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Optimal Power Flow Models With Probabilistic Guarantees: A
Boolean Approach

Miguel A. Lejeune

Abstract—The legacy Optimal Power Flow (OPF) dispatch in
electric power grids with high proliferation of renewables can be
at risk due to the lack of awareness on major uncertainties, and
sudden changes in renewable outputs. This may, in turn, result in
conditions where transmission line power flows are significantly
exceeded, and subsequent automatic protective actions take place.
This letter presents a new generalized joint chance-constrained
model for the OPF problem that effectively captures the stochastic-
ity in renewable power generation in the system. In dealing with the
complexity, and non-convexity of the proposed optimization model
with probabilistic guarantees, we propose a novel tractable Boolean
method to transform the model into an equivalent deterministic
mixed-integer linear problem, which can be solved quickly, and
efficiently by off-the-shelf solvers. Numerical results verify the
effectiveness of the proposed model, and the suggested Boolean
methodology.

Index Terms—Boolean, joint chance constraints, optimal power
flow (OPF), stochastic programming, uncertainty.
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Set of all system thermal generating units.
Set of all network buses.

Set of all wind farms in the network.

Set of all system transmission lines.

Set of all uncertainty scenarios.
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. Parameters

Constant cost of each power generating unit.
Vector of all 1’s.

Wind power forecast (MW).

Demanded load at each load point (MW).
Weighted-Laplacian susceptance matrix.
Modified susceptance matrix.

Succeptance of transmission line 7j.
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Maximum flow limit of transmission line 7.

Yg Maximum power capacity of generator g.
y;“i“ Minimum power capacity of generator g.
D Reliability level for joint chance constraints.
w Realization (scenarios) of random variables.

m Mean change in wind power.
C. Random Variables

¢ Multivariate random variable representing the stochastic
changes in wind power.

D. Decision Variables

y Generating unit output power (MW).
a Affine control variable of each generator.
0 Updated phase angel at each node.

I. INTRODUCTION

IDESPREAD deployment of distributed energy re-
Wsources (DERs) with high fluctuations and inherent
stochasticity in power grids has brought about unique challenges
to the legacy grid operation and control paradigms. Included
among which is the standard Optimal Power Flow (OPF) mech-
anism, the solutions to which may be frequently challenged by
sudden changes in renewables. A typical OPF engine receives
estimates of the loads and renewable generation profiles for the
upcoming time window and minimizes the system operation
cost while adhering to operating limitations of the network’s
transmission lines and generating units. This is particularly
concerning when the exogenous fluctuations in renewable re-
sources are large, which may result in the transmission line flows
significantly exceeded with potentially-devastating protection
and stability consequences system-wide.

With the proliferation of uncertainties in generation portfolios
and demand profiles in power grids, a wide range of analytical
and simulation techniques for probabilistic OPF analysis has
been presented and discussed in the literature [1]-[3]. In recent
years, chance-constrained programming for the OPF problem
under uncertainty has been also introduced [4]-[9]. In particular,
reference [10] introduced a Chance-Constrained Optimal Power
Flow (CC-OPF) model: assuming the availability of reliable
renewable forecasts, it searches for the most probable realiza-
tions of the line overloads under renewable uncertainties, and
satisfies all model constraints with a high probability while
minimizing the system operation cost. Built on and different
from the state-of-the-art CC-OPF models with a series of single
chance constraints, we propose a CC-OPF model with joint
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probabilistic constraints, i.e., joint chance constraints. We fur-
ther develop a novel Boolean modeling methodology to solve
this class of stochastic optimization models considering discrete
distributions for wind power uncertainty. A linear deterministic
reformulation of the stochastic problem is next developed which
elicits sets of minimally sufficient conditions to satisfy the
proposed joint probabilistic constraint. The use of a joint chance
constraint is motivated here to capture the actual reliability of the
power grid as a whole. In contrast, the reliance upon a number of
individual chance constraints enforcing a high reliability level
for each single probabilistic constraint considered independently
of the others could result in a low overall reliability of the entire
power grid. The multivariate distribution of the vector of random
variables is here represented by a large number of scenarios.
The proposed model is computationally efficient in large-scale
power grids with large number of binary variables. The proposed
approach addresses a timely need for effectively managing pre-
vailing uncertainties in power grids under stochastic risks.

II. Cc-OPF MODEL FORMULATION WITH JOINT
PROBABILISTIC CONSTRAINTS

The CC-OPF optimization model with joint probabilistic con-
straints has an objective function that minimizes the expected
cost of the stochastic generation over a varying wind power
output ¢, subject to a set of constraints [10]:

CC - OPF:

min E¢ ) [hy(yg — (€7 ¢)ay)] (M

geG

st Y ap=1, a>0, o=0icV\G (2
geG
> Wit mi—di)=0, y>0 (3)
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The objective function, composed of a fixed term and a term
that varies with wind, reflects an affine control strategy that al-
lows the system generating units to respond to wind fluctuations
between the current and the next—e.g., fifteen minute—time
intervals. The decision variables in the proposed CC-OPF model
are Y4, g, and 0. Constraint (2) sets the basic conditions needed
by the affine control, i.e., to assume that all system generators’
governors involved in controls always meet the generation-load
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balance in response to wind fluctuations proportionally. Con-
straint (3) represents the system-wide power balance equation,
where 11; = 0 for ¢ ¢ W. Constraint (4) states the stochastic
power flow equations, in which @ is formulated in (5). Note that
Bin(5)isan (n — 1) x (n — 1) matrix derived as follows

-1
B B 0
0 O

where B is a sub-matrix obtained by eliminating the same
column and row n of the susceptance matrix B, where n is
neither a generator bus nor a wind farm bus, i.e., n ¢ (G U W)
[10]. Constraints (6) enforce the transmission line flows within
the corresponding capacity limits for all lines k in the set T con-
necting bus 7 to bus j in the system. The proposed joint chance
constraint (7) with random technology matrix enforces that the
produced power from each thermal generating unit always stays
within its minimum and maximum generation capacity limits
with a pre-defined reliability level p.

1II. BOOLEAN REFORMULATION METHOD

The main challenge with the standard scenario approach
used to solve chance-constrained problems is that they typically
require the introduction of one binary variable for each scenario
and that their continuous relaxation is loose. The Boolean re-
formulation method permits to alleviate the above-mentioned
issues as it allows for the derivation of a deterministic, compact,
and exact mixed-integer linear programming reformulation of
the chance-constrained problem where the number of binary
variables does not depend on the number of scenarios used to
represent uncertainty (this feature will be later highlighted in
Theorem 1 and in the numerical experiments). The Boolean
approach constructs the set of recombinations, binarizes the
probability distribution, represents the feasibility of the chance
constraint with a partially defined Boolean function, from which
it extracts a system of mixed-integer inequalities providing an
equivalent characterization of the feasible area of the chance
constraint. Next, we describe succinctly the Boolean framework.

1) Binarization and Recombinations: To simplify the expo-
sition, set £ = [& = eT¢ & = —€T(], Twy = [Thay = (yy —
Yy Jag Toxg = (y™y,)/ag), and I = {1,2} which allows

g
the chance constraint (7) to be rewritten in a more compact form:

P((<Tz)>p & P& <Tizy, geGicl)>p. (8)

The p-sufficiency concept [11] is used to derive sufficient
conditions for (8) to hold. A realization w” is p-sufficient if and
only if P(¢ < wk) > p and is p-insufficient otherwise [11].

Let F; denote the marginal probability distribution of &;.
The univariate-quantile inequalities F};(wf) > p,i=1,...,|I|
define the necessary conditions for (8) to hold. The set of
recombinations 2 = Cy x ... x Cj7 [12] with

Ci={wf FWw)>pk=1,...,Q},iecl (9

includes all points that can be p-sufficient.
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The set (2 is partitioned into the sets of p-sufficient QF :=
{wF € Q: F(wF) >p} and p-insufficient Q™ := {w" € O :
F(w") < p}, recombinations. The two scenario index sets K
and K~ are such that Q = {w¥ : k € K} and Q™ = {w¥F : k €
K }.

The next step is the binarization of the recombinations with a
set of cut points. Let n;, 7 € I be the number of cut points sorted
in ascending order (c¢;; < ¢;2 < ...) of each component i of the
random vector ¢. The binarization of w’ maps it to the vector

pE=[pk,.... Bk, ] with
Z-kl:lif(,ul’-c > ¢, = 0otherwise [ =1,...,n;,7€ I. (10)

The binarization process is carried out with the sufficient-
equivalent set of cut points C' = (C1,Cy, ..., Cjy) [11] with
C;,4 € I defined by (9). The binary mapping of w” into 3* with
the sufficient-equivalent set of cut points is injective over €,
and ensures that QE N Q]} = (), with Qg and Q]} denoting the
binary images of Q" and )~ obtained via (10), and that Qg and
Q) are disjoint. The binary images of the recombinations allow
for modeling of the feasible area of (8) with a partially defined
Boolean function, from which we extract, in the next subsection,
a system of mixed-integer inequalities representing exactly the
feasible region of (8).

2) Equivalent Reformulations: Lejeune [11] and Lejeune and
Margot [12] have shown that it is possible to derive, from the par-
tially defined Boolean function obtained from the above-defined
binarization process, a set of mixed-integer linear inequalities
representing the feasible area of (8).

Theorem 1: Let (*(i) =max{1 <1 <mn; | Bk =1}, i¢€
I,k e K and v, € {0,1},4 € I,1 <1 < n; be binary vari-
ables, the number of which is equal to the number of cut
points. Let 0;;,7 € I,1 <[ < n; be parameters measuring the
distance between two consecutive cut points ¢;; and ¢;;41 as-
sociated to i: 041 = ¢ji41 —Cc,t € I,l=1,...,n; — 1 and
0;1 = ¢;1,1 € 1. The chance constraint CC can be equivalently
rewritten as:

> i@ =1 ke K- (11)

icl

Vig-r=va  t€1,2<1<n; (12)

=1 del (13)

v €{0,1} iel, 1<i<n; (14)

Tixy > ioin’il tel,ge G (15)
=1

The equivalence between (8) and (11)-(14) was demonstrated
in [12, p.945, Theorem 7]. As shown by the above formulation,
the number of binary variables is equal to the number of cut
points used in the binarization process (see (10)) and does not
increase monotonically with the number of scenarios used to
represent uncertainty, which is a key challenge in the traditional
scenario reformulation method.

The equivalent deterministic reformulation of the CC-OPF
optimization problem with joint probabilistic constraints and
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random technology matrix expressed with the original variables
Yg» (g, and 0 is the following mixed-integer linear problem:

REF — CC - OPF:
min  E¢ Z [hg(yg - (eTC)O‘g)]

geG

st (2)—(6); (11)—(14)

ny
(yg—up™) /g = > o1m g€G

(16)
=1
(U™ —yg)/og > > o1 g G (17)

=1
Note that the proposed model is generic enough to accommo-

date additional chance constraints, and the reformulation method
would apply the same way.

IV. NUMERICAL RESULTS

The performance of the proposed analytics is tested on the
IEEE 118-bus test system with G = 19 conventional generators,
‘W = 4 wind farms, and L. = 185 transmission lines, the data on
which are made available in [13]. We set the reliability parameter
p to 95% and generate two sets of scenarios of size |€2| =5,000
and 10,000. We compare two approaches, namely the standard
scenario-based integer reformulation and the proposed Boolean
reformulation. The problems are solved with the Gurobi 9.0.0
solver.

The basic scenario-based approach for reformulating the
chance constraint (8) is to introduce one binary variable for each
scenario. The notation €2 refers to the set of all realizations (sce-
narios) w® € R‘i‘, k € K* that characterize the joint probability
distribution function F of £. Let ¢* be the probability of w”, 6%
be a binary variable taking value 1 if the conditions imposed by
the scenario wy, are violated for at least one g € I, and equal to
0 otherwise, while M* is a sufficiently large positive number.
The chance constraint can be reformulated as follows:

yy — (eTwh)a, + MFQF > y’gni“, geG (18)
Yg — (eka)ag — MkQF < Yy, g€ G (19)
> ot <1-p (20)

keKS
0% € {0,1}, k € K (1)

The knapsack constraint (20) prevents the sum of the probabil-
ities of the violated scenarios to exceed the complement (1 — p)
of the enforced reliability level.

We solve two problem instances in which respectively 5,000
and 10,000 scenarios are considered to account for the uncer-
tainty of the wind power and report the results in Table 1. We
denote by ¢ the CPU time in seconds, by n 5 the number of binary
decision variables, by n¢ the number of constraints, and by G
the optimality gap of the best solution found in 1 hour and half
of CPU time.
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TABLE I
COMPARISON OF THE BOOLEAN- AND SCENARIO-BASED
REFORMULATION METHODS

Reformulation Method
€2 Boolean Scenario
ng ne t G npg nge t G
5,000 20 780 0.3 0 5,000 140,279 5,400 | 0.105%
10,000 19 780 0.3 0 10,000 280,404 | 5,400 | 0.103%
TABLE II
OUT-OF-SAMPLE VALIDATION
18] p Pv
5,000 95% 3.28%
10,000 | 95% 2.29%

The Boolean reformulation method solves the largest (i.e.,
|2|= 10,000 scenarios) instance to optimality in less than 0.3
seconds, while the scenario-based model could not be solved
in 5,400 seconds. This can be easily explained by the size
and complexity of the reformulations obtained with the two
approaches. First, the Boolean reformulation contains more than
50 times less binary variables than the scenario reformulation
does (i.e., 19 vs. 10,000). Second, the number of constraints in
the Boolean reformulation is 359 times smaller than that in the
scenario reformulation (780 vs. 280,404). This illustrates the
promising advantage of the proposed Boolean method which
provides a computationally efficient reformulation that permits
to take into account many more scenarios, thereby providing
a much finer representation of uncertainty, than the standard
scenario method. The scalability of the Boolean reformulation
is highlighted in Table I: the solution time, the number of
constraints and variables are each invariant with the number
of scenarios. In particular, the number of binary variables is not
an increasing function of the number of scenarios (20 for 5,000
scenarios vs. 19 for 10,000 scenarios).

In order to test the robustness of the proposed model, we
have carried out the following validation test. We have generated
1000 additional scenarios, thereby forming the scenario test set.
Since these scenarios were not used to construct the model and
determine the optimal policy, they can be used to validate the
robustness of the model and perform an out-of-sample validation
study. In particular, we have checked how the optimal solution
obtained for each considered problem instance fares on the
testing scenario set and the application of the optimal policy
would result or not in the violation of the model constraints
and would permit or not to attain the prescribed probability
level p. In Table II, we report for each problem instance the
proportion py of scenarios in the testing for which apply-
ing the optimal policy leads to the violation of at least one
constraint.
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We can see that in each instance the value of py is below the
complement (1 — p) of the enforced reliability level p, which
confirms the out-of-sample robustness of the model.

V. CONCLUSION

This letter introduced a new class of power grid chance
constrained optimization problems with joint probabilistic con-
straints. Applied to the legacy OPF models with chance con-
straints (i.e., the CC-OPF), a novel Boolean modeling method
is proposed which captures the interactions between the com-
ponents of a multidimensional random vector to reach a pre-
defined system-wide reliability level. As numerically demon-
strated and outperforming the scenario-based method, the pro-
posed methodology allows for a very fast solution of stochastic
optimization models in which the random variables are repre-
sented by a large number of scenarios.
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