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Abstract 

This paper reports a new solution of leveraging temporal classification to support 
weakly supervised object detection (WSOD). Specifically, we introduce raster scan-order 
techniques to serialize 2D images into 1D sequence data, and then leverage a combined 
LSTM (Long, Short-Term Memory) and CTC (Connectionist Temporal Classification) 
network to achieve object localization based on a total count (of interested objects). 
We term our proposed network LSTM-CCTC (Count-based CTC). This “learning from 
counting” strategy differs from existing WSOD methods in that our approach automat- 
ically identifies critical points on or near a target object. This strategy significantly re- 
duces the need of generating a large number of candidate proposals for object localiza- 
tion. Experiments show that our method yields state-of-the-art performance based on an 
evaluation on PASCAL VOC datasets. 

 

1 Introduction 
Object detection (OD) using deep learning, more specifically, deep convolution neural net- 
works (DCNN), has been broadly applied in vision tasks, such as detecting and tracking 
moving objects from remotely sensed images, surveillance videos, and autonomous robots 
[5, 10, 19, 20]. A great challenge in such tasks is the labor-intensive nature of preparing 
object-level labels, such as object class, which provides category information (image-level 
annotation), and object location – a bounding box (BBOX) showing the extent of each tar- 
get object. This issue has drawn researchers’ attention to developing Weakly Supervised 
Objection Detection (WSOD) approaches [29] that leverage weak labels (i.e., image-level 
annotation only) to achieve high-confidence object detection to alleviate the high cost asso- 
ciated with object labeling. 

Like strongly supervised OD networks, such as Faster RCNN [21], a WSOD network 
typically consists of three key tasks in the object detection pipeline: (1) feature extraction: 
using a DCNN to extract low- to high-level features from the input images, (2) detection: re- 
lying on a region proposal network (RPN) to generate candidate region proposals containing 
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the target objects, and (3) recognition: using a classifier to predict the object class. How- 
ever, unlike the RPN used in Faster-RCNN, which was fed and trained with the ground-truth 
BBOX data, the challenge of WSOD is to predict region proposals that are highly likely to 
contain a target object without providing the BBOX information. 

There are two research directions in advancing WSOD: making improvement on the clas- 
sifiers or developing new RPNs to generate more accurate proposals. Many existing works 
were reported to leverage image-level annotation to develop and refine proposal classifiers[2, 
6, 8, 9]. However, it is still very difficult for a WSOD network to achieve a level of predic- 
tion performance similar to that of strongly supervised approaches. One reason is that these 
works simply use the off-the-shelf region generation techniques such as selective search 
(SS) [26] or edge boxes (EB) [32], resulting in limited performance increase. Recent studies 
[18] have shown that the quality of proposals greatly affect the predictive performance of a 
network. Therefore, research taking the second direction – developing new RPNs has the 
potential to further boost the WSOD performance. 

In this paper, we introduce a new solution in generating high-quality proposals by en- 
abling a way of “learning from counting.” Unlike existing networks that need to generate a 
large number of candidate proposals and then select a subset from them, our proposed net- 
work can achieve better detection performance by automatically locating critical points on or 
near a target object. By generating a small number of proposals around the critical points, a 
set of high-quality proposals can be obtained and sent to the next WSOD stage. Our research 
is motivated by the use of a combined LSTM [30] and CTC in its outstanding capability in 
segmenting sequential data without per-frame labels, an idea similar to weakly supervised 
learning. To leverage this temporal classification network, we further apply a dimension 
reduction strategy to serialize input image into 1D sequential data and identify the critical 
object location leveraging count-based learning. 

To summarize, this work has made the following contributions: (1) It introduces for the 
first time the use of a Recurrent Neural Network (RNN)- LSTM as the proxy of a ‘weak’ 
RPN to improve WSOD performance. (2) The proposed RPN can easily be integrated into 
any WSOD network to generate high-quality proposals. (3) It enables a fully automated, 
end-to-end training framework with multiple independent data streams for region generation 
and classification to prevent the network from getting stuck in local optima. (4) Our method 
achieves state-of-the-art performance in WSOD. 

 

2 Literature Review 

2.1 Weakly supervised object detection (WSOD) 
Existing efforts to improve the WSOD performance depends mainly on two research direc- 
tions - developing better proposal classifiers and developing new RPNs to generate more ac- 
curate proposals. [2] developed an effective, end-to-end deep network for WSOD, in which 
a pre-trained CNN is used for feature extraction and two data streams are developed to un- 
dertake detection and recognition in parallel. However, this model tends to assign a higher 
score to a proposal that contains the most discriminative part of an object rather than the 
entire object. [23] designed a strategy to assign the same image label for proposals that have 
significant overlaps with those receiving high scores during the weak supervision phase. An 
Online Instance Classifier Refinement (OICR) algorithm was then developed to use these 
proposals as pseudo ground-truths to classify the training images. Through continuous re- 
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finements, the proposed WSOD can achieve better instance recognition than the network in 
[2]. [28] developed a C-MIL (Continuation multiple instance learning) model to achieve 
WSOD using new loss functions. [12] developed a Count-guided Weakly Supervised Local- 
ization (C-WSL) network to achieve high-confidence OD. This work addressed the issue of 
the tendency to draw a proposal containing multiple objects in existing weakly supervised 
detectors. [13] leveraged segmentation maps with coupled multiple instance detection net- 
work (C-MIDN) to refine the proposals before sending them to the classifier, which also 
uses the OICR model. [31] integrated bounding-box regression (REG) into MIL as a sin- 
gle end-to-end network and enhanced the original feature map with implicit object location 
information by attention maps from images (guided attention module) (GAM). Two MIL 
approaches were adopted in this work: OICR and Proposal Cluster Learning (PCL)[24]. 

All the above approaches aim to improve one or more stages of a WSOD network. How- 
ever, their proposal generation processes mostly rely on mature techniques, such as SS or 
EB. However, [18] and [25] argue that the quality of proposals has a significant impact on 
the overall OD performance. Therefore, in recent years, more studies have been undertaken 
to improve proposal generation in RPNs. [9] developed cascaded multiple networks with 
created class activation maps to infer better region proposals. [25] proposed a two-stage 
network to improve the quality of generated proposals. The refined proposals are then sent 
to another WSOD [23] to perform classification. Our research is also towards developing a 
RPN which can generate better proposals. But we take a very different approach - instead 
of relying on traditional object detection in a 2D realm, our approach converts the 2D object 
detection problem into a 1D sequence data segmentation problem and solves it by a novel 
use of LSTM and a count-based CTC. 

 
2.2 Image labeling with LSTM and CTC 
LSTM [17] is a type of RNN that was originally designed to model sequence data. LSTM 
can propagate information through lateral connections to model short- and long-term context 
dependencies. Regarding its usage in image processing tasks [1, 3], LSTM networks need 
to be extended from the temporal domain to the spatial domain and from single-dimensional 
learning to multi-dimensional learning [15]. [27] coupled four uni-dimensional RNNs to 
sweep across an image in four directions to replace the common convolutional-pooling layer. 
The network ensures that the output activation will appear in a specific location with respect 
to the whole image rather than a local context window of a CNN. In our work, we adopt the 
LSTM structure to identify critical points on a target object by taking advantage of its power 
in capturing global contexts and context dependencies in serialized data. 

CTC [16] is a type of scoring function and a neural network output designed for training 
RNNs to tackle sequence learning problems such as speech recognition. Instead of the need 
for per-frame labels, a CTC only needs “phoneme”-level labels whereby one phoneme can 
be mapped to multiple timeframes in the original speech audio. A CTC achieves this by 
transforming the network outputs into conditional probabilities and calculating the overall 
probabilities of all possible alignments that yield the same label sequence. It then finds the 
most probable sequence and corresponding alignment and uses that as the final output. The 
alignment can be represented by a set of segmented positions that separate each “phoneme” 
in a speech recognition problem. CTC’s ability to handle time sequence data and make 
predictions without the per-frame labels significantly broadened the applicability of RNNs. 

This paper combines the LSTM and CTC to enable a novel WSOD by leveraging tem- 
poral classification. Next section introduces our methodology in detail. 
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Figure 1: Architecture of the proposed LSTM-CCTC for count-based WSOD. 

 
3 Methodology 

Figure 1 illustrates the overall WSOD network with our proposed LSTM-CCTC as the RPN. 
The deep learning pipeline is divided into three main stages. First, a pre-trained CNN is used 
as the feature extractor. Second, we propose a new architecture for proposal generation. In 
this RPN, the resulting feature map will first be serialized into a 1D vector. This vector 
together with the total-class count will then be sent to the proposed LSTM-CCTC network 
to identify critical points falling on or near the target objects. A number of proposals with 
different aspect ratios and size will be generated around the critical points and sent to the last- 
stage of the WSOD network for proposal classification. While our proposed RPN (LSTM- 
CCTC) can be integrated into any WSOD, in this paper we used the one reported in [13] for 
the classification task in Stage 3. We introduce details of each component in the following 
sections. 

 
3.1 Feature extractor 
Our feature extractor is built on a pretrained VGG16 neural network [22] that is trained on 
ImageNet [7] using image-level labels. The feature map after the last convolutional block 
(convolution + ReLU) is fed into the proposed LSTM+CCTC for proposal generation and 
then the C-MIDN [13] for classification. 

 
3.2 Region proposal network (RPN) 
Our PRN consists of four LSTMs that process the 1D feature map serialized by scan orders 
in four different directions (the four colored arrows on the feature map in Stage 2 of Figure 
1).   Each LSTM is connected to a CTC layer.   The original CTC framework is designed 
for segmenting sequence data, while here we apply it to WSOD. To do so, we perform a 
transformation of the feature map with the size of n ×n ×k to a 1D vector with a length of 
n2. Each element is at 1 ×k in dimension. This conversion makes the feature map suitable to 
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Figure 2: Output from the proposed RPN (red point: segmented critical point by LSTM- 
CCTC, blue box: ground truth, red box: sample proposals. 

 
serve as the input of the LSTM + CTC network. Different from the traditional CTC model 
which trains on and predicts a sequence of (different) labels, our model is based on a count- 
based CTC, or CCTC, the goal of which is to inspect objects without the need to differentiate 
object type. So this LSTM-CCTC can also be considered as a binary segmentation problem. 
The object type is identified by the classifier at the next stage of the WSOD pipeline. After 
critical points are located, initial proposals with different aspect ratios (1:1, 2:1, 1:2, 1:3 and 
3:1) are generated. Then, proposals are gradually enlarged while keeping at the same shape 
(Figure 2) until they hit the border of the feature map. 

 
3.3 Weakly supervised object detection (WSOD) 
In this stage, a region-based CNN is trained to classify proposals into different classes. In 
this work, we adopt C-MIDN [13] as our WSOD network (Figure 1). This network couples 
two WSDDN [2] and contains iterative refinement in its instance classifier [23]. The original 
WSDDN map proposal scores in a given image to an image-level classification confidence. 
Therefore, it can be trained solely under image-level supervision by optimizing a multi-class 
cross-entropy loss. However, the WSDDN often localizes the most discriminative object 
parts instead of the entire object because of the non-convex optimization. To address this 
issue, C-MIDN leverages a pair of WSDDNs, and the top-scoring proposals of the first 
WSDDN are removed from the input of the second WSDDN, preventing the second WSDDN 
from localizing the same proposal again. Furthermore, a segmentation map of the image 
is used to improve the robustness of the proposal removal process (Segmentation Guided 
Proposal Removal) (SGPR) to ensure that the full-context proposals will be kept. If the 
coverage rate between the segmentation map and the proposal is too small, it is more likely 
that there exist other tight proposals. Finally, proposals from the two WSDDNs are coupled 
to generate the final detection results. Next, the OICR training is adopted. Each stage is 
trained under the supervision of instance labels obtained from the previous stage. To obtain 
instance labels for supervision, given an image with a class label c, the proposal j with the 
highest score for class c will be used as the pseudo ground-truth BBOX. Besides labeling j, 
other proposals which have a high spatial overlap with j will also be labeled as class c. The 
refinement strategy will give a preference to select the BBOX that contains the entire object 
instead of a part of it. It is very convenient to generate the pseudo ground-truth BBOX from 
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our proposed RPN because these BBOXes (shown in Figure 2) share the same center, and 
many of them have a large overlap. 

 
3.4 Implementation details 
In the feature extractor implementation, we replaced the last pooling layer with a SPP layer 
and combined it with the proposed RPN and a WSOD network ([13]). In the RPN, the 
LSTMs are unidirectional with 2 layers, with the size at 512 for the input layer, and 256 for 
the hidden layer. The outputs are connected to the same fully-connected layer with the output 
size of 2 for binary object detection. We followed the original settings in [13] for training 
and testing the WSOD network. During training, since the proposals from the first several 
iterations are noisy, we trained the proposed LSTM-CCTC for 20 epochs and then connected 
it with the WSOD network for an end-to-end training. The number of objects in each image 
is transferred into a sequence (e.g. 3 is transferred into ’ooo’, where ’o’ refers to a target 
object of any class) to train the LSTM-CCTC. All the initialization for newly added layers 
used Gaussian distributions with 0-mean and standard deviation 0.01. For the optimization, 
we used Stochastic Gradient Descent (SGD) with a min-batch size of 2. The learning rate 
is 0.001 for the first 200 epochs and 0.0001 for the following epochs. The momentum and 
weight decay are set to 0.9 and 0.0005 respectively. 

We also trained Fast R-CNN [14] with top-scoring proposals generated by our proposed 
approach as the pseudo ground-truth. This is a common practice to improve the detection 
performance [9, 13, 23, 25]. 

 

4 Experiments 

In this section, we demonstrate the outstanding performance of our method through a series 
of experiments using benchmark datasets. We will also illustrate how different factors in the 
proposed method affect the prediction performance through ablation experiments. 

 
4.1 Experimental setup 

Datasets We evaluated our method on PASCAL VOC 2007 and VOC 2012 datasets [11] 
which are two widely used benchmarks in WSOD. For both datasets, we combined training 
and validation images as the trainval set for training and used test images for testing. We 
generated the object count for each image from the BBOX annotations to train our proposed 
RPN and used image-level labels to train the Stage 3 WSOD network. 

Evaluation metrics We used two performance metrics for evaluation: mean average 
precision (mAP) [11] and correct location (CorLoc) [8]. mAP is a standard metric to evaluate 
the prediction accuracy and CorLoc measures the localization accuracy of a trained model. 

Benchmarks We compare our method with seven other popular WSOD networks, in- 
cluding (1) WSDDN [2], one of the phenomenal CNN-based networks for WSOD; (2) OICR 
[23], an improved WSDDN with a classifier refinement algorithm OICR; (3) WSRPN [25], 
a CNN network focusing on generating high-quality proposals. This work shares the same 
goal as our proposed method; (4) C-WSL [12], which uses per-class count as the weak labels 
for WSOD; and three most recent state-of-the-art WSOD solutions: (5) C-MIDN [13], (6) 
C-MIL [28], and (7) MIL-OICR(PCL)+GAM+REG [31]. 
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Method aero bike bird boat bottle bus   car    cat chair cow table dog horse mbike person plant sheep sofa train    tv mAP 
WSDDN [2] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 09.4 14.7 30.2 40.7 54.7 46.9 34.8 
OICR [23] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2 
WSRPN [25] 57.9 70.5 37.8 05.7 21.0 66.1 69.2 59.4 03.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3 
C-WSL+ODR [12] 62.7 63.7 40.0 25.5 17.7 70.1 68.3 38.9 25.4 54.5 41.6 29.9 37.9 64.2 11.3 27.4 49.3 54.7 61.4 67.4 45.6 
C-WSL+ODR* [12] 62.9 64.8 39.8 28.1 16.4 69.5 68.2 47.0 27.9 55.8 43.7 31.2 43.8 65.0 10.9 26.1 52.7 55.3 60.2 66.6 46.8 
C-MIL [28] 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 08.4 24.6 51.8 58.7 66.7 63.5 50.5 
MIL-OICR+GAM+REG [31] 55.2 66.5 40.1 31.1 16.9 69.8 64.3 67.8 27.8 52.9 47.0 33.0 60.8 64.4 13.8 26.0 44.0 55.7 68.9 65.5 48.6 
MIL-PCL+GAM+REG [31] 57.6 70.8 50.7 28.3 27.2 72.5 69.1 65.0 26.9 64.5 47.4 47.7 53.5 66.9 13.7 29.3 56.0 54.9 63.4 65.2 51.5 
C-MIDN [13] 53.3 71.5 49.8 26.1 20.3 70.3 69.9 68.3 28.7 65.3 45.1 64.6 58.0 71.2 20.0 27.5 54.9 54.9 69.4 63.5 52.6 
LSTM-CCTC+OICR (Ours) 56.9 73.4 40.7 26.3 16.4 66.8 65.3 68.3 23.5 58.3 40.9 39.6 40.4 62.8 24.6 25.1 48.3 51.2 57.7 62.9 47.5 
LSTM-CCTC+C-MIDN (Ours) 60.2 71.7 47.6 29.4 25.2 72.1 66.8 69.6 27.4 62.9 45.8 58.3 54.6 67.8 25.4 26.8 60.1 60.2 65.4 64.2 53.1 
OICR-Ens.+FRCNN [23] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 05.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0 
C-WSL+ODR+FRCNN [12] 61.9 61.9 48.6 28.7 23.3 71.1 71.3 38.7 28.5 60.6 45.4 26.3 49.7 65.5 07.2 27.3 54.7 61.6 63.2 59.5 47.8 
C-WSL+ODR*+FRCNN [12] 62.9 68.3 52.9 25.8 16.5 71.1 69.5 48.2 26.0 58.6 44.5 28.2 49.6 66.4 10.2 26.4 55.3 59.9 61.6 62.2 48.2 
WSRPN-Ens.+FRCNN [25] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4 
C-MIL+FRCNN [28] 61.8 60.9 56.2 28.9 18.9 68.2 69.6 71.4 18.5 64.3 57.2 66.9 65.9 65.7 13.8 22.9 54.1 61.9 68.2 66.1 53.1 
C-MIDN+FRCNN [13] 54.1 74.5 56.9 26.4 22.2 68.7 68.9 74.8 25.2 64.8 46.4 70.3 66.3 67.5 21.6 24.4 53.0 59.7 68.7 58.9 53.6 
LSTM-CCTC+FRCNN (Ours) 63.2 73.6 50.2 31.7 24.6 73.4 69.3 72.6 28.3 67.1 53.9 55.7 64.3 66.1 26.8 27.4 61.2 60.8 62.5 59.4 54.6 

 

Table 1: Result comparison in terms of AP (%) and mAP (%) on the PASCAL VOC 2007 
test set 

 
 

Method aero bike bird boat bottle bus   car    cat chair cow table dog horse mbike person plant sheep sofa train   tv mean 
WSDDN [2] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5 
OICR [23] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 88.8 21.8 57.9 76.3 59.9 75.3 81.4 60.6 
C-WSL+ODR [12] 86.3 80.4 58.3 50.0 36.6 85.8 86.2 47.1 42.7 81.5 42.2 42.6 50.7 90.0 14.3 61.9 85.6 64.2 77.2 82.4 63.3 
C-WSL+ODR* [12] 85.8 81.2 64.9 50.5 32.1 84.3 85.9 54.7 43.4 80.1 42.2 42.6 60.5 90.4 13.7 57.5 82.5 61.8 74.1 82.4 63.5 
WSRPN [25] 77.5 81.2 55.3 19.7 44.3 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 91.6 57.4 63.4 77.3 58.1 57.0 53.8 63.8 
C-MIDN [13] – –      – – – – – –       – – – – – – – – – – – – 65.0 
MIL-OICR+GAM+REG [31] 81.7 81.2 58.9 54.3 37.8 83.2 86.2 77.0 42.1 83.6 51.3 44.9 78.2 90.8 20.5 56.8 74.2 66.1 81.0 86.0 66.8 
MIL-PCL+GAM+REG [31] 80.0 83.9 74.2 53.2 48.5 82.7 86.2 69.5 39.3 82.9 53.6 61.4 72.4 91.2 22.4 57.5 83.5 64.8 75.7 77.1 68.0 
C-MIDN [13] – –      – – – – – –       – – – – – – – – – – – – 68.7 
LSTM-CCTC+OICR (Ours) 76.9 85.7 60.0 52.5 32.1 82.6 84.2 80.5 37.7 88.1 45.5 55.2 56.4 85.3 37.1 55.6 78.3 59.6 69.4 82.3 65.3 
LSTM-CCTC+C-MIDN (Ours) 78.5 83.3 63.9 57.6 43.8 85.5 84.4 83.2 39.0 87.8 50.4 67.5 67.8 90.2 42.5 46.3 87.9 62.5 84.4 84.6 70.0 
OICR-Ens.+FRCNN [23] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3 
C-WSL+ODR+FRCNN [12] 85.8 78.0 61.6 52.1 44.7 81.7 88.4 49.1 50.0 82.9 44.1 44.4 63.9 92.4 14.3 60.4 86.6 68.3 80.6 82.8 65.6 
C-WSL+ODR*+FRCNN [12] 87.5 81.6 65.5 52.1 37.4 83.8 87.9 57.6 50.3 80.8 44.9 44.4 65.6 92.8 14.9 61.2 83.5 68.5 77.6 83.5 66.1 
WSRPN-Ens.+FRCNN [25] 83.8 82.7 60.7 35.1 53.8 82.7 88.6 67.4 22.0 86.3 68.8 50.9 90.8 93.6 44.0 61.2 82.5 65.9 71.1 76.7 68.4 
C-MIDN+FRCNN [13] – –      – – – – – –       – – – – – – – – – – – – 71.9 
LSTM-CCTC+FRCNN (Ours) 84.5 84.7 66.4 59.1 43.3 86.8 85.3 88.5 52.4 87.0 60.3 71.4 80.3 89.9 46.3 58.1 88.4 59.4 78.8 81.3 72.6 

 

Table 2: Result comparison in terms of CorLoc (%) on the PASCAL VOC 2007 trainval set 
 
 

4.2 Comparison with the state-of-the-arts 
 

Table 1 shows the AP and mAP evaluated on PASCAL VOC 2007 dataset. It can be seen 
that our method (LSTM-CCTC+C-MIDN) outperforms all other related works. In particular, 
our proposed model achieves better performance (7.8% higher in mAP) than WSRPN [25], 
which also aims at improving the quality of generated proposals. Our proposed method also 
beats the count-guided C-WSL (C-WSL+ODR) [12] by 7.5% even with the use of weaker 
labels (total object count) than the per-class count used in C-WSL. We also integrated our 
proposed RPN into two well-performed WSOD frameworks: OICR[23] and C-MIDN[13]. 
The integrated networks yield a 6.3% and a 0.6% increase in mAP than [23] and [13], re- 
spectively. This owes solely to the introduction of LSTM-CCTC for proposal generation. 

Our model also achieves the state-of-the-art performance by training Fast R-CNN with 
pseudo ground-truths. The statistics on CorLoc are shown in Table 2. The results show 
that our proposed WSOD achieves the best CorLoc among all methods compared, including 
those utilizing ensemble learning, such as WSRPN-Ens.+FRCNN[25]. 

The same experiments were conducted on VOC 2012 and results are shown in Table 
3. The results verify that our proposed model achieves better performance than the other 
popular WSOD models. 
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Method mAP CorLoc 
OICR [23] 37.9 62.1 
WSRPN [25] 40.8 65.6 
C-MIL [28] 46.7 67.4 
MIL-OICR+GAM+REG [31] 46.8 69.5 
MIL-PCL+GAM+REG [31] 45.6 68.7 
C-MIDN [13] 50.2 71.2 
LSTM-CCTC+OICR (Ours) 42.3 66.2 
LSTM-CCTC+C-MIDN (Ours) 50.5 72.5 
OICR-Ens.+FRCNN [23] 42.5 65.6 
WSRPN-Ens.+FRCNN [25] 45.7 69.3 
C-MIDN+FRCNN [13] 50.3 73.3 
LSTM-CCTC+FRCNN (Ours) 51.8 75.1 

 

Table 3: Result comparison on the PASCAL VOC 2012 test set 

 
4.3 Ablation Study 

We also conducted ablation experiments on PASCAL VOC 2007 to analyze the impact of 
different factors on the performance of our proposed network. 

Ways of feature map serialization The first factor is ways of feature-map serialization, 
or more specifically, the number of scan orders used in serializing feature map at Stage 2. As 
described in Section 3.2, we made a point that applying LSTM to serialized data derived from 
multiple scanning directions will lead to identification of more (and accurate) critical points 
falling on or near a target object. This is based on the assumption that the “temporal” and 
contextual patterns exerted by different objects may be more predominantly shown in data 
serialized by different scan orders instead of a fixed one. We conducted experiments to apply 
only one way of serialization (direction in red in Figure 1), and two ways of serialization 
(directions in both red and black in Figure 1) and all four ways of serialization (Figure 1). 
The mAP and CorLoc we obtained for the three scenarios are 38.1% mAP and 52.4% CorLoc 
for scenario 1, 44.6% mAP and 63.1% CorLoc for scenario 2 and 53.1% mAP and 70.0% 
CorLoc for scenario 3. This result verifies our assumption. 

Different proposal generation methods Previous studies [18] argued that the quality 
of proposals plays an important role in affecting the OD performance. This statement is 
especially true in a WSOD context when the exact BBOX labels are not available. Here, we 
compare our region generation method with typical methods such as SS and EB. To make 
a fair comparison, we integrated these comparing approaches into our learning framework 
(LSTM-CCTC+C-MIDN), with the replacement of Stage 2 by SS and EB, respectively. To 
ensure other networks to achieve their best possible performance within a reasonable training 
time, 2k proposals were generated for each method. Only an average of 200 proposals were 
generated by our proposed method instead. The results are: 52.6% mAP and 68.7% CorLoc 
for SS and 49.5% mAP and 66.4% CorLoc by EB. Our method (53.1% mAP and 70.0% 
CorLoc) clearly outperforms commonly used proposal generation techniques. 

Proposal recall Figure 3 shows the proposal recall with ground truth bounding boxes 
at different IoU levels [25]. According to [4, 18], a high recall is not a necessary condition 
of high detection mAP. We simply use this result to measure the quantity and quality of 
the generated proposals by our proposed network. In figure 3, we observe that our recall is 
not as high as other methods when the IoU level is low. It is because our algorithm highly 
relies on finding objects in one-time scanning instead of an exhaustive search. Compared to 
an exhaustive search, our network might not be able to locate as many objects as they do, 
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Figure 3: Recall vs. IoU for different proposal methods on the VOC 2007 test set. 
 
 

however, once an object is located, our network generates a proposal of much better quality. 
This can be seen in the figure that our curve decays slower than other methods when IoU 
level gets higher. Our algorithm proposes multiple candidate boxes with different sizes and 
ratios around an object location such that it is more likely to have a better-quality proposal. 
The recall curve of RPN [21] is used as a reference here showing the difference between 
strong supervision (with bounding box information) and weak supervision. 

This result proves that our network can correctly label the position of objects and once we 
have correct aspect ratios of objects, the network generates tight proposals pretty well. One 
concern of increasing the number of proposals is that it also increases the computation effort. 
However, our total number of proposals is still far less than traditional methods like SS [26] 
and EB [32]. Only an average of 200 proposals per image were generated by our proposed 
method. In addition, unlike other works which generate a fixed number of proposals for 
each image, our total number of proposals for each image is proportional to the number of 
interested objects in the image. Our network achieves a good trade-off between computation 
effort and detection accuracy. 

 
 

5 Conclusion and future work 

This paper introduces a new solution in developing a proposal generation network LSTM- 
CCTC to achieve high-confidence WSOD. We converted the 2D object recognition problem 
into a 1D sequential data segmentation problem by leveraging the power of a combined 
LSTM and CTC network. Specifically, we take advantage of LSTM in its ability of capturing 
temporal patterns and context dependencies in sequence data, and the CTC in segmenting 
sequence data without the need of providing frame-wise labels. An improvement is made 
upon the LSTM-CTC network to create a count-based CTC (CCTC) which will enable weak 
supervision through a total object count. Multiple data serialization methods are introduced 
to help more accurately identifying the segmented locations –critical points falling on or near 
a target object in the original image. Experimental results show that our proposed region 
generation method has achieved the state-of-the-art performance for WSOD. In the future, 
we will explore ways to further improve the location accuracy of the identified critical points 
in the LSTM-CCTC network for better proposal generation. 
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