-
nized to the disk after the swapping of the two data blocks
is completed. In our design, the persistent locations for the
Block-Swap mapping entries are distributed into the TG at
the end of some of the top tracks. Similar to Top-Buffer
mapping entries, the Block-Swap mapping entries are
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loaded to memory at system start time. If the Top-Buffer
size limit is set to be 2 percent of the TG, using the informa-
tion in Table 1 and assuming a block size of 4 KB, we can
calculate that at most one top block is needed for every 24
tracks (12 top and 12 bottom). Once this “meta-block” that
stores the mapping entries for a set of tracks is full, the top
data blocks in the corresponding 12 top tracks will not be
selected as cold blocks for swapping.

One open issue in our current design is thatwrites that trig-
ger SCP have higher I/O latency, especially when the TG is
nearly full and the expensive Block-Swap occurs during SCP.
How to bound this tail latency is left for futurework.

4 OPTIMIZATIONS

4.1 Virtual Frames

Top-Buffer and Block-Swap help reduce write amplification
by relocating hot bottom data to top tracks. However, such
data relocation breaks the physical locality of logically adja-
cent data; i.e., logically nearby data blocks may be physi-
cally far away from one another, possibly across the whole
TG, if only some of them are buffered. This causes long seek
time and affects the performance, which motivates our vir-
tual frame design as a way to limit the seek distance in Top-
Buffer and Block-Swap.

4.1.1 Relocation Distance

Here we define block displacement or relocation distance as the
number of tracks between the original track and the track
where a block is relocated. Keeping the relocation distance
small will reduce seek distance and improve performance
in the following two situations. First, it will reduce seek
time during the Top-Buffer write-back operation where we
evict buffered data and migrate it back to the original loca-
tion. The same seek distance reduction advantage is true for
Block-Swap and its un-swapping operation. Second, a
smaller seek distance is also favorable when reading a
group of logically nearby, or clustered, blocks includes
tracks near the original physical location and also more dis-
tant buffered/swapped locations if some of the logically
close blocks being read have been physically relocated by
Top-Buffer or Buffer-Swap. Again, it is preferable to limit
the seek distance when Top-Buffer and Block-Swap poten-
tially break the physical locality of logically local blocks.

4.1.2 Virtual Frames Explained

A virtual frame is defined as a logical partition of the TG
with a user-defined frame width, i.e., maximum relocation
distance. Top-Buffer or Block-Swap is only allowed to relo-
cate bottom track data within the frame. Virtual frames do
not slide or overlap. The whole TG is divided into many
equal-width virtual frames, each individually running Top-
Buffer and Block-Swap but with a shared mapping size
budget the same as defined in Section 3.2. Using such vir-
tual frames can bound the relocation distance for both Top-
Buffer and Block-Swap, hence reduce the seek time.

When selecting the width of the virtual frames, there is
an intrinsic trade-off between the relocation distance and
write amplification. A small virtual frame width has the
benefit of reducing the relocation distance and hence

reduces the seek time penalty. However, the downside is
that a small frame size limits the number of available unal-
located top tracks in each virtual frame. For some work-
loads with concentrated updates in some particular bottom
tracks, buffered data may quickly fill the Top-Buffer of the
corresponding virtual frame and trigger an expensive SCP
even though neighboring virtual frames may have underu-
tilized unallocated top tracks. We found that an intermedi-
ate virtual frame width of 32K (K = thousand) tracks works
well with most of the tested workloads. Investigation into
an adaptive and/or heterogeneous virtual frame width is
left for future work.

4.1.3 Multi-phase Allocation

In the initial three-phase Z-Alloc design in Section 3.1, when
the utilization goes beyond 78 percent, i.e., enters the third
and final phase, virtual frames of the outer tracks will have
no Top-Buffer tracks to allocate because the highest num-
bered tracks are inner tracks within a different set of virtual
frames. Consequently, Top-Buffer cannot operate, even if
there are still unallocated top tracks far away, and only the
more expensive Block-Swap is used in these outer virtual
frames when handling the bottom writes. This causes per-
formance inferior to the case when unallocated tracks are
available within the virtual frame and Top-Buffer is used
together with Block-Swap. This motivates us to distribute
the available unallocated top tracks across the TG and into
each virtual frame.

Therefore, we design a multi-phase allocation scheme that
extends the three-phase Z-Alloc design to have any number
of phases and can spread unallocated top tracks evenly
among the used top tracks during allocation. When at the
end of the second phase and starting the third phase, this
approach skips every other empty top track during the allo-
cation. In other words, in the second phase, every other top
track is allocated for user data, and in the third phase, every
fourth track is allocated, leaving an empty track every four
top tracks, and so on for the subsequent phases. If the num-
ber of phases is too large, the last few phases will have logi-
cally adjacent top tracks that are physically separated too
far. We found that a default number of six phases, when
working with virtual frames, can distribute unallocated top
tracks effectively during very high space usage without
introducing too much overhead due to the separation
between two logically adjacent top tracks.

4.2 Adaptive Buffering

Quantitatively, Top-Buffer’s extra overhead for one bottom
write is one write to and one read from the Top-Buffer track.
The I/O saved during a Top-Buffer write hit is the read and
write on the neighboring top track(s) of the target bottom
track (saving one read and one write if one neighboring top
track has valid data, two reads and two writes if both neigh-
boring tracks have valid data). So, one Top-Buffer hit will
offset the extra I/O of the Top-Buffer redirection and migra-
tion. On the other hand, if one block has no write hit during
its stay in the Top-Buffer, the redirection causes extra I/O
but saves nothing.

Wedefinewrite hit ratio as the ratio ofwrite requests, among
all bottom track write requests, which find that the data to be
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updated is already buffered in the Top-Buffer. In our evalua-
tion some workloads are found to have a very low write hit
ratiowheremost data blocks are updated once but never again
(e.g., the src1_0write hit ratio is only 1.3 percent). Such data
fills up the Top-Buffer quickly and triggers Top-Buffer clean-
ing (i.e., eviction) without bringing any benefit. In this case,
Top-Buffer performance is even worse than the bufferless
three-phase Z-Alloc and Seagate approach because data redi-
rection andmigration introduce extra I/O.

Our solution is to “open” and “close” the Top-Buffer
according to the workload. Such an adaptive buffer scheme
allows the write requests to be redirected into the Top-
Buffer when the write hit ratio is high and “close” it when
the ratio is low. The difficult part is to flag when to “open”
or “close” the Top-Buffer. We address this issue using a
heuristic where if the Top-Buffer write hit ratio is zero over
a period of time, we consider that the workload write local-
ity has become poor and reduce the rate at which write
requests enter the Top-Buffer.

Specifically, during a SCP (Top-Buffer Sequential Clean-
ing Policy, see Section 3.2), if no write hit has happened on
the buffered data since the last SCP, we halve the rate at
which write requests are allowed into the Top-Buffer. The
rate is initialized as 1; i.e., all of the bottom writes will be
buffered. From there, an SCP will halve the Top-Buffer
admission rate to 1/2 if there has been no hit since the last
SCP. This means one out of every two bottom write requests
will enter the Top-Buffer. If there has still been no hit when
the next SCP comes, the Top-Buffer fill rate is cut in half
again to 1/4 of the bottom write requests entering the
buffer. There is a lower limit of the buffer fill rate, which we
set to be 1/128 by default. If there is ever a write hit, the
buffer admission rate is immediately reset to 1. Here we do
not really “close” the Top-Buffer completely by setting the
entry rate to 0. This gives a chance for hot data to enter the
Top-Buffer if the write hit ratio suddenly becomes high.
Note that by using a dynamic buffer admission rate we do
not alternate between buffering and directly writing back
too frequently so as to avoid excessive seek operations.

There are many benefits of this hit ratio adaptive scheme.
1) When the workload enters a low hit ratio phase and
causes frequent eviction, e.g., in a sequential write workload
where each block is only written once, the admission rate
will be quickly reduced to prevent the I/O from entering
the Top-Buffer. Buffering such data will not contribute to
reducing write amplification and will only add to the redi-
rection and migration cost. 2) When there is a phase change
in the workload and the write locality becomes better, the
buffer admission rate will recover quickly to 100 percent to
allow hot blocks to enter the Top-Buffer. This facilitates
more write hits and reduces write amplification. Our evalu-
ation in Section 6.5.2 shows this adaptive buffering works
well in reducing unnecessary buffering but is still sensitive
enough to detect workloads with good write locality.

5 PRACTICAL CONSIDERATIONS

5.1 Reduce Computation and Memory Cost

While we primarily focus on improving the I/O perfor-
mance by reducing write amplification, CPU overhead and
memory consumption are also considered in our design.

We have made the design choice to limit the mapp-
ing table size by imposing a strict memory space budget
(Section 3.2, Section 3.3). This and other parameters of our
design can be adjusted based on available hardware. The
remainder of this subsection discusses how Top-Buffer and
Block-Swap are designed to lower the CPU and memory
footprint.

In Top-Buffer, as previously mentioned, SCP is chosen
over other fine-grained cache replacement policies (such as
LRU) because it prevents the Top-Buffer space from becom-
ing fragmented (Section 3.2). Additionally, the LRU data
structure takes much more memory space than SCP. LRU
needs to maintain a separate list element for every buffered
data block and to move each element around indepen-
dently. By contrast, SCP is dealing with the coarser granu-
larity of tracks, and the total metadata space is smaller by
three orders of magnitude. Moreover, in LRU each data
block update will reorder the LRU list, which triggers a list
element lookup and relocation. Such operational overhead
is non-trivial as it sits in the write path, and it is even worse
when considering that a single request may consist of hun-
dreds of data blocks.

In Block-Swap, when a hot bottom data block (selected
by the criteria specified in Section 3.3) is to be swapped onto
a top track, finding a cold block to swap is not a simple pro-
cedure. It is impractical to keep an access count statistic for
all of the physical blocks in each of the top tracks as this
amount of metadata would be prohibitively large. To select
a cold block to swap, we design a heuristic random selection
algorithm. First, we reduce (coarsen) the statistic granularity
from the block level to the track level; i.e., instead of select-
ing a cold block, we select a cold track and sequentially
choose the existing blocks in this cold track as the cold
blocks. An extra benefit of selecting a cold track instead of
cold block is that it reduces the I/O fragmentation similarly
to SCP. Second, even though we use a track-level granular-
ity, the computation cost to find the coldest track is still too
high. For example, if we organize all top tracks as a mini-
mum heap, each access to a physical block of a top track
will potentially trigger a heap adjustment, and such heap
maintenance occurs in the critical I/O path. Our solution is
to distribute the tracks into several buckets with disjoint
ranges of update counts. Instead of choosing the coldest
track, we randomly choose one track from the coldest bucket.
Then data blocks from this track will be selected sequen-
tially for swapping. With this approach, we sacrifice the
accuracy of finding the absolute coldest track but reduce the
computation overhead by instead returning a random track
in the coldest bucket.

5.2 Consistency and Reliability

Both Top-Buffer and Block-Swap use a block-based address
mapping table (logical block address to physical block
address) to remember the new location of the data. If this
mapping is not consistent with the actual data after a system
crash, there will be the potential for data loss. The rest of
this section describes how our design protects against such
a situation.

In Top-Buffer, our algorithm first writes the redirected
data to the Top-Buffer track before making the mapping
entry persistent. In this way, if the system crashes after the
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data is redirected but before the mapping entry is written,
there will be no problem since the existing mapping entries
as well as the Top-Buffer write pointer (the log head
pointer) can be reconstructed from the existing mapping
entries stored in the disk. Redirected data without a map-
ping entry is discard automatically. The mapping entry and
the Top-Buffer write pointer are made persistent using one
atomic block write.

In Block-Swap, first the algorithm reads the two data
blocks to be swapped and calculates checksums for them.
Then the mapping entry, block checksums, and the cold
track swap pointer are made persistent with one atomically
written block I/O. Finally, the data blocks are swapped. If
the system crashes with the metadata persisted but the two
data blocks not yet swapped, the checksums can detect
it and the recovery process will correctly complete the
data swap.

There are two more reliability issues regarding the swap-
ping operation. First, during the swapping procedure when
one block is already written to the space of the other block,
the other block should be well protected against a system
crash as we do not have it on disk anymore. Second, the
swapping process needs to ensure that the in-place update
of the bottom track during the swap does not allow data
loss from either of the two adjacent top tracks while waiting
for the completion of the bottom update. Here we assume
disk vendors have a way to ensure that the data that has
been temporarily read to avoid track overwrites will be well
protected from untimely crashes until it is rewritten in its
correct location. Regular IMR drives without any TrackLace
swapping will still have to offer protection from such top
track data loss in the middle of the normal bottom track
update process. Similarly, in current SMR production drives
(the host-aware and drive-managed models, see Section 7),
when the drive migrates data from the media cache back to
the middle of the original shingled zone, there is a read-
modify-write procedure. During this SMR update proce-
dure, the old data of the zone is read first and the zone is
rewritten with the new and old data combined without wor-
rying about the zone data that was temporarily read being
lost [17], [18], [19], [20]. We believe there is some non-vola-
tile media organized in either a log or a temporary buffer to
hold the data to be protected during this process and that a
similar concept will be used in IMR drives.

6 EVALUATION

6.1 Implementation

We built an IMR simulator called IMRSim with equations
extracted from DiskSim [10] and the disk model described
by Ruemmler and Wilkes [21]. Using the average top and
bottom parameters described by Granz et al. [8] (see Table 1),
we set IMRSim top and bottom tracks with different linear
densities and data rates to simulate IMR track width and
laser power differences. We validated our disk model by
comparing IMRSim with DiskSim (details provided as sup-
plemental material in Appendix A, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TC.2020.2988257). Note
that the overhead needed to make mapping table entries
persistent on disk is also implemented in our simulator.

6.2 Experiment Setup and Data Sets

The test system is a Dell PowerEdge R430 1U Server with
two six-core Intel Xeon E5-2620 v3 @ 2.40 GHz processors
and 64 GB of DDR3 memory. Ubuntu 18.04.1 LTS with
Linux kernel version 4.15.0 is installed on the system.

A representative subset of the Microsoft Research (MSR)
Cambridge traces [22] (Table 2) are fed into our IMR simula-
tor and used for evaluation. Unless stated otherwise, the TG
size is adjusted based on the byte range (workload range) of
each trace. If, for example, wewant to test a TG that is 50 per-
cent full, we will set the TG size to be twice as large as the
byte range of the trace we are testing. The TG is considered
full of valid data up to the utilization percent we are testing
and therefore all writes are updates. The default virtual
frame size is set to 32K tracks. ThemaximumTop-Buffer size
is set to 2 percent of the total TG capacity, and the mapping
table size is set in accordancewith this Top-Buffer capacity.

6.3 Comparison with Existing Scheme

6.3.1 Performance under Different Workloads

We first compare the average latency and the write amplifi-
cation of TrackLace (track-lace) and the Seagate baseline
(seagate) when replaying different workload traces (see
Fig. 4). The first subfigure shows the average latency, and
the second subfigure shows write amplification where a
value of one means no additional writes. Here we test with
a high TG utilization of 99 percent to evaluate how Trace-
Lace performs under severe space constraints (however, we
vary utilization in other tests in Section 6.3.2).

We can see that in six out of the seven workloads
TrackLace outperforms the Seagate baseline by reducing
the average latency and bringing down the write amplifica-
tion. For trace prn_1, the average latency is reduced by
31 percent and write amplification is reduced 45 percent.
We notice one case (proj_2) where TrackLace averages
slightly more latency than the Seagate baseline (an increase
of 3 percent). We found two reasons for this behavior. 1)
The trace has poor write locality (only a 4.8 percent buffer/

TABLE 2
Basic statistics of the traces (M = million)

# of data write # of data write

trace req. written ratio trace req. written ratio

prn_1 11.2M 31 GB 24.7% src2_2 1.2M 39 GB 69.7%
proj_1 23.6M 26 GB 10.6% usr_1 45.3M 56 GB 8.5%
proj_2 29.3M 169 GB 12.4% usr_2 10.6M 27 GB 18.9%
src1_1 45.7M 30 GB 4.8%

Fig. 4. Evaluation of TrackLace compared with Seagate baseline in dif-
ferent workloads (TG utilization = 99%).
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swap write hit ratio), so Top-Buffer and Block-Swap will not
help much in reducing the write amplification. 2) This par-
ticular workload has a large total write size (169 GB) and is
concentrated in a small number of virtual frames (three vir-
tual frames experience 76 percent of the bottom writes),
causing more write amplification in the “hot” virtual
frames. In Section 6.5.1, we have a detailed evaluation and
discussion regarding the trade-offs of virtual frames.

6.3.2 Performance under Different Utilization

In this section we compare the performance of TrackLace
and the Seagate baseline under different utilizations of the
TG, ranging from 20 percent to an extremely high utilization
of 99.99 percent. The trace used in this and some of the fol-
lowing tests is src2_2 because it covers a large range of
block addresses and is write-dominant, so it can better
expose the IMR write amplification. We collect the average
latency and the write amplification and plot them in Fig. 5.

We can see from Fig. 5b that at a low utilization (20 and
40 percent), both TrackLace and Seagate baseline have no
write amplification (WA = 1). In both schemes, data is not
allocated on top tracks until the TG utilization goes beyond
56 percent (the first phase is bottom-only allocation). Thus,
there is no need to protect top track data and no write
amplification. From Fig. 5a we can see TrackLace and Sea-
gate baseline have very close average latency (less than 0.4
percent difference) while under these lower TG utilizations.

As the TG space usage grows beyond the bottom-only
phase (56 percent), the average latency of the Seagate base-
line starts to climb. For example, when moving from 40 to 60
percent TG utilization, the Seagate baseline has a 2.43�
increase in average latency and an 80 percent increase in
write amplification, while TrackLace does not have any
noticeable performance loss. From 80 percent to higher uti-
lizations, TrackLace starts to show an increased average
latency and write amplification, but the increases are less
than those of the Seagate baseline. As the TG space grows
nearly full and beyond 98 percent usage, there are fewer
available Top-Buffer tracks and Block-Swap starts to take
effect (givenBmax% ¼ 2%). Although Block-Swap has higher
I/O overhead than Top-Buffer, TrackLace still outperforms
the baseline, even during extremely high utilization (10.3
percent less average latency and 2.1 percent less write ampli-
fication than the baseline at 99.99 percent TG space usage).

6.4 Effect of Design Components

In this section, we take a close look to see the performance
impact of each of the design components. We are comparing
the following schemes with incrementally more design

components: sg is the three-phase Seagate baseline; z-a is
the three-phase Z-Alloc; +bf uses Top-Buffer atop z-a; in
+ab we apply the adaptive buffering optimization to the
Top-Buffer; +sw further adds Block-Swap to the +ab scheme;
+vf enables the virtual frame seek distance optimization on
top of +sw; finally, our is the complete scheme that includes
all the previous components and also changes the number of
phases in Z-Alloc from three to six to better spread the unal-
located top tracks into more virtual frames as described in
Section 4.1.3. We select two representative workloads,
src2_2 and prn_1. The average latency and write amplifi-
cation are plotted on the left and right axis in Fig. 6, respec-
tively. Two sample setups are used: small TG with high
usage (U ¼ 99%, top figures), and large TG with intermedi-
ate usage (U ¼ 80%, middle and bottomfigures).

In the top figures (where TG size is based on the trace’s
address range as described in Section 6.2), for workload
src2_2, we find that changing from the sg scheme to the
z-a scheme does not change the performance too much
because this trace does not have much localized I/O at the
boundaries of different phases. We also observe that adding
only Top-Buffer with none of the other components (+bf)
performs worse than z-a. This is because src2_2 has
poor write locality, with a total write hit ratio as low as
4.9 percent, and buffering a block that is never hit introdu-
ces redirection and migration overhead without bringing
any benefits. After applying the adaptive buffer scheme
(+ab), the performance becomes better than z-a as the
adaptive scheme can turn off the Top-Buffer when the write
hit ratio of the workload is low (we have a detailed evalua-
tion of the adaptive buffering scheme in Section 6.5.2). Fur-
ther, on top of an adaptive Top-Buffer, Block-Swap (+sw)
brings extra benefit as it fully utilizes the remaining map-
ping table capacity budget to swap additional hot blocks to
top tracks. With 99 percent of the TG space utilized, there is
only 1 percent left as unallocated top tracks for the Top-
Buffer, leaving the mapping entry budget underutilized if
Block-Swap is not used. Moreover, we find that adding vir-
tual frames alone without changing the number of phases
(+vf) increases the average latency and the write amplifica-
tion from +sw. The reason is that in three-phase Z-Alloc, the
Top-Buffer tracks are all on the inner diameter side of the

Fig. 5. Evaluation of TrackLace compared with Seagate baseline under
different TG utilization (trace src2_2).

Fig. 6. Breakdown of the effects of each design element. We tested two
sample setups: small TG with high usage (U ¼ 99%, top figures), and
large TG with intermediate usage (U ¼ 80%, middle and bottom figures).
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TG (recall Fig. 3a). Other than the innermost virtual frames,
most of the virtual frames have no available unallocated top
tracks within range to be used as Top-Buffer. Therefore,
even though Block-Swap is used to deal with the bottom
writes in the virtual frames without Top-Buffer, the perfor-
mance is still inferior to the case when unallocated tracks
are available and the less expensive Top-Buffer scheme can
be used together with Block-Swap (Section 4.1.3). Finally,
changing the number of phases from three to six (our) suc-
cessfully distributes unallocated top tracks among virtual
frames and thus achieves a lower average latency than +sw

by enabling shorter seek distance.
For workload prn_1, the performance of z-a is slightly

better than sg with a decrease of 2.1 percent in the average
latency as Z-Alloc better preserves the spatial locality
around the phase boundaries. Adding Top-Buffer alone fur-
ther decreases the average latency by 33.4 percent and the
write amplification by 50.3 percent. This is because prn_1

has a good write hit ratio (81.1 percent), so the Top-Buffer
can absorb a majority of the bottom writes. As the write
amplification is almost optimal (WA = 1.003 here, and WA
= 1 is minimum), subsequent optimization can hardly
improve the performance. Therefore, the average latency is
nearly the same as the buffer-only scheme when adding
more design components.

In the middle figures (where we use a TG size of 5 TB),
we observe that z-a reduces the average latency from sg

by 20 percent (src2_2) and 12 percent (prn_1), and our

reduces that of +sw by 25 percent (src2_2) and 72 percent
(prn_1). This is in contrast with the upper figures where
the benefits of Z-Alloc and virtual frames are not obvious.
This is because the address range coverage of the MSR
traces is small (413 GB for prn_1 and only 182 GB for
src2_2). Locality preserving optimizations such as Z-Alloc
and virtual frames will not help much because the seek time
is already small within a small TG. In addition, virtual
frames work better when TG usage is not extremely high
leaving only a few free top tracks available for the whole
TG. When virtual frames are applied, the available free top
tracks become even more limited, and any benefit may be
offset by increased write amplification. Both traces in the
middle figures also show that although applying Top-Buffer
and Block-Swap reduces WA, the average latency is worse
(+bf, +ab, +sw). This is because the longer seek time due
to the relocated blocks negates the benefits of the reduced
WA. However, virtual frames combined with multi-phase
allocation successfully mitigates the negative impact of
longer seek time and achieves better performance (our).
Additionally, we test with the trace’s LBAs scaled up propor-
tionally to fill a 5 TB address space (bottom figures), and
observe the same, but smaller, benefit: z-a reduces the aver-
age latency from sg by 11 percent (src2_2) and 2 percent
(prn_1), and our reduces that of +sw by 16 percent (src2_2)
and 9 percent (prn_1).

6.5 Effectiveness of Optimizations

6.5.1 Evaluating Virtual Frames

In this test, we evaluate how the width of the virtual frames
affects the performance improvement. The TG space usage
is set to 95 percent to mimic a high utilization workload,

and the number of Z-Alloc phases is set to six to spread the
unallocated top tracks across more virtual frames in the TG
(Section 4.1.3). We range the virtual frame width from 2K to
128K tracks (K = thousand), each time doubling the virtual
frame size. For comparison, we also run the same trace
using TrackLace without any virtual frames (no-vf). The
trace replayed is src2_2, and the result is summarized in
Fig. 7 (note that the y-axis does not start at zero and is
zoomed to show detail in the average latency and the write
amplification plots).

The patterned bars in Fig. 7b (left axis) show the total
seek distance collected from the simulator for varied frame
widths. This illustrates that a smaller virtual frame has a
shorter total seek distance than a larger virtual frame. As
the virtual frame width increases, both local reads and
write-back operations have to travel longer distances as the
data block is displaced farther from the original location,
which will cause a longer seek time. When the virtual frame
width is 128K, the total seek distance is the same as the case
without virtual frames (no-vf) (resulting in the same aver-
age latency and write amplification for both). This is
because a virtual frame width of 128K tracks is larger than
the range the workload covers, so it is equivalent to
TrackLace without any virtual frames.

Having a larger virtual frame width means there are
more unallocated tracks to choose from for buffering, espe-
cially when there is some small range of bottom tracks that
get more updates. If the amount of updates exceeds the
buffer capacity of the local virtual frame, higher write
amplification will result (as found in workload proj_2 in
Section 6.3.1). The WA line of Fig. 7b (right axis) shows that
the write amplification is decreasing as the virtual frame
width doubles. When the virtual frame size is small, some
of the virtual frames get concentrated bottom track updates
and trigger frequent eviction, but nearby virtual frames
may have a small number of bottom updates and their
resource of unallocated top tracks is wasted. By increasing
the width of the virtual frames, the bottom updates of a
heavily updated virtual frame can be spread into a larger
range of top tracks thus have a better chance to find an unal-
located top track for buffering.

In essence, increasing the virtual frame width increases
the total seek distance penalty but can reduce the write
amplification penalty. The combination of these two effects
results in Fig. 7a. It shows that an intermediate width (32K)
produces lower average latency than other widths by pro-
viding a good balance between the seek distance and the
write amplification.

Fig. 7. Evaluation of varied virtual frame widths compared to TrackLace
without virtual frames (no-vf).
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6.5.2 Evaluating Adaptive Buffering

To evaluate the effectiveness and sensitivity of the adaptive
buffering scheme, we concatenate two traces with different
write locality: poor locality trace (src1_0, Top-Buffer write
hit ratio 1.3 percent) and good locality trace (prxy_0, Top-
Buffer write hit ratio 99.5 percent). We filter out the read
requests from the trace before replaying to isolate other
irrelevant factors. The TG is set to be 80 percent full, and the
maximum space of the Top-Buffer is Bmax ¼ 2%.

Three competing schemes are used: z-alloc is the three-
phase Z-Alloc; buffer-no-adapt is z-alloc with the
Top-Buffer; and buffer-adapt adds the adaptive buffer-
ing optimization to buffer-no-adapt. The throughput of
the three schemes is shown in the top plot in Fig. 8. Besides,
to show direct evidence of the adaptiveness of the scheme,
the buffer write hit ratio and the buffer enter ratio (i.e.,
admission rate) of the buffer-adapt scheme are depicted
in the middle and bottom plots in Fig. 8, respectively. Here
the buffer enter ratio is the rate at which Top-Buffer
permits the write requests to enter the Top-Buffer; e.g., a
ratio value of 1means the Top-Buffer is fully “open” and buf-
fers all bottom update requests, while a value of 0.5 buffers
half the bottom updates.

The trace begins with a workload with poor write local-
ity; then from the 1500K-th request, it switches to a work-
load with good write locality. The average throughput of
buffer-adapt is 2.54 MB/s, which is 17.2 percent better
than buffer-no-adapt (2.17 MB/s) and is 2.56� that of z-

alloc (0.99 MB/s).
In the beginning (roughly 0�200K) when the Top-Buffer

is initially empty, all the requests are redirected to the Top-
Buffer in both the buffer-adapt and buffer-no-adapt

schemes. Because such request redirection consolidates the
scattered write requests into large sequential writes to the
Top-Buffer and does not yet causes in-place updates, both
of the schemes outperform the z-alloc baseline in the
beginning.

However, as the Top-Buffer becomes full at about
the 200K-th request, Top-Buffer cleaning, namely SCP (see
Section 3.2), is triggered and the throughput of both buffer-

adapt and buffer-no-adapt drops. As the writes have

low locality, buffer-no-adapt redirects the requests into
the Top-Buffer and evicts themwith almost no hits. The over-
head of such redirection andmigrationmakes the throughput
of buffer-no-adapt even worse than the z-alloc base-
line, which is performing in-place bottom track updates. By
contrast, buffer-adapt is able to adapt to the poor write
locality and quickly reduces the entry rate of the Top-Buffer
so that the majority of the low locality write requests will not
enter the Top-Buffer. As we can see from the bottom figure
(roughly between 200K�1500K), buffer-adapt controls
the Top-Buffer entry rate resulting in an average enter ratio
fluctuating around the 20 percent mark. Therefore, a large
portion of the low locality write requests will be directly writ-
ten back to the destination bottom tracks without causing the
redirection and migration overhead. As a result, buffer-
adapt exhibits a throughput similar to the baseline during
the poorwrite locality duration.

Finally, at the 1500K-th request when there is a workload
phase change and the write locality becomes good (the Top-
Buffer write hit ratio grows to near 100 percent), buffer-
adapt is able to respond and quickly raises the buffer enter
ratio up to near 100 percent. Consequently, the throughput
of buffer-adapt adjusts to match that of buffer-no-

adapt (with its constantly open buffer) and is far higher
than that of the bufferless z-alloc baseline.

7 RELATED WORK

7.1 Data Management for SMR

Cassuto et al. [23] separate the SMR space into caching
space and permanent storage space and define an indirec-
tion system for SMR drives. Amer et al. [24], [25] explore
different design spaces for both the data management and
the layout of SMR drives. Hall et al. [26] propose a data
handling algorithm where the larger I-region is continu-
ously refreshed while the smaller E-region serves as a
buffer for accepting non-sequential writes. H-SWD [27]
introduces hot/cold data identification in data placement
decisions. Kadekodi et al. [28] explore a finer granularity of
track interference model within the SMR drive. He and Du
exploit track-level mapping for SMR drives and propose

Fig. 8. In a workload mixed with good and poor write locality, Top-Buffer with adaptive buffering (buffer-adapt) is able to adapt to the write locality
and performs better overall than either the Z-Alloc baseline z-alloc or Top-Buffer without the adaptive scheme (buffer-no-adapt).
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static [29] and dynamic [30] track-level mapping schemes
to reduce the write amplification and improve perfor-
mance. As the zoned block command/device API is estab-
lished, three SMR models, drive-managed (DM), host-
managed (HM), and host-aware (HA), foster further SMR
research. Manzanares et al. design a zone-based extent allo-
cator (ZEA) [31] for HM-SMR drives. Aghayev et al.
reverse-engineer the DM-SMR model in Skylight [17], [18],
while Wu et al. carry out performance evaluation to charac-
terize the HA-SMR model [19], [20]. Recently, ZoneAl-
loy [32] is proposed to address the data management
issues in emerging hybrid SMR drives where the CMR and
SMR formats can be converted on demand.

7.2 Data Management for IMR

In Gao et al. [7], [16], two data management schemes are
proposed: a two-phase and a three-phase implementation.
In their two-phase implementation, bottom tracks are first
allocated and then the top tracks. In their three-phase imple-
mentation, while bottom tracks are allocated during the first
phase in the same way as the two-phase implementation, in
the second phase only alternating top tracks are allocated.
There is a final third phase allocating space from the
remaining top tracks. In both their two-phase and three-
phase implementations, tracks are allocated in the same
radial direction. Our work first proposes a Z-Alloc scheme
that differs from their three-phase implementation by: 1)
reversing the allocation and addressing direction of even-
numbered phases to preserve data locality, and 2) extending
to multiple phases to spread the unallocated top tracks
throughout the TG. Moreover, whereas the Seagate three-
phase design maps data blocks statically, our TrackLace can
adapt to the access pattern of dynamic workloads by buffer-
ing updates to the unallocated top tracks (Top-Buffer) and
swapping hot bottom track data with the cold top track data
(Block-Swap).

A most recent work by Hajkazemi et al. [33] analyzes the
in-place update approach to IMR bottom tracks and pro-
poses three track-based translation layers, namely track flip-
ping, selective track caching, and dynamic track mapping, to
reduce the write amplification of IMR drives. TrackLace dif-
fers in several aspects. 1) TrackLace can adapt to different
disk usage and does not have to protect top tracks when
updating free bottom tracks in low usage, while the
approach by Hajkazemi et al. assumes top tracks always
contain valid data to protect. 2) TrackLace is designed to be
able to be adjusted for implementation in different parts of
the I/O stack, while the track-based translation layers in
[33] are targeted for in-disk implementation with very tight
memory constraints. 3) The translation layer proposed in
[33] is based on tracks, while TrackLace has a block-level
mapping for more flexibility. 4) The Top-Buffer in
TrackLace will give top tracks back to the user data in situa-
tions with very high utilization, while the selective track
caching scheme in [33] requires reserved space that cannot
be reclaimed for allocation of new user data.

8 CONCLUSION AND FUTURE WORK

IMR is a recently proposed recording technology that,
when used with HAMR or MAMR, can have a good areal

data density with much less write amplification than
SMR. In this paper, we investigate how IMR can be used
with even less write amplification to provide better
throughput and lower latency. We propose TrackLace to
efficiently manage the data in IMR drives. TrackLace has
three main design components: Z-Alloc allocates space
according to different utilization phases; Top-Buffer
makes use of unallocated top tracks to buffer bottom
track updates; and Block-Swap can swap hot data from a
bottom track with cold data from a top track. Further-
more, we propose two optimizations: virtual frames to
reduce the seek time and adaptive buffering that switches
buffering on and off according the workload. Evaluations
with Microsoft Research Cambridge traces show that
TrackLace can decrease the average latency, increase the
throughput, and reduce the write amplification compared
with the baseline approaches.

Possible future work is mentioned throughout this paper.
It includes adaptive/heterogeneous virtual frame width
and use of a TRIM command to mark invalid data or tracks
that can be safely overwritten by nearby track updates.
Additionally, alternative designs that distribute unallocated
tracks on demand can be explored.

ACKNOWLEDGMENTS

This work was partially supported by NSF I/UCRC Center
Research in Intelligent Storage and the following NSF
awards 1439622, 1525617, and 1812537.

REFERENCES

[1] E. Brewer, L. Ying, L. Greenfield, R. Cypher, and T. Ts’o, “Disks
for data centers,” Tech. Rep., Google, Feb. 2016. [Online].
Available: https://research.google/pubs/pub44830/

[2] R. E. Rottmayer et al.,“Heat-assisted magnetic recording,” IEEE
Trans. Magn., vol. 42, no. 10, pp. 2417–2421, Oct. 2006.

[3] M. H. Kryder et al.,“Heat assisted magnetic recording,” Proc. IEEE,
vol. 96, no. 11, pp. 1810–1835, Nov. 2008.

[4] J.-G. Zhu, X. Zhu, and Y. Tang, “Microwave assisted magnetic
recording,” IEEE Trans. Magn., vol. 44, no. 1, pp. 125–131, Jan.
2008.

[5] J.-G. Zhu and Y. Wang, “Microwave assisted magnetic recording
utilizing perpendicular spin torque oscillator with switchable
perpendicular electrodes,” IEEE Trans. Magn., vol. 46, no. 3,
pp. 751–757, Mar. 2010.

[6] E. Hwang, J. Park, R. Rauschmayer, and B. Wilson, “Interlaced
magnetic recording,” IEEE Trans. Magn., vol. 53, no. 4, pp. 1–7,
Apr. 2017.

[7] K. Gao, W. Zhu, and E. Gage, “Interlaced magnetic recording,”
US Patent 9,728,206, Aug. 8, 2017.

[8] S. Granz et al., “Heat-assisted interlaced magnetic recording,”
IEEE Trans. Mag., vol. 54, no. 2, pp. 2018, Art. no. 3100504.

[9] A. Krichevsky, “Heat assisted magnetic recording with interlaced
high-power heated and low-power heated tracks,” US Patent
9,099,103, Aug. 4, 2015.

[10] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The dis-
ksim simulation environment version 4.0 reference manual,”
Parallel Data Lab, Carnegie Mellon Univ., Pittsburgh, PA, Tech.
Rep. CMU-PDL-08–101, 2008. [Online]. Available: https://www.
pdl.cmu.edu/PDL-FTP/DriveChar/CMU-PDL-08-101.pdf

[11] R. Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility
of magnetic recording at 10 terabits per square inch on conven-
tional media,” IEEE Trans. Magn., vol. 45, no. 2, pp. 917–923,
Feb. 2009.

[12] I. Tagawa and M. Williams, “Shingle-write technology and gain
estimation,” FA-02 presentation in INTERMAG 2009, Sacramento,
CA, May 2009. [Online]. Available: http://www.intermagcon
ference.com/intermag2009/src/Program1.pdf

WU ETAL.: TRACKLACE: DATA MANAGEMENT FOR INTERLACED MAGNETIC RECORDING 357

Authorized licensed use limited to: University of Minnesota. Downloaded on July 18,2021 at 16:49:18 UTC from IEEE Xplore.  Restrictions apply. 

https://research.google/pubs/pub44830/
https://www.pdl.cmu.edu/PDL-FTP/DriveChar/CMU-PDL-08-101.pdf
https://www.pdl.cmu.edu/PDL-FTP/DriveChar/CMU-PDL-08-101.pdf
http://www.intermagconference.com/intermag2009/src/Program1.pdf
http://www.intermagconference.com/intermag2009/src/Program1.pdf


[13] G. Gibson and M. Polte, “Directions for shingled-write and two-
dimensional magnetic recording system architectures: Synergies
with solid-state disks,” Parallel Data Lab, Carnegie Mellon Univ.,
Pittsburgh, PA, Tech. Rep. CMU-PDL-09–014, 2009.

[14] K. Gao, “Architecture for hard disk drives,” IEEE Magn. Lett.,
vol. 9, pp. 1–5, 2018, Art no. 4501705.

[15] T. Feldman, “Flex dynamic recording,” in Proc. USENIX Login,
2018, vol. 43, no. 1, pp. 44–47.

[16] K. Gao, W. Zhu, and E. Gage, “Write management for interlaced
magnetic recording devices,” US Patent 9,508,362. Nov. 29, 2016.

[17] A. Aghayev and P. Desnoyers, “Skylight—A window on shingled
disk operation,” in Proc. 13th USENIX Conf. File Storage Technol.,
2015, pp. 135–149.

[18] A. Aghayev, M. Shafaei, and P. Desnoyers, “Skylight – A window
on shingled disk operation,” ACM Trans. Storage, vol. 11, no. 4,
pp. 16:1–16:28, Oct. 2015.

[19] F. Wu, M.-C. Yang, Z. Fan, B. Zhang, X. Ge, and D. H. Du,
“Evaluating host aware SMR drives,” in Proc. 8th USENIX Work-
shop Hot Topics Storage File Syst., 2016, pp. 31–35.

[20] F. Wu, Z. Fan, M.-C. Yang, B. Zhang, X. Ge, and D. H. Du,
“Performance evaluation of host aware shingled magnetic record-
ing (ha-smr) drives,” IEEE Trans. Comput., vol. 66, no. 11,
pp. 1932–1945, Nov. 2017.

[21] C. Ruemmler and J. Wilkes,“An introduction to disk drive mod-
eling,” Computer, vol. 27, no. 3, pp. 17–28, 1994.

[22] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Trans.
Storage, vol. 4, no. 3, 2008, Art. no. 10.

[23] Y. Cassuto, M. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z. Bandic,
“Indirection systems for shingled-recording disk drives,” in Proc.
IEEE 26th Symp. Mass Storage Syst. Technol., 2010, pp. 1–14.

[24] A. Amer, J. Holliday, D. D. Long, E. L. Miller, J.-F. Pâris, and
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