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Abstract 
ReadUntil sequencing allows nanopore devices to selectively eject individual reads from the pore in 

real-time. This could enable purely computational targeted sequencing, however most mapping 

methods require basecalling, which is computationally intensive. Here we present UNCALLED 

(​github.com/skovaka/UNCALLED​), an open-source mapper that rapidly matches streaming nanopore 

current signals to a reference sequence. UNCALLED probabilistically considers k-mers that the signal 

could represent, and then prunes the candidates based on the reference encoded within an FM-index. 

We used UNCALLED to deplete sequencing of known bacterial genomes within a metagenomics 

community, enriching the remaining species by 4.46 fold. UNCALLED also enriched 148 human genes 

associated with hereditary cancers to 29.6x coverage using one MinION flowcell, enabling accurate 

detection of SNPs, indels, structural variants (SVs), and methylation in these genes. Twice as many 

SVs were detected compared to 50x coverage Illumina sequencing, verified by whole-genome 

nanopore and PacBio HiFi sequencing. 

 

Introduction 
High-throughput long-read sequencers from Oxford Nanopore Technologies (ONT) produce millions of 

reads that are several thousand nucleotides in length in a single 48 to 72 hour run. These reads are 

able to span regions that are otherwise difficult to resolve using conventional short-read sequencing, 

offering the ability to produce highly contiguous genome assemblies, even spanning centromeric 

repeats​1​, identify structural variants with significantly higher accuracy, and sequence tens to hundreds 

of thousands of full-length RNA transcripts in a single run​2​. Nanopore reads can also be used to identify 

nucleotide modifications, such as methylation, without any additional library preparation 

considerations​3​.  

1 

https://github.com/skovaka/UNCALLED
https://paperpile.com/c/zcNkd0/iMb26
https://paperpile.com/c/zcNkd0/5EFAV
https://paperpile.com/c/zcNkd0/Ly6RB


 
Nanopore sequencing operates by measuring ionic current as a nucleotide strand passes through a 

pore. The specific nucleotides in the pore modulate the current in characteristic ways, which can be 

used to infer individual nucleotides via basecalling of the raw current signal data. For the R9.4 pore, the 

current is primarily affected by six nucleotides in the central constriction of the pore, which produce 

signals ranging from 60 to 120 picoamps (pA). Single molecule current readings at these levels are 

noisy, making it difficult to determine the identity of an individual k-mer. However, by combining the 

signal information across multiple overlapping k-mers, state-of-the-art basecallers, such as Guppy, can 

achieve read identities averaging approximately 90%​4​. However, this process is computationally 

intensive and requires several days to basecall on a high-end multicore CPU. A high-yield run can take 

well over 24 hours to complete even with a GPU (graphics processing unit). 

The ONT MinION is a hand-held low-cost sequencer which typically produces 10-20 Gbp of data from a 

single standard flowcell. The low price and portability of the MinION has enabled rapid sequencing in 

remote areas without the need to ship DNA to a sequencing facility​5​. Reads from the sequencer can be 

output, basecalled, and analyzed as soon as a run begins, which along with the relatively simple library 

preparation could make rapid sequencing-based diagnostics widely available​6​. The recently released 

Flongle (flowcell dongle) further improves the accessibility of nanopore sequencing by enabling the use 

of less expensive flowcells, although this reduces the MinION’s throughput to ~2Gbp. Though this 

throughput has enjoyed a steady improvement since the initial release of the instrument in 2014, many 

applications require higher depth, making targeted sequencing necessary. Notably, 20Gbps of data is 

only approximately 6.6x coverage of a human genome, which is insufficient for most forms of variant 

calling thereby increasing costs for whole human genome analysis​7,8​. 

Typical targeted sequencing methods such as PCR are not suitable for many nanopore sequencing 

applications. PCR has difficulty amplifying DNA fragments larger than 5Kbp to 30Kbp, which limits 

nanopore runs that could otherwise produce reads well over 100Kbp. Furthermore, amplification erases 

nucleotide modifications, which nanopore sequencing could otherwise identify​3,9​. Enrichment methods 

specifically designed for nanopore sequencing like hybrid capture or CRISPR/Cas9 enrichment 

alleviate some of these issues, however, they require specialized reagents and extra preparation time​10​. 

These approaches are also limited in the maximum number and size of regions that can be 

simultaneously targeted without excessive numbers of reactions and can yield inconsistent amounts of 

coverage when tiling large regions.  

As an alternative, ONT devices have a unique method for real-time targeted sequencing known as 

ReadUntil, where an individual pore can selectively eject a read while sequencing​11​. This is 

accomplished by reversing the polarity of the voltage across the specified pore for a short period of time 
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(~0.1s) to eject the molecule and allow a new sequencing read to begin sooner. If one can identify 

reads that are not of interest and eject them quickly enough, this can enrich the sequencing for targeted 

regions via a purely computational technique. ReadUntil is more effective with longer reads because 

each ejection avoids sequencing more nucleotides than if the reads were shorter. For example, the 

longest reported Nanopore read exceeded 2Mbp in length, and required over 1 hour of sequencing​12​. If 

this read originated from an off-target region, the sequencing capacity of that pore is effectively wasted 

for the entire hour, while ReadUntil could have reclaimed that capacity within a few seconds. 

In addition to enriching known targets, ReadUntil can instead be used to deplete sequencing of 

uninteresting or unwanted regions. For example, this could be used to exclude the sequencing of a 

known microbe in a metagenomics sample or exclude high copy organelles from a plant or animal 

sample. This is analogous to CRISPR/Cas9-based methods which deplete unwanted sequences​13​, 

where again ReadUntil has the benefit of not requiring additional library preparation and can uniformly 

deplete entire genomes as needed. The dynamic nature of ReadUntil could also be utilized to deplete 

certain sequences after they have been sequenced to a desired depth, which could be useful in 

metagenomic applications and genome assembly. 

A MinION device can sequence up to 512 molecules at a rate of 450 nucleotides per second, requiring 

a very fast algorithm to effectively enrich regions of interest with ReadUntil. Previous work to enable 

ReadUntil sequencing used a signal level analysis technique called dynamic time warping to align raw 

nanopore signal to an ​in silico​ signal representation of a reference sequence, but this method does not 

scale to references larger than tens of kilobases as the runtime is quadratic in the length of the 

sequence​11​. Others have attempted basecalling followed by mapping with a DNA aligner​14,15​, but 

basecalling is computationally expensive, and most basecallers are designed to work with fully 

sequenced reads and require a sizable amount of input signal to output a sequence. A ReadUntil 

method should ideally be fully streaming, meaning it can continuously refine its classification as more 

signal is produced.​ It would also be desirable to have a method that can continue to scale in the future 

as yields increase with highly parallel devices like the PromethION. 

To address these issues, we have developed UNCALLED, the Utility for Nanopore Current ALignment 

to Large Expanses of DNA, with the goal of mapping streaming raw signal to DNA references for 

targeted sequencing using ReadUntil. UNCALLED uses the FM-index​16​ to search for sequences in a 

DNA reference that are consistent with possible k-mers that the raw signal could represent (​Fig. 1a​). It 
first converts the raw signal into events, which are stretches of signal that approximate k-mer 

boundaries, and then calculates the probability that each event matches each possible k-mer using a 

probabilistic model released by ONT. High-probability k-mers are used as a query in a novel FM-index 
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search algorithm developed for UNCALLED which considers all possible sequences and locations for 

each event as the mapping progresses (​Supplemental Fig. S1​). The probability cutoff used to decide if 

a k-mer should be considered is dynamically adjusted depending on how many locations a potential 

sequence could map to, which maintains both high accuracy and high speed when mapping the noisy 

signal data (​Supplemental Fig. S2​). Finally, a seed clustering algorithm filters out false positive 

locations by grouping seeds together that map to consistent positions, and a final mapping is reported 

once a single location has sufficiently more support than the alternatives. We show that UNCALLED 

can map reads to collections of whole bacterial genomes as fast as a full MinION flowcell can produce 

reads, and can enrich target genomes by several fold compared to a control. We also show 

UNCALLED can enrich sequencing a panel of 148 human genes associated with hereditary cancer to a 

mean of 29.6x on-target coverage, compared to 5.3x coverage on a matched control flowcell, which 

enables highly precise and sensitive detection of single nucleotide variants, small insertions and 

deletions, structural variants (SVs), and DNA methylation. Notably, SV calls from enriched UNCALLED 

reads have 100% concordance with whole-genome ONT and PacBio HiFi sequencing, and detect more 

than twice the number of SVs compared to whole-genome Illumina sequencing. 

Results 

Mapping ​Escherichia coli​ reads 
To measure the accuracy and efficiency of UNCALLED we mapped the raw signal of 100,000 

Escherichia coli ​reads to the ​E. coli​ K12 reference genome using a single 3.0 GHz core. The reads 

were previously sequenced using a MinION​3​ and have an average length of ~5Kbp. Only the first 

30,000 events (~15Kbp worth of signal) at most were considered for each read, which is a default cutoff 

when using UNCALLED to map previously sequenced reads to avoid spending too much time on 

exceptionally long reads. Of the reads that mapped, UNCALLED processed a median of 10 kilobases 

worth of signal per second, the equivalent of 22 actively sequencing pores per thread, and most reads 

were mapped in under 50 milliseconds (​Fig. 1b​). Of the reads that UNCALLED successfully mapped, 

75% were mapped within one second’s worth of sequencing (450bp), which is the amount of signal that 

the ReadUntil API provides per chunk (​Fig. 1c​). To estimate accuracy we used minimap2​17​ alignments 

of the basecalled reads as a ground truth: reads that map to the same location are classified as True 

Positives (TP), reads that neither tool map are True Negatives (TN), reads that are either not mapped 

by minimap2 or were mapped to a different location than UNCALLED are False Positives (FP), and 

reads that UNCALLED did not map but minimap2 did are False Negatives (FN). The overall accuracy 

(TP+TN) of UNCALLED by this analysis was 93.7%. We found that the quality scores (Q scores) of the 

false negative and false positive reads are much lower than the true positives  (​Supplemental Table 
S1​). Furthermore, 75% of “false positives” consisted of reads that were not aligned by minimap2, 
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meaning the UNCALLED location could be correct and minimap2 could not find it. In addition, of the 

false positives that minimap2 did align, 92% are explained by repeats: according to nucmer ​18 

self-genome alignments, the reference location that UNCALLED mapped to was a high-identity repeat 

of the minimap2 reference location. Without repeat masking this type of error is unavoidable if 

ReadUntil mapping is the goal, since we attempt to find a position based on as little of the read as 

possible, while minimap2 can consider the full sequence of the read.  

a. b. 
 
 
 
 
 
 
 

c. 
 
 
 
 
 
 
 

Figure 1. ​UNCALLED algorithm and performance on ​Escherichia coli ​ data. ​(a)​ Overview of the algorithm: inputs are an FM 

index built from the DNA reference, and the raw nanopore signal. The signal is converted to events, and the log probabilities 

of events matching each k-mer is computed. All paths through the FM-index that are consistent with k-mers that match each 

event above a threshold are searched, conceptually forming a forest of trees ( ​Supplemental Fig. S1​ for more details). ​(b) 

Boxplots showing the speed of UNCALLED mapping ​E. coli ​ reads to the ​E. coli ​ K12 reference genome in kilobases per 

second (left) and total number of milliseconds required to map reads (right). Center lines represent the median, box limits 

represent upper and lower quartiles, whiskers represent 5% and 95% confidence intervals. ​(c) ​Percent of the mapped reads 

that can be confidently placed within a certain number of basepairs of sequencing. Note the ONT MinION sequences at 

approximately 450bp/sec. Only reads that were mapped by UNCALLED are considered in ​b ​and ​c​. 

Mapping a mock microbial community 

Next, we tested UNCALLED’s ability to map to a collection of genomes using reads from the 

ZymoBIOMICS High Molecular Weight DNA Mock Microbial community (“Zymo HMW”) containing DNA 
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from seven bacterial species and one yeast (​Supplemental Table S2​). For this experiment, we 

analyzed 100,000 reads with an average length of 16Kbp we sequenced using a MinION (Full-Flowcell 

1 control data). We mapped the signal data from these reads to a 41Mbp reference containing all 

genomes using UNCALLED, which mapped approximately six kilobases per second with 94% accuracy 

compared to minimap2 alignments of the basecalled reads (​Fig. 2a​). To test UNCALLED’s 

performance on different genomes, we used the minimap2 alignments to determine which reads map to 

each species, and then mapped each collection of reads to their corresponding reference using 

UNCALLED (​Supplemental Table S2​). The mean read lengths vary between ~11-21Kbp depending on 

the species, likely because of extraction bias, which skews the mapping rates since UNCALLED is 

more likely to find a confident mapping location for longer reads. When considering just reads longer 

than 5kbp long, UNCALLED performs similarly on all bacterial genomes. Mapping to the ​S. cerevisiae 

genome is ~24% slower compared to the average bacterial genome due to more repetitive sequence 

than the other references. However, using two iterations of the k-mer masking method described below 

restores the mapping speed (​Construction and Masking of a Cancer Gene Panel Reference​). 

 

Bacterial genome depletion 
Our first ReadUntil experiment was bacterial genome depletion on the Zymo HMW sample. Here, we 

used UNCALLED to map signal data to a 29Mbp reference containing all seven bacteria and ejected 

any reads that mapped within the first ten seconds of signal, with the goal of enriching the yeast 

sequence which was not included in the reference database. We performed three such runs: two 

“Full-Flowcell” runs and one “Even/Odd” run. The full-flowcell runs each used two flowcells running in 

parallel: one sequencing with MinKNOW running in a normal configuration as a control and one with 

UNCALLED mapping and ejecting reads from all channels. The flowcells were selected to be similar 

quality based on MinKNOW’s “check flowcell” feature, and the samples were prepared side-by-side and 

mixed prior to loading. The even/odd run used a single flowcell, where UNCALLED only monitored the 

even numbered channels and the odd channels were used as a control. This type of control has been 

used in previous ReadUntil applications​11,14​.  Once each run finished, all reads were basecalled with 

guppy and mapped to a reference containing all Zymo genomes with minimap2 in order to classify 

reads as originating from yeast or bacteria (​Fig. 2b)​. Note that we classified reads that were not 

mapped by minimap2 as non-yeast reads, which may underestimate the on-target yield. All UNCALLED 

runs kept over 99% of yeast reads and ejected between 90% and 96% of bacterial reads, 75% of which 

mapped within the first second. The absolute enrichment of yeast sequence for these experiments 

ranged from 3.19 to 4.46 fold (​Supplemental Table S3​).  
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Figure 2. ​ UNCALLED results on the Zymo mock microbial community ​(a)​ Barchart of the relative abundances of each 

genome based on mapping reads from a control run to all references using UNCALLED and minimap2. ​(b)​ Results of 

UNCALLED ReadUntil depletion of bacterial genomes in order to enrich yeast sequences, including (left) a barplot of the 

coverage of the yeast genome in the UNCALLED and control runs, and (right) a barplot of the percent of the yield from the 

yeast genome in the UNCALLED and control runs.  

The enrichment of the even/odd run falls between that of the two full-flowcell runs, implying that this 

control accurately estimates the enrichment of a full flowcell. Many factors contribute to the variability in 

the enrichment between runs, including read lengths, reduction in ReadUntil yield, and delayed 

ejections. In particular, the Full-Flowcell 2 control run had approximately half of the average bacteria 

read length of the control Full-Flowcell 1 run, which was a major source of the enrichment difference 

between these runs (​Supplemental Table S3​). We also noted that not all ejections occur as soon as 

the ReadUntil API request is sent, particularly on high-yield runs. In the Full-Flowcell 1 and Even/Odd 

runs most reads are ejected within one second of the API call, while in the Full-Flowcell 2 run most 
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ejections are delayed by more than four seconds, increasing the amount of off-target DNA sequenced 

(​Supplemental Table S3​). Ejections are more delayed early in each run when more pores are alive 

and actively sequencing. This suggests the ejections may be delayed when too ​many​ API calls are 

made at the same time, or when the sequencer is generally overloaded when many reads are being 

sequenced at once. 

It is worth noting that although the on-target yield is consistently higher in the UNCALLED runs 

compared to the controls, the overall UNCALLED yield is reduced to between 44% and 69% of the 

overall control yield (​Supplemental Table S3​). Some of this reduced yield can be explained by the 

short period of time that a pore is empty between sequencing two reads. This gap is not significantly 

longer when a read is ejected compared to when it finishes normally, but the large number of ejections 

increases the amount of time that each pore is empty. In the Full-Flowcell 1 experiment, the average 

channel in the control run was empty ~20% of the time, compared to the average UNCALLED channel 

which was empty ~32% of the time (excluding time after channels produce their final read and between 

mux changes). These short gaps are unavoidable, but they do not fully explain the reduced ReadUntil 

yield. Inspection of the minute-by-minute channel activity throughout sequencing (duty time) shows that 

the number of functional channels reduces faster in ReadUntil runs, however the long-term lifetime of 

channels is not shorter than the control, suggesting that pores are temporarily becoming inactive 

(​Supplemental Fig. S3​). One potential explanation is that ejections cause more pore blockages which 

make pores unable to sequence reads for extended periods of time. This could be caused by 

single-stranded DNA on the trans side of the pore self-binding and “clogging” pores, or simply because 

a larger number of reads are sequenced which increases the chances that a pore will be blocked. Such 

blockages could possibly be cleared with a nuclease flush, which has been shown to improve yield for 

other ONT human genome sequencing projects (also see below)​19​. 

Construction and Masking of a Cancer Gene Panel Reference 
We next tested UNCALLED’s ability to map to a large collection of human genetic loci. For this, we 

evaluated an 18.6Mbp subset of the human genome containing 148 genes associated with hereditary 

cancer from the Invitae cancer panels​20​. These panels consist of curated sets of genes with variants 

known to increase the risk of developing cancer and are widely used for clinical assessment of disease 

risk. Our 148 gene panel includes all primary and preliminary-evidence genes from every available 

organ system panel (​Supplemental Table S4​). This reference was built by extracting all exons, introns, 

and 20Kbp of intergenic flanking sequence upstream and downstream of each gene from GRCh38 

(40Kbp of flanking sequence total). The flanking sequence was included so that reads which start 

outside but could extend into a gene would be mapped, and so that nearby regulatory elements such 

as promoters could be covered. To estimate the accuracy mapping to this reference, we used 
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minimap2 to map all 15.7 million reads (mean read length=8,484bp) from the nanopore WGS 

consortium release 6​21​ to GRCh38 and identified reads that substantially overlap with at least 94% 

identity any of the 148 genes. We then mapped these reads to the 148 gene reference using 

UNCALLED to estimate the true positive (TP) rate, which was ~81.71%, substantially lower compared 

to the bacterial references shown thus far (​Supplemental Table S2)​. We also mapped 200,000 

random reads from the WGS consortium excluding the TP reads to estimate the false positive (FP) 

rate, which was ~1.14%.  

We hypothesized that the TP rate was reduced in the 148 gene reference was because the human 

genome contains much more repetitive and low-complexity sequence than bacterial references, 

meaning UNCALLED must consider many k-mers for certain signals and therefore uses stricter 

probability thresholds which make it less likely to find matching seeds. In an attempt to alleviate this we 

masked the most common 10-mers within the 148 gene reference using an iterative process developed 

for UNCALLED (see ​Methods​). Using 30 iterations of this k-mer masking process raised the TP rate to 

a level greater than any bacterial reference, however it also raised the FP rate higher than any bacterial 

reference (​Supplemental Table S5​). Close inspection of these FP reads revealed that they originated 

from sequences in the 148 gene reference that also occur elsewhere in the human genome. We 

therefore developed a secondary masking procedure which masked exact repeats greater than 50bp 

long which occur at least five times in the human genome (see ​Methods​). This reduced the FP rate to 

1.52% and achieved a 91.60% TP rate, comparable to our bacterial results (​Supplemental Table S5​). 

We noted that the first k-mers masked out in the iterative masking procedure were homopolymers, 

namely poly-A and poly-T, and that many of the subsequent k-mers masked out were simple tandem 

repeats. We therefore also attempted only masking such sequences to see if a simpler procedure could 

be used. Two strategies were attempted: first, we masked out the homopolymers running longer than 

10bp in the reference sequence and then ran external masking; second, we masked out both 

homopolymers and tandem repeats at least 10 bp long and ran the same external masking. Tandem 

repeats and homopolymers are found by running MUMmer’s ‘exact-tandems’ method ​22​. The true 

positive rates were lower for both strategies in comparison to internal iterative masking and external 

masking, achieving 94.31% and 94.49% for homopolymer and homopolymer plus tandem repeats 

respectively, whereas the iterative strategy achieves a 95.75% true positive rate. For false positive 

measurement, iterative masking again outperforms the two other methods, achieving 1.36% in 

comparison to 2.07% and 2.01% for homopolymer masking and homopolymer plus tandem repeat 

masking respectively. Based on these measures, we considered iterative masking to be the more 

effective approach.  
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Cancer Gene Panel Enrichment 
With the mapping accuracy established, we next used UNCALLED to enrich for these cancer genes 

during a MinION sequencing run of the widely used GM12878 cell line. During this analysis, we used 

the 148 gene reference with 30 iterations of k-mer masking and external repeat masking described 

above. During this run, we ejected all reads that ​did not​ map to the gene panel within the first three 

seconds on one flowcell and used a second full-flowcell as control. We hypothesized that nuclease 

flushes could unblock pores that may be “clogged” after an attempted ejection, which could be a 

substantial source of reduced UNCALLED yield as previously discussed. So, we performed nuclease 

flushes on both runs after 24 and 48 hours and ran each for 72 hours total. The first run resulted in an 

average coverage over all target regions of 4.0x for the control and 14.3x for UNCALLED, for an overall 

3.6 fold enrichment (​Fig. 3a​). Like previous runs, these libraries were prepared without shearing, which 

typically results in longer reads but reduces overall throughput. We next performed the same 

experiment but with shearing to 30Kbp, which resulted in an average coverage over all target genes of 

5.4x for the control and 29.6x for UNCALLED, for an overall enrichment of 5.5 fold (​Fig. 3a).​ In the 

sheared run, the minimum per-base coverage over all targeted genes for UNCALLED is 7x and over 

99.9% of bases have at least 10x coverage, while genes in the control run have several regions with 

zero coverage and 95.1% of bases have less than 10x coverage (​Fig. 3b​). We noted that after a 

nuclease flush the fraction of active pores increased in both the UNCALLED and control runs, though 

the UNCALLED run benefitted more substantially from the flush, supporting the theory that ejected 

DNA causes pore blockages (​Supplemental Fig. S4​).  

We next explored applications for the 29.6x coverage sheared UNCALLED reads. We first called single 

nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) using Clair​23​ on the 

UNCALLED and control data. For comparison, we also ran Clair on a set of reads with 51.1x coverage 

over the 148 genes created by combining the two GM12878 control runs, a run sequenced with the 

same protocol as the GM12878 sheared control, and 37.6x coverage from whole-genome sequencing 

(WGS) consortium. We compared each call set to the Genome in a Bottle (GIAB) NA12878 small 

variant truth set​24​ using rtg-tools to compute accuracy metrics​25​. Based on previous work​23,26​, 

low-complexity regions that are known to substantially reduce small variant calling accuracy were 

excluded. The precision, recall, and F1 scores of the UNCALLED SNP and indel calls were within one 

percent of the high-coverage WGS run. In contrast, the control data had less than half the precision, 

recall, and F1 score (​Table 1a​). The accuracy of indel calls was lower than the accuracy of SNP calls 

for all datasets, which is consistent with the error profile of ONT reads as shown in previous work​23​.  
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b. 
 
 
 
 
 
 
 
 
 
Figure 3. ​Human cancer gene enrichment using UNCALLED. ( ​a, left ​) Barplot of the coverage over all 148 target genes in 

the UNCALLED and control runs. ​(a, right) ​. Barplot of the percent of the yield from the target genes in the UNCALLED and 

control runs. ( ​b​) Distribution of per-base coverage over every nucleotide in the target genes in the sheared UNCALLED run. 

Control ranges from 0x to 15x coverage, while UNCALLED ranges from 7x to 57x coverage. 

With the small variant accuracy established we next called structural variants (SVs) at least 50bp in 

length in all 148 genes. The 5.4x control run has insufficient coverage for SV calling​7​, so for comparison 

we detected SVs using the 51.1x coverage ONT WGS run described above, 30x coverage PacBio HiFi 

reads, and 50x coverage Illumina reads. The PacBio and Illumina datasets were obtained from GIAB. 

All long-read technologies (UNCALLED, ONT WGS, and PacBio) were called using Sniffles​7​ with 

minimap2​17​ alignments and the Illumina reads were called using Manta​27​ with BWA​28​ alignments. Strict 

parameters were used for each dataset to generate sets of high-confidence SVs (​Methods​). These 

results were compared using SURVIVOR​29​, which showed strong agreement between UNCALLED and 

ONT WGS SVs (F1=0.94) and between UNCALLED and PacBio SVs (F1=0.93), in contrast to Illumina 

SVs which matched fewer than half of those predicted by each long-read technology (​Table 1b​).  
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a. Dataset Count Precision Recall F1 

SNPs 

Control (5x) 77,346 41.9% 39.4% 0.406 

UNCALLED (29.6x) 12,368 92.8% 97.6% 0.951 

ONT WGS (51.1x) 11,825 93.2% 98.5% 0.958 

Indels 

Control (5x) 25,070 37.6% 23.4% 0.288 

UNCALLED (29.6x) 9,844 80.4% 73.1% 0.766 

ONT WGS (51.1x) 10,374 79.9% 72.7% 0.761 
 

b. Total SV 
Count 

Insertions Deletions 

Count 
Length (bp) 

Count 
Length (bp) 

Mean Stdv Max Mean Stdv Min 
UNCALLED 

(29.6x) 
Confident 

SVs 50 36 196.9 175.5 974 14 -226.1 202.8 -824 

ONT WGS 
(51.1x) 

Confident 
SVs 50 35 206.2 178.8 964 15 -225.7 210.0 -889 

Matching 
UNCALLED 47 34 210.1 179.9 964 13 -241.5 220.6 -889 

Concordant 
UNCALLED 53 37 197.9 177.2 964 17 -206.0 204.1 -889 

PacBio HiFi 
(30x) 

Confident 
SVs 53 37 199.9 176.4 992 16 -173.3 107.5 -342 

Matching 
UNCALLED 48 34 212.4 178.8 992 14 -181.3 110.4 -342 

Concordant 
UNCALLED 55 39 203.3 175.5 992 16 -173.3 107.5 -342 

Illumina  
(50x) 

Confident 
SVs   25* 13 135.6 102.3 445 10 -159.5 111.3 -340 

Matching 
UNCALLED 22 13 135.6 102.3 445 7 -174.6 115.0 -340 

Concordant 
UNCALLED 25 14 128.2 102.1 445 9 -351.2 584.7 -1884 

 

Table 1. ​ Variant calling results over the 148 genes associated with hereditary cancer enriched by UNCALLED. ​(a) ​Accuracy 

metrics of single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) called by Clair. UNCALLED is 

the 29.6x coverage sheared GM12878 UNCALLED run, and Control is the 5.4x coverage matched control run. ONT WGS is a 

51.1x coverage nanopore dataset consisting of WGS consortium reads plus three additional flowcells. ​(b) ​Structural variants 

(SV) at least 50bp in length called using the same UNCALLED and ONT WGS reads, plus 30x coverage PacBio HiFi reads 

and 50x coverage Illumina reads from Genome in a Bottle (GIAB). “Matching UNCALLED” only includes high-confidence SVs 

detected by each tool. Concordant matching allows an SV to be supported with more sensitive parameters (see ​Methods​). (*) 

Two Illumina high-confidence SVs were inversions, so were not counted among insertions or deletions. However, they 

overlapped repeats and were not supported by any long-reads, so are likely false positives ( ​Supplemental Table S6)​. 
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Inspection of high-confidence SVs not matched by SURVIVOR revealed that they all occur in repetitive 

regions, making it difficult to align short-reads and causing the reported size and location of the SVs 

vary slightly between the long-reads (​Supplemental Fig. S5 a-e​). Consequently, the apparent 

disagreements between the long-read call sets were all due to thresholding effects, such as one 

insertion reported to be 53bp long by PacBio reads (and thus reported as an SV) versus the 

UNCALLED reads which represented the insertion as 47bp (and thus not reported, ​Supplemental Fig. 
S5a​), while the short-read calls are more fundamentally limited by the challenge of aligning short-reads 

to repetitive regions. To address the thresholding effects we generated SV calls from each dataset 

using more sensitive criteria (​Methods​). The SVs in the long-read sensitive calls sets contained 

matches for every previously unmatched high-confidence long-read SV, demonstrating 100% 

concordance between all long-read datasets (​Table 1b​). A total of 56 high-confidence SVs were 

identified between all long-read technologies (39 insertions, 17 deletions). The sensitive short-read 

calls resulted in three more concordant SVs compared to strict matching, but still only identified 45% of 

the SVs detected by long-reads. Four high-confidence Illumina SVs had no support from any long-read 

technology (two deletions, two inversions), all of which overlap annotated repeats that likely disrupt 

alignment of the short-reads (​Supplemental Table S6, Supplemental Fig. S5e​).  

In order to characterize SVs identified by UNCALLED, we checked for overlap with or similarity to 

annotated repeats based on RepeatMasker​30​ and simple repeat​31​ annotations from the UCSC genome 

browser​32​. Insert sequences extracted from PacBio HiFi reads were aligned to the human genome and 

the primary alignments were checked for overlap with the repeat annotations, which identified repeats 

in all but one of the 39 insertions (​Supplemental Table S6​). Similarly, all but two of the 17 deletion 

coordinates overlapped an annotated repeat. Twenty two of the insertions (~56%) and 7 deletions 

(~41%) were identified as general simple repeats or low-complexity sequences (e.g. “(AT)n” or 

“G-rich”). Nine insertions (~16%) align to an Alu element, and 5 deletions (~29%) occurred in an Alu 

element. Interestingly, one of these Alu insertions is located in an exon of the MUTYH gene, an 

important DNA repair gene associated with colorectal and breast cancers​33​ (​Fig. 4​). The length is 

consistent with other Alu elements​34​ and it was identified as a heterozygous insertion by all long read 

technologies but was not detected by the Illumina data. All other SVs occured in intronic regions. 
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Figure 4. ​ IGV visualization of a heterozygous Alu insertion in an exon of the MUTYH gene detected by UNCALLED, ONT 

WGS, and PacBio HiFi reads. This was not detected by Illumina reads, likely because short reads cannot span the length of 

the Alu repeat. 

 

As previously discussed, nanopore sequencing is sensitive to nucleotide modifications, and 

UNCALLED gives us the depth to characterize them. To demonstrate this we assessed the ability to 

call methylation over the enriched regions using the UNCALLED sheared run with Nanopolish​3​, again 

comparing to the 51.1x coverage ONT WGS run described above. Average methylation levels were 

calculated for 307 annotated promoters with at least 20 CpG sites within the targeted regions for both 

datasets, resulting in a strong linear correlation (Pearson’s=.96) (​Fig. 5a​). ​These promoter methylation 

levels were also compared to those called in WGBS data of two biological replicates (WGBS1 and 

WGBS2), also resulting in linear correlations (Pearson’s WGBS1 = .85, Pearson’s WGBS2 = .90). The 

correlation between the two WGBS replicates is also linear (Pearson’s=.92). ​We noted one region near 

the transcription start site of FANCB, a gene on the X chromosome, where approximately half the reads 

showed hypermethylation and the other half showed hypomethylation (​Fig. 5b​). This pattern is likely a 

result of X-inactivation​35​, where the differences correspond to maternal and paternal haplotypes.  
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Figure 5. (a) ​Heatmap showing the estimated level of methylation in promoters across the targeted 148 gene regions 

associated with hereditary cancer in the 29.6x coverage sheared GM12878 UNCALLED run versus a 51.1x whole-genome 

sequencing (WGS) ONT run. ​(b,c)​ Comparison between UNCALLED promoter methylation estimates and two GM12828 

whole-genome bisulfite sequencing (WGBS) runs. ​(d)​ IGV visualization at the transcription start site of FANCB on 

chromosome X. Each individual read tends to be fully methylated or fully non-methylated, likely due to X inactivation. Blue 

boxes indicate hypomethylated CpG sites, red boxes indicate hypermethylated CpG sites. 

 
Simulating ReadUntil 

Many factors affect how much enrichment is possible with UNCALLED, including read lengths, sample 

composition, channel occupancy, ejection delays, and mapping speed/accuracy on the particular 

reference. These factors interact in complex ways. For example, the mapping speed may change 

depending on the number of reads that UNCALLED must map at a given time, which depends on the 

percent of on-target reads in the sample and how many channels are actively sequencing. The number 

of active channels is itself affected by how many reads are ejected, which also depends on sample 

composition and UNCALLED’s speed and accuracy. In order to model these factors, we developed a 
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detailed ReadUntil simulator that can be used to predict how much enrichment could be achieved on a 

given reference and sample.  

This simulator requires two nanopore runs as input: one UNCALLED run which it uses to determine the 

channel occupancy “pattern”, and one (non-ReadUntil) control run to use for the actual raw electrical 

signal data for the reads encoded in fast5 format (​Supplemental Fig. S6, S7a​). This allows the 

simulator to output signal data from full-length control reads while still capturing the pore occupancy 

patterns of an UNCALLED run, which are different due to pore blockages and changes in 

electrochemistry caused by ejections. The simulator mimics the ReadUntil API, so that it can be used 

with UNCALLED without any modification to the underlying algorithm. It can also make accurate 

predictions in less time than a full 24-72 hour sequencing run by scaling down the durations of the 

long-term channel activity, while preserving the short-term timings of the signal and gaps between 

reads (​Supplemental Fig. S7b​). Importantly, in this mode the signal data is emitted at the nominal rate 

(1 chunk per second) but the duration between mux scans is truncated according to the desired 

acceleration factor. 

To establish the accuracy of the simulator, we re-created two full-length runs described above: the 

Zymo Full Flowcell 1 bacterial depletion run, and the Sheared Human Invitae Cancer Panel enrichment 

run. Both simulations used the corresponding UNCALLED and control datasets as input, and were run 

in real-time taking 48 and 72 hours respectively (​Supplemental Table S7​). The Zymo simulation 

predicted an absolute enrichment of 4.43 fold (-1.12% error) and a relative enrichment of 8.99 fold 

(1.06% error). The human simulation predicted an absolute enrichment of 5.31 fold (-4.32% error) and 

a relative enrichment of 7.14 fold (2.33% error). These errors are well within the bounds seen between 

real runs under similar conditions (​Fig. 2​). Next, we simulated the first 24 hours of each run with varying 

speeds of 1x (24 hours), 4x (6 hours), 8x (3 hours), and 16x (1.5 hours). At 1x to 8x speed the 

estimated absolute enrichment for both runs within 0.63-2.70% of the real run, and the estimated 

relative enrichment was within 2.38-4.99%. Both estimates at 16x speed for the human run had over 

7% error, suggesting that 1.5 hours is not sufficient time to simulate a 24 hour run, and thus all 

subsequent simulations were run at 8x speed using the first 24 hours of the sheared human Invitae 

enrichment run as a template. 

With its accuracy established, we next used the simulator to predict UNCALLED’s ability to target larger 

sets of genes across the human genome. We first simulated targeting 717 genes from the Catalogue of 

Somatic Mutations in Cancer (COSMIC)​36​ using the same gene list and coordinates as in Payne ​et al.​15​. 

Targeting all genes including introns, using 20Kbp of flanking sequence (111.44Mbp reference), and 

using the same masking procedure as the Invitae runs resulted in an absolute enrichment of 3.99 fold 
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(Supplemental Table S8)​. Assuming this enrichment level remained constant for a full 72 hours with 

two nuclease flushes and similar conditions to the sheared Invitae run, this would result in a mean 

coverage of 21.2x over all genes. However, we noted in the real sheared Invitae run the overall 

enrichment increased after the first 24 hours (​Supplemental Table S7​), likely because the pore 

occupancy was lower which reduced the CPU load. Assuming there was a proportional increase in 

enrichment in a 72 hour COSMIC run, we expect 24.9x coverage over all genes. We next tried 

enriching the same set of genes using 5Kbp of flanking sequence (89.93Mbp reference) instead of 

20Kbp, which resulted in an absolute enrichment of 4.02 fold. This difference between using 5Kbp 

versus 20Kbp of flanking sequence is well within the previously established margin of error. Similar 

results were found when using 5Kbp of flanking sequence for an Invitae panel simulation 

(​Supplemental Table S8​). Finally, we attempted using 20 and 40 iterations of k-mer masking on the 

5Kbp flanked COSMIC reference, which resulted in absolute enrichments of 4.00 and 4.01 respectively. 

Again, this is not substantially different from the enrichment seen using 30 iterations, suggesting that 

UNCALLED is robust to changes in the exact number of masking iterations used or the amount of 

flanking sequence included. 

Rather than enriching for entire genes, including introns, we next explored targeting only exons. We 

built references containing all exons plus 5Kbp of flanking sequence from the Invitae (9.86Mbp 

reference) and COSMIC (48.19Mbp reference) gene panels and performed enrichment simulations on 

each. The simulator predicted an absolute enrichment of 5.22 fold for Invitae and 5.23 fold for COSMIC 

(Supplemental Table S8)​. It is notable how similar these levels of enrichment are despite the 

substantially different reference sizes, which suggests that UNCALLED does not have difficulty 

enriching for the genic sequences of this size. To test the extent of this, we built progressively larger 

references by extracting genes from whole chromosomes, combining chromosomes in order of how 

many genes each one contains (​i.e.​ the smallest reference contains only chr21, the next adds chr18 

and chr22, etc. See ​Supplemental Table S8​). The Y chromosome was excluded because it is absent 

from GM12878. We created two versions of each gene collection: one with only exons, and one 

including introns. All used 5Kbp of flanking sequencing and 30 k-mer masking iterations. Enrichment 

levels were computed based on exon coverage for the exon-only references and whole-gene coverage 

for the whole-gene references. The absolute enrichment levels for the exon-only references ranged 

from 5.22 for just chromosome 21 to 3.16 for the full human exome, while the whole-gene references 

ranged from 4.41 to 1.66 fold enrichment (​Supplemental Figure S8)​. Interestingly, the whole-gene 

references produce lower levels of enrichment compared to exon-only references of similar length 

(​Supplemental Figure S8b​), despite having very similar true positive UNCALLED mapping rates 

(​Supplemental Figure S8d​). This is because the exons comprise a much smaller fraction of the 
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genome than the full genes, meaning there is a larger potential for enrichment in the exon targets. The 

largest exon-only panel targets only 3.3% of the genome, meaning it could theoretically be enriched by 

a maximum of 30.03 fold, while the full gene panel targets 42.6% of the genome, meaning it could be at 

most enriched by 2.35 fold (​Supplemental Table S8​). Note that the target size is different from the 

reference size due to flanking sequence. Considering this, the 1.66 enrichment of every full gene in the 

human genome is not insignificant, especially since fundamentally some portion of each read must be 

sequenced for ReadUntil to operate. 

Discussion 

UNCALLED is a streaming nanopore signal mapper that can accurately map thousands of basepairs 

worth of signal per second to a reference millions of nucleotides in length. We have demonstrated two 

ReadUntil approaches: depletion and enrichment. With depletion any reads that confidently map to the 

reference are ejected. This analysis benefits from UNCALLED’s streaming algorithm, as it does not 

require a fixed amount of signal to be predefined, and the read can be mapped and hence ejected at 

any point during sequencing. A use case for depletion, shown by our Zymo community analysis, is to 

deplete any known bacterial and/or viral contaminants in a sequencing run. Other applications include 

depleting high copy organelles or plasmids from a sample or depleting the host genome from a 

host-pathogen sequencing experiment. With enrichment, any reads that ​do not​ map to the reference 

are ejected. Here UNCALLED’s ability to map over 90% of reads given less than 3s (~1.3Kbp) worth of 

signal allows us to accurately make decisions before much of the read has been sequenced. We have 

demonstrated an important application for this by enriching all 148 genes used in Invitae hereditary 

cancer panels to a depth of 29.6x using a single MinION flowcell sequencing GM12878. These data 

enabled SNP and indel calling more than twice as sensitive and precise as the matched control, and 

methylation calling that closely matched a 51.1x coverage WGS ONT run. We were also able to 

accurately identify 56 SVs across all 148 genes with 100% concordance compared to a high-coverage 

ONT WGS dataset and 30x PacBio HiFi reads, more than twice the number identified with 50x Illumina 

coverage. ​More specialized tools could increase the number of SVs detected from the Illumina reads, 

such as MELT ​37​ and Tangram ​38​ which are designed to find mobile element insertions, however these 

tools would not aid in the detection of non-mobile element SVs which comprise the majority of those 

identified in the Invitae panel.  

Most SVs detected in GM12878 with the UNCALLED enriched reads were located in intronic regions. 

While these certainly could have functional effects, exonic mutations are more likely to disrupt gene 

activity. A single heterozygous insertion was located in an exon of the MUTYH gene (​Fig. 4​), which is a 

gene involved in DNA repair​33​. Homozygous mutations in this gene are known to cause adenomatous 
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colorectal polyposis, a disease that highly increases the risk of developing colorectal cancer ​39​, and 

there is some evidence that heterozygous mutations also increase this risk ​40​. Additional analyses 

and/or functional validation are necessary to determine the effect of this insertion, but a result such as 

this in a patient would indicate that the individual could be a carrier for adenomatous colorectal 

polyposis, and could themselves be at a higher risk of developing colorectal cancer.  

To further benchmark UNCALLED, we also developed a ReadUntil simulator which allowed us to 

predict how much UNCALLED could enrich using various target references. This strongly demonstrates 

the potential for UNCALLED to target all 717 COSMIC genes or even the whole human exome, albeit at 

modestly lower levels of enrichment than the smaller Invitae panel. The simulation of the human exome 

run suggests that a 72 hour run with two nuclease flushes could reach a mean coverage of 14.1-16.5x 

of the exome. The simulations demonstrated interesting properties of ReadUntil, especially the intrinsic 

limitation of enriching for larger proportions of DNA in the sample. It is important to note that these 

simulations assume identical sequencing conditions as the sheared Invitae enrichment run, which was 

used as a template. Changes to the read length distribution or flowcell quality, would also change the 

results. It is also possible that factors such as ejection delays or pore blockages could also change 

when target sequence is changed. More experiments are required to model these effects. Regardless, 

this simulator will be a valuable resource to predict enrichment levels before committing to a real 

sequencing run of any genome and sequencing target. 

We have noted several technical issues with the ReadUntil method including read length dependence, 

pore blockages, and delayed ejections. While UNCALLED is generally more effective with longer reads, 

longer reads are also associated with lower yield, meaning these factors must be balanced to maximize 

the on-target yield. This is exemplified in the unsheared and sheared human gene enrichment runs, 

where the sheared UNCALLED run has a lower percent of on-target yield than the unsheared run, but 

the absolute on-target yield is higher (​Fig. 3a​). Both ONT yield and read lengths have continually 

improved historically, so the dependence on long reads is likely to be less of a limitation in the future. 

Pore blockages are largely eliminated with nuclease flushes, but this requires additional input DNA and 

preparation time. Blockages could possibly be alleviated by adjusting the voltage applied during 

ejection, or be avoided by not ejecting reads that map near certain motifs that are likely to self-bind and 

cause a blockage. ONT has also recently announced plans to incorporate nuclease enzymes directly 

within the trans side of the pore which could make manual treatments unnecessary​41​. UNCALLED 

could also eject reads earlier if provided smaller chunks of signal. The ReadUntil API currently only 

provides signal in one second chunks, while UNCALLED can usually map 75% of reads in less than 

one second. Reducing this minimum time would allow many reads to be ejected earlier. 
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UNCALLED’s performance degrades as references become larger and more repetitive, including when 

the reference is composed of a collection of many genes and/or many individual genomes​. The size 

effect is mainly due to the increase of repetitive sequences, since the odds that any sequence appears 

multiple times in a reference increases with reference size. While we have demonstrated several use 

cases for UNCALLED, including the enrichment of 148 human genes at once ​and potentially the entire 

human exome​, broadening the types of sequences that UNCALLED can enrich or deplete could be 

very useful. Optimizations such as further improving the cache-efficiency of the mapping procedure and 

utilizing SIMD instructions available on modern processors could substantially improve UNCALLED’s 

performance on any reference. Also, while the repeat masking described here was effective, 

modifications to the indexing procedure and/or core algorithm could eliminate the need to mask entirely. 

We also intend to develop a GPU implementation of the UNCALLED algorithm, which could drastically 

improve the speed, especially to support PromethION sequencing that has more pores available per 

flowcell and can run multiple flow cells in parallel. This will allow UNCALLED to leverage the same 

computing power as methods which use specialized GPUs to basecall for ReadUntil​15​. Basecalling 

reads first, no matter how efficient, levies an additional computational burden requiring more powerful 

computers and additional time for a sufficient amount of signal to be cached, meaning delayed 

ejections and lower enrichment.  

In the future, UNCALLED could be used for additional applications than demonstrated here with little or 

no modification to the algorithm. For example, UNCALLED could currently enrich or deplete cDNA 

sequences, which could be useful in avoiding sequencing highly abundant genes or targetting for 

known gene fusions. ReadUntil with direct RNA sequencing is also possible, although this would 

require an accurate RNA k-mer model and optimized event detection parameters to account for the 

different and less stable translocation speed. UNCALLED could also be used in conjunction with other 

enrichment methods, such as CRISPR/Cas9 enrichment. These methods produce many off-target 

sequences, which UNCALLED could eject to further improve the amount of on-target DNA. Lastly, 

UNCALLED can enable many new dynamic applications. For example, an UNCALLED index could be 

built on-the-fly during a metagenomics sequencing run from the most highly abundant genomes, which 

could then be depleted for the remainder of the run to increase the coverage for less abundant species. 

The dynamic nature could also be used to shift the coverage requirements for sequencing below the 

typical Poisson distribution by selectively ejecting reads from regions of the genome that already have 

sufficient coverage available. Finally, we also intend to add an optional dynamic time warping (DTW) 

step to UNCALLED, making it a full-scale signal-to-basepair aligner. This could aid in raw signal 

applications outside of ReadUntil, such as assembly polishing, identifying nucleotide modifications​3​, 
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and classifying variable number tandem repeats​42​. UNCALLED could improve the sensitivity of such 

analyses by eliminating the need for basecalling, which can be error prone around such features. 
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Online Methods 

UNCALLED Algorithm 
The core algorithm can be split into three main stages: signal processing, seed mapping, and seed 

clustering. 

The signal processing stage​ probabilistically decodes the raw signal data into the k-mers they 

represent. It is based on early Hidden Markov Model (HMM) basecallers, where stretches of similar 

signal are first collapsed into “events”, which ideally represent the same k-mer​43​. The event detection 

process can make two types of mistakes, which can be classified as “stays” (multiple events that 

represent the same k-mer), and “skips” (one event that represents multiple k-mers). Stays are far easier 

to handle than skips combinatorially: if we know the k-mer associated with one event and we want to 

predict the next, if we assume the only errors are stays then there are up to five possible next k-mers 

(extend by A, C, G, or T, or stay), while including skips results in 21 possible extensions (the previous 5 

plus extend by AA, AC, AG, AT, CA,  etc). We therefore use event detection parameters which are 

tuned to typically result in ~50% stays and ~1% skips. UNCALLED’s event detector is based on open 

source event detection code from Scrappie (​https://github.com/nanoporetech/scrappie​), which uses 

t-tests over rolling windows to detect when the signal changes significantly to define event boundaries. 

This code was modified to operate in a streaming manner for UNCALLED. The UNCALLED version 

produces identical events compared to Scrappie event detection given the same signal and 

parameters. 

Each event is represented by the mean of the signal that it covers. As events are detected, they are 

normalized so that the mean and standard deviation of a rolling window of events match that of the 

k-mer model released by ONT ​44​. This is accomplished with a streaming algorithm that computes the 

mean and variance based on the Welford algorithm​45​ adapted to maintain the rolling window, allowing 

the normalization to adjust for drift in the signal characteristics throughout sequencing. The default 

normalization window is 6,000 events long to ensure a robust sampling of all possible k-mers.  

After normalization, UNCALLED calculates the probability that each event matches each possible 

k-mer based on ONT’s k-mer model. This model lists the expected mean and standard deviation of the 

signal associated with each 6-mer, which is modeled as a normal distribution. To accelerate 

computational processing, UNCALLED uses a simplified model of 5-mers with little loss of information 

when computing event/k-mer match probabilities. During signal processing, UNCALLED picks a 

probability threshold that is dynamically altered depending on how uniquely the seed is mapping, and 

considers all k-mers which match each event above that threshold (see ​Index Probability Thresholds 

below). 

22 

https://paperpile.com/c/zcNkd0/NNMQB
https://github.com/nanoporetech/scrappie
https://paperpile.com/c/zcNkd0/ngbr7
https://paperpile.com/c/zcNkd0/qnvBt


 

The seed mapping stage​ attempts to find relatively short but perfect alignments between the read and 

the reference genome. UNCALLED uses an FM-index, which is the data structure used by many 

aligners such as Bowtie ​46​, BWA ​28​, and HISAT ​47​. BWA provides a library for its FM-index, which 

UNCALLED directly uses to take advantage of its highly optimized construction and querying. The 

FM-index allows one to find all locations of an arbitrarily long query sequence in a reference, with time 

essentially constant with respect to the reference size. UNCALLED uses a novel branching algorithm 

which considers all k-mers that each event can match at each step of the mapping. This algorithm 

speed is not constant with respect to the reference size due to the branching, but scales much better 

compared to dynamic time warping.  

Given a new read, UNCALLED first finds all locations of all k-mers which match the first event. The 

FM-index allows an efficient representation of all locations of each unique sequence. For the next 

event, it checks if that event could match any k-mers “compatible” with any of the k-mers that matched 

the previous event. A 5-mer is compatible if its first four bases match the previous 5-mer’s last four 

bases, or if they are the same 5-mer in the case of a stay. Each compatible non-stay k-mer extends the 

previous sequence by one basepair, and we use the FM-index to find the locations of each extended 

sequence. This search space conceptually forms a forest of trees, where each possible sequence and 

the locations of that sequence are represented as a path from a root to a leaf (​Supplemental Fig. S1​). 
After existing mapping paths are extended, UNCALLED begins new paths by finding the locations of 

k-mers that match the event but are not represented in the previous paths. Again, the FM-index 

provides an efficient mechanism to accomplish this. The UNCALLED algorithm proceeds by alternating 

between extending old paths and creating new ones, and can report a seed mapping when one 

sequence narrows down to a unique location in the reference.  

Storing mapping paths as nodes of trees connected by edges would be computationally intensive due 

to cache inefficiency when accessing non-contiguous memory. To improve performance, UNCALLED 

stores each path from a root to a leaf in a “path buffer” (​Supplemental Fig. S9​). Each path buffer 

stores cumulative log probabilities of each event matching each chosen k-mer, and other information 

such as the FM-index location and the most recent k-mer matched. When a path branches, the buffer is 

copied to preserve this information for each extension. The length of the path buffers determines the 

seed length, and a seed is only reported if the buffer is full and the mean probability over all events in 

the buffer is above a threshold. When an event is added to a full buffer, the oldest event is erased and 

all other events shift to make room for the new event, allowing subsequent seeds to build off of 

previous seeds. 
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The seed clustering stage​ separates true alignments from spurious seed matches. Due to the noisy 

nature of nanopore sequencing, UNCALLED must use very loose thresholds for event/k-mer matches, 

which produce many false positive seed mappings. We eliminate these false positives under the 

observation that they will usually map to random locations, while true positives will map to locations 

consistent with their position on the read. This analysis is complicated by stays, which can occur 

inconsistently: there are often long stretches of stays followed by many non-stays. We therefore 

developed a rapid clustering algorithm which groups seeds together if their read and reference 

coordinates are consistent with each other. Specifically, the distance between read coordinates of 

adjacent seeds must be larger than the distance between the reference coordinates, but not by more 

than a factor of 12 by default, which handles most stretches of “stay” events. When a seed is added to 

an existing cluster of seeds, we update the total number of reference basepairs that the cluster covers, 

which is used as a measure of support for that reference location. We report a read mapping once the 

ratio of the best supported location over the next best supported location is above a threshold (default: 

1.85 fold), or the ratio of the best supported location over the mean support for all locations is above a 

different threshold (default: 6.00). The first threshold is sufficient for most non-repetitive regions, while 

the second threshold is somewhat more repeat tolerant. 

Index Probability Thresholds 
UNCALLED uses the BWA library for constructing, storing, and querying the FM index ​28​. After the 

index is constructed, reference-specific probability thresholds must be precomputed to maintain 

accuracy and speed for references of different sizes and repeat contents. These thresholds are used to 

decide which k-mers can be used to extend a path based on the event/k-mer match probabilities (see 

the signal processing stage​ above). The threshold to be used depends on how many reference 

locations that the path being extended could currently map to, which is determined by the length of the 

FM index range associated with the path buffer (FM range size, ​Supplemental Fig. S2​). The goal in 

choosing these thresholds is to limit unnecessary branching in the seed mapping process. A path buffer 

that could map to many locations (a large FM range size) should use a strict threshold, meaning fewer 

k-mers are likely to be considered, since each location that a path can map to could form a new branch 

later in the mapping process (​Supplemental Fig. S1​). As a path gets longer the number of locations to 

which it could map tends to decrease, and so using more permissive probability thresholds for smaller 

FM range sizes increases the odds that events extending longer paths will correctly match the k-mers 

they represent. The correspondence between FM range sizes and probability thresholds must vary 

depending on the reference, since paths of the same length are likely to have longer FM range sizes as 

references become larger and more repetitive.  
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UNCALLED uses a different log probability threshold for every power of two FM range size, and 

assigns thresholds such that FM ranges with size in the range  share the same threshold for2 , 2 ][ s  s+1  

any positive integer  (​Supplemental Fig. S2b)​. This works well since FM range sizes decreases  

exponentially as mapping progresses, and it is computationally efficient to index in real-time by 

computing the log base two. We developed an EM algorithm to assign probability thresholds for 

intervals of FM index range sizes with the goal of minimizing the total amount of time required to map a 

read.  

Mapping paths are always extended one nucleotide at a time. It is useful to have a correspondence 

between the number of nucleotides mapped, which we call the “path position”, and the expected FM 

range size at that position. To find this correspondence we use the FM index to map the reference 

genome to itself from many random locations (one out of 100 genome locations by default) until a 

unique location is found, which provides a sampling of the FM range sizes for each path position. We 

then compute , which is the number of basepairs required to map 95% of positions uniquely (byN  

default), and  which is the maximum log FM size for all k-mers in the genome (  for the 5-merM k = 5  

model used by UNCALLED). For every  we compute the mean log​2​ FM range size after k, ]p∈ [ N p  

basepairs are mapped which we call , and for every  we compute the mean of all path(p)F 1, ]f ∈ [ M  

positions with FM range size , which we call . These functions allow us to pick thresholds withf (f )P  

respect to path positions and then map those thresholds back to FM range sizes. Assuming we have 

some function  which returns a log probability threshold for every path position , we aim(p)T k, ]p∈ [ N  

to compute a “speed coefficient”  which is proportional to the basepairs per second that we expect toS  

map. We can then use an EM algorithm to adjust  until an optimal  is found.  is computed(p)T S S  

based on the mean number of k-mers that we expect to match an event above each threshold, which 

we call  (​Supplemental Fig. S2a, ​blue line). For each path position, the amount of work(t)B  

UNCALLED must perform is proportional to the number of k-mers we expect to consider at the given 

threshold multiplied by the number of reference locations that currently considered: .(T (p)) (p)B × F  

These values are summed for every path position and normalized to compute :S  

S =
(p)∑

 

p∈[k,N ]
F

(T (p)) × F (p)∑
 

p∈[k,N ]
B

 

Finally, we must define  to be some increasing function that has an adjustable variable to optimize(p)T  

with the EM algorithm. Various functions were tested, but the one used in UNCALLED is based on the 

power function: . This function always intersects (0,0) and (1,1) making it easily scalable, andy = xθ  
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adjusting  makes it increase faster or slower. This requires some fixed initial and final probabilityθ  

threshold, which we call and  respectively. The default values for and are -10.00 and -2.25t0 tN t0 tN  

respectively (both natural log probabilities), which were empirically determined to be the lowest and 

highest useful thresholds (​Supplemental Fig. S2​). We then define ) as:(pT   

(p) t ) )T = t 0 + ( N − t0 × ( p
N

θ  

The EM algorithm then works by adjusting  until  reaches the target value. The default target for θ S S  

is 115, which was empirically found to minimize the total amount of time to map reads to various 

references. Once  is found we can compute  for all to find probability thresholds forθ (P (f ))T 1, ] f ∈ [ M  

every log​2​ FM range size. An example set of probability thresholds computed for the ​E. coli ​K12 

reference genome can be seen in ​Supplemental Fig. S2b​. 

Implementation 
UNCALLED is available open source at ​https://github.com/skovaka/UNCALLED​. The core algorithm is 

written in C++, with a Python frontend to interact with the ONT ReadUntil API. UNCALLED uses the 

BWA ​28​ FM-index to take advantage of its highly optimized construction and querying. ​The BWA index 

was chosen because it was available as a library and is highly optimized for DNA alignment, unlike 

more general-purpose libraries like SDSL ​48​ which are designed for larger alphabets.​ It can be run as a 

standalone read mapper in addition to live ReadUntil, and outputs locations in the PAF (Pairwise 

mApping Format) introduced by Minimap ​49​. UNCALLED was run on a 24 core 3.0 GHz Intel Xeon Gold 

6136. All mapping speeds were measured by running with a single thread. All ReadUntil experiments 

were run using 48 threads. 

Zymo Bacterial Depletion Experiments 
Bacterial reference genomes for the ZymoBIOMICS High Molecular Weight (HMW) DNA Standard were 

obtained from the ZymoBIOMICS (​https://s3.amazonaws.com/zymo-files/BioPool/D6322.refseq.zip​). A 

S. cerevisiae ​draft genome was also included, but this reference was highly fragmented, so the S288C 

reference genome (NCBI accession GCF_000146045.2) was used instead for mapping with 

UNCALLED and Minimap2. 

The Full-Flowcell 1 UNCALLED run ejected reads throughout the entire sequencing run including 

during “mux scans” when the sequencer checks pore quality to prioritize pore usage. Subsequent 

ReadUntil runs did not eject during mux scans in an attempt to improve yield by preventing ejections 

that might disrupt the MinION’s ability to check pore quality. This did not appear to have a substantial 
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impact on ReadUntil yield, but the feature was left in to not disrupt the mux scans since they account 

for less than 2% of sequencing time. 

 

Hereditary Cancer Gene Reference 

The 148 genes associated with hereditary cancer were obtained from the Invitae website by extracting 

the names of all primary and preliminary-evidence genes from every listed panel​20​. The coordinates of 

these genes in ​GRCh38​ were identified in the Ensembl gene annotation (v98)​50​. The gene coordinates 

were the extended by 20,000bp on each end to include flanking sequence, and the sequences at those 

locations were extracted from ​GRCh38​ using bedtools​51​ to obtain an 18.6Mbp reference. 

Two forms of masking were performed on the reference containing 148 human genes. The first is an 

iterative process based on identifying the most common 10-mers that occur within the reference. In 

each iteration the most common 10-mer is first identified using jellyfish ​52​, and then that k-mer is 

masked by replacing each occurrence with “N”s. The BWA indexing procedure replaces any “N” with a 

random basepair, making it highly unlikely that a read will falsely map to ten or more “N”s. In the next 

iteration the masked reference from the previous iteration is used, meaning the previously most 

common k-mer will no longer occur, and any k-mers overlapping that k-mer will have a reduced count. 

This method was also applied to the ​S. cerevisiae ​genome to demonstrate an improvement in mapping 

speed. ​We also tested only masking homopolymers 10bp or longer, and masking all homopolymers 

and simple tandem repeats, all identified using MUMmer’s ‘exact-tandems’ function​22​ with minimum 

repeat length set to 10bp. 

The 10-mer masking process is effective in increasing the TP rate, but also increases false positives 

caused by repeats outside of the reference. To identify these external repeats we first extracted all 

50bp windows from the 148 gene reference and aligned them to the full human genome using bowtie ​46​, 

using parameters which find all exact end-to-end matches (-a -v 0). We then found all windows that 

occur at least five times in the genome and merged them to find all contiguous regions 50bp or larger 

that occur at least five times. These regions were again masked by replacing them with “N”s. 

Small Variant Calling 
For consistency all nanopore data was basecalled using Guppy v3.2.4, including the WGS consortium 

data. SNPs and Indels were called using Clair​23​ with the alternative allele frequency threshold set to 0.2 

as recommended for ONT reads. We used the vcfeval command in rtg-tools​25​ to compute precision, 

recall, and F1 scores. For the truth set we extracted all entries in the Genome in a Bottle (GIAB) 

NA12878 small variant truth set​24​ which overlap the target genes, and removed variants which overlap 

low-complexity regions which negatively impact small variant detection benchmarking according to the 
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Global Alliance for Genomics and Health (GA4GH)​23,26​. Variants in these regions were also removed 

from the Clair outputs. This was done based on regions specified in previous work​23​. 

Methylation Calling 
CpG methylation was called using Nanopolish on default settings. Promoter regions, as annotated in 

the Ensembl regulatory features of ​GRCh38​, within the targeted regions were identified using 

bedtools​51​. ​Average methylation frequency was then calculated over these promoters. ​WGBS CpG 

methylation data of GM12878 biological replicates were downloaded from the Gene Expression 

Omnibus (GEO) database (Accessions GSM2308632 and GSM2308633) in bed file format.​ For 

read-level visualization, CG positions and methylation calls were annotated in the alignment files 

(​https://github.com/isaclee/nanopore-methylation-utilities​). 

Structural Variant Analysis 
High-confidence long-read SVs were found using Sniffles ​7​ with a minimum SV length of 50bp and a 

minimum read support of one quarter of the average coverage: 7 for UNCALLED and PacBio, and 13 

for the high-coverage WGS dataset. All other Sniffles parameters were left at their defaults. The 

minimum read support was chosen to be one quarter of the average gene coverage per sample as 

used in other studies​7,53​, based on the fact that heterozygous SVs should be represented in 

approximately half of all reads so that one quarter of reads will capture SVs with high probability ​53​. 

High-confidence short-read SVs were found using Manta​27​ using the default score cutoffs. Only SVs 

that are less than 1Mbp in length, do not include translocations to other chromosomes, and overlap one 

of the 148 cancer genes were considered for both Sniffles and Manta. The high-confidence SVs were 

matched using “SURVIVOR merge” with a maximum distance of 1,000bp and requiring the same 

variant type and strands. Because of the noise in the raw ONT reads, Sniffles split the same SV into 

two separate SVs in both the UNCALLED and WGS datasets (​Supplemental Fig. S5f​), which 

SURVIVOR merged in the WGS run but not UNCALLED. Accordingly, this case was manually 

corrected. Matches for previously unmatched high-confidence SVs were found using more sensitive 

criteria in Sniffles (minimum length of 30bp, minimum read support of 3, and maximum SV grouping 

distance of 50bp), and using all Manta SVs regardless of scoring. The maximum matching distance in 

SURVIVOR was also set to 1,500bp for merging the sensitive call sets.  

Deletions were characterized by first intersecting their reference coordinates with all RepeatMasker​30 

entries downloaded from the UCSC Genome Browser​32​ using bedtools​51​. If no overlap was found with 

RepeatMasker, we searched for overlaps with the “Simple Repeat” track from UCSC Genome Browser, 

which is based on Tandem Repeat Finder annotations​42​. Insertions were classified by extracting the 

insert sequence output by Sniffles for the PacBio HiFi SV calls, aligning this sequence to GRCh38 
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using BWA MEM ​28​, and intersecting the alignments with RepeatMasker and Simple Repeats. No 

alignment was found for two of the insertions, so these were characterized by their reference 

coordinates in the same way as deletions. 

ReadUntil Simulator 

The ReadUntil simulator models each simulation on two real runs, taking read signal data from a 

control run and gaps between reads from an UNCALLED run (​Supplemental Fig. 7a​). These are 

parsed via the sequencing summaries output by ONT basecallers, in addition to the UNCALLED PAF 

file and the control fast5 files. Reads and gaps within mux scans are excluded since UNCALLED 

ignores chunks within them. The gaps, defined as the time between the end of one read and the start of 

the next in the same channel, are classified into “short” and “long” gaps using a threshold of one 

standard deviation over the median (​Supplemental Fig. 6​). Short gaps are dynamically placed 

between individual reads, and long gaps define periods where a channel is entirely inactive. Within 

each channel, the gaps are organized into “scan intervals”, which are defined as a period of time 

between two mux scans (90 minutes by default). This is because the gap durations between reads for a 

given channel are generally stable between mux scans, while they can drastically change between mux 

scans when most pore transitions occur (​Supplemental Fig. 6​). Scan intervals are synchronized 

across channels, meaning all channels start and end their intervals at the same time.  

When a new read is produced, a short gap is sampled from the active scan interval and no chunks are 

output until the duration of the short gap has passed (​Supplemental Fig. 7a​). This allows the 

simulation to be dynamic by enabling an arbitrary number of reads to be simulated, which is necessary 

because a large number of ejections could provide time for more reads. Long gaps, on the other hand, 

are stored as static “active” and “inactive” time periods which define when a channel should and should 

not produce reads. In order to accelerate the simulation the active/inactive periods and scan interval 

lengths, but not the short gaps or read durations, can be scaled down by some constant 

(​Supplemental Fig. 7b​). This essentially downsamples the overall number of reads sequenced while 

retaining the short-term channel activity patterns, thus allowing for an accelerated run to be accurately 

modeled.  

The simulated reads are loaded from a control run so that any read could be potentially simulated as 

full-length (not ejected). Only the maximum number of chunks that UNCALLED will attempt to map are 

loaded to limit the loading time and the amount of RAM required. For example, in the Zymo bacterial 

depletion simulations ten chunks are loaded for each read, while in the human gene enrichment 

simulations only three chunks are loaded. The full sequencing duration (in seconds) of each read is 
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also loaded so the simulator can spend the appropriate amount of time on each read. The 

channel-by-channel activity of the UNCALLED and control run are unlikely to be similar to each other, 

meaning channels are unlikely to produce similar numbers of reads or be active or inactive at the same 

times. In fact, an UNCALLED run typically produces many more reads than the control because of read 

ejections. Because of this, reads are associated with whole channels rather than scan intervals to avoid 

differences between interval activity (​Supplemental Fig. 7​).  

Read counts are normalized by re-assigning reads to channels while attempting to keep reads 

originating from the same channel together as much as possible. This is needed to preserve similarity 

between signal characteristics of consecutive reads. First, UNCALLED and control channels are sorted 

by read count and control reads are tentatively assigned to UNCALLED channels in sorted order. We 

then compute the target number of control reads that should be assigned to each channel by 

normalizing the UNCALLED channel counts to the number of control reads, with a minimum number of 

reads required per channel (ten by default). Next channels are sorted by the difference between the 

tentative counts and target counts. Finally, reads from channels with the highest excess of reads are 

iteratively moved to channels with the highest deficit, moving reads in contiguous blocks to preserve 

signal similarity between consecutive reads.  

At the start of a simulation, each channel that is active samples a short gap from its first scan interval 

and a read to be used as their first active reads. The short gaps precede the reads, and no chunks are 

output until each gap duration passes (​Supplemental Fig. 7​). After each gap, chunks are output after 

each chunk duration (one second) passes until no more chunks are available, after which UNCALLED 

does not accept more chunks. If UNCALLED requests an ejection, the read duration is shortened after 

an ejection delay, which is set to the median ejection delay observed within the input UNCALLED run. 

After the read duration passes, if the channel is still in an active period then another read and short gap 

are sampled and the process repeats. When all channels reach the end of their scan intervals the 

simulator outputs nothing for ten seconds to allow all UNCALLED mappers to reset as they do in a mux 

scan, then moves on to the next set of scan intervals.  

After the simulation concludes, a post-processing script estimates enrichment level by examining the 

simulation output PAF file along with the control sequencing summary to translate sequencing 

durations into yield estimates. If the simulation was run at a faster speed these yield estimates are 

appropriately scaled to project the full-length run yields. When comparing simulated enrichment levels 

to real runs, we excluded reads which occurred during mux scans in the real runs because mux scans 

were not simulated. 
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The simulator was developed as part of UNCALLED version 2.0, released under the v2.0 tag on 

GitHub. This also included minor changes to how probability thresholds are computed for different 

indexes in order to handle particularly small or large indexes. The indexing procedure still follows the 

framework described above, but the parameters chosen, and thus the exact mapping speed/accuracy, 

for certain references may vary slightly between version 2.0 and version 1.0, which was used for all 

non-simulation experiments. 

Samples 

ZymoBIOMICS HMW DNA Standards were purchased from Zymo Research. GM12878 cells were 

purchased from Coriell Institute and propagated in Dulbecco’s Modified Eagle Media (DMEM) with fetal 

bovine serum (FBS), penicillin, and streptomycin at 37°C and 5% CO​2​. Cells were then snap frozen in 

pellets of roughly 2 million cells, and DNA was extracted from the cell pellets using the Nanobind Cells, 

Blood, Bacteria (CBB) Big DNA Kit from Circulomics according to the manufacturer's specifications. 

The extracted DNA was then directly sheared without dilution to 30kb using the Diagenode Megaruptor 

2. Sheared samples were processed twice in a row on these settings due to the viscosity of the 

extracted DNA. Before library preparation, short fragments of DNA were depleted from the samples 

using the Circulomics Short Read Eliminator XS (SRE XS) kit, according to the manufacturer’s 

specifications.  

Library preparation 
All sequencing libraries were prepared using the ONT Ligation Sequencing Kit (SQK-LSK109) without 

the DNA Control Strand (DCS) or FFPE repair in the end prep step. The initial sample volume was 

thusly adjusted to 50ul, and Ultra II End Prep Reaction Buffer volume was adjusted to 7ul. Nuclease 

flush Buffer A was prepared by combining 659ul of ultra pure water, 300 ul of 1M KCl, 30ul of pH 8.0 

HEPES buffer, 10ul of 1M MgCl​2​, and 1ul of 2M CaCl. Just prior to loading the flowcells, the libraries for 

the control run and the UNCALLED run were mixed together, as were the priming buffers for the runs. 

ONT MinION flowcells (FLO-MIN106) with vR9.4.1 pores were used for all sequencing. Flowcells were 

selected such that the estimated available pores on the UNCALLED and control runs were within 200 

pores of each other (out of ~1,400 to ~1,700 total pores). The runs used in addition to the WGS 

consortium data for the high-coverage WGS SV calls were the two GM12878 control runs, plus another 

library sequenced with the same protocol as the unsheared GM12878 control run. 

Data Availability 
All sequencing runs are available as an NCBI BioProject under the accession PRJNA604456.  
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Supplemental Figures 
 

Supplemental Figure S1. ​FM Index alignment 

examples. (​top​) FM index alignment of a standard 

DNA sequence, where the size of each box 

represents the number of possible locations. 

(​middle​) FM alignment of a sequence where every 

position could be one of two bases. Base ambiguity 

is analogous to the k-mers we consider for every 

event. (​bottom​) Same as middle but alignments 

starting from all positions are found by filling in the 

gaps between ranges from previous alignments. 
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a. 

 

b. 

 

Supplemental Figure S2​. Match Probability Thresholds ​(a)​ Relationship between natural log 

probability thresholds (x-axis), the mean number of k-mers that match above each threshold per event 

(blue), the fraction of events that match their correct k-mer above each threshold (red). The values for 

r9.4 chemistry are shown here. ​(b) ​The FM index range lengths assigned to different probability 

thresholds for the ​E. coli ​reference. This function varies depending on the reference used.  
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a b 

Supplemental Figure S3.​ Pore activity during Zymo “full flowcell 1” sequencing runs. ​(a)​ Percent of 

channels that are labeled active throughout zymo bacterial depletion UNCALLED and control runs, 

based on the percent of signal labeled “pore” or “strand” in the MinKNOW duty times. Curves are 

smoothed by taking the mean of 92 minute windows, which smooths over mux scans. ​(b)​ Number of 

channels which are “alive” throughout the run, meaning they have the capacity to sequence reads, 

based on when the last read was produced. This is distinct from the duty time plots in that a channel 

may not produce a read for several hours but still be considered “alive”. 
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a.  

 
b. 

 
Supplemental Figure S4 ​GM12878 gene enrichment run duty times in the ​(a) ​unsheared​ run​ ​and ​(b) 
sheared run. Nuclease flushes were carried out at 24 and 48 hours in both runs. Curves plotted as in 

Supplemental Fig. S3​. Note: we observed that a large patch of channels were marked as inactive after 

the second flush in the sheared UNCALLED run, which can occur because of bubbles introduced when 

loading.  
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Supplemental Figure S5.​ SVs confirmed by applying sensitive parameters in Sniffles and SURVIVOR 

or which required manual inspection to correct. ​(a)​ Insertion detected by UNCALLED but not by ONT 

WGS because most reads represented it as < 50bp. ​(b)​ Insertion detected by ONT WGS but not by 

UNCALLED because of low-complexity sequence. The overlapping deletion on the other haplotype also 

likely made the insertion difficult to resolve. ​(c)​ Insertions detected by UNCALLED but not by PacBio 

because of low-complexity sequence. ​(d)​ Deletion detected by PacBio but not by UNCALLED. ​(e) 
Deletion detected by UNCALLED (and all other long-read datasets) but not by Illumina reads, likely 

because of surrounding repetitive elements. Note that white read alignments indicate low mapping 

quality. ​(f)​ Sniffles called two SVs in this locus in both UNCALLED and ONT WGS, while it appears to 

represent a single duplication. SURVIVOR merged the ONT WGS SVs but not the UNCALLED SVs, 

causing a falsely unmatched SV. This is a known issue with SURVIVOR and this case was manually 

corrected. 
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Supplemental Figure S6.​ Durations of gaps between reads on channel 109 of the Zymo Full Flowcell 

1 UNCALLED run. X-axis indicates when a read ended, Y-axis indicates how long until the next read 

begins (log scale). Dashed vertical lines indicate mux scans, which often correspond to when gap 

characteristics change due to pore transitions. The horizontal red line is at one standard deviation over 

the median gap length for the entire run (including other channels), which is the threshold the simulator 

uses to define active and inactive periods as represented by the top blue and red bars respectively.  
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Supplemental Figure S7.​ ​(a)​ Outline of the ReadUntil simulator. Inputs are sequencing summaries of 

an UNCALLED run and a control run, in addition to the corresponding UNCALLED PAF file and the raw 

reads from the control run. The overall “pattern” of the simulation is generated from the UNCALLED 

run: for each channel, gaps between the end of a read and the start of the next are separated into 

“short” and “long”, where the long gaps are used to define broadly active and inactive periods of the 

channel (see ​Supplementary Fig. S6​) and the short gaps are stored in a series queues, each 

associated with a scan interval. Scan intervals are periods between two mux scans which are 

synchronized across all channels. The read chunks and durations are loaded from the control run. ​(b) 
Illustration of how simulations can be shortened by scaling down the active/inactive periods and scan 

intervals, but leaving the read and short gap duration unchanged.  
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c. d. 

Supplemental Figure S8.​ Simulated results of targeting sets of human genes: (a) absolute enrichment 

with respect to gene count, (b) absolute enrichment with respect to reference size, (c) true positive rate 

with respect to gene count, (d) true positive rate with respect to reference size. True positive rates were 

computed based on reads where the first 1,350bp of each read fully aligns to the target reference 

according to minimap2. Note that reference size includes the 5Kbp surrounding each gene/exon, while 

the level of enrichment is calculated based on coverage of the target sequence only (see 

Supplemental Table S8​).  
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Supplemental Figure S9. ​Representation of alignments in path buffers. The “Virtual Alignment Forest” 

is a more detailed version of the one in ​Fig. 1a​. Pink edges mark paths that were pruned out due to 

lower probability in order to maintain the tree structure. Shaded backgrounds mark paths that have not 

been pruned out and are therefore represented in path buffers, and darker shading indicates that part 

of the path is represented in multiple buffers. “Path Buffers” store cumulative log probabilities that can 

be used to compute a rolling mean log probability as mapping progresses, as well as “stay” versus 

“move” events represented by dotted versus solid lines. Seed mappings are inferred from the FM index 

coordinate which are also stored in the buffers. 
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