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On the Use of Artificial Intelligence for High
Impedance Fault Detection and Electrical Safety

Shiyuan Wang

Abstract—Accidents caused by faults on overhead power lines
have been more frequently reported under extreme weather con-
ditions and may strongly threaten the safety and stability of the
power grids, e.g., massive wildfires caused by the electrical arcs
or lines getting in touch with vegetation, relay miss-operations,
etc. It has been widely recognized that the electric safety concerns
engendered by overhead line faults have to be timely and properly
addressed to minimize the subsequent risks and damages. The
existing monitoring devices and protective relays can barely detect
high impedance faults (HIFs) and are unable to warn the system
operators until serious abnormalities or damages are observed.
Aiming at avoiding the damaging consequences of HIFs, an online
monitoring system embedded with machine learning analytics is
proposed that ensures a fast and accurate detection of HIFs in
power systems. The performance of the proposed artificial intelli-
gence engine is tested under a variety of simulated conditions and
the numerical results demonstrate its efficacy and superiority over
the state-of-the-art advancements.

Index Terms—Convolutional neural network (CNN), electrical
safety, event detection, feature extraction, high impedance fault
(HIF), wavelet transform (WT).

I. INTRODUCTION

LECTRICITY has dramatically changed our daily lives

and fuels our modern society. The electricity grid is con-
stantly exposed, and yet vulnerable, to a wide range of threats,
some foreseeable and some unpredictable and random in na-
ture. One safety-threatening disruption in power systems is
recognized as high impedance faults (HIF), the detection of
which has long remained a challenging concern in the electric
industry. HIFs can cause “arcs” or “flashover” from the wires,
through the air, to the neighboring trees, other vegetation or
equipment, where it can cause fires, injuries, or even fatali-
ties [1]. A life-threatening example is the constant exposure and
contact of a power line with a tree branch during high-wind
conditions, which can threaten homes in residential neighbor-
hoods and spark wildfires in rural areas. Such types of faults are
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commonly caused by undesired contacts with bare energized
electrical conductive parts, the high-impedance nature of which
significantly restricts the flow of fault current to a level hard to be
detected by the overcurrent protective relays [2]. In particular,
the existing commercial microprocessor-based protective relays
activate a tripping decision when the electrical measurements
are observed well beyond the detection threshold; however, an
unsatisfactory performance is observed in their detection logic
when facing the HIF events. Electrical safety studies have shown
that conventional protection schemes detected and cleared only
17.5% of staged HIFs [3]-[5]. Therefore, HIF detection and
localization in electrical power systems yet remain a safety-
threatening challenge for power system protection engineers,
a fast and accurate solution to which is urgently needed to limit
the safety risks, prevent power grid operation violations, and
save human lives [6], [7].

Many research works have been conducted in diagnosing
HIFs, each with some advantages and disadvantages; refer-
ence [8] harnessed the high-frequency content in real vegetation
fault signatures and proposed a method for the detection of
distinct and very small-current HIFs. In [9], an HIF detection
approach for power distribution networks is suggested using
fuzzy logic control that evaluates the 3 rd and 5th harmonics
in the electrical current signals. However, due to the different
HIFs characteristics compounded by the existence of harmonics
and noises in the power waveforms, their accuracy and speed
performance may be compromised in real-world scenarios. A
scheme to detect HIFs using the Time—Time (TT) transform that
analyzes and determines the fault wave patterns is introduced
in [10]; this scheme can handle low signal to noise ratio (SNR) in
power waveforms through a threshold selection procedure using
unscented transformation. While it can be applied to microgrids
with different ratings and structures, the detection threshold must
be tailor-made and adjusted appropriately. Cui ef al. [11] pre-
sented a variable-importance-based feature selection method to
identify HIFs from a large pool of signal signatures; this feature
selection scheme utilizes the discrete Fourier transform (DFT)
and Kalman filter (KF) for harmonics coefficient estimation and
HIF duration and magnitude measurement.

With the rapid advancements in artificial intelligence (AI),
many researchers have implemented various HIF detection tech-
niques through a variety of machine learning technologies. Sar-
war ef al. [1], [12], [13] utilized waveform pattern analysis and
support vector machine to classify and ultimately detect HIFs in
power grids. In [4], semi-supervised learning and probabilistic
learning are used for HIF detection and localization, revealing
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promising detection accuracy, but with a compromised response
time of half a second. In [14], an HIF detection approach
using empirical mode decomposition combined with an artificial
neural network (ANN) is proposed, where the HIF detection and
classification are achieved through predominant harmonic sig-
natures caused by HIFs in the electrical signals. Discrete wavelet
transform (WT) is applied in [15] to monitor the high-frequency
components and long short term memory to detect HIFs, re-
vealing detection accuracy of 90% under scenarios with clean
(not noisy) measurements. An HIF detection approach using
discrete wavelet transformations and back propagation artificial
neural network (BP-ANN) is introduced in [16] and tested using
often-noisy real measurement data from a substation, where the
detection accuracy is reported 76%. While the accurate and swift
HIF detection is a yet to be solved challenge in the electric
industry, the state-of-the-art literature has demonstrated that Al
technologies offer a yet-untapped potential in detecting HIFs
and improving electrical safety by enabling a timely warming
notification to the system operator and activating trip signals if
needed.

Inspired by the promising feature extraction and pattern
recognition capabilities through WTs and the wide adoption of
machine learning analytics in electric power grids [17]-[22],
we propose an Al solution that unlocks the full potential in
computing at the edge for HIF detection and classification,
thereby improving the electrical safety. An improved HIF model
is first proposed for generating a large pool of HIF waveforms. A
modified Gabor WT is next proposed for feature extraction and
pattern recognition from the electrical waveforms during HIF
scenarios. An efficient convolutional neural network (CNN) en-
gine is eventually developed to process the extracted features and
make the detection and classification decisions. The proposed
solution offers a promising accuracy and response time in detect-
ing and classifying low-intensity HIFs under noise inferences.
The suggested functionality can be installed within the existing
sensors, protective relays and other intelligent electronic devices
(IEDs) with online monitoring capabilities, thereby rendering a
cost-effective solution technology.

This article is organized as follows. Section II introduces
the background information on HIF modeling, WT, and the
pattern classification and recognition through CNNs. Section II1
presents the improved HIF model and the proposed HIF de-
tection and classification scheme, which is consisted of, first,
power waveform feature extraction through a pseudo-continuous
quadrature wavelet transform (PCQ-WT), and, second, event
detection and classification via CNN. Case studies and nu-
merical results are analyzed in Section IV. Section V eventu-
ally concludes this article and provides directions for future
developments.

II. BACKGROUND AND MOTIVATION
A. HIF Modeling

A single-line diagram of an HIF event in a radial distribution
system is illustrated in Fig. 1(a). The sending node is modeled
by an ideal ac source; Z; and Z; are known impedance values
and can be estimated according to the system topology and
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Fig.1. Single-phase diagram for the HIF model in [4] and [5]. (a) Single-phase

diagram for HIF modeling. (b) Two antidiode HIF model.

operating conditions; R, L, and C stand for the per unit length
resistance, inductance, and capacitance of the line. By applying
Kirchhoff’s voltage law to the dashed circle in Fig. 1(a), the
following equation is derived:

d(in1 — ic)
dt

where vy, and iy, are the sending-terminal voltage and current;
vy stands for the voltage at the location of the fault; and § is the
fault distance from the sending-terminal. However, during an
HIF event, vr and 4 are the values to be estimated. The current
flow can be found through

Un1 =06 (R(inl - ic) +L ) +uE (1)

dUm
pm 2
where i., in2, and i are, respectively, the currents flowing
through the shunt capacitor, received at the end-terminal, and
observed at the HIF branch.

Under some HIF scenarios, arcs can be observed when the air
gap between the power line conductor and the high impedance
object is energized. Once the imposed voltage magnitude is
higher than the voltage (breakdown voltage), there would be
arc ignitions across the air gap. On the other hand, an arc
extinguishes when the fault voltage is lower than the breakdown
voltage. Therefore, the HIF current changes during each cycle,
making its magnitude follow a nonlinear characteristic [23].
Based on the above properties of an HIF event, an HIF model
is developed and has been widely used in [1], [4], [5], [9], [11],
[14], as shown in Fig. 1(b). The fault voltage in this model can
be written in the following format:

{RFiF +Lp%e + Vpp, ip >0
Vg =

RFE‘_F‘ +LFd—;f— _VFN'.- TI.F <0

in]:ic+iﬂ2+iF: 3‘c:é'-

3

where Ry and L are the HIF’s resistance and inductance in
series; Vpp and Vg are the positive and negative arc voltages
during HIF events, which archives the nonlinearity of HIFs. The
simulated voltage and current waveforms are demonstrated in
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Fig. 2. Simulated voltage and current waveforms (with per unit values) cap-

tured at the sending-terminal based on [4]. (a) HIF voltage. (b) HIF current.

Fig. 2. It can be found that although there is almost no influence
on the voltage waveform, the HIF event slightly distorts the
current signal while the current magnitude has remained around
the rated range; in other words, the HIF event cannot be detected
easily by the conventional protective relays. One should note
that, at the beginning of an HIF event, this HIF model can barely
match the characteristics of the first period due to the build-up
phenomenon [24]. However, following a few fundamental cy-
cles, the HIF stabilizes and the fault parameters—Rp, Ly, Vi p,
and Vpy—are approximated as constant values. Therefore, the
HIF current waveform and the related shoulder phenomenon can
still be characterized using the model presented in Fig. 1(b).
With the wide installation of phasor measurement units
(PMUs) in the power grid, micro-PMUs (u-PMUs) in power
distribution systems [25] and many other IEDs with PMU func-
tionalities, HIF detection can be achieved through such devices
with high-precision and high-resolution measurements; that is,
the case presented in Fig. 1(a) can be easily solved as long as both
sending and receiving terminals are equipped with such devices
that can ensure the availability of high-precision high-resolution
electrical measurements. However, a full observation is very
hard to achieve in every segment of the power network due
to the cost limitations [26] and only the power waveforms
from the upstream (sending-end) terminal are usually measured;
meanwhile, the performance of the PMU surveillance and moni-
toring network can be compromised by communication failures,
latencies, and cyber-attacks [27]. Therefore, it makes it very
challenging for the HIF detection and classification scheme to
operate as desired since the HIF current is viewed incremental
by the upstream terminal, not large enough to violate the tripping
thresholds in the protective relays, and are often mistakenly
corresponded to the common load increments in the network.

B. Power Waveform Modeling

With the current waveforms carrying valuable information
on the underlying phenomenon, one can evaluate the current
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waveform in each phase to examine the existence of HIFs. First,
the current waveform can be generalized by

z(t) = Acos (wt + ¢) 4)

where A, w, and ¢ are the magnitude, frequency, and phase
angle in each phase. Although HIF phenomena are hard to detect
through current amplitudes, such events often cause waveform
abnormalities and distortions. One should note that the orders,
magnitudes, and phase angles corresponding to the HIF-caused
harmonics would be totally different under different combina-
tions of HIF parameters. Thus, detecting HIF through analyzing
certain orders of harmonics will be extremely challenging; this
is even further exacerbated by the existence of noise or other
harmonics, altogether could compromise the performance of
the HIF detection schemes. To deeply investigate the waveform
features, we expand the sampled current by the Fourier series as
follows:

H

z(t) = Ajcos (wit + ¢1) + Y Ancos(wnt + ép)
= )

’

-~
Harmonic Components

where h is the order of harmonics; H is the maximum order
of harmonics limited by the sampling rate; Ay, wp, and @y, are
the hth order harmonic component’s instantaneous magnitude,
frequency, and phase angle, respectively. Also, h = 1 stands for
the fundamental frequency component. One can see, in Fig. 2,
that the fundamental magnitude is affected by both HIF and load
variation events. Therefore, it is clear that the second term in (5)
carries valuable information in assessing the HIF impacts, thus
the main focus in the proposed data mining and pattern extraction
process.

C. WT and Pseudo-Continuous WT

As the combinations of harmonic components contain valu-
able information on HIFs, it would be preferred to implement
time-frequency analysis on the current waveforms. Short time
Fourier transform (STFT) [28] or DFT through a sliding win-
dow [11] can be approached assisting the HIF detection process;
this is because the STFT offers a high frequency resolution;
however, this is achieved at the cost of a high computational
complexity [29], [30] and it is hard to provide accurate detection
performance utilizing the spectrum alone. On the other hand,
WT, first, offers a promising computing efficiency compared
to the STFT in time-frequency analysis, and, second, has been
widely applied for feature extractions in many real-world appli-
cations [17], [31], [32], including research on HIF detection [16],
[33], [34].

Fig. 3 illustrates a performance comparison of the STFT and
WT. It can be observed, from the spectrum in Fig. 3(b) and (f),
that the HIF current waveform is featured with more harmonic
components at larger than 5th orders, where the performance
of the HIF detection method in [9] will be easily compromised
by such harmonic pollution or noise interferences. Meanwhile,
comparing the scalograms in Fig. 3(c) and (d) with Fig. 3(g)
and (h), one can note that the results from STFT provide very
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Comparison of the STFT versus WT with: HIF-affected waveform and harmonic-injected waveform starting at ¢ = 20 ms with harmonic orders h = 3
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Morlet. (h) Daubechies 20.

detailed frequency information, and the scalograms from HIF-
affected waveform reveal very obvious features compared to
those from the harmonic-polluted waveforms; nevertheless, the
accuracy in frequency measurements is compromised in WT.
Therefore, a combination of WT and STFT is generally much
desired. However, this could highly increase the computational
burden of the detection mechanism, and in particular, challenge
the online applicability of the HIF detection schemes. In order
to archive a low-computing complexity and yet accurate design,
we select WT alone in this article for power waveform feature
extraction and HIF detection.

The WT can be seen as the computation process of the
similarities between the signal of interest z(¢) and the selected
wavelet. z(t) is here the measured single-phase waveform. The
WT calculation is defined as follows:

X (w|a,b) = % /_: z(t)T” (%) dt

where a, b are the scaling factor and time shift; ¥(¢) is the
selected wavelet (called mother wavelet whena = 1 and b = 0),
and “*” denotes the complex conjugate operator. With different
values of a and b selected, ¥(*=2) becomes the “daughter
wavelets” of ¥(¢) [35]-[37], and each value of a corresponds
to a pseudo frequency. Typically, the WT uses discrete scaling
factors a;, = 2%, where 7 is integer. Thus, the extracted feature
from each pseudo frequency is finite. To have more information
extracted and waveform feature redundancy in the scalogram,
a set of linearly increasing real numbers can be assigned to i,
and the WT then becomes pseudo-continuous (PCWT). Here,
the PCWT is defined as follows:

X [wlak, bx] = % g zn]¥” {M}

©6)

@)
ag

where T is the sampling time, and W is the number of data
sampled in the buffer. Choosing a proper type of wavelet and
adjusting the parameters correctly are very critical as they will

affect the covered range for the pseudo frequency and the PCWT
performance. Besides, the computing complexity can be reduced
and the response time efficiency can be improved by using well-
designed parameters since the online feature extraction process
requires uncongested real-time data streams.

D. Convolutional Neural Networks

CNNs are among deep machine learning techniques that
have been proven very effective in processing image-related
tasks [38]-[40]. Therefore, once the scalograms from WT are
generated, CNNs can be used as the HIF event detection engine
through classifying the scalograms. The CNN training process
mainly involves feature/representation learning for feature de-
tection and classification. In general, the execution of CNN for
HIF detection and classification is achieved through a set of
cross-correlation assessments as follows:

8P(m,n) = ZZZI“(m—I—v,n—i—w)Kp(v,w) (8)

where sP(m,n) stands for the convolutional layer’s output at
position (m,n) and pth channel; the uth convolutional kernel
is marked as K'"; and I denotes the image/data volume in the
uth channel. A complex convolutional layer is comprised of a
set of simple layers [41], as expressed in the following:

I, = pool (a(8)) &)
where I; stands for the Ith layer’s output volume; o(-) stands
for the nonlinear operation of the active function; and pool(-)
is a pooling (down-sample) operation in the pooling layer. The
abstraction ability of the network generally increases with the
number of stacked convolutional layers [42]. The final represen-
tations in a CNN’s last layer are usually reshaped to vectors and
fed into the fully-connected (FC) layers.
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Fig. 4. Series of integrated functions in the proposed HIF detection system.

III. PROPOSED FEATURE EXTRACTION AND HIF
DETECTION BY CNNSs

As each single-phase current waveform captured from the
upstream terminal in a radial power distribution system carries
information of the downstream terminal, we mainly focus on
detecting low-intensity HIFs which is one most challenging task
in electric industry. The workflow of the proposed HIF detection
technology is demonstrated in Fig. 4; it functionally consists of
the following four modules.

1) Signal Acquisition: The proposed framework shares the
same input waveforms of a typical PMU (or protective
relay with PMU functionality) from the Analog to Dig-
ital (A2D) processing module. It avoids any additional
A2D modules in the front-end, and makes the proposed
architecture an economically viable sensor solution. The
waveform data is stored in the cache for the subsequent
analytical processes.

2) Feature Extraction: This module applies pseudo-
continuous quadrature wavelet transform (PCQ-WT) to
the cached waveform data and generates scalograms. The
scalograms are matrices that contain signal signatures
corresponding to the HIF events in the power grid. The
scalograms are then quantized to digital images in order
to compress the data size.

3) Event Detection and Classification: The images obtained
in the previous stage are fed into a CNN that, with a
detection confidence, classifies whether there is an HIF
event. Finally, the detected event will be reported to the
local protection device or the control center.

As one can see, the proposed HIF detection system only
requires software-level modifications to the existing sensors
(e.g.,PMUgs, protective relays, etc.), with no additional hardware
investments. Here, we utilize a physics-guided machine learning
technique, as the overall detection system only requires offline
training. The training process is under the guidance of the
pre-recorded and/or simulated HIF waveforms as the training
dataset.

A. Improved HIF Model

The waveform assessment based on the HIF model presented
in Fig. 1(b) is adequate to some extent; however, to enrich the
proposed solution’s knowledge on a variety of HIF waveforms,
we propose a comprehensive HIF model shown in Fig. 5, where
the fault resistance and inductance are assigned to the positive
and negative branch. For simplicity, we name Zpp and Zpy
as positive and negative arc impedances, respectively. One ad-
vantage of this proposed model is its flexibility to approximate

Ir
Vi o0—m———

Fig.5. Proposed improved HIF model.

different HIF conditions including those studied in [1], [4], [5],
[9], [11], [14].

B. Proposed PCQ-WT Based Feature Extraction

In order to achieve a low computing complexity solution
with high-fidelity feature extraction performance, a modified
complex Gabor wavelet from [43] is adopted in this article.
Gabor wavelets have been widely used in two-dimension (2-D)
pattern recognition processes [43]-[45]. The modified Gabor
wavelet in this article is expressed as follows:

2
(o) = exp Gt =0) -xp (S5 ) 10
—_—

Periodic Component
Gaussian Envelope
where w,. is the central frequency which determines the pseudo
frequency of the feature extraction in the waveform. This can be
proved by the Fourier transform of this Gabor wavelet as

2
Fy(w) = aoy/7 - exp(—jwb) - exp (—%(w _ wc)z) (11)

when w = w,, the magnitude of Fy(w) is at its maximum; in
other words, the component with frequency w, in the sampled
waveform will have the maximum correlation with this wavelet.
Thus, the feature is extracted and highlighted in the scalogram.
Another advantage of this modified Gabor wavelet is that it has a
predictable narrow-bandwidth (11) due to the exponential oper-
ation, which makes it easier to determine its pseudo frequency.
By properly selecting ap in PCQ-WT, a desired bandwidth of
the pseudo frequencies is covered at w,, while the time shift b
plays no magnitude impact on (11). By substituting ¢ — b with
‘%‘b, the Gabor WT of each harmonic component in (5) turns
into

CAp o .

- (e:-(w:.t+¢:.) + e—.?(wht+¢h))

X(nlat) = [

—0a

x 0" (t_b) dt.
a

(12)
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According to the Hubbard—Stratonovich transformation [46]

a 5 /1 oo vy’ .
—— =4/ — : — S — g1 dy. (13
exp ( 2£ ) 2ra /_me"cp( 2a J'Cy) y- (13)
The WT of Gabor wavelet in (12) becomes

X (wnla,b) = eJ““(¢h+b) acgy/Te” 5B (awn -

N ﬂe—;whwm) - acgy/me- Flawnruy (1)
>

. .«
v

=)

It can be seen that the second term on the right side of (14) can
be neglected as the exponent in the last exponential operation
is a large negative. When wy = w./a, X (wp|a,b) reaches its
maximum value, indicating that the dominant feature of the
selected frequency is extracted. Here, we make

(15)

where -y is a constant. Accordingly, and based on (10), the length
of the Gaussian window in Gabor wavelet also adapts different
frequencies.

The proposed Gabor wavelet in the discrete time domain is

Ulnlay, by = exp( M) " (_M) |

ag a0

acy = we /7y

Applying different discrete scaling factors ay and time shift by,
we achieve the proposed PCQ-WT as follows:

i, w-1
X(wg|ak, bi) = ZI[R]‘IJ [T s(n — bk)] Z£
n=( o
c ’I’SZ —b 2
X exp (_j:—kTs(n — b)) — (;‘Z—ag-'c)) .
k
17)

If the pseudo frequencies of interest and the Gabor wavelet
bank are designed properly, a set of PCQ-WTs in form of a
vector X, can be generated conveying waveform features in
a certain frequency range. During both transient and steady
state operating modes, WT time-frequency analysis is conducted
along time, and a scalogram stream can be then achieved.

C. Proposed CNN Configuration for HIF Detection

With the PCQ-WT extracted features in form of scalograms
available, the HIF detection problem is converted to a supervised
scalograms classification problem. However, the classification
of the high-dimensional 2-D scalograms is challenging. specif-
ically, every frame of the obtained scalogram has hundreds
by hundreds (scales x time) pixels; it is very challenging to
process such high dimensional data through the conventional
pattern classification approaches. Here, we convert the PCQ-
WT scalograms into 2-D images and propose a compact CNN
architecture to classify the HIFs concealed in the scalograms
by the PCQ-WT. The proposed CNN has a simple architecture
for HIF detection, yet achieving a very fast processing time for
online applications.

7213

D. PCWT and CNN Parameter Sefting

The sampling rate F's for the signal and the feature extraction
is 7680 Hz which provides 128 samples per nominal fundamen-
tal cycle. The observation window for the PCQ-WT is set to 308
samples (40 ms). The time shift b for the modified Gabor daugh-
ter wavelets is 10 ms (77 samples) for simplicity. The scaling
factor a for the proposed PCQ-WT is chosen as 2¢, where i is
sampled uniformly from O to 8. The central frequency w, = 1152
and the pseudo frequency will roughly reach up to the 19th
order of harmonics. All the Gabor wavelets have 20 ms duration.
By this design, the computational complexity in computing the
scalograms is reduced, while the pseudo frequency bandwidth
coverage for feature extraction will not be compromised. The
scalograms fed into the CNN are cropped from 10 to 50 ms (of
the total 60 ms WT output)—i.e., observation+ wavelet length—
which has 40 ms (308 samples) duration.

The proposed compact CNN configuration for scalogram
classification is as follows: Input layer (256 x 308); Convo-
Iution (Conv.) layer (32 x5x 11); Max-pooling layer (3 x 3);
Conv. layer (32x5x5); Max-pooling layer (3 x 3); Conv. layer
(32x5x5); FC layer (200 x 1); FC layer (3 x 1). Conventional
images have homogeneous units on the horizontal and vertical
axes, while the scalograms axes carry different information
regarding the HIF events on either time or frequency. Therefore,
a wide kernel in the first Conv. layer that can extract more
information from the transitions along the time axis is used. The
stride of the first layer is (2, 3), and the remaining Conv. layers
use strides with asize of (1, 1). Besides, batch normalization [47]
is used in the last FC layer. In the last Conv. layer and the first FC
layer, Dropout [48] is used to prevent over-fitting. All activation
functions in the CNN are rectified linear unit (ReLU). We
choose cross-entropy as the loss function. One can see that our
proposed CNN is not that “deep” compared to the regular image
classification CNNs; the suggested compact CNN architecture
further reduces the computing complexity in HIF detection.

IV. CASE STUDY AND NUMERICAL EXPERIMENTS

A. Test Scenarios Configuration

The parameter specifications used for generating the test
waveforms are listed in Table 1. We, in particular, focus on
HIF event detection since conventional faults can typically be
detected by existing protective devices. Three test scenarios
(HIF event, load change event, and normal operation event) are
simulated. For each HIF simulation, all parameters are randomly
selected in the designated ranges. In each simulated waveform,
only one event occurs at a random point in time. The waveform
generation system is developed according to Fig. 1(a) and the
improved HIF model in Fig. 5. Gaussian noises with SNR of
40 dB are added to the ac voltage source to approximate the
thermal and measurement noises in different conditions.

A total of 20 000 samples from the test waveforms are
simulated for each event; therefore, a total of 60 000 samples
(wavelet scalogram) are simulated in the MATLAB/Simulink
environment. A total of 48 000 samples are randomly selected
as the training dataset, 6000 samples for validation, and 6000
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Fig. 6. Test waveform simulation results. (a) HIF event. (b) Load increase event; both simulated events start at £ = 20 ms.

TABLE I
PARAMETER SPECIFICATIONS FOR GENERATING THE TEST WAVEFORMS

System Setting

Vouse * 13.8kV Stase 0.5 MW
Fs 7.68kHz Line Length | 2km
Stioad 0.5-1.5pu Pficad 08-1
HIF Model Setting
Parameter Range Parameter Range
Zep 0.02 pu-1.5pu Zex 0.02 pu - 1.5 pu
pfee 0D-1 juisy 0-1
Vir 0.08 pu-065pu | Vi 0.08 pu - 0.65 pu
Fault Location | 1% - 99%

* :An SNR of 40 dB is added to the ac voltage source.

samples for testing datasets. For training the neural network and
increasing the versatility of the CNN, the generated waveforms
are manually imposed by white Gaussian noise with 30 dB SNR.
We use Adam [49] as the optimizer, which has the initial learning
rate of 1 x 107#, and weight decay of 1 x 10~>. We trained
the proposed CNN 120 epochs. The best validated model was
recorded and tested.

B. Experimental Results and Analysis

1) Feature Extraction: The extracted features from an HIF
and a load change events are demonstrated in Fig. 6, where the
main energy concentration with high intensity is marked by red
standing for the fundamental frequency component extracted
from the waveforms. In Fig. 6(a), the HIF at £ = 20 ms increases
the main energy concentration at ¢ = 30 ms, which matches
the corresponding magnitude increase in Fig. 3(e). This phe-
nomenon can also be observed in Fig. 6(b), as aload increase will
indeed increase the magnitude of the current waveform. When
evaluating high frequency areas in both scalograms, one can see
that the higher frequency range (scale from O to 96) has less
discontinuous patterns compared to the lower frequency range
(scale from 96 to 192). However, these frequency portions (96
to 192) are discontinuous with ripple shape carrying significant
differences in Fig. 6(a) and (b).

100 ~—
—~—
2 804
v
=
60 4
g
5 404
51
< 204
oL
p,,ew Load Change .‘ Normal
q‘w{ e Normal Load Change
'bey HIF

ot Labe

Fig.7. Testresults of the proposed CNN framework for online HIF detection
and classification.

For the HIF scalogram, the ripple pattern is formed at { =
35 ms and becomes stable afterward; thus, one can see that it
will take less than 20 ms (PCQ-WT window length) to reveal
the corresponding HIF patterns—some pyramid shape ripples
appear in a group. When there is a load increase event, the load
change feature takes 10 ms to emerge [see the input waveform in
Fig. 6(b)] and the impact remains consistently present. However,
for scale from 96 to 192, there is no pyramid shape ripple found
as those in Fig. 6(a). Also, only the intensity of the existing
ripples slightly increases. One should notice that the patterns
extracted from this simulated HIF event approximately covers
the scale from 100 to 200, which roughly corresponds to the
12th to 5th order harmonics in the frequency span.

2) Event Detection: The HIF detection test results are sum-
marized in the confusion matrix in Fig. 7, where the true label
stands for the actual tested events, and the predicted label corre-
sponds to the classification outcomes of the CNN module. The
average accuracy of the proposed HIF event detection scheme
is found 99.95%. To further examine the online event detection
and classification performance, we used a workstation with a
stock eight-core AMD Ryzen 3800X CPU as the computational
platform. We transfer the PCQ-WT and CNN modules into
MATLAB 2020a to record the computational time on one single
core of the CPU. The overall time for processing the PCQ-WT
and CNN is recorded as 6.3 &+ 0.6 ms, confirming a promising
solution to be used in real-time HIF detection applications.
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Fig. 8.

We also test the proposed framework on a recorded waveform
of 0.45 s duration, the result of which is shown in Fig. 8. The
top heat-map is the event detection results over time, where the
classification confidence rate is marked with the color bar. One
should note that, during the Normal operating event, the confi-
dence rate is very high and the classification result is accurate
even though the waveform is polluted with 30 dB Gaussian noise
and the distortion is very obvious. Relatively lower confidence
rates always exist during the transitions between two different
events.

The Load Change event is detected accurately within 10 ms
and it takes another 40 ms for the detection scheme to report
a normal condition event. Meanwhile, at the moment of HIF
occurrence, the CNN module classified the first two cycles
of HIF-contained waveform (from ¢ = 325 ms to ¢ = 355 ms)
mistakenly as the load change event. The reason lies in the fact
that a load change event [see Fig. 6(b)] reveals similar patterns
at the very beginning when compared to the HIF event [see
Fig. 6(a)]; therefore, it is very hard to make a correct detection
and classification decision at the exact time when the HIF event
happens. However, when the waveform magnitude stabilizes,
the CNN module shows a high confidence rate in classifying
the HIF event correctly. Also, one can see that the maximum
peak value of the current waveform affected by an HIF event is
observed 1.25 p.u. which will barely trip the protective relays in
the absence of the proposed HIF detection scheme.

In summary, the proposed solution provides satisfactory re-
sults in detecting low-intensity HIFs under noisy measurements
and can distinguish it with load change events. Moreover, the
overall detection accuracy is desirable (99.98%) at a promising
speed of within 40 ms (33 ms delay plus 6.3 & 0.6 ms processing
time).

V. CONCLUSION

This article proposed an effective scheme that leverages Al
advancements for detecting HIFs in power grids and improving
electrical safety. The proposed solution functionally integrates
a PCQ-WT feature extraction tool using a modified Gabor
wavelet and a compact CNN-based event detection technique.
Experiment results demonstrated that the proposed analytics
successfully achieved an ultra-fast (within 40 ms) and accurate
(99.95% accuracy) HIF detection performance even under noisy
measurements.

Online HIF detection on a simulated single-phase current waveform: Detected result (top) and original waveform (bottom).

The proposed function could be embedded within the existing
PMUs and/or other IEDs that are capable of capturing and
processing the power waveforms. Future work can be focused
on first enriching the proposed approach with a variety of HIF
models and a further strong pool of HIF waveforms, second, in-
vestigating HIF intensity measurements through CNNSs or other
machine learning algorithms, and third, hardware-in-the-loop
performance analysis when the proposed HIF detection and
localization function is embedded into the PMUs, protective
relays, and/or other IEDs.
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