

3 **Biodiesel Fuel Production from Brown Grease Produced by Wastewater Treatment Plant:**
4 **Optimization of Acid Catalyzed Reaction Conditions**

5 Mohammed J K Bashir^{1*}, Wong Lai Peng¹, Dickens St. Hilaire², Jihyun Kim³, Oluwaseun
6 Salako⁴, Mith Jennifer Jean⁴, Remi Adeyemi⁴, Serena James⁴, Tia Foster⁴, Lawrence M. Pratt⁴

7 ¹Department of Environmental Engineering, Faculty of Engineering and Green Technology
8 (FEGT), University Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia

9 ² Department of Chemistry and Chemical Technology, Bronx Community College, 2155 University
10 Avenue, Bronx, New York 10453 United States.

11 ³ Stella and Charles Guttman Community College-CUNY, 50 W, 40th St. New York, NY 10018

12 ⁴ Department of Chemistry and Environmental Science, Medgar Evers College, The City
13 University of New York, 1638 Bedford Ave, Brooklyn, New York 11225, United States

14 *Corresponding Author: jkbashir@utar.edu.my

15 **Abstract**

16 Periodic spikes in crude oil prices have led to a need in alternative energy sources. A major potential
17 source of biodiesel feedstocks is brown grease, a byproduct of wastewater treatment. A recent brown
18 grease sample from this contained 60% FOG (fats, oils, and greases), 25% water, and 15% biosolids
19 by mass. This study is focused optimizing the reaction conditions (i.e., quantities of Methanol,
20 Sulfuric Acid, $\text{Fe}_2(\text{SO}_4)_3$, and time) to maximize the yield of esters, with minimal residual free fatty
21 acid (FFA), in the shortest residence time. Response Surface

25 Methodology (RSM) was used to evaluate the correlation between the process variable and the
26 response. The significance of quadratic model of each response was determined by analysis of
27 variance, where all models indicated sufficient significance with p-value < 0.0001. Using a basis of
28 40 g brown grease, optimized conditions were 35 ml MeOH, 1.3 ml H₂SO₄, 0 g Fe₂(SO₄)₃ and
29 reaction time of 120 min, resulting in a biodiesel yield of 99.70%. The results showed efficient
30 biodiesel production under the optimum conditions.

31 **Keywords:** Biodiesel; Renewable energy; Waste; Fatty acids; Process optimization; Catalyst

32

33 1.0 Introduction

34 Brown grease is the oily material that accumulates in sewer lines and sewage treatment plants. It is
35 an attractive raw material for making biofuels due to its very low cost and abundant supply. For
36 instant, a typical wastewater plant in Torrington, Connecticut, USA produces between 10,000 and
37 50,000 gallons (40,000-200,000 L) of brown grease per week. The raw brown grease consists of
38 fats, oils, and greases (FOG), as well as water, trash, and biosolids. This is the fraction that can be
39 converted to biodiesel by esterification, or hydrocarbon green diesel by pyrolysis. The raw brown
40 grease is pre-treated by screening to remove the large pieces of trash and the coarser biosolids, which
41 are retained on the screen. Finer biosolids remain suspended in the aqueous layer when the water is
42 gravity-separated from the FOG. Pyrolysis of brown grease has been used to make a hydrocarbon
43 fuel chemically similar to diesel fuel or kerosene, and the distribution of products depends on the
44 reaction conditions [1-4]. That process is relatively energy intensive, and lowvalue byproducts may
45 be formed in addition to the diesel and kerosene. As an alternative for lowcost fuel production,
46 production of biodiesel was investigated. Biodiesel consists of the methyl esters of fatty acids. It is
47 most often synthesized by a base catalyzed process from virgin or used vegetable oils. Due to high
48 demand for biodiesel, the starting materials are expensive and in short supply, thus limiting the
49 growth of the biodiesel industry. For these reasons, a quest for sustainable and renewable biofuels
50 has been gaining momentum on development of a scheme for continuous biodiesel production from
51 brown grease in the near future. This scheme will enable to solve two problems: energetic and
52 environmental, as brown grease, a low-value material that often incurs disposal costs, is a valuable

53 in huge quantities. In general, biodiesel can be better for the environment than petroleum diesel
54 because it tends to generate fewer toxins and greenhouse gasses. Unlike fossil fuels dug up from
55 underground, biodiesel doesn't release long-stored carbon as carbon dioxide into the atmosphere
56 when burned. Nevertheless, the best benefit of grease trap waste is that it's a renewable resource [5].

57 Brown grease consists primarily of fatty acids and their calcium salts [6, 7]. As such, an acid
58 rather than a base catalyzed process is required for esterification of brown grease. The acid catalyst
59 may be a mineral acid or a Lewis acid, as illustrated by several studies of ferric sulfate catalysis of
60 carboxylic and fatty acid esterification [8-10]. Sulfuric acid is cheap and convenient to use. Eventual
61 conversion to a continuous process must be considered in designing this system. Ferric sulfate is
62 also sparingly soluble in methanol, thus limiting the option of adding it via a methanol solution. In
63 this study, the reactions were performed in batch mode to optimize the ratios of brown grease, acid
64 catalyst, and methanol, and to determine the required reaction time. The goal is to optimize the
65 parameters to maximize the yield of esters, with minimal residual free fatty acid (FFA), in the
66 shortest residence time. The most widely exploited module of RSM, i.e. CCD, was used to evaluate
67 the correlation between the process variable and the response. Typically, RSM utilizes the
68 combination of statistical and mathematical workings to optimize and design an
69 experiment based on numerous independent variables with minimum amount of experiment runs and
70 analyze the relationship between the dependent and independent variables [11, 12].

71

72 **2.0 Materials and methods**

73 **2.1 Sample preparation and analysis**

74 Samples of brown grease were obtained from wastewater plant in Torrington, Connecticut,
75 USA. The oily material was separated from the water, biosolids, and debris by heating in a hot water
76 bath and decanting the oil from the surface. Alternatively, the crude brown grease was screened to
77 remove the large debris, melted to separate the water and most of the biosolids, which settled to the

78 bottom, and screened again to remove the remaining biosolids, as described above. This brown
79 grease still contained significant amounts of water, which was removed by azeotropic distillation with

toluene. The molten grease (approximately 500 mL) was placed in batches in a 1-L round bottom flask with about 50 mL toluene, and the flask was fitted with a Dean-Stark trap for azeotropic water removal. The remaining toluene was distilled off under vacuum, so that the toluene content of the brown grease generally did not exceed 5%. All esterification reactions were calculated on the basis of 40 g of brown grease. Forty grams of brown grease was placed in a 100 mL round bottom flask fitted with a stir bar, and the flask was fitted with a reflux condenser and placed in a stirring heating mantle. The appropriate amount of methanol, concentrated sulfuric acid catalyst, and in some cases, a ferric sulfate co-catalyst was added, and the mixture refluxed for the required time period. To ensure consistent reaction times, the brown grease-methanol mixture was brought to reflux, and the catalyst then added, which was taken as the reaction starting time. The temperature was fixed at 65 °C/min, the temperature of refluxing methanol. This does not vary during the experiments because at atmospheric pressure, the boiling point of methanol is constant. Samples for GCMS analysis were taken periodically, typically at 30 or 60 minute intervals. The GCMS analysis was performed on a Shimadzu model QP2010S machine equipped with a Restek Rxi-5Sil MS fused silica column with a length of 30 m, inner diameter of 0.25 mm, and phase thickness of 0.25 µm. The carrier gas was helium with a flow rate of 1.2 mL/min. The column temperature profile was initial temperature 30 °C, hold for 3 min., increase to 300 at 12 °C/min., and hold for 10 minutes. Samples were prepared by adding 4-5 drops of the reaction mixture to 1.5 mL dichloromethane in standard GC vials. The percentage of each compound was determined from the peak areas, and the percentage of esters, free fatty acids (FFA), residual toluene, hydrocarbons, and other compounds were reported for each reaction at the specified time intervals. Traces of hydrocarbons (other than toluene) were occasionally detected from slight brown grease pyrolysis during the drying process. The “other” compound category generally included traces of alcohols, aldehydes, ketones, amines, or siloxane products from the breakdown of silicone joint grease.

2.2 Experimental design and statistical analysis

Design-Expert® Version 10.0 (Stat-Ease, Inc., Minneapolis, MN, USA) software is a Windows®-based program that provides many powerful statistical tools such as RSM developed by Stat-Ease, Inc. In this study, RSM was used to determine the optimum operational condition for ECP. RSM is a collection of mathematical and statistical techniques for empirical model building. By careful design of experiments, the objective is to optimize a response (output variable) which is

109 influenced by several input variables. In this study, four operational parameters were ultimately
110 optimized, including methanol dosage (A), sulfuric acid dosage (B), co-catalyst dosage ($\text{Fe}_2(\text{SO}_4)_3$)
111 (C) and contact time (D) with each process variable was numerically varied from -1 to +1 coded
112 value as illustrated in Table 1. The respective range of the operational variables were

113 32 - 64 mL, 0.1 – 2.4 mL, 0 – 1.2 g and 60 – 180 min which they were selected based on literature
114 [12-15]. In overall, 5 responses (dependent variables) were investigated including ester, and FFA
115 yield (%). However, the residual toluene, hydrocarbons, and other compounds are functions of 116
the brown grease pre-treatment, and do not reflect the esterification conditions.

117 **Table 1:** The independent variables code and the range of actual values based on 40 g brown 118
grease.

Code	Factor	Range of actual independent variables				
		-1 (low)	-0.5	0	+0.5	+1 (high)
A	Methanol, mL	32	40	48	56	64
B	Sulfuric Acid, mL	0.1	0.675	1.25	1.82 5	2.4
C	Fe ₂ (SO ₄) ₃ dosage, g	0.0	0.3	0.6	0.9	1.2
D	Time, min	60	90	120	150	180

119
120 A total of 30 sets of experiment with varying operational conditions were generated after 121 respective
ranges were filled into the software. Subsequently, 30 experiments were conducted and 122 the
corresponding recovery results for all of the 30 sets of experiments were recorded.

123 Subsequently, the experiment outcome was completely evaluated and analyzed using an ANOVA
124 analysis to determine the competency and significance of the response surface quadratic model as
125 represented in Equation (1):

126

127 = + + + (1)

128

129 where y is the response, x_1 and x_2 are the operational variables, a_0 is the constant coefficient, a_1 , a_2 and a_3 are the
130 interaction coefficients of linear, quadratic and second-order terms respectively, n is the number of
131 operational variable and ϵ is the random error [13]. The fitness of experimental data was then verified
132 with percentage of the sample variation that perfectly fit the model's estimated data point through
133 value of coefficient of determination, R^2 and the statistical significance of quadratic model of each
134 responses was tested by ANOVA based on the probability (p-value) of 95% confidence level.
135 Models that described the respective response's interaction were then used to predict the optimum
136 operational parameters targeted on maximum ester yield.

137

138 **3.0 Results and discussion**

139 The collected sample was characterized and it was found to contain 60% FOG, 25% water,
140 and 15% biosolids by mass. A total of 30 experiments were conducted and the corresponding
141 removal results for all of the 30 set of experiments were recorded as shown in Table 2. The monitored
142 responses were the simultaneous percentage of ester, FFA, toluene residue, hydrocarbon and other
143 compounds yield at the end of each run. The results show ester yields to be from 89.24% to 99.81%,
144 and FFA yield from 0% to 8.96. It is the ester yield and residual FFA that are crucial to the process
145 design, as the other variables are largely determined by variation in the drying time, temperature,
146 and other drying conditions.

147

148

149

150

151

Table 2: Experimental run and results

Run	Operational Variables				Responses	
	MeOH	H ₂ SO ₄	Fe ₂ (SO ₄) ₃	Time	Ester	FFA
	mL	mL	g	min	%	%
1	64	0.1	0	180	92.96	2.9
2	56	1.25	0.6	120	95.97	0.33
3	64	2.4	1.2	60	94.21	2.43
4	48	1.25	0.9	120	95.99	0
5	48	1.25	0.6	120	95.31	0.52
6	48	1.25	0.6	120	97.02	1.48
7	64	2.4	1.2	180	89.24	0
8	32	2.4	0	60	100	0
9	48	1.25	0.6	150	94.56	1.22
10	48	1.25	0.3	120	94.45	0.42
11	48	1.25	0.6	90	93.84	2.17
12	32	0.1	1.2	180	96.44	1.98
13	48	1.25	0.6	120	98.49	0
14	32	0.1	0	60	90.72	8.96
15	48	1.25	0.6	120	95.77	0.44
16	64	2.4	0	180	94.7	0.81
17	48	0.675	0.6	120	95.07	0.25
18	64	0.1	1.2	180	94.32	0
19	48	1.25	0.6	120	99.07	0.24
20	32	2.4	1.2	60	99.81	0
21	32	0.1	1.2	60	94.99	4.79
22	48	1.825	0.6	120	95.73	0.14
23	40	1.25	0.6	120	96.55	2.39
24	64	0.1	1.2	60	95.29	1.48
25	64	2.4	0	60	96.09	0.14
26	64	0.1	0	60	88.38	7.37

27	32	2.4	1.2	180	99.78	0
28	32	2.4	0	180	99.58	0
29	48	1.25	0.6	120	99.11	0.27
30	32	0.1	0	180	95.82	3.76

153

154

155

155 3.1 Statistical significance of responses' models

156 The experiment outcome was completely evaluated and analyzed using an ANOVA analysis
157 to determine the competency and significance of the response surface quadratic model, and the
158 results were tabulated in Table 3. All of the F values are large enough to produce low pvalue of <
159 0.05 that suggests that all models are statistically significant. Only p-value for FFA yield model is
160 less than 0.0001. The fitness on experimental data of each parameter was further verified by high R²
161 values. R² value for FFA yield model >90% but for Ester yield model is 0.82. The model for Ester
162 yield can be accepted because the p-value of lack of fit < 0.05. R² value of higher than 0.90 for all
163 models are indicative of a good agreement between the experimental and predicted value generated
164 based on the developed model. As the R² approach toward unity, it is illustrated that predicted values
165 of responses given by the model are proximate to experimental value and hence it will be a better fit
166 model [16] Equation 2 and 3 are the suggested model to predict the ester and FFA yield.

167

$$\begin{aligned}
 168 \quad \text{ester yield (\%)} &= 96.28 - 1.95*A + 1.50*B + 0.40*C + 0.22*D - 1.12*A*B - 0.25*A*C - \\
 169 \quad &0.55*A*D - 1.28*B*C - 1.06*B*D - 0.77*C*D + 3.67*A2 + 0.23*B2 - \\
 170 \quad &0.49*C2 - 4.57*D2 \quad (2)
 \end{aligned}$$

$$\begin{aligned}
 171 \quad \text{FFA yield (\%)} &= 0.06 - 0.033*A - 1.69*B - 0.82*C - 0.98*D + 0.70*A*B - 0.019*A*C + \\
 172 \quad &0.019*A*D + 1.01*B*C + 0.76*B*D + 0.14*C*D + 2.36 A^2 - 2.30*B^2 - \\
 173 \quad &2.24*C^2 + 3.70*D^2 \quad (3)
 \end{aligned}$$

174 where A, B, C, and D correspondingly represent operational variables in this model which are
 175 methanol dosage (mL), sulfuric acid dosage (mL), $\text{Fe}_2(\text{SO}_4)_3$ dosage (g), and contact time (min).

180 **Table 3:** Analysis of variance (ANOVA) for response surface quadratic model for ester and FFA,
 181 yield

Ester yield (%)	Source	Sum of Squares	DF	Mean Square	F Value	Prob > F	Significant
	Model	197.35	14	14.10	4.80	0.0023	
	A-MeOH	63.00	1	63.00	21.46	0.0003	
	B-H ₂ SO ₄	37.34	1	37.34	12.72	0.0028	
	C-Fe ₂ (SO ₄) ₃	2.64	1	2.64	0.90	0.3580	
	D-Time	0.83	1	0.83	0.28	0.6018	
	AB	20.05	1	20.05	6.83	0.0196	
	AC	0.99	1	0.99	0.34	0.5710	
	AD	4.90	1	4.90	1.67	0.2161	
	BC	26.24	1	26.24	8.94	0.0092	
	BD	18.00	1	18.00	6.13	0.0257	
	CD	9.59	1	9.59	3.27	0.0907	
	A ²	2.24	1	2.24	0.76	0.3962	
	B ²	8.643E-003	1	8.643E-003	2.944E-003	0.9574	
	C ²	0.040	1	0.040	0.014	0.9083	
	D ²	3.48	1	3.48	1.19	0.2935	
Residual	44.03	15	2.94				
Lack of Fit	29.98	10	3.00	1.07	0.5027		
Pure Error	14.05	5	2.81				

F-value: 4.8; R²: 0.8176; Adequate precision: 9.06; Standard deviation (%): 1.71

FFA yield (%)	Source	Sum of Squares	DF	Mean Square	F Value	Prob > F	Significant
	Model	129.52	14	9.25	11.25	< 0.0001	
	A-MeOH	1.76	1	1.76	2.14	0.1641	
	B-H ₂ SO ₄	47.23	1	47.23	57.41	< 0.0001	
	C-Fe ₂ (SO ₄) ₃	11.00	1	11.00	13.37	0.0023	
	D-Time	15.90	1	15.90	19.32	0.0005	
	AB	7.73	1	7.73	9.39	0.0079	
	AC	0.12	1	0.12	0.14	0.7130	
	AD	5.625E-003	1	5.625E-003	6.837E-003	0.9352	
	BC	16.44	1	16.44	19.99	0.0004	
	BD	9.30	1	9.30	11.31	0.0043	
	CD	0.32	1	0.32	0.39	0.5392	
	A ²	0.93	1	0.93	1.13	0.3052	
	B ²	0.88	1	0.88	1.07	0.3174	

C ²	0.83	1	0.83	1.01	0.3298
D ²	2.28	1	2.28	2.77	0.1168
Residual	12.34	15	0.82		
Lack of Fit	11.01	10	1.10	4.12	0.0657
Pure Error	1.33	5	0.27		

F-value: 11.25; R²: 0.9130; Adequate precision: 14.51; Standard deviation (%): 0.91

182 In this study, a ratio greater than 4 for adequate precision which observed in all model
183 validates that the model has adequate signal which indicating that the model can be used to navigate
184 the design space [17, 18]. Small standard deviation for ester and FFA yield revealed that data points
185 were dispersed proximate to their respective expected outcome. This was further supported by
186 Figure 1 that shows all the experimental values were scattered around the predicted values. As shown
187 in Figure 1, the predicted values of ester and FFA yield obtained from the model and the actual
188 experimental data were in good agreement.

189

190

191 **3.2 Effect of the operational variables on ester yield**

192

193 Figures 2 and 3 show the relationship between the independent variables to the dependent
194 variables. From Fig 2, dosage of $\text{Fe}_2(\text{SO}_4)_3$ used as a co-catalyst has minor effects to the ester yield
195 which can be confirmed by Figure 4 as well. As indicated in Table 3, the effect of factor $\text{CFe}_2(\text{SO}_4)_3$
196 on ester yield is less important comparing with other factors A and B with p value of 0.3580.
197 However, there were a considerable effect via the interaction between factor B (H_2SO_4) & C
198 ($\text{Fe}_2(\text{SO}_4)_3$) on ester yield with a significant p value of 0.0092.

199 Nevertheless, to save cost, minimum dosage of catalyst used is suggested. As indicated in
200 Figures 3, ester production increased when the operational variables of sulfuric acid dosage
201 increased from 0.1 mL to 2.4 mL. However, ester yield was observed to be higher when a 32 ml of
202 MeOH was applied. Thus, optimized MeOH dosage is critical to obtain maximum ester yield. Other
203 than that, contact time which is one of the operational variables has great impact on ester production.
204 With an increase in contact time, an upward movement of the graph's surface was observed will

205 maximize the ester yield, however, prolonged contact time will give adverse effect to the production
206 of ester. Thus, optimized contact time is important for maximum ester yield.

207 With the best experimental condition at contact time of 120 min, higher ester yield was achieved.

208 Figure 4 presented the perturbation plot of the operational variables to ester yield. The
209 perturbation plot supports to compare the effects of all the factors at a particular point in the design
210 space. A steep slope or curvature in a factor shows that the response is sensitive to that factor. A
211 relatively flat line shows insensitivity to change in that particular factor. From the plot, operational
212 variable A (MeOH), B (H₂SO₄) and D (contact time) have the most significant influence on the ester
213 yield which indicated by the curvet of the curve. Increasing the amount of sulfuric acid variable B
214 (H₂SO₄) increased the ester yield. However, variable C (Fe₂(SO₄)₃) cocatalyst dosage showed
215 minimal effect to the ester yield, although it can catalyze the reaction in the absence of sulfuric acid.

216

217 **3.3 Effect of operational variables on residual FFA yield**

218 As presented in Figure 5, optimum contact time up to 120 min and optimum volume of sulfuric acid
219 used up to 1.83 mL significantly resulted in lower residual FFA. However, the amount of residual
220 FFA was insignificant for low contact time (60 min) and prolong contact time (180 min). Over and
221 above that, prolonged contact time is not favorable due to high energy consumption which will
222 eventually increase treatment cost [19]. Figure 6 presents the perturbation chart for FFA yield. From
223 the chart, all operational variables (A, B, C and D) showed equally effect to FFA yield.

224

225

226

229 **3.5 Optimization of experimental conditions and verification**

230 Analysis of operational variables interaction and impact on ester yield was performed and
231 optimized using a multiple response optimization tools vis RSM. For optimization purpose,
the

232 range of operational variables were selected. As such, MeOH, H₂SO₄, catalyst (Fe₂(SO₄)₃)
and time

233 were selected within the ranges, while the ester yield was maximized. On another note, Ester
234 production was targeted at maximum. Fig. 7 shows the overlay plot for optimum conditions.
The

235 As seen from the box in Fig. 7, the optimized conditions occurred at 35 ml MeOH, 1.3 ml
236 H₂SO₄, 0 g Fe₂(SO₄)₃ and reaction time 120 min. These optimum operational conditions,
according

237 to the model, should be able to achieve 99.40 % ester production. An experiment was then
238 conducted to compare actual and predicted outputs. Table 4 shows the responses obtained
from 239 model prediction and laboratory experiment to be in good agreement.

Response	Predicted value	Actual value
Ester yield (%)	99.4	99.7
FFA yield (%)	0.8	0

244
245 **4.0 Conclusions**

246 In this study, the response statistical models showing significant terms of interactive
247 operational variables were tested and confirmed by ANOVA with p-value < 0.0001. The
248 goodness

249 of fit on experimental data of responses was also verified by higher values of closer to 1
that

250 indicated each quadratic model was statistically desirable and better fit. The RSM was used
to

251 simultaneously optimize the operational variables required in the biodiesel production from brown
252 grease (40 g basis), where the 35 ml MeOH, 1.3 ml H₂SO₄, 0 g Fe₂(SO₄)₃ and reaction time of 120
253 min were obtained. Upon on these conditions, 99.70 % of ester yield was achieved. The results
254 exhibited the promising of brown grease as a renewable and environmentally friendly source for
255 biodiesel production. Brown grease is renewable because it is constantly forming in the sewer lines
256 and sewage treatment plants. Turning brown grease into a fuel is more environmentally friendly than
257 dumping it in a landfill, where it will form methane and CO₂, but without producing any useful work
258 in the process.

259

260 **Acknowledgments**

261 This work was supported in part by NSF grant # CBET 1802524. Also we would like to thanks Roy
262 Matthews, Alonzo Toney, MiAsia Burns, and Michelle Noel for their technical assistance.

263

264 **References**

- 265 1. Pratt, L. M.; Pinnock, T.; Amoa, K.; Akther, K.; Domond, J.; Gordon, R.; Loriston, K.; Strothers,
266 J.; Toney, A.; Rizvi, H.; Gunasekaran, M.; Noshadi, I.; Parnas, R.; Provatas, A. NEWEA Journal
267 **2014**, *48*(2), 44-53, Beneficial Use Brown Grease—A Green Source of Petroleum Derived
268 Hydrocarbons.
- 269 2. Pratt, L. M.; Parnas, R. U. S. Patent #9,701,911 Issued 11 July, **2017** Process for converting fats,
270 oils, and greases into fuels.

271 3. Sim, Y-L; Meyappan, N.; Yen, N. S.; Subramaniam, S. K.; Khoo, C. H.; Cheah, W. L.; St.
272 Hilaire, D.; Pinnock, T.; Bacolod, B.; Cai, Z. B.; Gurung, D.; Hasnat, R.; J Strothers, J.; Remy, C.
273 T.; Gentles, P. K.; Groveman, S.; Vittadello, M.; Kim, J.; Pratt, L. M. *Fuel* **2017**, *207*, 274-282
274 Chemical Reactions in the Pyrolysis of Brown Grease.

275 4. Strothers, J.; Matthews, R. B.; Toney, A.; Cobham, M. R.; Cox, S.; Ford, W.; Joseph, S.;
276 Joyette, W.; Khadka, S.; Pinnock, S.; Burns, M.; Noel, M.; Tamang, M. G.; St. Hilaire, D.; Kim,
277 J-H.; Pratt, L. M. Hydrocarbon Fuel from Brown Grease: Effects of Reaction Temperature
278 Profile on Yields and Product Distribution. *Fuel* **2019**, *239*, 573-578

279 5. M. Tosczak. How Grease Interceptors Can Reduce Greenhouse Gases. Thermaco 2016
280 <https://thermaco.com/blog/role-of-grease-traps-in-reducing-greenhouse-gas-emissions/>

281 6. Williams, J. B; Clarkson, C.; Mant, C.; Drinkwater, A.; May, E. Fat, Oil and Grease Deposits in
282 Sewers: Characterization of Deposits and Formation Mechanisms. *Water Res.* **2012**, *46*, 63196328

283 7. He, X.; de los Reyes III, F. L.; Leming, M. L.; Dean, L. O.; Lappi, S. E.; Ducoste, J. J.
284 Mechanisms of Fat, Oil, and Grease (FOG) deposit formation in sewer lines. *Water Research* **2013**,
285 *47*, 4451- 4459

286 8. Maheshika G. N., Wijerathna J. A. R. H, Gunawardena S. H. P. Ferric Sulphate Catalyzed
287 Esterification of High Free Fatty Acids Content Waste Coconut Oil for Biodiesel Synthesis *Int.*
288 *J. Sci. Res.* **2014**, *3*, 2068-2072

289 9. Guana, G., Kusakabe, K. biodiesel production from waste oily sludge by acid-catalyzed
290 esterification *Int. J. Biomass and Renewables* **2012**, *1*, 1-5

291 10. Gan, S., Ng, H. K., Ooi, C. W.; Motala, N. O.; Ismail, M. A. F. Ferric sulphate catalyzed
292 esterification of free fatty acids in waste cooking oil *Bioresource Technology* **2010**, *101*,
293 73387343

294 11. Azmi, N.B., Bashir, M.J.K. Sethupathi, S., Lim, J.W., Ng, C.A., 2015. Stabilized landfill
295 leachate treatment by sugarcane bagasse derived activated carbon for removal of color, COD
296 and NH₃-N – Optimization of preparation conditions by RSM. *J. Environ. Chem. Eng.*, **3**,
297 1287-1294

298 12. Bashir, M., Tham, M., Lim, J., Ng, C., Abu Amr, S., 2016. Polishing of treated palm oil mill
299 effluent (POME) from ponding system by electrocoagulation process. *Wat. Sci. Tech.* **73**, 2704-
300 2712.

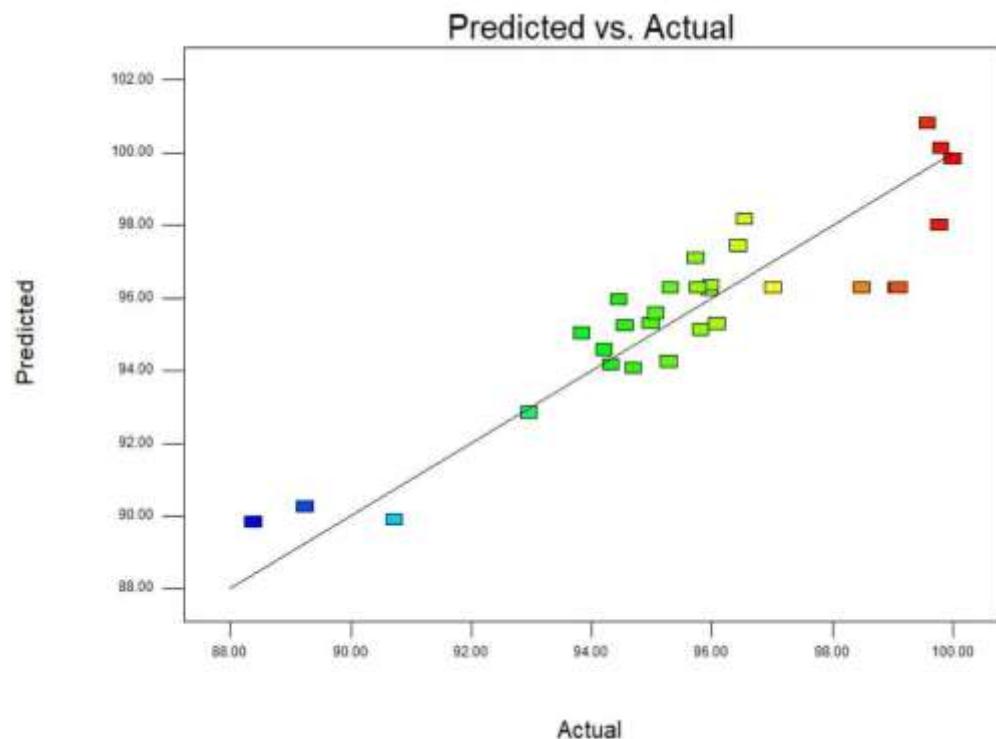
301 13. Lin, C. K., Bashir, M.J.K., Abu Amr, S.S., Sim L.C., 2017. Post treatment of palm oil mill
302 effluent (POME) using combined persulphate with hydrogen peroxide (S₂O₈²⁻/H₂O₂)
303 oxidation. *Wat. Sci. Tech.* **74**, 2675-2682

304 14. Bashir, M.J.K., Chong, J.W., Abu Amr. S. S., Ng, C.A., 2017. Electro persulphate oxidation for
305 polishing of biologically treated palm oil mill effluent (POME). *J. Environ. Manag.* **193**,
306 458-469.

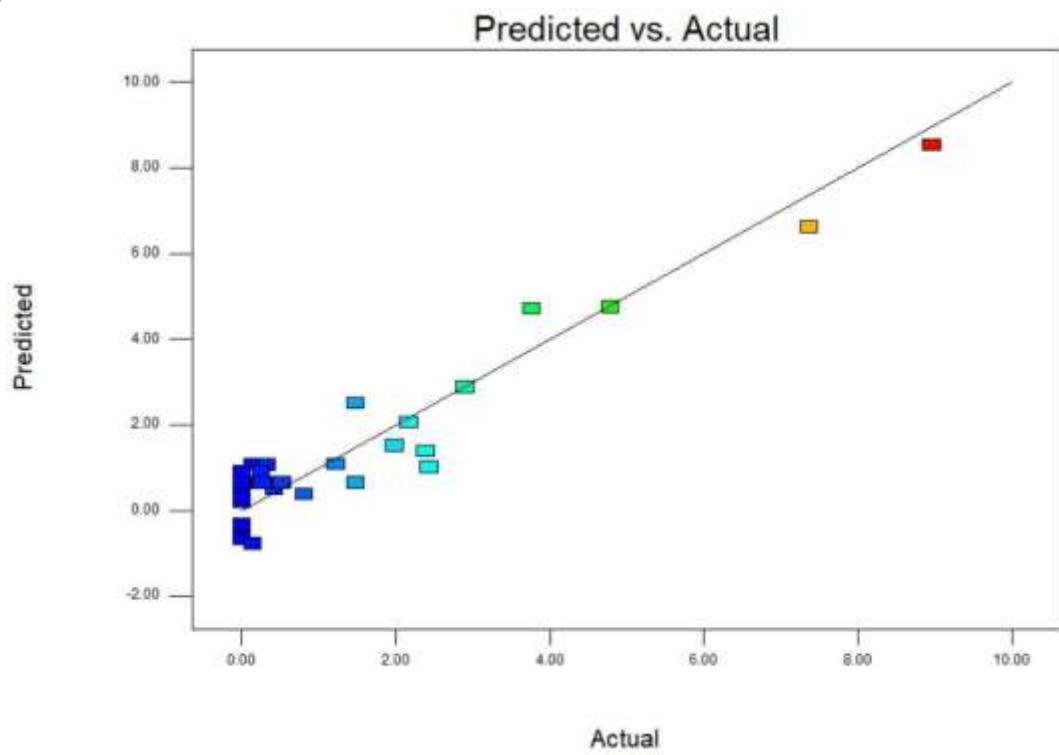
307 15. Barrera-Díaz, C., Frontana-Uribe, B., Bilyeu, B., 2014. Removal of organic pollutants in
308 industrial wastewater with an integrated system of copper electrocoagulation and
309 electrogenerated H₂O₂. *Chemosphere*, **105**, 160-164.

310 16. Jami, M., Rosli, N., Amosa, M., 2015. Optimization of Manganese Reduction in Biotreated
311 POME onto 3A Molecular Sieve and Clinoptilolite Zeolites. *Wat. Environ. Res.* **87**, 1-12.

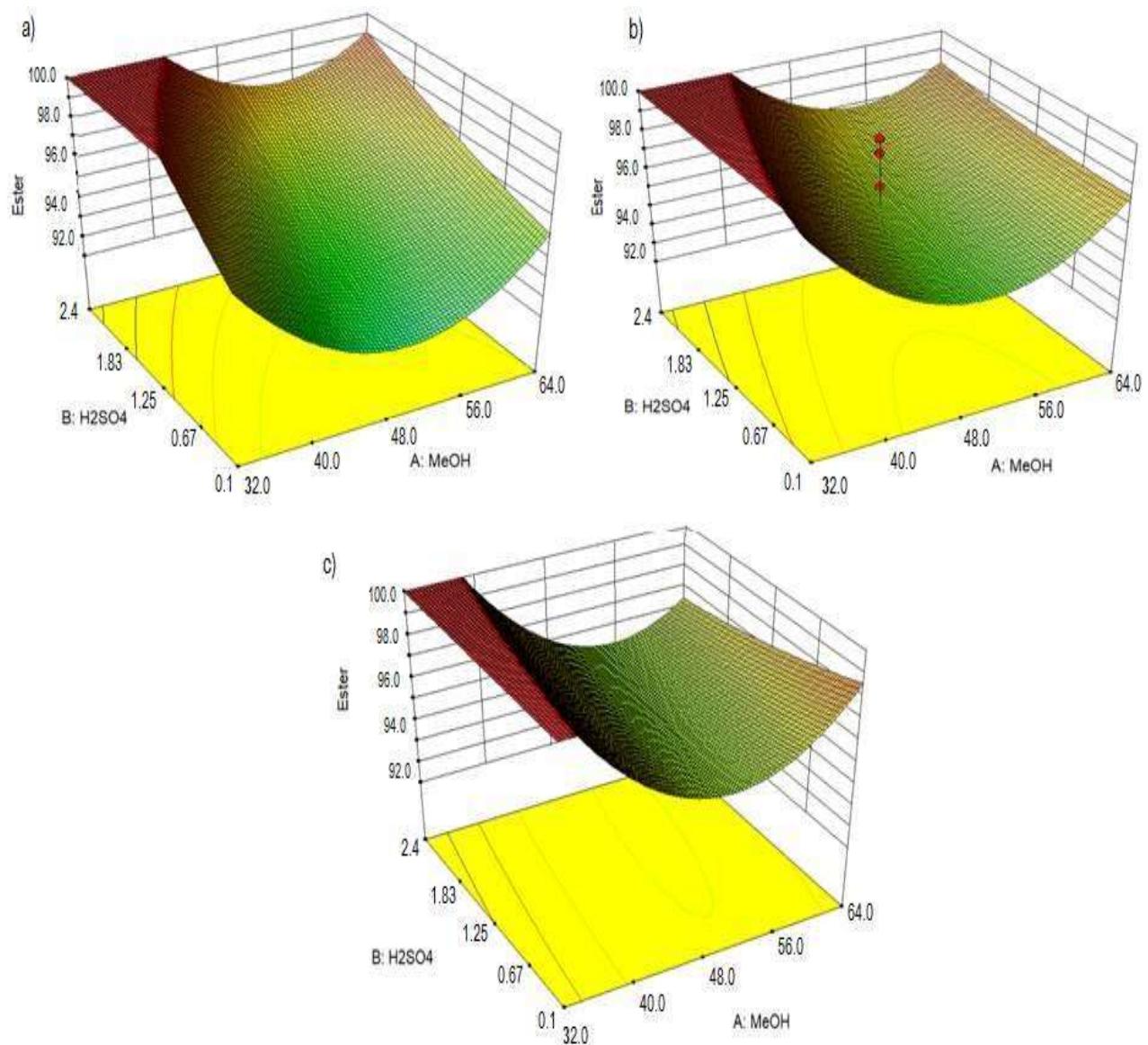
312 17. Mohajeri, S., Aziz, H.A., Isa, M.H., Zahed, M.A., Bashir, M.J.K., Adlan, M.N., 2010.
313 Application of the central composite design for condition optimization for semi-aerobic landfill
314 leachate treatment using electrochemical oxidation. *Wat. Sci. Technol.* 61, 1257–1266.

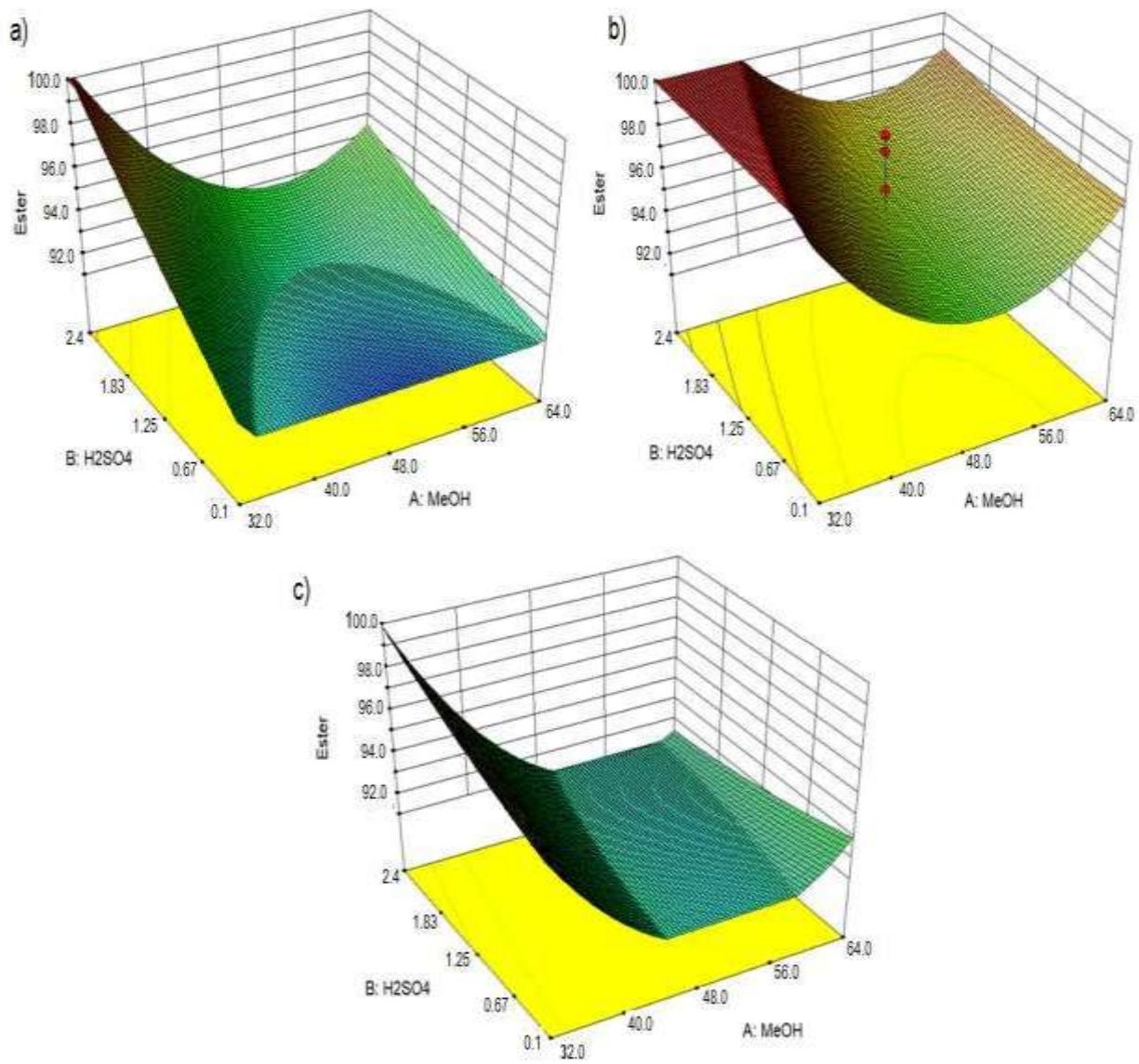

315 18. Wong, L.P., Isa, M.H., Bashir, M.J.K., 2018. Disintegration of palm oil mill effluent organic
316 solids by ultrasonication: Optimization by response surface methodology. *Process Saf. Environ.*
317 *Prot.* 114, 123–132.

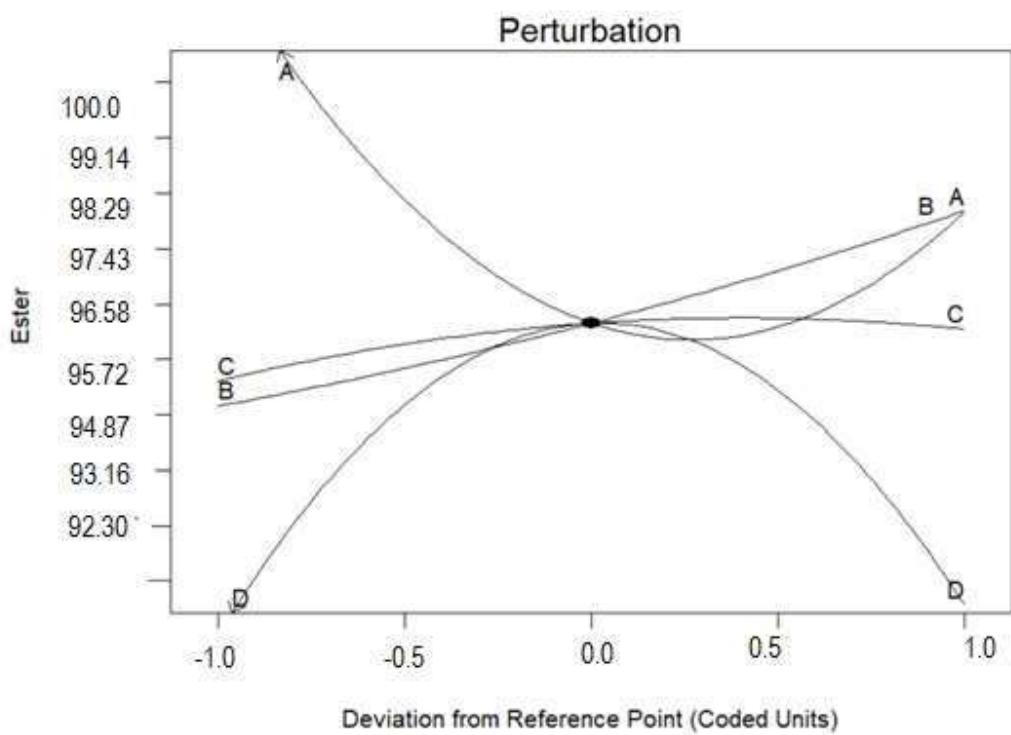
318 19. An, C., Huang, G., Yao, Y., Zhao, S., 2017. Emerging usage of electrocoagulation technology
319 for oil removal from wastewater: A review. *Sci. Total Environ.* 579, 537-556.

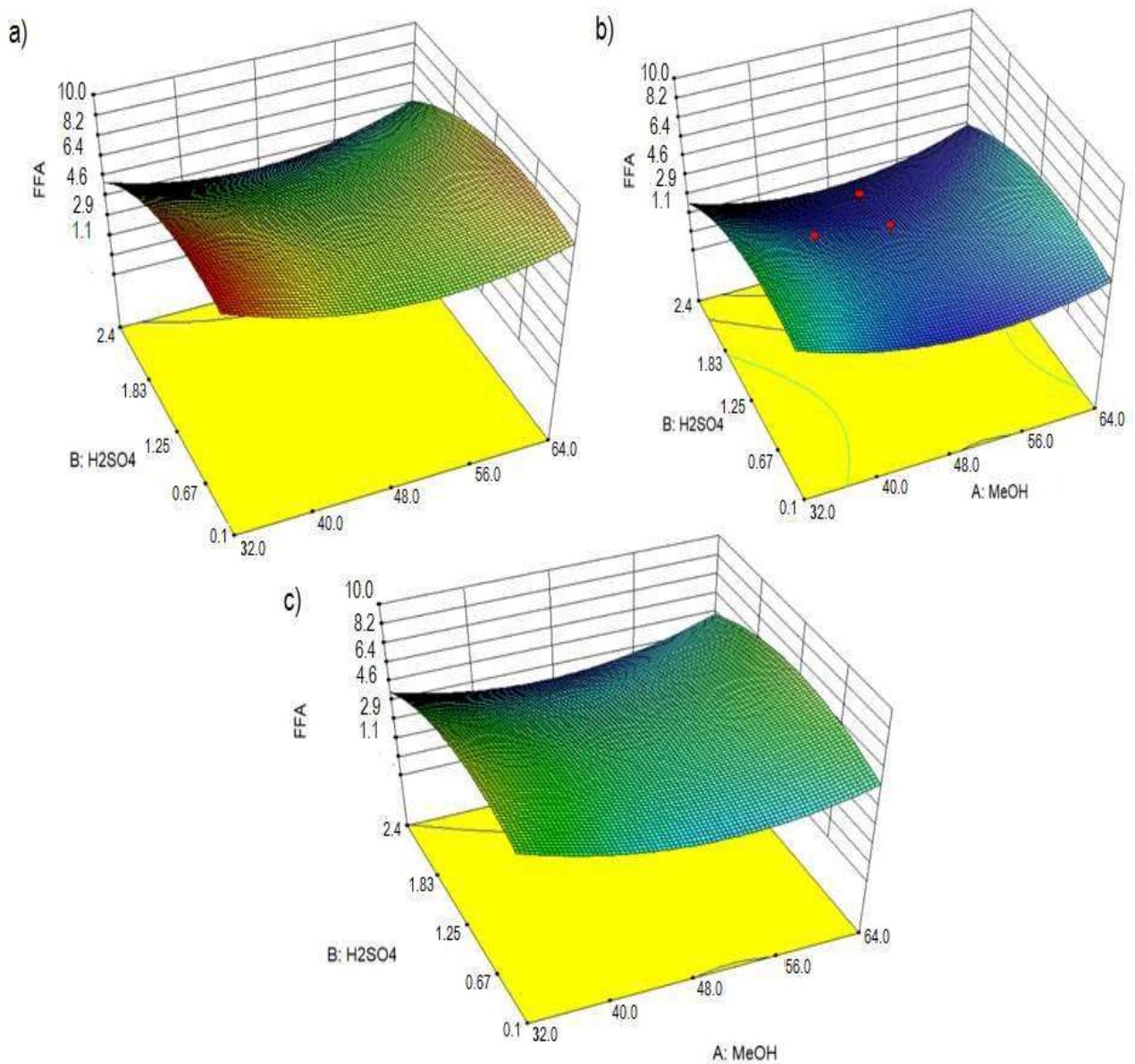

320

321


a)


b)


Figure 1: Correlation of actual and predicted values for (a) ester and (b) FFA yield


Figure 2: The effect of acid sulfuric and methanol used on ester yield (%) at (a) 0g, (b) 0.6 g and (c) 1.2 g $\text{Fe}_2(\text{SO}_4)_3$.

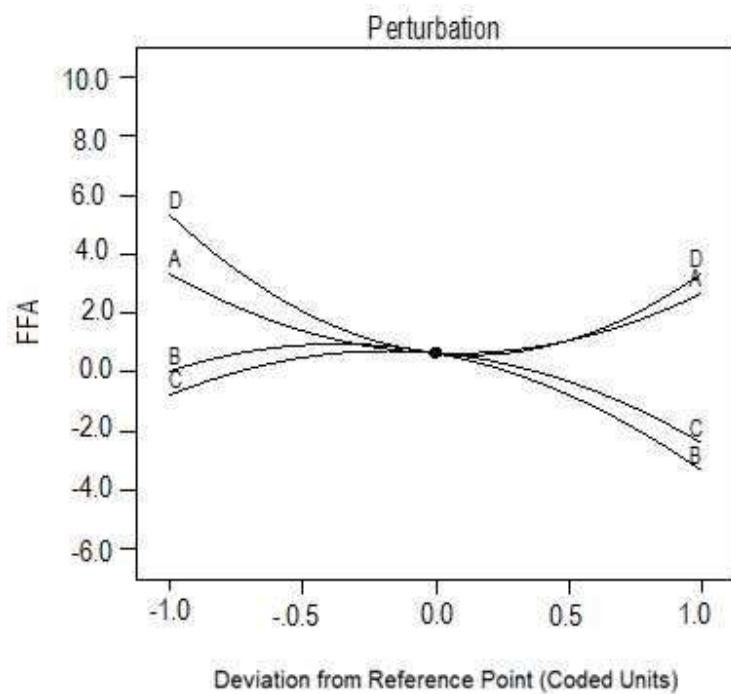

Figure 3: The effect of acid sulfuric and methanol used on ester yield (%) at (a) contact time 60 min, (b) 120 min and (c) 180 min.

Figure 4: Perturbation plot for ester yield

Figure 5: The effect of acid sulfuric and methanol used on FFA yield (%) at (a) contact time 60 min, (b) 120 min and (c) 180 min.

Figure 6: Perturbation plot for FFA yield

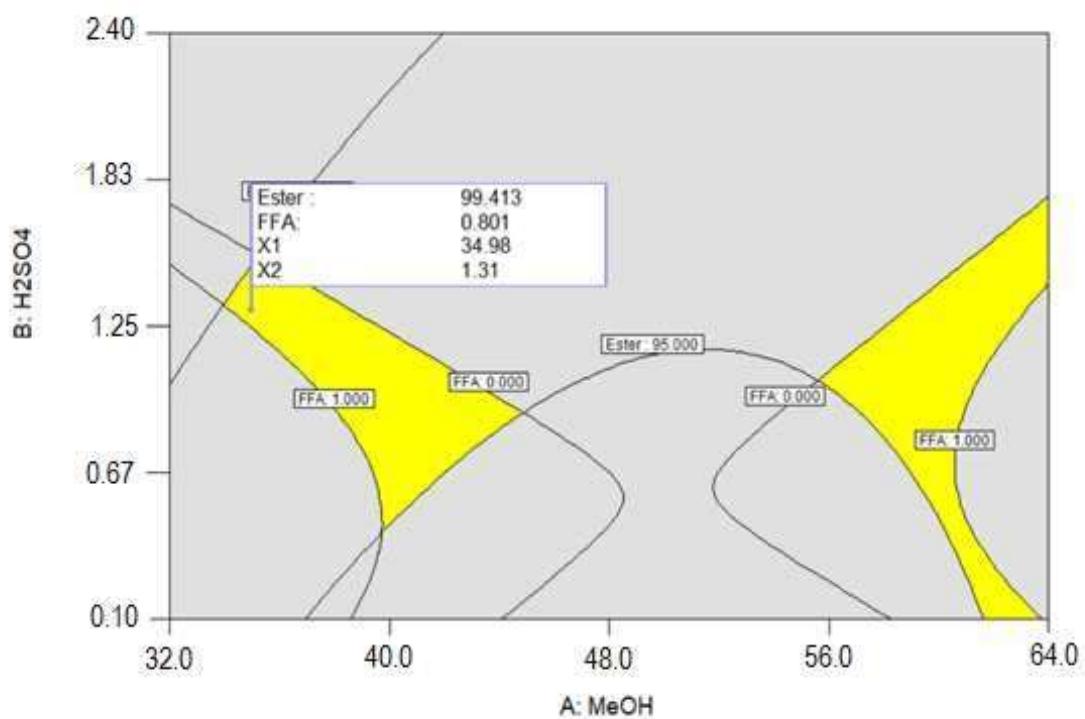


Fig. 7. Overlay plot for optimum conditions (34.98 ml MeOH, 1.31 ml H_2SO_4 , 0 g $\text{Fe}_2(\text{SO}_4)_3$ and reaction time 120 min)

