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Abstract

In contrast to the western honey bee, Apis mellifera, other honey bee species have been largely neglected
despite their importance and diversity. The genetic basis of the evolutionary diversification of honey bees
remains largely unknown. Here, we provide a genome-wide comparison of three honey bee species each
representing one of the three subgenera of honey bees, namely the dwarf (4pis florea), giant (A. dorsata) and
cavity-nesting (4. mellifera) honey bees with bumblebees as outgroup. Our analyses resolve the phylogeny of
honey bees with the dwarf honey bees diverging first. We find that evolution of increased eusocial complexity
in Apis proceeds via increases in the complexity of gene regulation, which is in agreement with previous
studies. However, this process seems to be related to pathways other than transcriptional control. Positive
selection patterns across Apis reveal a trade-off between maintaining genome stability and generating genetic
diversity, with a rapidly evolving piRNA pathway leading to genomes depleted of transposable elements, and a
rapidly evolving DNA repair pathway associated with high recombination rates in all Apis species.
Diversification within Apis is accompanied by positive selection in several genes whose putative functions
present candidate mechanisms for lineage-specific adaptations, such as migration, immunity, and nesting

behavior.
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Introduction

How genomes diverge to give rise to organismal diversity remains one of the most fundamental questions in
biology. Comparative functional genomics has drastically expanded our knowledge on the relative
contributions of genetic novelty and co-option (Jasper et al. 2015; Warner et al. 2019), structural and
regulatory innovation (Deplancke et al. 2016), as well as cis- and trans-regulation of gene expression (Green et
al. 2019) to phenotypic diversification. As a consequence, the genotype-phenotype map is being elucidated at
ever-increasing detail (Zhou et al. 2020). In addition to broad-scale macroevolutionary studies, taxon-specific
comparative genomics is generating novel insights, particularly with respect to structural genome evolution
(Figueiro et al. 2017; Chavez et al. 2019; Sun et al. 2021).

The evolution of complex insect societies represents one of the major evolutionary transitions
(Maynard Smith and Szathmary 1995). Genomic signatures of this transition share few commonalities across
taxa, except for an increase in gene regulatory capacity (Gadau et al. 2012; Simola et al. 2013; Terrapon et al.
2014; Kapheim et al. 2015; Harpur et al. 2017; Harrison et al. 2018). In contrast to the major focus on studying
the genomic bases of the origin of sociality and associated traits, the maintenance and diversification of social
traits has received limited attention (Simola et al. 2013; Jasper et al. 2015; Araujo and Arias 2021; Sun et al.
2021).

Here, we use a comparative, lineage-specific approach to identify genetic loci associated with
evolutionary adaptations underlying the organization of complex insect societies in the eusocial honey bee
genus Apis. Due to its scientific and practical importance, the Western honey bee Apis mellifera (L.) was
among the first metazoans with a completed genome project (Weinstock et al. 2006). It has since served as a
model for genomic studies of adaptation (Wallberg et al. 2014), invasion (Calfee et al. 2020), and social traits,
such as caste differentiation (Chen et al. 2012), division of labor (Smith et al. 2008), and other social behaviors
(Zayed and Robinson 2012).

In addition to the cavity-nesting A. mellifera and closely related species, the genus Apis contains two
other lineages, the dwarf honey bees and giant honey bees (Raffiudin and Crozier 2007). Although their

evolutionary origins are not clear (Kotthoff et al. 2013), all species share a social lifestyle in complex societies
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with thousands of workers and a single, polyandrous queen and nest in vertical wax comb to store food and
raise brood (Oldroyd and Wongsiri 2006). However, the three subgenera exhibit pronounced differences in
body size, colony size, mating behavior, caste divergence, nesting habits, thermoregulatory ability, recruitment
dances, and defensive and migratory behaviors (Dyer and Seeley 1991; Oldroyd and Wongsiri 2006; Koeniger
et al. 2010; Hepburn and Radloff 2011; Rueppell et al. 2011b).

The genetic architecture underlying the diversification of the Apis lineages remains largely unknown.
Intra-specific studies have addressed the genetic basis of some key social traits, such as worker ovary size and
caste differentiation (Cardoen et al. 2011; Graham et al. 2011; Chen et al. 2012), dance language (Johnson et
al. 2002), and defensive behavior (Hunt et al. 2007; Alaux et al. 2009) in A. mellifera. However, it is unclear to
what extent the identified genetic mechanisms involved in intra-specific variation can explain the inter-specific
differentiation among Apis species (Dieckmann et al. 2004). Broad comparisons in Apis (Sarma et al. 2007,
2009) have been hampered by the lack of available genomic resources in species other than 4. mellifera
(Weinstock et al. 2006; Elsik et al. 2014) and the closely related A. cerana (Park et al. 2015), although the
genome of A. dorsata has recently also been published (Oppenheim et al. 2020) and targeted analyses have
helped to resolve particular gene families (Helbing et al. 2017).

Here, we present a comprehensive analysis of the molecular evolution of protein-coding genes across
Apis based on homologous gene sets derived from genomes of all three major honey bee lineages. At the
genome level, we reconstruct the phylogenetic relationships among the Apis lineages and identify key targets
of positive selection associated with social complexity, ecological specialization, and chemosensation,

elucidating the genomic basis of evolutionary diversification within honey bees.

Results

Honey bee genomes and phylogenetic inference
We identified all single-copy orthologs between the western honey bee Apis mellifera, the dwarf honey bee 4.
florea, and the giant honey bee A. dorsata, with bumblebees as outgroup. Our analysis included the published

genomes of 4. mellifera (Elsik et al. 2014) and Bombus impatiens and B. terrestris (Sadd et al. 2015). In
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addition, we sequenced, assembled, and annotated the genomes of A. florea and A. dorsata. This produced two
high-quality genome assemblies of similar length and GC content (4. dorsata: 230 Mb, N50: 732kb, GC:
32.5%; A. florea: 229 Mb, N50: 2.86Mb, GC: 34.9%) but different contiguity (4. dorsata: size of scaffolds:
200 bp - 3.6 Mb, total count: 4040; A4. florea: size of scaffolds: 500 bp - 9.6 Mb, total count: 6983), likely
explained by differences in repetitive sequences (4. dorsata: 17.5%, 40.4 Mb; A. florea: 14.3%, 32.9 Mb).
Even though a newer assembly for 4. mellifera has been published since our analysis (Wallberg et al. 2019)
and our sequencing and assembly strategies for A. florea and A. dorsata have been replaced by more modern
approaches (Phillippy 2017), the generated datasets proved to be informative and appropriate for our
subsequent analyses: A high level of gene completeness (4. dorsata: 93.7%, A. florea: 91.9%) was confirmed
by a BUSCO analysis (Simdo et al. 2015) with the hymenoptera linecage dataset.

The gene sets for comparison across species (see Methods) were of similar size among all bees (Figure
1). A total of 3,858 genes were present in only a single species (2,130 in A. florea, 584 in A. dorsata, and 1,144
in A. mellifera) and thus were categorized as lineage-specific. Among the 1,506 genes identified as homologs
in only two species 570 were shared between A. mellifera and A. dorsata (570), more than either species with
A. florea (386 and 550, respectively). 15,182 genes were shared among all species with 9,310 belonging to
single-copy ortholog groups (Figure 1). The concatenated single-copy orthologs resulted in an alignment of
4,680,591 amino-acids, which we used to resolve the relationships among the three honey bee lineages. We
recovered a highly supported phylogeny of Apis with the dwarf honey bees as outgroup to the other two

lineages (Figure 1), agreeing with previous work (Raffiudin and Crozier 2007).
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Figure 1 - Phylogenetic, genomic and gene content comparisons of 3 honey bee species. From left to right:
Maximum likelihood phylogeny built from 9310 concatenated single-copy orthologous proteins from
sequenced honeybees and bumblebee outgroup indicated that 4. florea diverged first from the most recent
common ancestor of honey bees (all nodes 100% bootstrap supported). A. florea represents the dwarf honey
bees, while A. mellifera and A. dorsata represent the cavity nesters and the giant honey bees, respectively.
Tree visualization was performed using ggtree (Yu 2020). Circles represent colony size ranges with dark
grey indicating the lowest and light grey the highest colony size, the yellow bars depict the genome size of
each species, and the red/blue bars correspond to the average GC content of the genome of each species.
Average genome GC content decreases with increasing colony size. The rightmost horizontal bar plots
show total gene counts for each species partitioned according to their orthology profiles. 4. florea possessed

the greatest number of lineage-specific genes followed by 4. mellifera.

131

132 Genome-wide patterns of positive selection

133 To identify positive selection that acted on protein coding genes during the evolution of honey bees, we used
134 the adaptive branch-site random effects likelihood (aBRSEL) method in Hyphy (Kosakovsky Pond et al. 2019;
135 Smith et al. 2015) on 8,115 single-copy orthogroups (see Methods). We identified 149 single-copy orthogroups
136 (1.85%) with signals of positive selection in at least one of the four branches at a 10% false discovery rate

137  (FDR). Patterns of positive selection were equally distributed among the three honey bee species lineages with
138  a proportion of 0.49-0.60% of all orthogroups tested (Supplemental Tables S1, S2). The basal 4pis branch,

139  however, was under positive selection in only 0.27% of orthogroups, representing a significantly lower

140  proportion in comparison to the three species branches (Chi-squared test: * = 10.48, df = 3, p = 0.0149). This
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result was not due to reduced power associated with short branches (Anisimova and Yang 2007) because the
Apis branch had an overall increased branch length (Mean branch length (+ standard error) of Apis: 0.37 +
0.02, 4. mellifera: 0.06 = 0.0005, 4. florea: 0.05 = 0.0004, A. dorsata: 0.04 £ 0.0003; Kruskal-Wallis test: y* =
3280, df =3, p < 2.2 x107'°) and orthogroup test scores were positively correlated with the length of the tested
branches (log-likelihood ratio; Spearman’s correlation p=0.20, p <2.2 x107¢),

Next, we categorized each orthogroup by its homology to genes with known function in 4. mellifera,
in order to test whether the identified patterns of positive selection correlated with known functions. 6,719 of
the 8,115 orthogroups (82.8%) included in the analysis could be categorized this way, while the function of
1,396 (17.2%) remained unknown. The proportion of genes with known (83.1%) and unknown (16.9%)
function under positive selection did not differ from the overall distribution (Chi square test: ¥* <0.01, df =1,
p = 1). However, genes with unknown function had a significantly higher median evolutionary rate ratio
(AN/ds(known functiony = 0.077,, dx/dsqunknown functiony = 0.157; Wilcoxon Rank Sum test: W =5.4 x 107, p <2.2 x 10™'%)
compared to those with a known function. While this result is not surprising because genes with higher
divergence rates are more difficult to annotate based on homology to genes of known function, it does
emphasize the significance of studying genes of unknown function.

Most of the significant gene families were found to be positively selected in a single branch, although
the following five were found to be positively selected in two branches: muscle myosin heavy chain, which is
involved in muscle contraction (Holmes 2004; Odronitz and Kollmar 2008), was under positive selection in
both A. dorsata and A. florea; four and a half LIM domains protein 2, involved in heart physiology and muscle
formation (Johannessen et al. 2006), was under positive selection in both A. dorsata and mellifera; serine-rich
adhesin for platelets, which plays a role in cell adhesion (Sanchez et al. 2010), was positively selected in the
Apis branch and in 4. florea; and alpha-glucosidase 2 (AmGCS2a), which is involved in glucose metabolism,
and one additional orthogroup of unknown function were positively selected in both the 4pis branch and 4.
mellifera. In the three species branches, as well as the ancestral Apis branch, several positively selected genes
were identified with a function in the regulation of gene expression, cell signaling, and neural processes, as

well as with an association with resistance against pathogens and xenobiotics (Supplemental Tables S1, S2).
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Tests of functional category enrichment

To identify whether positive selection across the honey bee species quantitatively relates to particular
functions, we classified genes based on their Gene Ontology (GO) annotation from A4. mellifera orthologs.
Using SUMSTAT (Roux et al. 2014) with the topGO R package (Alexa et al. 2006) to test for gene set
enrichment, we identified 51 significant functional categories, of which 45 were enriched and six depleted in
genes under positive selection at 20% FDR. Most functional categories enriched with positively selected genes
were unique for each branch, with the exception of “ATP-dependent microtubule motor activity”, which was
shared among the three Apis species and “mitochondrial translation-related functions”, which was enriched in
all branches but A4. florea (Figure 2). In addition, A. dorsata and A. mellifera shared similar functional
categories involved in cellular ion exchange (Supplemental Table S3). GO terms depleted of positively

selected genes were mostly found in the Apis branch and were linked to the regulation of transcription (Figure
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Figure 2 — Functional categories enriched with genes under positive selection in each honey bee species
and their most recent common ancestor. GO terms enriched in positively-selected genes are depicted as
spheres representing the number of annotated genes (sphere size) and the -logio of their FDR (color
intensity). GO enrichment scores, normalized by the number of annotated genes, are indicated by the x-

axis. Most enriched GO terms with positively selected genes can be interpreted as adaptations to long
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distance migration and increased colony size in 4. dorsata, colony defense in 4. florea, immunity in A.
mellifera, and TE silencing and high recombination rates in the basal 4pis lineage. BP = Biological Process,

CC = Cellular Component, MF = Molecular Function.

The Apis branch revealed 14 enriched GO categories including the “piRNA metabolic process” and
“cellular response to X-ray”. The former could relate to the particularly low TE content of honey bees
(Petersen et al. 2019) because piRNAs silence transposable elements (Ernst et al. 2017), while the latter might
explain the honey bees’ high genomic recombination rates (Rueppell et al. 2016) due to its link to DNA double
strand breaks (DSB) that are required to initiate recombination (Aguilera and Gémez-Gonzalez 2008). GO
categories enriched in 4. florea included “hormone and glucuronate metabolism”, and “retinal proteins”. The
GO categories “glomerular visceral epithelial cell differentiation”, “dopamine metabolism”, “flight”, and
“negative regulation of DNA biosynthesis” were enriched for positive selection in 4. dorsata. The A. mellifera
branch was enriched in “chitin metabolism” and “inflammatory response”.

Depleted GO terms

Apis Apis florea Apis mellifera
positive regulation of canonical Wnt signaling pathway -
Annctated Genes
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Figure 3 - Functional categories depleted of genes under positive selection in each honey bee species and
their most recent common ancestor. Spheres indicate GO terms depleted of positively-selected genes, where
size represents the number of annotated genes and color intensity the significance (-logio of their FDR). The
x-axis represents the normalized GO enrichment score divided by the number of annotated genes. Most of the
GO terms depleted in genes under positive selection are found in the basal Apis branch and relate to
transcription functions. No depleted GO term was found in 4. dorsata. BP = Biological Process, CC =

Cellular Component, MF = Molecular Function.
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Overlap analyses

A comparison of genes we identified as positively selected with published lists of genes of functional
significance in 4pis identified numerous overlapping genes (Supplemental Table S4) but did not reveal any
quantitatively significant overlap. None of our four lists (4pis branch, A. florea branch, A. dorsata branch, and
A. mellifera branch) exhibited significantly more overlap than expected by chance with inter-specific
differences in brain gene expression (Sarma et al. 2007). There was also no significant overlap with functional
gene lists identified by intra-specific studies, such as selected genes within 4. mellifera (Wallberg et al. 2014)
genes involved in A. mellifera caste determination (Chen et al. 2012), worker reproduction (Cardoen et al.
2011), worker behavioral ontogeny (Whitfield et al. 2006; Khamis et al. 2015), and queen-worker brain
differences (Grozinger et al. 2007). The largest overlap (p = 0.0012) was found between genes selected in the
A. mellifera branch and genes in the midgut that were up-regulated in 4. mellifera foragers compared to nurses
(Jasper et al. 2015) but correcting for the 72 independent comparisons made to this particular data set alone

rendered the overlap non-significant.

Branch
Apis mellifera
QTL with sign of RefSeq ID Gene Description Putative function
homolog
selection
. ) Versatile transcription
plnl  A. dorsata 102675389 forkhead box protein P1-like AMEL3B67976-RH

factor

plnd  A. dorsata 102679494 arrestin domain-containing protein 17-like  AMEL3B68030-RA Unknown

plnd A. dorsata 102674786 intersectin-1-like AMEL3B68033-RB Neuronal endocytosis
) Membrane fissioning in
wosl A. dorsata 102679612 dynamin AMEL3B62415-RB
the nervous system

wos2  A. mellifera 102653640 glutamate receptor 1 AMEL3B61681-RB  Neurotransmission
wos2  A. dorsata 102677058 deubiquitinase DESI2 AMEL3B61581-RA  Deubiquitination
wos2 A. florea 100867905 uncharacterized LOC100867905 AMEL3B61701-RA  Unknown

high affinity cAMP-specific and IBMX- ) )
wos2 A. florea 100863251 ) o ) ) AMEL3B61641-RA Intracellular signaling

insensitive 3',5'-cyclic phosphodiesterase 8
wos3  A. mellifera 726989 E3 ubiquitin-protein ligase listerin AMEL3B62585-RA  Neurodegeneration

Table 1 — Overlap of positively selected genes with genes present in QTL studies.
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The positively selected genes were also compared to positional candidates in the confidence intervals
of published intra-specific quantitative trait loci for the pollen hoarding syndrome, specifically foraging
behavior (plnl-4) and ovary size (wos1-5) (Hunt et al. 2007; Graham et al. 2011; Rueppell et al. 2011a). Nine
positively selected genes were located in these genome regions. Five of these genes showed evidence of
selection in the A. dorsata branch and none in the Apis branch. Known functions of the genes were diverse

with a bias towards functions in the nervous system (Table 1).

Lineage-specific genes

Lineage-specific genes have received increased attention, due to their potential role in lineage- or species-
specific trait evolution (Simola et al. 2013; Jasper et al. 2015). To understand the role of lineage-specific genes
in the diversification of honey bees, we performed a gene-set-enrichment analysis by comparing GO term
annotations of the lineage-specific genes (Figure 1) to our orthogroups. The majority of lineage-specific genes
(1,994 in A. florea (92.2%), 560 in A. dorsata (95.2%), and 1,218 in 4. mellifera (91.5%)) could not be
categorized into a functional group nor into previously characterized protein families (Supplemental Table S5).
Accordingly, the GO analysis revealed only a few enriched terms for A. florea at 20% FDR, including
“carbohydrate metabolic process”, “hydrolase activity, hydrolyzing O-glycosyl compounds”, and “DNA
integration” (Supplemental Table S5). Although not significantly enriched in the GO term analysis, the 4.
dorsata genome contained two lineage-specific genes related to vision, gelsolin-like and calphotin-like and the

A. mellifera genome also revealed several lineage-specific genes of interest (Supplemental Table S5).

Chemosensory gene evolution

Chemosensory diversification is important for insect evolution (McBride et al. 2014; Brand et al. 2020) but
automated annotation of chemosensory genes remains problematic. Thus, we manually annotated and analyzed
five chemosensory gene families involved in olfaction and gustation: odorant binding proteins (OBPs),
chemosensory proteins (CSPs), odorant receptors (ORs), gustatory receptors (GRs) and ionotropic receptors

(IRs) (Sanchez-Gracia et al. 2009; Croset et al. 2010).

12
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The number of chemosensory genes in A. dorsata and A. florea (Supplemental Table S6) was similar
to the previously described gene sets in 4. mellifera for all chemosensory gene families (Brand and Ramirez
2017; Karpe et al. 2016; Robertson and Wanner 2006), with a large number of 1:1:1 orthologous genes
between the three species (from 66% in ORs to 100% in CSPs and IRs). Additionally, we found conservation
of genes, such as the 9-ODA receptor gene OR11, across species. While we did not detect any variation in
CSPs and IRs across the honey bees, OBPs, ORs, and GRs varied in the number of genes, revealing gains and
losses (Figure 4, Supplemental Figs. S1, S2). The most variable clades in all three of these gene families,
previously identified as specific to honey bees in comparison to other corbiculate bees (Brand and Ramirez
2017), were similar in numbers for all three species analyzed but revealed complex phylogenetic relationships,
including the OR 9-exon subfamily.

In addition to these patterns shared among gene families, we found that the number of GRs in the
newly annotated A. florea and A. dorsata genomes differed substantially from 4. mellifera. Previous
annotations of the A. mellifera genome reported a total of 15 GR genes including 11 functional and 4
pseudogenized copies (Robertson and Wanner 2006; Smith et al. 2011). In addition to single copies for each of
the functional GRs known from A. mellifera, we identified 19 and 15 GRs in A. dorsata and A. florea,
respectively (Figure 4). Of these, 8 and 2 were likely pseudogenes, respectively, and all of these GRs formed a
monophyletic clade with the three previously described X, Y, and Z A. mellifera pseudogenes (Figure 4).
Several of the XYZ-homologous GRs showed 1:1 homology between A. dorsata and A. florea, as well as the
A. mellifera pseudogenes. A reannotation of the A. mellifera GR gene family including the previously
reported >50 fragmented GR pseudogenes (Robertson and Wanner 2006), reconstructed all known functional
GRs and 88 additional sequences with homology to the X, Y, and Z GR pseudogenes. Six of 11 GRs with a
length of at least 300 amino acids contained premature stop codons, while the other 5 represent new,

potentially functional GRs.

13


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlip.org on July 18, 2021 - Published by Cold Spring Harbor Laboratory Press

| . &= Gr13
I ’ = Gr12
i Gré
—F ~— (Gr8
—_Gr9
! = Gr2
B ﬁ'GrTG 10
s r
Gr11
—_— Gr4
_| —— Gr5
- = Gr3
XYZ GrY
il = A. mellifera
— B Novel GRs
3 XYZ GR fragments
- B A. dorsata
| | = E A. florea
| — Bootstrap support
o GrX /_\ = 95%
=] = @ > 75%

Figure 4 — Gustatory receptor (GR) gene family phylogeny including newly annotated genes of three honey
bee species. The Maximum Likelihood tree contained two clades, one including a single ortholog of all
putatively functional GRs previously described in A. mellifera (highlighted in orange) in each species (blue:
A. dorsata, grey: A. florea), and the XYZ clade (supported with 99% bootstrap support) previously thought
to be entirely pseudogenized (Robertson and Wanner 2006, Sadd et al. 2015). Five newly identified full-
length GRs for A. mellifera are highlighted in pink, some of which are among the newly identified XYZ
GRs (4 in A. mellifera, 15 in A. florea, and 19 in A. dorsata). All GR groupings outside the XYZ clade

have high bootstrap support (see Supplemental Figure S2 for exact support values), highlighting

14


http://genome.cshlp.org/
http://www.cshlpress.com

255
256
257
258
259
260
261
262
263
264
265
266
267

268

269

270

271

272

273

274

275

Downloaded from genome.cshlip.org on July 18, 2021 - Published by Cold Spring Harbor Laboratory Press

the conservation of GR gene number in this group across 4pis. In addition to >50 small fragments
with homology to GRs (light green, only A. mellifera fragments shown), we newly identified a number of
full-length genes in the XYZ clade, all of which are supported by gene expression data in A. mellifera. The
fragments are included here for to represent all of our results, although the GR phylogeny is much clearer
without them (Supplemental Figure S2). With 16 to 26 putatively functional GRs per species, honey bees
are similar to other corbiculate bees (Brand and Ramirez 2017), suggesting that the sense of taste in honey

bees is more sophisticated than previously thought.

To validate potential functionality of the newly described GRs, we visualized gene models along with RNA -
seq tracks in the 4. mellifera Apollo browser (Dunn et al. 2019) available at the Hymenoptera Genome
Database (Elsik et al. 2016). Four of the GR gene models were supported by RNA-seq reads spanning
predicted exon-intron boundaries, indicating they are actively transcribed and thus functional receptors. The
only novel full-length GR without expression support was highly similar to GR13, which was also present in
the genomes of 4. dorsata and A. florea and has known orthologs in several other corbiculate bees (Brand and
Ramirez 2017), suggesting it is a conserved functional GR as well. Several of the smaller fragments were also
supported by expression data, suggesting that they might be part of coding genes that are not well assembled.
Indeed, all but one of the newly identified GR sequences were located on small scaffolds not assigned to
linkage groups (‘Un’-scaffolds) and gene models were often truncated at the end of a scaffold. Accordingly, it
is likely that the additional 5 GRs we identified for A. mellifera are an underestimation of the real number of

honey bee-specific GRs in the XYZ-subfamily (Brand and Ramirez 2017).

Discussion

Fine-scale comparative genomic analyses lead to a better understanding of the molecular basis of species
diversification and increased resolution of genomic feature evolution. Our genome-wide analysis reveals
increased positive selection pressure during the diversification of the three honey bee lineages after the
divergence of Apis from its most recent common ancestor with Bombus. Our results parallel previous analyses
that indicate accelerated evolution during the diversification of species within a family (Nevado et al. 2016;

Tollis et al. 2018; Vianna et al. 2020), suggesting a common evolutionary pattern. We also find evidence for
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selection for sequence changes in existing protein coding regions and evolutionary turn-over of genes, similar
to a genomic study of the radiation of closely related bumble bees (Sun et al. 2021). These two sources of
evolutionary change may be important in bee social evolution in addition to regulatory diversification
(Kapheim et al. 2015). Practically, rapid evolutionary divergence may not be easy to distinguish from
evolution of novel genes, unless sufficient similarity remains to distinguish orthologs from paralogs as in our
manual Apis chemoreceptor analyses. We believe that our extensive search for taxonomically restricted genes
resulted in unrealistically high estimates of novel genes because the majority of these genes have only support
from one prediction method. However, the findings suggest the existence of at least some additional species-
specific genes within Apis that deserve further study.

We did not identify significant overlap between the genes found to be positively selected among
species and genes that determine intra-specific variation in key traits of honey bees, which we predicted based
on the hypothesis that phenotypic plasticity is a main driver of Apis diversification (West-Eberhard 2003;
Kapheim et al. 2020). In contrast to the stark phenotypic differences of honey bees to their closest
contemporary relatives, relatively few genes were identified as positively selected in the shared evolution of
all honey bees (basal Apis branch) compared to the number of positively selected genes detected across
branches within Apis (species branches). Although we lack a comprehensive explanation for the relatively low
number of positively selected genes, it is plausible that evolution at this stage was more strongly driven by
gene regulatory changes (Kapheim et al. 2015) or the appearance of Apis-specific genes.

In additional to the computational prediction of additional genes, our manual analysis corrected
previous results of low numbers of GR genes in honey bees (11 GRs, Robertson and Wanner 2006): We were
able to identify 22, 26, and 16 complete GR genes in 4. dorsata, A. florea, and A. mellifera, respectively, aided
by an updated genome assembly for A. mellifera (Elsik et al. 2014). This increase of full-length GRs in 4.
mellifera by almost 50% is presumably still an underestimate due to low quality sequence assembly of the
respective parts of the genome. Thus, the sense of taste in honey bees may be more sophisticated than
previously thought (Wright et al. 2010). Furthermore, the XYZ-subfamily, which is only found in Apis
(although one instance has been reported from Bombus terrestris (Sadd et al. 2015)), revealed complex

evolutionary dynamics suggesting an evolutionary history of gustatory functions specific to honey bees.
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Together, this makes the XYZ-subfamily an interesting target to understand the evolution of chemosensory

capabilities in honey bees.

The evolution of Apis supports previous studies on the molecular basis of increased social complexity
The rise of eusociality in insects has been linked with an increased capacity of gene regulation and the rapid
evolution of chemoreceptors, despite the small number of fast-evolving genes shared among eusocial insects
(Woodard et al. 2007; Simola et al. 2013; Terrapon et al. 2014; Kapheim et al. 2015, 2020; Harrison et al.
2018).

While our analyses support the importance of chemosensation, we found that the divergence of the
Apis ancestor from the most recent common ancestor with Bombus was accompanied by a depletion of
positively selected genes from functional categories related to transcription, such as “transcription factor
binding”. The major evolutionary transition to eusociality was not captured in our contrast between Bombus
and 4pis and our results may thus reflect a subsequent conservation of gene regulatory mechanisms that
consolidate and stabilize the progress of a rapid transition to sociality. Subsequent gene regulatory changes in
the evolution of Apis may have been achieved by more specific mechanisms: genes involved in growth factor
activity, a major pathway of the regulation of gene expression, were fast evolving in the ancestor of all Apis
species. The rapid evolution of piRNA metabolism in honey bees might also be linked to the regulation of
gene expression in Apis, as it regulates gene expression and epigenetic effects in Drosophila (Weick and Miska
2014; Glastad et al. 2018) and piRNAs target regions anti-sense of protein-coding genes in honey bees,
suggesting that they could control transcription (Wang et al. 2017).

Chemosensory gene evolution has been hypothesized to be important during the evolution of
eusociality (Harrison et al. 2018). The 9-exon OR gene family has been hypothesized to be important in social
communication in Hymenoptera, due to a role of 9-exon ORs in the detection of CHCs in ants (Smith et al.
2011; McKenzie et al. 2016; Slone et al. 2017; Pask et al. 2017). Our results demonstrate that the OR 9-exon
subfamily evolves rapidly between the three Apis species, which occurs also more widely (Sadd et al. 2015;
Brand and Ramirez 2017). In contrast, sex pheromone receptor genes (OR11, OR10, ORIS, and OR170) were

highly conserved. Moreover, we found that the expansion of OBPs is not specific to A. mellifera (Brand and
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Ramirez 2017) but most likely occurred in the common ancestor of Apis species, pointing to a role in

chemosensory behaviors unique to honey bees.

Apis evolution reveals an evolutionary trade-off between genome stability and variability

While genome stability is vital for organisms and crucial for maintenance of optimally adapted phenotypes, it
restricts genetic diversity, which is essential for evolutionary and physiological processes, particularly in
eusocial insects (Mattila and Seeley 2007; Seeley and Tarpy 2007; Kent et al. 2012). The resulting trade-off
between genome stability and diversity was reflected in our findings that TE silencing and DSB repair
pathways in the Apis lineage were positively selected. The honey bee genomes are depleted of TEs (Elsik et al.
2014; Park et al. 2015) and we found that the regulation of one of the major mechanisms to prevent TE spread
within a genome, piRNAs (Brennecke et al. 2007; Ernst et al. 2017), was positively selected in Apis. The
enrichment of the piRNA regulatory pathway, as well as the GO term “P granule cellular component” (Lim
and Kai 2007), among positively selected genes in the Apis lineage suggests that positive selection can act on
piRNAs over evolutionary time to limit the spread of TEs despite consistently high rates of recombination
(Rueppell et al. 2016).

The high recombination rates of all Apis species studied so far, ranging from 20 to 25 cM/Mb (Hunt
and Page 1995; Meznar et al. 2010; Ross et al. 2015; Rueppell et al. 2016), may increase genetic diversity and
facilitate evolutionary novelties (Kent et al. 2012). The enrichment of rapidly evolving genes associated with
the cellular response to X-rays in the Apis ancestor indicates a corresponding adaptation to double strand
breaks (DSBs) of DNA (Rothkamm and Lobrich 2003). It is unclear whether this selective signature should be
interpreted as a cause or consequence of the high recombination rates but mutations in genes involved in DSB
repair can lead to higher homologous recombination rates (Aguilera and Gomez-Gonzalez 2008). The
accelerated molecular evolution of DSB repair genes may thus have enabled the high meiotic recombination
rates of honey bees, with potential effects on genome evolution and diversity (Kent et al. 2012).

The continuous oogenesis of Hymenoptera (Biining 1994) can exacerbate the accumulation of
mutations during later-life meiosis (Bromham and Leys 2005; Thomas et al. 2010), particularly in females that

produce numerous offspring. The resulting mutational load is particularly severe in mitochondria (Neiman and
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Taylor 2009). Nuclear genomes can co-evolve to compensate the loss of mitochondrial function via the
accumulation of deleterious mutations (Hill 2020), resuling in increased evolutionary rates of mitochondrion-
destined nuclear genes (Li et al. 2017). Correspondingly, we found positive selection of nuclear genes
involved in the mitochondrial translation elongation and termination pathway in the 4pis lineage and in the 4.
mellifera and A. dorsata branches, the two species with the largest colony sizes, suggesting selection for
increased efficiency and accuracy of mitochondrial translation (Schneider 2011) in the face of increased
mutations with colony size increases. This hypothesis is also compatible with the strong positive selection
targeting the negative regulation of DNA biosynthesis and the tRNA threonylcarbamoyladenosine metabolism
essential for accurate translation (Yarian et al. 2002) in A. dorsata, the honey bee species with the greatest
colony size (Oldroyd and Wongsiri 2006). Hence, the molecular evolution of honey bee genomes suggests an

evolutionary trade-off between maintaining genome integrity and generating genetic diversity.

Fine-scale comparative genomics reveals candidates for the evolution of key phenotypic traits
Accordingly with fundamental differences in body size and queen-worker caste divergence among the three
Apis lineages (Wongsiri and Oldroyd 2006; Rueppell et al. 2011b), we found several positively selected genes
predicted to belong to gene families involved in growth and reproductive processes: a G-protein-coupled
receptor with similarities to the life-history regulator methuselah (Delanoue et al. 2016) and the ovary
determinant fudor (Xie et al, 2019) in the basal Apis branch, pde8 involved in ERK-signaling that has multiple
life-history coordinating roles (Brown et al. 2013) in the 4. florea branch, and the putative growth effectors
short neuropeptide F receptor (Lee et al. 2008), farnesol-dehydrogenase (Mayoral et al. 2009), and cdk2
(Vidwans and Su 2001) in the giant honey bee lineage.

The evolutionary diversification of nesting behavior into cavity-nesting in A. mellifera and related
species versus open-nesting in the other lineages has been highly controversial for decades and has direct
ramifications for understanding the evolution of the honey bee dance language (Koeniger 1976; Oldroyd and
Wongsiri 2006; Raffiudin and Crozier 2007; Koeniger et al. 2011). Our analysis cannot resolve this
controversy but provides some support for a transition from cavity-nesting to open-nesting within Apis: While

no genes or GO terms that could be interpreted as adaptions to open-nesting were found to evolve under
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positive selection in the ancestral Apis branch, in 4. florea, which accurately controls nest temperature despite
its open-nesting habit (Oldroyd and Wongsiri 2006), linecage-specific genes were associated with carbohydrate
metabolism, a pathway associated with thermoregulation in bees (Woodard et al. 2011).

While all honey bees migrate, only giant honey bees seasonally migrate over long distances, up to
100-200km in Apis dorsata (Oldroyd and Wongsiri 2006). Correspondingly, we found potential molecular
signatures of adaptions to long-distance migration in the 4. dorsata lineage: Positive selection in genes linked
to “flight” along with large musculature and body size (Dulta and Verma 1987), involved in “mitochondrial
morphogenesis” that may affect energy metabolism during migration (Sogl et al. 2000; Li et al. 2018),
associated with the renal system (i.e. “glomerular visceral epithelial cell differentiation”) allowing water
conservation during migration (Wigglesworth 1932), and “regulation of dopamine secretion”, a pathway
involved in migration in locusts (Ma et al. 2011). The adaptation to night foraging in 4. dorsata enables them
to detect objects at lower light intensity than expected by their ommatidium structure (Warrant et al. 1996).
This might be explained by 2 A. dorsata-specific genes, homologs of genes involved in phototaxis, gelsolin-
like (Stocker et al. 1999), and vision, calphotin-like (Yang and Ballinger 1994). An enhanced floral scent
detection in A. dorsata may also be beneficial for night foraging, which is suggested by the lineage-specific
duplications and pseudogenization events of OR/5/ and OR152, important for detection of floral compounds
(Claudianos et al. 2014).

The A. mellifera branch is mainly associated with positive selection on genes involved in chitin
metabolic processes, as previously found to be enriched in positively selected genes in 4. mellifera and
bumble bees (Harpur et al. 2014; Sun et al. 2021). They mostly relate to caste differentiation (Santos and
Hartfelder 2015; Malka et al. 2014; Li et al. 2012) and immunity (Oddie et al. 2018; Harpur and Zayed 2013),
which may be caused by pathogen pressure in the relative stable and long-lasting nests of cavity-nesting
species.

Focusing on the main lineages of the unique honey bee genus, our study identifies positively selected
genes that warrant further study. Of particular interests are selected genes with putative molecular functions
that may link them to key adaptations and the diversification among Apis species. Even though the genus Apis

is small and contains only the three subgeneric lineages included in this study, sequencing other 4pis species
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to increase phylogenetic depth may further refine our conclusions about 4pis evolution and enhance our
understanding of genome evolution in dwarf, giant, and cavity-nesting honey bees. Overall, our results provide
an evolutionary scenario of an Apis ancestor adapted to building a vertical comb, likely in cavities, that

allowed for increased colony size.

Methods

Specimen collection

Haploid drones collected from a single colony per species were used for 4. florea and A. dorsata genome
sequencing. The samples of A. florea were collected in 2009 from Chiang Mai, Thailand. The samples of A4.
dorsata were collected in the vicinity of the Agricultural Research Station Tenom (Sabah, Malaysia: 5.4°
N/115.6° E) in March 2007. Samples were preserved in RNAlater™ and subsequently frozen until total DNA

extraction from single individuals.

Genome sequencing and assembly

Two types of WGS libraries, a fragment library and mate-pair libraries with 8 kb inserts, were used to generate
the Apis florea genome sequencing data using 454 Titanium technology. The Aflo_1.0 genome assembly was
generated by assembling WGS reads using Newbler (2.3-PreRelease-10/19/2009) (Margulies et al. 2005).
Reads from each Newbler scaffold were grouped, along with any missing mate-pairs, and reassembled using
PHRAP (Bastide and McCombie 2007) in an attempt to close the gaps within Newbler scaffolds.

For A. dorsata, four libraries were sequenced on an Illumina GA platform for the assembly: (1) 2 x
125bp paired-end reads from a 500bp library; (2) 2 x 125bp mate-pairs from a 1.2kbp library; (3) 2 X 125bp
mate-pairs from a 3kbp library, and (4) 2 x 36bp mate-pairs from a Skbp library. The sequencing reads from all
four libraries were first error corrected and trimmed using Quake v0.2.0 (Kelley et al. 2010). Error corrected

reads were then assembled using SOAPdenovo v1.0.5 (Li et al. 2010) (Supplemental Methods).
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Completeness of the two assemblies was assessed by identifying Benchmarking Universal Single-
Copy Orthologs (BUSCOs) using the BUSCO v5beta pipeline in genome mode (Simao et al. 2015). For this

analysis, we identified single-copy orthologs based on the hymenoptera db10.

Genome annotation

To avoid artifacts stemming from different annotation methods (Supplemental Methods) a combined gene set
was created for each species, by adding non-overlapping genes from different annotation pipelines to a
fundamental NCBI RefSeq annotation in the following orders: 4. dorsata, RefSeq — EVM (Haas et al. 2008)
— MAKER (Holt and Yandell 2011) — AUGUSTUS -CGP (Stanke et al. 2008; Konig et al. 2016;
Nachtweide and Stanke 2019); A. florea, RefSeq — EVM — AUGUSTUS -CGP — BGI (Kapheim et al.
2015); A. mellifera, RefSeq — OGS (Elsik et al. 2014) — AUGUSTUS -CGP. Accuracy of all gene prediction
methods were assessed (Supplemental Tables S7, S8) and combined in EVM with different weights
(Supplemental Tables S9, S10) based on different sources (Supplemental Tables 11, 12), resulting in 12,172
genes for A. dorsata (Supplemental Table S13) and 14,393 for A. florea (Supplemental Table S14).

Exonerate protein2genome (Slater and Birney 2005) was used to align protein sequences from each
species to the genome assemblies of the other two species (4. mellifera: BioProject PRINA10625 and Bombus
impatiens: BioProject PRINA61101 and B. terrestris BioProject PRINA45869). For each species, a new gene
model was created wherever there was a protein alignment that did not overlap with an existing gene model.
At each new gene locus with more than one alternate species alignment, the alignment with the best score was
used to generate a single protein-coding gene model, correcting any artifactual frameshifts in protein and
coding sequences. The protein homolog-based gene models were added to the combined gene sets to create the
final gene sets, deemed “comparative gene sets”, used in this study. Although some of the protein homolog-
based predictions were not of sufficient quality for evolutionary analysis, including them in the comparative

gene sets allowed us to determine more realistic numbers of species-specific genes.

Gene set annotation
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We used InterProScan (Zdobnov and Apweiler 2001) to compare protein sequences to InterPro (Finn et al.
2017) protein domain and other motif databases (Supplemental Methods). InterProScan assigns Gene
Ontology (GO) (Ashburner et al. 2000) terms and pathway ids from KEGG (Chen et al. 2012), MetaCyc
(Caspi et al. 2018) and Reactome (Fabregat et al. 2018) based on protein domain content. We used FASTA
(Pearson and Lipman 1988) with an E-value threshold of 1 x 10 to compute reciprocal alignments between
Apis comparative proteins and a Drosophila melanogaster protein set consisting of the longest protein isoform
of each gene (annotation version r6.14). We identified reciprocal best hits (RBH) and transferred GO, KEGG,
PANTHER and REACTOME annotations from the D. melanogaster protein to the Apis protein for each RBH
pair, using the annotation files available at FlyBase (Gramates et al. 2017). Finally, we obtained gene

descriptions from NCBI for the RefSeq (O’Leary et al. 2016) gene annotations.

Ortholog prediction

We created ortholog groups containing one gene from the two newly annotated genomes of Apis dorsata and
A. florea and the existing 4. mellifera genome (Amel 4.5, under BioProject PRINA10625). Protein sequences
from the three comparative gene sets were combined into one file that was used in an all by all protein
comparison with FASTA (Pearson and Lipman 1988) using an E-value threshold 0.001 to identify single-copy
orthologs (Supplemental Methods). This process resulted in 15,182 families of Apis orthologs. Of those, 5310
families were flagged because a translational discrepancy in the NCBI GFF or a frameshift/gap in the
Exonerate alignment were indicated. After creating the families of Apis orthologs, a Bombus protein to serve
as an outgroup was identified for each family (Supplemental Methods). 9310 Apis ortholog families were

assigned a Bombus protein.

Multiple sequence alignment

For each ortholog family, the longest protein isoforms for each species were used in multiple sequence
alignment with PRANK (v.150803) (L&ytynoja and Goldman 2008) and unreliably aligned residues were
masked with GUIDANCE (v2.02) (Penn et al. 2010). A custom Python script (Supplemental Code) was then

used to replace protein sequences with coding sequences in the multiple alignments, resulting in 8115 gene
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families after filtering (Supplemental Methods). The mean length of filtered alignment was 1621 nucleotides

(median = 1233 nucleotides), ranging from 303 to 22830 nucleotides.

Phylogeny

Gene family phylogenies were built using RAXML (v7.2.9) (Stamatakis 2006) from the amino acid sequences
(9310 Apis ortholog families). For each ortholog family, ModelGenerator was used to select the best amino-
acid matrix and substitution model (Keane et al. 2006). The species phylogeny was built from a concatenation
of all amino-acid alignments with B. impatiens or B. terrestris data (9275), using RaxML with an estimated

amino-acid matrix based on our data (GTR) and the CAT model (Rokas 2011).

Branch-site test for positive selection

The adaptive branch-site random effects model [aBSREL, (Smith et al. 2015)] from Hyphy software package
(Kosakovsky Pond et al. 2019) was used to detect positive selection experienced by a gene family in a subset
of sites in a specific branch of its phylogenetic tree. Due to our low phylogenetic depth, test for positive
selection was run only on the Apis, A. mellifera, dorsata and florea branches (all “leaves”). To account for
multiple testing (Anisimova and Yang 2007), p-values from the successive 32460 tests were corrected using
the False Discovery Rate (FDR) (Benjamini and Hochberg 1995). Due to our stringent alignment filtering and
the multiple testing correction as one series, we set our significant threshold at 10%. We visually checked
alignments of positive results and excluded GC-biased gene conversion because our o estimates were

negatively correlated with GC content (Spearman’s Correlation: S = 6.7e12, tho=-0.17, P <2.2 x107'%).

Overlap analysis

Our lists of selected genes were compared to multiple other studies. The only other available inter-specific
study (Sarma et al. 2009) and the following intra-specific studies that have identified gene sets of functional
significance for the observed inter-specific differences within Apis were selected: Genes involved in caste

determination (Chen et al. 2012), reproductive phenotypes (Grozinger et al. 2007; Cardoen et al. 2011), and
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genes involved in local adaptation (Wallberg et al. 2014). In addition, overlap to quantitative trait loci for
ovary size (Rueppell et al. 2011a; Graham et al. 2011) and social behavior (Hunt et al. 2007; Rueppell 2009)

was evaluated.

Tests of functional category enrichment

Gene Ontology (GO) (Ashburner et al. 2000) annotations for our gene families were taken from 4. mellifera,
annotated with GO terms as described above. To identify functional biases, the package topGO version 2.4
(Alexa et al. 2006) of Bioconductor (Gentleman et al. 2004) was used with the full data-set (before filtering) of
genes containing a GO annotation as reference. Functional biases were detected using Fisher’s exact test with
the ‘elim’ algorithm of topGO and selected based on FDR<20% (Supplemental Methods). Gene Ontology
categories mapped to less than 10 genes were discarded. To identify functional categories enriched with genes
under positive selection, the SUMSTAT test was used (Supplemental Methods). We performed bidirectional
tests to account for enrichment and depletion for positively selected genes in a gene set. Gene Ontology

categories mapped to less than 10 genes were discarded.

Lineage Specific Genes

We identified genes specific to one or two Apis genomes using outputs of the all-by-all FASTA protein
comparison and Exonerate protein2genome alignments described above. If all protein isoforms encoded by a
particular gene were missing protein or Exonerate alignments to another species, that gene was considered
missing in the other species. We excluded genes due to bacterial contamination (Supplemental Methods). To
investigate whether lineage specific genes of each Apis species are associated with features of their biology,
their GO annotations were compared to the ortholog families dataset using Fisher’s exact test with the ‘elim’

algorithm of topGO.. Gene Ontology categories mapped to less than 10 genes were discarded.

Chemosensory gene family analysis
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Annotation and selection analysis of chemosensory gene families followed Brand and Ramirez (2017). In
brief, high-quality annotations for 4. mellifera were used to annotate odorant receptors (Robertson and Wanner
2006), odorant binding proteins (Forét and Maleszka 2006), chemosensory genes (Forét et al. 2007), gustatory
receptors (Robertson and Wanner 2006), and ionotropic receptors (Croset et al. 2010) using exonerate (Slater
and Birney 2005) coupled with manual curation and, if necessary, correction of gene models for A. dorsata
and A. florea. In addition, we re-annotated the OR and GR gene families in A. mellifera (Robertson and
Wanner 2006), and the OR gene family for A. florea (Karpe et al. 2016). The resulting gene models were
aligned with MAFFT (Katoh and Standley 2013) and used to reconstruct gene family-specific gene trees with
RaxML (Stamatakis 2006) using 20 independent ML searches and 100 bootstrap replicates. Selection analyses
were performed with the aBSREL algorithm in HYPHY. ORs were divided into subfamilies as defined in
Brand and Ramirez 2017, while all other gene families were analyzed as a whole. P values for each

independent aBSREL run were corrected for multiple testing using a FDR of 5%.

Data Access

The biological data, sequencing data, assembled genome sequences, and annotations generated in this study
have been submitted to the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/) under

accession numbers PRINA174631 (4. dorsata) and PRINA45871 (A. florea).
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