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In this paper, we identify optimal swimming strategies for drag-dominated swimmers with a
passive elastic joint. We use resistive force theory (RFT) to obtain the dynamics of the system.
We then use frequency domain analysis to relate the motion of the passive joint to the motion of
the actuated joint. We couple this analysis with elements of the geometric framework introduced
in our previous work aimed at identifying useful gaits for systems in drag dominated environments,
to identify speed-maximizing and efficiency-maximizing gaits for drag-dominated swimmers with a
passive elastic joint.

I. INTRODUCTION

A common strategy for locomotion among animals and
robots is to couple cyclical shape changes (gaits) to an
interaction with the environment. A long term research
focus of the geometric mechanics community has been
finding geometric principles that describe what makes a
gait effective. Many geometric tools resulting from this
line of research have only been developed for systems
with a fully actuated shape space. Passive elastic joints,
such as flexible fins and tails, however, play an important
role in locomotion in many systems [1]. In this paper,
we expand on the geometric framework that was devel-
oped in [2, 3] to identify optimal gaits for fully actuated
swimmers in low Reynolds number fluids, extending it to
swimmers with passive elastic shape elements. We then
use this extended framework to identify optimal gaits for
swimmers in drag dominated environments with passive
elastic shape elements.
Our analysis draws on a rich history of work in the ge-

ometric mechanics community aimed at using concepts
from differential geometry to understand how systems
locomote in a low Reynolds number fluid, what the main
factors that determine the efficiency of gaits are, and
what optimal gaits look like for these systems. In par-
ticular, we know that the efficiency of a gait (speed at
a given power level or power required at a given speed)
depends on its path, period, and pacing in the system’s
shape space:

1. The net displacement per cycle corresponds to the
amount of “constraint curvature” the gait encom-
passes. Gaits that maximize displacement per cy-
cle thus enclose sign-definite regions of the system’s
constraint curvature functions (CCFs), which can
be obtained from the dynamics of the system [4, 5].
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2. At a given level of average power consumption, the
minimum time taken to execute one cycle of the
gait corresponds to the path length of the gait tra-
jectory under a Riemmanian metric on the shape
space, meaning that shorter gaits can be executed
more frequently or at a lower power level than
longer gaits [6].

3. Gaits that progress through their gait kinematics
at a steady pace have a lower average power cost
for a given frequency than those that “surge” and
“dwell” at points in the cycle, or equivalently, can
be executed at a higher frequency for a given aver-
age power cost [7].

The process of finding efficient gaits thus involves strik-
ing a balance between maximizing the enclosed constraint
curvature and minimizing the metric-weighted perimeter
of the gait and then finding a steady-pace parametriza-
tion of the resulting curve. In [2, 3, 8], we built a vari-
ational framework based on this geometric insight that
identifies optimal gaits for fully-actuated drag-dominated
kinematic systems.
In this paper, we extend this framework to identify op-

timal gaits for swimmers with passive elastic joints and
demonstrate the framework on systems with a single ac-
tive and a single passive joint. The ways in which the
dynamics of swimmers with passive elastic joints differ
from the dynamics of fully actuated swimmers are:

1. Because of the coupling between the actuated and
passive joints, the passive swimmers can execute
only a subset of the gait kinematics the fully actu-
ated swimmers can execute.

2. This coupling between the actuated and passive
joints also endows each gait achievable by the pas-
sive swimmer with a unique pacing. Hence, the
pacing cost cannot be minimized separately from
the kinematic cost.

As illustrated in Fig. 1, we address the two problems
introduced by the presence of passive elastic joints: we
first use frequency domain analysis to analytically ap-
proximate the motion of the unactuated joint in response
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Substituting the expression for power dissipated
from (10) provides a measure of the cost in terms of the
metric and shape trajectory,

E =

ˆ T

0

P (t)dt =

ˆ T

0

ṙTM(r)ṙdt. (13)

This cost depends on the geometry, time period and pac-
ing of a given gait. As discussed in [7, 30, 31], for fully
actuated swimmers this cost can be broken down into a
combination of a pacing-invariant cost that measures the
pathlength s of the trajectory through the shape space
(weighted by the shapespace metric M), and a pacing
cost σ that measures the deviation from optimal pac-
ing. Finding a gait that minimizes the energy dissipated
into the surrounding fluid E is thus equivalent to find-
ing a gait the minimizes the metric-weighted pathlength
s, and executing said gait at a constant-power pacing to
minimize σ.
The pathlength s of a curve r(t) under a metric M is

s =

˛

ds =

˛

√

drTM(r)dr. (14)

Changing the variable of integration from shape r to time
t, we can relate the pathlength to the square root of power
expended:

s =

ˆ T

0

√

ṙTM(r)ṙdt =

ˆ T

0

√

P (t)dt (15)

Because moving with constant power is the least-costly
pacing with which to execute a motion under viscous
drag [7], we can further simplify (15) as

s =
√

PavgT, (16)

where Pavg is the average power utilized while executing
the motion. This pathlength provides a geometric cost
for the best-case execution of the kinematics in a gait
cycle.
The additional cost for a non-optimal pacing can be

represented by squaring the difference between the aver-
age and instantaneous rates at which the gait is being
followed (measured as s per time), and then integrating
over the time during which the gait is being executed,

σ =

ˆ τtotal

0

(

stotal
τtotal

− d

dτ
(s(τ))

∣

∣

∣

τ=t

)2

dt, (17)

where τtotal is the time period of the gait, stotal is the
length of the gait under the metric M, and s is distance
traveled along the gait as a function of time correspond-
ing to the given pacing. If the gait is proceeding at con-
stant power, stotal

τtotal
is equal to the rate at which s changes

with time, so σ measures the extent to which the pacing
lags and leads the optimal pacing.
Any pacing other than constant-power will make the

trajectory take longer for a given average power (or in-
crease the average power required to complete the motion
in a fixed time).

III. FREQUENCY DOMAIN ANALYSIS

The key difference in the dynamics of a swimmer with a
passive joint when compared to a fully actuated swimmer
is the coupling of the motion of the actuated and unac-
tuated joint. In this section, we explore this difference
further and present a way of accurately approximating
the motion of the unactuated joint from the motion of
the actuated joint using frequency domain analysis. The
method of linearizing the passive dynamics to obtain ap-
proximate limit cycles presented in this section is in the
same vein as the limit cycle analysis presented in [13],
where a two-link system with static separation between
centers of mass and buoyancy was studied.

A. Dynamics of the passive elastic joint

As discussed in [4, 5], the mapping between joint ve-
locities and torques on the joint in the fully actuated
swimmers is encoded in the metric calculated in (8),

τ = M(r)ṙ. (18)

Because the systems considered in this paper have only
one active and one passive joint, this relationship be-
comes

[

τ1
τ2

]

= M(α1, α2)

[

α̇1

α̇2

]

. (19)

In the case of the swimmers with an elastic joint, because
the actuation in the second joint is replaced by an elastic
element with stiffness k, the torque τ2 is always equal to
−kr2, i.e.,

[

τ1
−kα2

]

= M(α1, α2)

[

α̇1

α̇2

]

. (20)

The first equation in this system of equations,

τ1 = M11α̇1 +M12α̇2, (21)

thus relates the torque in the actuated joint to the mo-
tion of the joints and can be used to calculate the torque
required to effect any feasible motion. The second equa-
tion in this system of equations,

−kα2 −M22α̇2 = M21α̇1 (22)

or equivalently,

− k

M21

α2 −
M22

M21

α̇2 = α̇1 (23)

encodes the dynamics of the passive elastic joint in terms
of the active joint, and thus defines the space of feasible
motions.
Since the joint α1 is assumed to be the actuated joint,

we have full control of α̇1. The value of M depends on
α1 and α2. Its dependence on α1 and α2 conveys how
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in (33) to a more geometric definition in (34) was possi-
ble because we knew that the optimal pacing keeps the
rate of power dissipation constant [7]. In the case of
swimmers with passive joints, the response of the passive
joint is dictated by the dynamics of the active joint, as
illustrated by the Bode plots shown in Fig. 7. As a re-
sult, there is a unique pacing associated with every gait
the passive swimmer can execute. Changing the pacing
of the actuated joint changes the response of the passive
joint as shown in §III and hence the shape of the gait.
Thus to find the most efficient gait for the Purcell swim-
mer with a passive elastic joint, we have to directly use
the definition of efficiency in (33).
While we could choose a constant power pacing for

all gaits for fully actuated swimmers, in the case of the
Purcell and T-link swimmers with a passive elastic joint,
every gait that respects the passive dynamics of the elas-
tic joint comes with an inherent pacing. Thus for a given
spring stiffness of the passive joint, the gait that maxi-
mizes forward velocity comes with a power requirement
associated with it. Even if we are capable of giving the
system more power, there is no way for the system to
utilize that power to go faster. Hence for the swimming
systems considered in this paper, there are two mean-
ingful measures for comparing different gaits that lead
to different definitions of gait optimality: Gaits can be
compared by

1. Comparing the average speeds they produce (η =
gφ
T
)

2. Comparing their energetic efficiency (η1 in (33))

B. Gait parametrization for passive swimmers

We use a truncated Fourier series to parametrize the
gaits. This choice of parametrization lets us accurately
approximate a large family of smooth periodic gaits. The
framework introduced in [8] uses a gradient descent algo-
rithm to identify gaits that maximize efficiency as defined
in (34). During the gradient calculation process outlined
in appendix B, it is useful to think of the gait as being
parametrized by a series of waypoints. We can generate
these waypoints from the Fourier parametrization. We
use the gradients calculated at each of these waypoints
to calculate gradients with respect to the Fourier series
parametrization.
In the case of swimmers with a passive joint, we let

the actuated joint trajectory α1(t) be given by a fourth
order Fourier series,

α1(t) = a0 +

4
∑

i=1

ai cos
(2πi

T
t
)

+ bi sin
(2πi

T
t
)

(35)

Using (25), i.e. the transfer function relating the move-
ment of the active and passive joints, we obtain the re-

sponse of passive joint to α1(t) as

α2(t) = L−1(H(s)L(α1(t)). (36)

Using explicit evaluation of the transfer function
from (27) and (29), we can write the steady state re-
sponse of the passive joint as

α2(t) =

4
∑

i=1

ci cos
(2πi

T
t
)

+ di sin
(2πi

T
t
)

, (37)

where ci and di are functions of ai and bi and T .
Using this low-order Fourier series parameterization of

the gait, we can generate the direct transcription way-
points, calculate the gradient of the objective function at
each waypoint (details of this gradient calculation process
for speed-maximizing and efficiency-maximizing gaits are
presented in §V and §VI respectively), then project these
gradients onto the Fourier basis, to obtain gradients with
respect to the Fourier series parameters.
If the system were fully actuated, we could move the

Fourier series parameters along these calculated gradient
directions to obtain the optimal gait. In the case of pas-
sive swimmers, the Fourier coefficients of the unactuated
shape direction (ci, di) are functions of the Fourier shape
coefficients of actuated shape direction (ai, bi). There-
fore, to find the correct gradient directions for the Fourier
coefficients of the actuated shape, we have to account
for the change in the unactuated shape direction that a
change in the actuated shape direction would produce.
For an objective function f that depends on ai, bi, ci

and di, we can calculate the total derivatives of f with
respect to ai and bi as

df

dai
=

∂f

∂ai
+

∂ci
∂ai

∂f

∂ci
+

∂di
∂ai

∂f

∂di
(38)

df

dbi
=

∂f

∂bi
+

∂ci
∂bi

∂f

∂ci
+

∂di
∂bi

∂f

∂di
, (39)

where ∂ci
∂ai

, ∂ci
∂bi

, ∂di

∂ai
and ∂di

∂bi
are directly taken from the

transfer function coefficients (32)

∂ci
∂ai

= A2 (40)

∂ci
∂bi

= A3 (41)

∂di
∂ai

= −A2 (42)

∂di
∂bi

= A3. (43)

We use these total derivatives to calculate the correct
gradient directions for the Fourier coefficients of the ac-
tuated shape variables, which account for the fact that
in passive swimmers, a change in the shape of input to
the actuated shape variable affects the response of the
passive elastic joint.
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constraint curvature value and how changes in parame-
ter values move the gait’s trajectory through the shape
space.
Formally, the multiplication of the gradient of the

boundary and the integrand evaluated along the bound-
ary is the interior product [41] of the boundary gradient
with the integrand,

∇p

¨

φa

D(–A) =

‰

φ

(∇pφ) ⌟D(–A). (50)

In systems with just two shape variables, the interior
product reduces to a simple multiplication between the
outward component of ∇pφ and the scalar magnitude of
the Lie bracket,

∇p

¨

φa

(−DA) =

˛

φ

(∇p⊥
φ)(−DA). (51)

This gradient calculation is illustrated in Fig. 15. The
gradient of the enclosed area with respect to variations in
the position of pi, i.e. ∇pi

φa in the e‖ and e⊥ directions,
is the change in triangle’s area as pi moves. Because
the triangle’s area is always one half base times height
(regardless of its pitch or the ratio of its sidelengths),
this gradient evaluates to

∇pi
φa =

[

e‖ e⊥
]

[

0
ℓ/2

]

. (52)

Note that this term matches the right-hand side of (51),
with only normal motions of the boundary affecting the
enclosed area.

B. Frequency gradient of the optimal input to the

actuated joint

In the case of the fully actuated Purcell swimmer, the
shape of the gait, and therefore the displacement pro-
duced by executing the gait, are independent of the time
taken to execute the gait. This is not true in the case of
the Purcell swimmer with a passive elastic joint.
In this subsection, we examine the gradient that guides

the optimizer towards the optimal frequency of input to
the actuated joint. When the time period required to
execute the gait is changed, the shape of the gait changes
due to the coupling between the frequency of input to
the actuated joint and the response of the passive joint
as described in §III. Changing the time period T thus
changes not only the frequency of the gait cycle but also
the displacement produced per cycle.
We use the chain rule to calculate this gradient,

∂

∂T

(gφ
T

)

=
1

T

∂gφ
∂T

− gφ
T 2

(53)

=
1

T

(

∂gφ
∂α1

∂α1

∂T
+

∂gφ
∂α2

∂α2

∂T

)

− gφ
T 2

(54)

Because α1 is the actuated shape variable and the shape
of the input actuation is independent of the frequency of
actuation, ∂α1

∂T
reduces to zero. Therefore, the gradient

of speed with respect to T reduces to

∂

∂T

(gφ
T

)

=
1

T

(

∂gφ
∂α2

∂α2

∂T

)

− gφ
T 2

. (55)

The first term of the right hand side of (55) captures
the contribution to the velocity of the gait caused by the
change in the shape of the gait resulting from a change
in T . The second term accounts for the fact that, even
without a change in the shape of the gait, an increase in
the time required to execute the gait would result in a
decrease in the velocity of the gait.

C. Passive Purcell and T-Link swimmers

We implemented the optimizer described in the §V in
Matlab by providing (47) and (48) as the gradient for the
fmincon optimizer using the sqp algorithm. The shape
of the gait obtained is illustrated in Fig. 9(a). Fig. 9(b)
shows the power input to the actuated joint over the
cycle. Fig. 9(c) shows a comparison of the speeds achiev-
able by the Passive and fully actuated Purcell swimmers
at different power levels. Fig. 10 shows the same results
for a passive T-link swimmer.
The transfer function relating the response of the pas-

sive joint to oscillations of the input joint is given by (26),

H(s) =
s

Ceqs+Keq

. Therefore a change in the value of

the spring stiffness does not affect the fundamental shape
and nature of the response shown by the Bode plot in
Fig. 7, but it does shift the entire bode plot to the left or
right along the frequency axis. Thus an increase in spring
stiffness shifts the Bode plot to the right, which results
in the shape of the speed maximizing gait remaining the
same, but the time period required to complete the gait
decreases, leading to faster speeds.

VI. ENERGY-EFFICIENT GAITS

In this section, we describe the gradient calculations
involved in identifying the gait that maximizes the effi-
ciency of the swimmers. The objective function we set
out to maximize is

η =
gφ
E

, (56)

where gφ is the displacement produced on executing the
gait φ and E is the total energy expended by the robot
executing the gait, i.e.

E = PavgT (57)
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ṗf =
∂

∂pf

(gφ
E

)

(60)

Ṫ =
1

E

∂gφ
∂T

− gφ
E2

∂E

∂T
(61)

Thus the process of finding the most efficient gait is the
result of a unified process where (60) is the equation that
helps find the shape of the input to the actuated joint
and (61) is the equation that helps find the optimal pac-
ing of the input. Note that as in §V, the two equations
do not operate independently, and the gradient of shape
depends on the time period T , and the gradient of the
time period depends on the shape of the gait.

A. Shape gradient of the optimal input to the

actuated joint

The shape of the optimal input to the actuated joint is

affected by two gradients,
∂gφ
∂p

and ∂E
∂p

(60). The details of

how
∂gφ
∂p

is calculated are explained in §V.A. Whereas
∂gφ
∂p

pushes the gait towards maximum displacement cycles,
E is a measure of the cost required to execute the gait
and ∂E

∂p
pushes the gait towards low cost shapes. At the

most efficient gait, these two opposing gradients cancel
each other out, and we get an equilibrium for the gait
optimization process.
Over a gait cycle, no energy is stored in the spring.

Hence we can calculate the energy expended, P , while
executing a gait by integrating the power flow through
the actuated joint (α1).

E =

ˆ T

0

α̇1(t)
T τ1dt (62)

=

ˆ T

0

α̇1(t)
TM1(t)α̇(t)dt (63)

where M1(t) is the first row of the power metric M(t).
The gradient of cost with respect to the shape of the gait,
∂E
∂p

, is calculated by

∂E

∂p
=

∂

∂p

ˆ T

0

α̇1(t)
TM1(t)α̇(t)dt (64)

=

ˆ T

0

(∂α̇1

∂p
M1α̇+ (65)

α̇T
1 M1

∂α̇

∂p
+ α̇T

1

∂M1

∂p
α̇
)

dt (66)

B. Frequency gradient of the optimal input to the

actuated joint

The equation that governs the optimization process for
finding the time period of the most efficient gait is de-

scribed by (61). The term
∂gφ
∂T

is calculated as described
in §V.B The second gradient in the right hand side of (61)
is calculated as

dE

dT
=

∂E

∂α1

∂α1

∂T
+

∂E

∂α2

∂α2

∂T
+

∂E

∂T
. (67)

Because α1 is the actuated shape variable and the shape
of the input actuation is independent of the frequency of
actuation, ∂α1

∂T
reduces to zero. Therefore the gradient of

energy with respect to period reduces to

dE

dT
=

∂E

∂α2

∂α2

∂T
+

∂E

∂T
. (68)

The first term accounts for the fact that a change in
frequency would change the response of the passive joint
α2 resulting in a change in the shape of the gait, and
hence a change in the power dissipated while executing
the gait. The second term accounts for the fact that even
if the shape of the gait remains unchanged, a change in
the frequency of input to the actuated joint will change
the time required to execute the gait and hence would
change the power dissipated while executing the gait.

C. Passive Purcell and T-Link swimmers

We implemented the optimizer described in the §VI
in Matlab by providing the gradients of efficiency with
respect to shape and time period, calculated using (60)
and (61) respectively, to the fmincon optimizer using the
sqp algorithm. The shape of the gait obtained is illus-
trated in Fig. 11(a) for a Purcell swimmer. Fig. 11(b)
shows the power input to the actuated joint over the
cycle. Fig. 9(c) shows a comparison of the efficien-
cies achievable by the Passive and fully actuated Purcell
swimmers when the forward speed for all the systems is
fixed to be equal to the forward speed achieved by the
passive swimmer when executing its maximum efficiency
cycle. Fig. 12 shows the same results for a passive T-
link swimmer. Note that for the Purcell swimmer, the
optimizer stops because reducing the frequency further
or making the gait smaller does not provide any mean-
ingful increase in efficiency. This observation is line with
the results from [9], where the efficiency was found to
asymptotically approach a maximum value as frequency
of gait oscillations approached zero. The maximum effi-
ciency gait for the passive T-link swimmer is much larger
compared to the maximum efficiency gait of the passive
Purcell swimmer because a larger gait helps exploit the
presence of two peaks in the constraint curvature func-
tion of the T-link swimmer.
As discussed in §V.C, change in spring stiffness does

not affect the shape and nature of the response of the
passive joint, but shifts the bode plot shown in Fig. 7 to
the left or right along the frequency axis. An increase
in spring stiffness shifts the bode plot to the right, which
results in the shape of the efficiency maximizing gait cycle
remaining the same, but the time taken to execute the
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than the actual speeds obtained by numerical simula-
tions, and our integral of CCF is a good approximation
of the ground-truth simulation.

We can also see from Fig. 13(a) that the velocity ob-
tained by the Purcell swimmer does not monotonically
increase with frequency for all inputs to the actuated
joint. This results in the speed-maximizing gaits found
in §V having an optimal frequency associated with them,
rather than exhibiting a monotonic increase in speed with
frequency.

In the case of efficiency-maximizing gaits, for the op-
timal gait shape obtained in §VI, the efficiency does
asymptotically approach a maximum value as shown in
Fig. 13(c) and Fig. 13(d) as the frequency approaches
zero. However, the value is different from the maximum
efficiency predicted by applying the small perturbation
analysis from [9] to the T-link swimmer, showing that
small perturbation analysis does not completely charac-
terize optimal performance. In the case of the Purcell
swimmer, the efficiency-maximizing gait is small enough
for the perturbation analysis to yield accurate results.

Figs. 13(e)-(h) illustrate how the constant-CCF as-
sumption can introduce errors in identifying optimal ac-
tuation shape. Figs. 13(e)-(f) illustrate the effect on
the swimming speed from changing the size of the input
stroke (the reference input is the optimal input obtained
in §V). Figs. 13(g)-(h) illustrate the effect on the swim-
ming efficiency from changing the size of the input stroke
(the reference input is the optimal input obtained in §VI).
The solid red lines and the red circles show the speeds
and efficiencies predicted by numerical simulation and
integral of CCF respectively. The solid black lines show
the speeds and efficiencies predicted by the constant-CCF
assumption used in [9] in the link-attached coordinates.

We can see that in the case of the Purcell swimmer, the
constant-CCF assumption used in [9] incorrectly predicts
a monotonic increase in speed with an increase in the am-
plitude of the input to the actuated joint. In the case of
the T-link swimmer, the constant-CCF assumption used
in [9] incorrectly predicts an increase in efficiency as we
shrink the optimal gait. The efficiency would go down if
we shrink the optimal gait, because the CCF value for T-
link swimmer is higher at the edges than at the center of
the shape space. When we shrink the gait, it loses these
regions of high value, leading to a decrease in efficiency,
which is not captured by the constant-CCF assumption.

The T-link swimmer was first introduced in [10]. The
analysis in this paper agrees with the most relevant re-
sults from [10], which are that when the actuated joint
is driven by a simple harmonic input:

1. There exists a linear relationship between the
speed-maximizing value of spring stiffness and fre-
quency of actuation.

2. The average swimming speed increases monoton-
ically as the amplitude of actuation is increased
from π

2
radians to 11π

9
radians.

In §V.C, we noted that an increase or decrease in spring
stiffness shifts the Bode plot of the response of the pas-
sive joint to the right or to the left without changing
the shape of the Bode plot resulting in frequency of the
speed-maximizing input being linearly related to the stiff-
ness of the passive joint.
In Fig. 10(a), we can see that the CCF value for T-

link swimmer is higher at the edges than at the center
of the shape space. Thus an increase in the amplitude
of actuation would enclose more of the high value region
leading to an increase in speed.

VIII. CONCLUSIONS

In this paper, we have identified the geometric struc-
ture of optimal gaits for viscous swimmers with passive
elastic joints by combining the constraint-curvature anal-
ysis in [8] with frequency-response models for the steady
state motion of driven oscillators. We use this struc-
ture to identify both speed-maximizing and efficiency-
maximizing gaits. The optimal gaits for passive swim-
mers maximize the CCF integral relative to perimeter
and pacing costs, subject to amplitude and phase con-
straints of a first order system.
As discussed in §IV, for the fully actuated swimmers,

the maximum forward speed achievable is only restricted
by the maximum power we are able to supply the joints,
but for the swimmers with the passive elastic joint, even
with more powerful actuators, there is a theoretical max-
imum forward speed the system can achieve dictated by
the stiffness of the passive joint.
The important factor that makes the performance of

the fully actuated swimmers superior to that of the swim-
mers with the passive elastic joint in terms of energy ef-
ficiency is the fact that not only can the fully actuated
swimmers execute a much larger set of gaits, they can
execute any gait the passive swimmer can execute at a
pacing that is just as good or better than the pacing
dictated by the dynamics of the passive joint.
This raises the question of what benefits, e.g., simplic-

ity of construction, does having a passive elastic mem-
ber give to biological organisms that locomote in a low
Reynolds number fluid? Most biological organisms have
tails that resemble an elastic filament. The propulsive
and flexive dynamics of such filaments have been well
studied [1, 44–46]. Artificial microscopic swimmers with
elastic filaments have been proposed based on this body
of work [47, 48]. An interesting line of future work would
involve investigating the tradeoff between elastic element
inefficiencies and structural complexity of being fully ac-
tuated.
This work is the first step towards expanding the appli-

cability of the geometric framework presented in [2, 3, 8]
to systems where underactuated shape parameters play
a role in the dynamics of the system. In the case of the
passive Purcell swimmer, assuming the torque required to
affect a desired shape change did not depend on the cur-
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rent shape of the swimmer did not introduce significant
errors in the predicition of the limit cycle corresponding
to inputs to the actuated joint as shown in Fig. 4. This
might not always be the case in all the swimmers we con-
sider. A future line of research would be to improve our
frequency domain analysis by using non-linear perturba-
tion theory to obtain more accurate predictions of limit
cycles.
Another line of future work would involve studying the

shape of optimal gaits in swimmers with more than one
passive joint (e.g. a four-link swimmer with two passive
joints). The relationship between design choices (e.g. ra-
tio of link lengths, ratio of joint stiffness) and the shape
of the optimal gaits would also be an interesting question
to answer in systems with more than one passive joint.

Appendix A: Comparison with Lighthill Efficiency

Lighthill’s efficiency, defined as the (reciprocal) ratio
between the average power consumed by a given stroke
and the power that would be required to drag the swim-
mer at the same average velocity as that produced by the
stroke,

ηlh =
Pref

Pavg

, (A1)

is a commonly-used measure of swimming performance.
Because the drag force acting on the swimmer is pro-

portional to the velocity of its motion, it is readily shown
that for a given swimmer, Lighthill’s efficiency is propor-

tional to
v2
avg

Pavg
[9]. Ignoring the proportionality factor, we

can thus take the Lighthill efficiency as

ηlh =
v2avg
Pavg

, (A2)

where vavg is the average velocity of the swimmer.
In [8], we use a geometric measure of efficiency, η2,

defined in (34) as the ratio of displacement produced per
cycle to the pathlength of the cycle in the shapespace
(weighted by the shapespace metric M),

η2 =
gφ
s

(A3)

to identify optimal gaits for fully actuated swimmers.
In this appendix, we demonstrate that for fully actu-
ated swimmers the gait that maximizes η2, maximizes
Lighthill’s efficiency and vice versa.
Because s is equal to the time integral of the square

root of instantaneous power expended, we can rewrite η2
as

η2 =
gφ

´ T

0

√

P (t)dt
. (A4)

Surface tension from 

distance metric

Outward 

pressure from 

Lie bracket

FIG. 14: Our algorithm in [8] maximizes gait efficiency in fully
actuated swimmers by finding cycles in the space of body shapes

that enclose the most curvature of the system dynamics
(measured via the Lie bracket) while minimizing their

cost-to-execute (measured as the metric-weighted lengths of their
perimeters). This process is analogous to the process by which air
pressure and surface tension combine to produce the shape and
size of a soap bubble. Top: The forward progress of a locomoting

system as it executes a gait cycle.

From [7], we know that the optimal pacing for any gait
utilizes a constant power pacing and hence for all t,

P (t) = Pavg (A5)

Substituting (A5) into the expression for η2 provides

η2 =
gφ

√

PavgT
(A6)

=
vavg
√

Pavg

(A7)

=
√
ηlh (A8)

Because the square root is a monotonic function, a gait
that maximizes our definition of efficiency with respect
to path and is executed at constant power pacing also
maximizes the Lighthill efficiency optimized over path
and pacing, and vice versa.
Note that this conclusion does not hold for the under-

actuated systems we consider in this paper, for which
path and pacing cannot be controlled individually.

Appendix B: Soap-bubble Gait Optimization

In this appendix, we present a brief overview of the
framework introduced in [8] to identify optimal gaits
for fully-actuated drag-dominated swimmers. In §V
and §VI, we build on this framework to identify efficiency-
maximizing and speed-maximizing gaits for passive
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