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Abstract  15 

Periodic spikes in crude oil prices have led to a need in alternative energy sources.  A major potential 16 

source of biodiesel feedstocks is brown grease, a byproduct of wastewater treatment.  A recent brown 17 

grease sample from this contained 60% FOG (fats, oils, and greases), 25% water, and 15% biosolids 18 

by mass. This study is focused optimizing the reaction conditions (i.e., quantities of Methanol,  19 

Sulfuric Acid, Fe2(SO4)3, and time) to maximize the yield of esters, with minimal residual free fatty 20 

acid (FFA), in the shortest residence time.  Response Surface  21 
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Methodology (RSM) was used to evaluate the correlation between the process variable and the 25 

response. The significance of quadratic model of each response was determined by analysis of 26 

variance, where all models indicated sufficient significance with p-value < 0.0001. Using a basis of 27 

40 g brown grease, optimized conditions were 35 ml MeOH, 1.3 ml H2SO4, 0 g Fe2(SO4)3 and 28 

reaction time of 120 min, resulting in a biodiesel yield of 99.70%. The results showed efficient 29 

biodiesel production under the optimum conditions.  30 

Keywords: Biodiesel; Renewable energy; Waste; Fatty acids; Process optimization; Catalyst  31 

  32 

 1.0  Introduction  33 

Brown grease is the oily material that accumulates in sewer lines and sewage treatment plants.  It is 34 

an attractive raw material for making biofuels due to its very low cost and abundant supply.  For 35 

instant, a typical wastewater plant in Torrington, Connecticut, USA produces between 10,000 and 36 

50,000 gallons (40,000-200,000 L) of brown grease per week.  The raw brown grease consists of 37 

fats, oils, and greases (FOG), as well as water, trash, and biosolids. This is the fraction that can be 38 

converted to biodiesel by esterification, or hydrocarbon green diesel by pyrolysis.  The raw brown 39 

grease is pre-treated by screening to remove the large pieces of trash and the coarser biosolids, which 40 

are retained on the screen.  Finer biosolids remain suspended in the aqueous layer when the water is 41 

gravity-separated from the FOG.  Pyrolysis of brown grease has been used to make a hydrocarbon 42 

fuel chemically similar to diesel fuel or kerosene, and the distribution of products depends on the 43 

reaction conditions [1-4].  That process is relatively energy intensive, and lowvalue byproducts may 44 

be formed in addition to the diesel and kerosene.  As an alternative for lowcost fuel production,  45 

production of biodiesel was investigated.  Biodiesel consists of the methyl esters of fatty acids.  It is 46 

most often synthesized by a base catalyzed process from virgin or used vegetable oils.  Due to high 47 

demand for biodiesel, the starting materials are expensive and in short supply, thus limiting the 48 

growth of the biodiesel industry.  For these reasons, a quest for sustainable and renewable biofuels 49 

has been gaining momentum on development of a scheme for continuous biodiesel production from 50 

brown grease in the near future. This scheme will enable to solve two problems: energetic and 51 

environmental, as brown grease, a low-value material that often incurs disposal costs, is a valuable 52 
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in huge quantities. In general, biodiesel can be better for the environment than petroleum diesel 53 

because it tends to generate fewer toxins and greenhouse gasses. Unlike fossil fuels dug up from 54 

underground, biodiesel doesn’t release long-stored carbon as carbon dioxide into the atmosphere 55 

when burned. Nevertheless, the best benefit of grease trap waste is that it’s a renewable resource [5].   56 

Brown grease consists primarily of fatty acids and their calcium salts [6, 7].  As such, an acid 57 

rather than a base catalyzed process is required for esterification of brown grease. The acid catalyst 58 

may be a mineral acid or a Lewis acid, as illustrated by several studies of ferric sulfate catalysis of 59 

carboxylic and fatty acid esterification [8-10].  Sulfuric acid is cheap and convenient to use.  Eventual 60 

conversion to a continuous process must be considered in designing this system.  Ferric sulfate is 61 

also sparingly soluble in methanol, thus limiting the option of adding it via a methanol solution.  In 62 

this study, the reactions were performed in batch mode to optimize the ratios of brown grease, acid 63 

catalyst, and methanol, and to determine the required reaction time. The goal is to optimize the 64 

parameters to maximize the yield of esters, with minimal residual free fatty acid (FFA), in the 65 

shortest residence time.  The most widely exploited module of RSM, i.e. CCD, was used to evaluate 66 

the correlation between the process variable and the response. Typically, RSM utilizes the 67 

combination of statistical and mathematical workings to optimize and design an  68 

experiment based on numerous independent variables with minimum amount of experiment runs and 69 

analyze the relationship between the dependent and independent variables [11, 12].   70 

  71 

 2.0  Materials and methods  72 

 2.1  Sample preparation and analysis  73 

Samples of brown grease were obtained from wastewater plant in Torrington, Connecticut,  74 

USA.  The oily material was separated from the water, biosolids, and debris by heating in a hot water  75 

bath and decanting the oil from the surface. Alternatively, the crude brown grease was screened to 76 

remove the large debris, melted to separate the water and most of the biosolids, which settled to the 77 

bottom, and screened again to remove the remaining biosolids, as described above.   This brown 78 

grease still contained significant amounts of water, which was removed by azeotropic distillation with 79 
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toluene.  The molten grease (approximately 500 mL) was placed in batches in a 1-L round bottom flask 80 

with about 50 mL toluene, and the flask was fitted with a Dean-Stark trap for azeotropic water removal.  81 

The remaining toluene was distilled off under vacuum, so that the toluene content of the brown grease 82 

generally did not exceed 5%.  All esterification reactions were calculated on the basis of 40 g of brown 83 

grease.  Forty grams of brown grease was placed in a 100 mL round bottom flask fitted with a stir bar, 84 

and the flask was fitted with a reflux condenser and placed in a stirring heating mantle.  The appropriate 85 

amount of methanol, concentrated sulfuric acid catalyst, and in some cases, a ferric sulfate co-catalyst 86 

was added, and the mixture refluxed for the required time period.  To ensure consistent reaction times,  87 

the brown grease-methanol mixture was brought to reflux, and the catalyst then added, which was taken 88 

as the reaction starting time. The temperature was fixed at 65 oC/min, the temperature of refluxing 89 

methanol. This does not vary during the experiments because at atmospheric pressure, the boiling point 90 

of methanol is constant.  Samples for GCMS analysis were taken periodically, typically at 30 or 60 91 

minute intervals. The GCMS analysis was performed on a Shimadzu model QP2010S machine 92 

equipped with a Restek Rxi-5Sil MS fused silica column with a length of 30 m, inner diameter of 0.25 93 

mm, and phase thickness of 0.25 µm.  The carrier gas was helium with a flow rate of 1.2 mL/min.  The 94 

column temperature profile was initial temperature 30 oC, hold for 3 min., increase to 300 at 12 oC/min., 95 

and hold for 10 minutes.  Samples were prepared by adding 4-5 drops of the reaction mixture to 1.5 96 

mL dichloromethane in standard GC vials.  The percentage of each compound was determined from 97 

the peak areas, and the percentage of esters, free fatty acids (FFA), residual toluene, hydrocarbons, and 98 

other compounds were reported for each reaction at the specified time intervals.  Traces of 99 

hydrocarbons (other than toluene) were occasionally detected from slight brown grease pyrolysis 100 

during the drying process.  The “other” compound category generally included traces of alcohols,  101 

aldehydes, ketones, amines, or siloxane products from the breakdown of silicone joint grease.    102 

 2.2  Experimental design and statistical analysis  103 

Design-Expert® Version 10.0 (Stat-Ease, Inc., Minneapolis, MN, USA) software is a 104 

Windows®¬based program that provides many powerful statistical tools such as RSM developed by 105 

Stat-Ease, Inc. In this study, RSM was used to determine the optimum operational condition for ECP. 106 

RSM is a collection of mathematical and statistical techniques for empirical model building.  By 107 

careful design of experiments, the objective is to optimize a response (output variable) which is 108 
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influenced by several input variables. In this study, four operational parameters were ultimately 109 

optimized, including methanol dosage (A), sulfuric acid dosage (B), co-catalyst dosage (Fe2(SO4)3) 110 

(C) and contact time (D) with each process variable was numerically varied from -1 to +1 coded 111 

value as illustrated in Table 1. The respective range of the operational variables were  112 
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113 32 - 64 mL, 0.1 – 2.4 mL, 0 – 1.2 g and 60 – 180 min which they were selected based on literature  

114 [12-15]. In overall, 5 responses (dependent variables) were investigated including ester, and FFA  

115 yield (%).  However, the residual toluene, hydrocarbons, and other compounds are functions of 116 

the brown grease pre-treatment, and do not reflect the esterification conditions.  

117  Table 1: The independent variables code and the range of actual values based on 40 g brown 118 

grease.      

Code  

  

Factor  

  

Range of actual independent variables  

-1 (low)  -0.5   0  +0.5    +1(high)  

A  Methanol, mL  32  40  48  56    64  

  

B  

  

Sulfuric Acid, mL  

  

0.1  

  

0.675  

  

1.25  

  

1.82   

5  

    

  

2.4  

  

C  Fe2(SO4)3 dosage, g  0.0  0.3  0.6  0.9    1.2  

D  Time, min  60  90  120  150    

  

180  

119    

120 A total of 30 sets of experiment with varying operational conditions were generated after 121 respective 

ranges were filled into the software. Subsequently, 30 experiments were conducted and 122 the 

corresponding recovery results for all of the 30 sets of experiments were recorded.  

123 Subsequently, the experiment outcome was completely evaluated and analyzed using an ANOVA  

124 analysis to determine the competency and significance of the response surface quadratic model as 

125  represented in Equation (1):  

126    

127  = + + + +                                                                    (1)  

128    
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where  is the response,  and  are the operational variables,  is the constant coefficient, ,  and  are the 129 

interaction coefficients of linear, quadratic and second-order terms respectively,  is the number of 130 

operational variable and  is the random error [13].   The fitness of experimental data was then verified 131 

with percentage of the sample variation that perfectly fit the model’s estimated data point through 132 

value of coefficient of determination, R2 and the statistical significance of quadratic model of each 133 

responses was tested by ANOVA based on the probability (p-value) of 95% confidence level.  134 

Models that described the respective response’s interaction were then used to predict the optimum 135 

operational parameters targeted on maximum ester yield.  136 

   137 

3.0  Results and discussion  138 

The collected sample was characterized and it was found to contain 60% FOG, 25% water,  139 

and 15% biosolids by mass. A total of 30 experiments were conducted and the corresponding 140 

removal results for all of the 30 set of experiments were recorded as shown in Table 2. The monitored 141 

responses were the simultaneous percentage of ester, FFA, toluene residue, hydrocarbon and other 142 

compounds yield at the end of each run. The results show ester yields to be from 89.24% to 99.81%, 143 

and FFA yield from 0% to 8.96.  It is the ester yield and residual FFA that are crucial to the process 144 

design, as the other variables are largely determined by variation in the drying time, temperature,  145 

and other drying conditions.  146 

  147 

  148 

  149 

  150 

  151 
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152  Table 2: Experimental run and results  

  
 

Operational Variables        Responses  
 

Run  

   

MeOH  H2SO4  Fe2(SO4)3  Time  Ester  FFA  

mL  mL  g  min  %  %  

1  64  0.1  0  180  92.96  2.9  

2  56  1.25  0.6  120  95.97  0.33  

3  64  2.4  1.2  60  94.21  2.43  

4  48  1.25  0.9  120  95.99  0  

5  48  1.25  0.6  120  95.31  0.52  

6  48  1.25  0.6  120  97.02  1.48  

7  64  2.4  1.2  180  89.24  0  

8  32  2.4  0  60  100  0  

9  48  1.25  0.6  150  94.56  1.22  

10  48  1.25  0.3  120  94.45  0.42  

11  48  1.25  0.6  90  93.84  2.17  

12  32  0.1  1.2  180  96.44  1.98  

13  48  1.25  0.6  120  98.49  0  

14  32  0.1  0  60  90.72  8.96  

15  48  1.25  0.6  120  95.77  0.44  

16  64  2.4  0  180  94.7  0.81  

17  48  0.675  0.6  120  95.07  0.25  

18  64  0.1  1.2  180  94.32  0  

19  48  1.25  0.6  120  99.07  0.24  

20  32  2.4  1.2  60  99.81  0  

21  32  0.1  1.2  60  94.99  4.79  

22  48  1.825  0.6  120  95.73  0.14  

23  40  1.25  0.6  120  96.55  2.39  

24  64  0.1  1.2  60  95.29  1.48  

25  64  2.4  0  60  96.09  0.14  

26  64  0.1  0  60  88.38  7.37  
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27  32  2.4  1.2  180  99.78  0  

28  32  2.4  0  180  99.58  0  

29  48  1.25  0.6  120  99.11  0.27  

30  32  0.1  0  180  95.82  3.76  

153    

154    

155    
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3.1  Statistical significance of responses’ models  155 

The experiment outcome was completely evaluated and analyzed using an ANOVA analysis 156 

to determine the competency and significance of the response surface quadratic model, and the 157 

results were tabulated in Table 3. All of the F values are large enough to produce low pvalue of < 158 

0.05 that suggests that all models are statistically significant. Only p-value for FFA yield model is 159 

less than 0.0001. The fitness on experimental data of each parameter was further verified by high R2 160 

values. R2 value for FFA yield model >90% but for Ester yield model is 0.82. The model for Ester 161 

yield can be accepted because the p-value of lack of fit < 0.05. R2 value of higher than 0.90 for all 162 

models are indicative of a good agreement between the experimental and predicted value generated 163 

based on the developed model. As the R2 approach toward unity, it is illustrated that predicted values 164 

of responses given by the model are proximate to experimental value and hence it will be a better fit 165 

model [16] Equation 2 and 3 are the suggested model to predict the ester and FFA yield.  166 

  167 

ester yield (%) = 96.28 - 1.95*A + 1.50*B + 0.40*C + 0.22*D - 1.12*A*B - 0.25*A*C -                              168 

0.55*A* D - 1.28*B*C - 1.06* B*D - 0.77* C*D + 3.67*A2 + 0.23*B2 -  169 

                            0.49*C2 - 4.57*D2                                                                                 (2)                             170 

FFA yield (%) = 0.06 - 0.033*A - 1.69*B - 0.82*C - 0.98*D + 0.70*A*B – 0.019*A*C +   171 

                               0.019*A*D + 1.01*B*C + 0.76*B*D + 0.14*C*D + 2.36 A2 - 2.30*B2 -   172 

                               2.24*C2 + 3.70*D2                                                                                  (3)    173 

where A, B, C, and D correspondingly represent operational variables in this model which are 174 

methanol dosage (mL), sulfuric acid dosage (mL), Fe2(SO4)3 dosage (g), and contact time (min).  175 
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180 Table 3: Analysis of variance (ANOVA) for response surface quadratic model for ester and FFA,  

181 yield  

Ester 

yield  
(%)  

Source  Sum of  

Squares  

DF  Mean  

Square  

F  

Value  

Prob > F    

 Significant 

  

  

  

Model  197.35  14  14.10  4.80  0.0023  

A-MeOH  63.00  1  63.00  21.46  0.0003  

B-H2SO4  37.34  1  37.34  12.72  0.0028  

C-Fe2(SO4)3  2.64  1  2.64  0.90  0.3580  

D-Time  0.83  1  0.83  0.28  0.6018  

AB  20.05  1  20.05  6.83  0.0196  

AC  0.99  1  0.99  0.34  0.5710  

AD  4.90  1  4.90  1.67  0.2161  

BC  26.24  1  26.24  8.94  0.0092  

BD  18.00  1  18.00  6.13  0.0257  

CD  9.59  1  9.59  3.27  0.0907  

A
2

  
2.24  1  2.24  0.76  0.3962  

B
2

  
8.643E-003  1  8.643E-003  2.944E-003  0.9574  

C
2

  
0.040  1  0.040  0.014  0.9083  

D
2

  
3.48  1  3.48  1.19  0.2935  

Residual  44.03  15  2.94      

Lack of Fit  29.98  10  3.00  1.07  0.5027  

Pure Error  14.05  5  2.81      

F-value: 4.8; R2: 0.8176; Adequate precision: 9.06;  Standard deviation (%): 1.71  

FFA 

yield  
(%)  

Source  Sum of  

Squares  

DF  Mean  

Square  

F  

Value  

Prob > F    

 Significant 

  

  

  

Model  129.52  14  9.25  11.25  < 0.0001  

A-MeOH  1.76  1  1.76  2.14  0.1641  

B-H2SO4  47.23  1  47.23  57.41  < 0.0001  

C-Fe2(SO4)3  11.00  1  11.00  13.37  0.0023  

D-Time  15.90  1  15.90  19.32  0.0005  

AB  7.73  1  7.73  9.39  0.0079  

AC  0.12  1  0.12  0.14  0.7130  

AD  5.625E-003  1  5.625E-003  6.837E-003  0.9352  

BC  16.44  1  16.44  19.99  0.0004  

BD  9.30  1  9.30  11.31  0.0043  

CD  0.32  1  0.32  0.39  0.5392  

A
2

  
0.93  1  0.93  1.13  0.3052  

B
2

  
0.88  1  0.88  1.07  0.3174  
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C
2

  
0.83  1  0.83  1.01  0.3298  

D
2

  
2.28  1  2.28  2.77  0.1168  

Residual  12.34  15  0.82      

Lack of Fit  11.01  10  1.10  4.12  0.0657  

Pure Error  1.33  5  0.27      

F-value: 11.25; R2: 0.9130; Adequate precision: 14.51;  Standard deviation (%): 0.91  
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In this study, a ratio greater than 4 for adequate precision which observed in all model 182 

validates that the model has adequate signal which indicating that the model can be used to navigate 183 

the design space [17, 18].  Small standard deviation for ester and FFA yield revealed that data points 184 

were dispersed proximate to their respective expected outcome. This was further supported by 185 

Figure 1 that shows all the experimental values were scattered around the predicted values. As shown 186 

in Figure 1, the predicted values of ester and FFA yield obtained from the model and the actual 187 

experimental data were in good agreement.  188 

  189 

  190 

3.2  Effect of the operational variables on ester yield  191 

  192 

Figures 2 and 3 show the relationship between the independent variables to the dependent 193 

variables. From Fig 2, dosage of Fe2(SO4)3 used as a co-catalyst has minor effects to the ester yield 194 

which can be confirmed by Figure 4 as well. As indicated in Table 3, the effect of factor CFe2(SO4)3 195 

on ester yield is less important comparing with other factors A and B with p value of 0.3580.  196 

However, there were a considerable effect via the interaction between factor B (H2SO4) & C 197 

(Fe2(SO4)3) on ester yield with a significant p value of 0.0092.  198 

Nevertheless, to save cost, minimum dosage of catalyst used is suggested. As indicated in 199 

Figures 3, ester production increased when the operational variables of sulfuric acid dosage 200 

increased from 0.1 mL to 2.4 mL. However, ester yield was observed to be higher when a 32 ml of 201 

MeOH was applied. Thus, optimized MeOH dosage is critical to obtain maximum ester yield.  Other 202 

than that, contact time which is one of the operational variables has great impact on ester production.  203 

With an increase in contact time, an upward movement of the graph’s surface was observed will 204 
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maximize the ester yield, however, prolonged contact time will give adverse effect to the production 205 

of ester. Thus, optimized contact time is important for maximum ester yield.  206 

With the best experimental condition at contact time of 120 min, higher ester yield was achieved.    207 

Figure 4 presented the perturbation plot of the operational variables to ester yield. The 208 

perturbation plot supports to compare the effects of all the factors at a particular point in the design 209 

space. A steep slope or curvature in a factor shows that the response is sensitive to that factor. A 210 

relatively flat line shows insensitivity to change in that particular factor.  From the plot, operational 211 

variable A (MeOH), B (H2SO4) and D (contact time) have the most significant influence on the ester  212 

yield which indicated by the curvet of the curve. Increasing the amount of sulfuric acid variable B 213 

(H2SO4) increased the ester yield. However, variable C (Fe2(SO4)3) cocatalyst dosage showed 214 

minimal effect to the ester yield, although it can catalyze the reaction in the absence of sulfuric acid.     215 

  216 

3.3  Effect of operational variables on residual FFA yield   217 

As presented in Figure 5, optimum contact time up to 120 min and optimum volume of  sulfuric acid 218 

used up to 1.83 mL significantly resulted in lower residual FFA. However, the amount of residual 219 

FFA was insignificant for low contact time (60 min) and prolong contact time (180 min). Over and 220 

above that, prolonged contact time is not favorable due to high energy consumption which will 221 

eventually increase treatment cost [19]. Figure 6 presents the perturbation chart for FFA yield. From 222 

the chart, all operational variables (A, B, C and D) showed equally effect to FFA yield.    223 

  224 

  225 

  226 
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229  3.5  Optimization of experimental conditions and verification   

230 Analysis of operational variables interaction and impact on ester yield was performed and  

231 optimized using a multiple response optimization tools vis RSM. For optimization purpose,  

the  

232 range of operational variables were selected. As such, MeOH, H2SO4, catalyst (Fe2(SO4)3 

and time  

233 were selected within the ranges, while the ester yield was maximized. On another note, Ester   

234 production was targeted at maximum. Fig. 7 shows the overlay plot for optimum conditions.  

The  

235 As seen from the box in Fig. 7, the optimized conditions occurred at 35 ml MeOH, 1.3 ml  

236 H2SO4, 0 g Fe2(SO4)3 and reaction time 120 min. These optimum operational conditions, 

according  

237 to the model, should be able to achieve 99.40 % ester production. An experiment was then  

238 conducted to compare actual and predicted outputs. Table 4 shows the responses obtained 

from 239 model prediction and laboratory experiment to be in good agreement.    

240    

241 Table 4: Optimum response results from overlay plot and laboratory (Operational conditions of 242 35 

ml MeOH, 1.3 ml H2SO4, 0 g Fe2(SO4)3 and reaction time 120 min)  

243    

 Response  Predicted value  Actual value  

 

244    

245    

246  4.0  Conclusions  

247 In this study, the response statistical models showing significant terms of interactive  

248 operational variables were tested and confirmed by ANOVA with p-value < 0.0001. The 

goodness  

Ester yield (%)  99.4  99.7  

FFA yield (%)  0.8  0  
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249 of fit on experimental data of responses was also verified by higher   values of closer to 1 

that  

250 indicated each quadratic model was statistically desirable and better fit. The RSM was used 

to  
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simultaneously optimize the operational variables required in the biodiesel production from brown 251 

grease (40 g basis), where the 35 ml MeOH, 1.3 ml H2SO4, 0 g Fe2(SO4)3 and reaction time of 120 252 

min were obtained. Upon on these conditions, 99.70 % of ester yield was achieved. The results 253 

exhibited the promising of brown grease as a renewable and environmentally friendly source for 254 

biodiesel production. Brown grease is renewable because it is constantly forming in the sewer lines 255 

and sewage treatment plants. Turning brown grease into a fuel is more environmentally friendly than 256 

dumping it in a landfill, where it will form methane and CO2, but without producing any useful work 257 

in the process.  258 

  259 
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Figure 1: Correlation of actual and predicted values for (a) ester and (b) FFA yield  
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Figure 2: The effect of acid sulfuric and methanol used on ester yield (%) at (a) 0g, (b) 0.6 g and  

(c) 1.2 g Fe2(SO4)3.  
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Figure 3: The effect of acid sulfuric and methanol used on ester yield (%) at (a) contact time 60 min, 

(b) 120 min and (c) 180 min.  
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Figure 4: Pertubation plot for ester yield  
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Figure 5: The effect of acid sulfuric and methanol used on FFA yield (%) at (a) contact time 60 min, 

(b) 120 min and (c) 180 min.  

  



6  

  

  

Figure 6: Pertubation plot for FFA yield  
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Fig. 7. Overlay plot for optimum conditions (34.98 ml MeOH, 1.31 ml H2SO4, 0 g Fe2(SO4)3 and 

reaction time 120 min)  

  

   

       

  



 

  


