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Abstract

This paper reports a new solution of leveraging temporal classification to support
weakly supervised object detection (WSOD). Specifically, we introduce raster scan-order
techniques to serialize 2D images into 1D sequence data, and then leverage a combined
LSTM (Long, Short-Term Memory) and CTC (Connectionist Temporal Classification)
network to achieve object localization based on a total count (of interested objects).
We term our proposed network LSTM-CCTC (Count-based CTC). This “learning from
counting” strategy differs from existing WSOD methods in that our approach automat-
ically identifies critical points on or near a target object. This strategy significantly re-
duces the need of generating a large number of candidate proposals for object localiza-
tion. Experiments show that our method yields state-of-the-art performance based on an
evaluation on PASCAL VOC datasets.

1 Introduction

Object detection (OD) using deep learning, more specifically, deep convolution neural net-
works (DCNN), has been broadly applied in vision tasks, such as detecting and tracking
moving objects from remotely sensed images, surveillance videos, and autonomous robots
[5, 10, 19, 20]. A great challenge in such tasks is the labor-intensive nature of preparing
object-level labels, such as object class, which provides category information (image-level
annotation), and object location — a bounding box (BBOX) showing the extent of each tar-
get object. This issue has drawn researchers’ attention to developing Weakly Supervised
Objection Detection (WSOD) approaches [29] that leverage weak labels (i.e., image-level
annotation only) to achieve high-confidence object detection to alleviate the high cost asso-
ciated with object labeling.

Like strongly supervised OD networks, such as Faster RCNN [21], a WSOD network
typically consists of three key tasks in the object detection pipeline: (1) feature extraction:
using a DCNN to extract low- to high-level features from the input images, (2) detection: re-
lying on a region proposal network (RPN) to generate candidate region proposals containing
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the target objects, and (3) recognition: using a classifier to predict the object class. How-
ever, unlike the RPN used in Faster-RCNN, which was fed and trained with the ground-truth
BBOX data, the challenge of WSOD is to predict region proposals that are highly likely to
contain a target object without providing the BBOX information.

There are two research directions in advancing WSOD: making improvement on the clas-
sifiers or developing new RPNs to generate more accurate proposals. Many existing works
were reported to leverage image-level annotation to develop and refine proposal classifiers[2,
6, 8, 9]. However, it is still very difficult for a WSOD network to achieve a level of predic-
tion performance similar to that of strongly supervised approaches. One reason is that these
works simply use the off-the-shelf region generation techniques such as selective search
(SS) [26] or edge boxes (EB) [32], resulting in limited performance increase. Recent studies
[18] have shown that the quality of proposals greatly affect the predictive performance of a
network. Therefore, research taking the second direction — developing new RPNs has the
potential to further boost the WSOD performance.

In this paper, we introduce a new solution in generating high-quality proposals by en-
abling a way of “learning from counting.” Unlike existing networks that need to generate a
large number of candidate proposals and then select a subset from them, our proposed net-
work can achieve better detection performance by automatically locating critical points on or
near a target object. By generating a small number of proposals around the critical points, a
set of high-quality proposals can be obtained and sent to the next WSOD stage. Our research
is motivated by the use of a combined LSTM [30] and CTC in its outstanding capability in
segmenting sequential data without per-frame labels, an idea similar to weakly supervised
learning. To leverage this temporal classification network, we further apply a dimension
reduction strategy to serialize input image into 1D sequential data and identify the critical
object location leveraging count-based learning.

To summarize, this work has made the following contributions: (1) It introduces for the
first time the use of a Recurrent Neural Network (RNN)- LSTM as the proxy of a ‘weak’
RPN to improve WSOD performance. (2) The proposed RPN can easily be integrated into
any WSOD network to generate high-quality proposals. (3) It enables a fully automated,
end-to-end training framework with multiple independent data streams for region generation
and classification to prevent the network from getting stuck in local optima. (4) Our method
achieves state-of-the-art performance in WSOD.

2 Literature Review

2.1 Weakly supervised object detection (WSOD)

Existing efforts to improve the WSOD performance depends mainly on two research direc-
tions - developing better proposal classifiers and developing new RPNs to generate more ac-
curate proposals. [2] developed an effective, end-to-end deep network for WSOD, in which
a pre-trained CNN is used for feature extraction and two data streams are developed to un-
dertake detection and recognition in parallel. However, this model tends to assign a higher
score to a proposal that contains the most discriminative part of an object rather than the
entire object. [23] designed a strategy to assign the same image label for proposals that have
significant overlaps with those receiving high scores during the weak supervision phase. An
Online Instance Classifier Refinement (OICR) algorithm was then developed to use these
proposals as pseudo ground-truths to classify the training images. Through continuous re-
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finements, the proposed WSOD can achieve better instance recognition than the network in
[2]. [28] developed a C-MIL (Continuation multiple instance learning) model to achieve
WSOD using new loss functions. [12] developed a Count-guided Weakly Supervised Local-
ization (C-WSL) network to achieve high-confidence OD. This work addressed the issue of
the tendency to draw a proposal containing multiple objects in existing weakly supervised
detectors. [13] leveraged segmentation maps with coupled multiple instance detection net-
work (C-MIDN) to refine the proposals before sending them to the classifier, which also
uses the OICR model. [31] integrated bounding-box regression (REG) into MIL as a sin-
gle end-to-end network and enhanced the original feature map with implicit object location
information by attention maps from images (guided attention module) (GAM). Two MIL
approaches were adopted in this work: OICR and Proposal Cluster Learning (PCL)[24].

All the above approaches aim to improve one or more stages of a WSOD network. How-
ever, their proposal generation processes mostly rely on mature techniques, such as SS or
EB. However, [18] and [25] argue that the quality of proposals has a significant impact on
the overall OD performance. Therefore, in recent years, more studies have been undertaken
to improve proposal generation in RPNs. [9] developed cascaded multiple networks with
created class activation maps to infer better region proposals. [25] proposed a two-stage
network to improve the quality of generated proposals. The refined proposals are then sent
to another WSOD [23] to perform classification. Our research is also towards developing a
RPN which can generate better proposals. But we take a very different approach - instead
of relying on traditional object detection in a 2D realm, our approach converts the 2D object
detection problem into a 1D sequence data segmentation problem and solves it by a novel
use of LSTM and a count-based CTC.

2.2 Image labeling with LSTM and CTC

LSTM [17] is a type of RNN that was originally designed to model sequence data. LSTM
can propagate information through lateral connections to model short- and long-term context
dependencies. Regarding its usage in image processing tasks [1, 3], LSTM networks need
to be extended from the temporal domain to the spatial domain and from single-dimensional
learning to multi-dimensional learning [15]. [27] coupled four uni-dimensional RNNs to
sweep across an image in four directions to replace the common convolutional-pooling layer.
The network ensures that the output activation will appear in a specific location with respect
to the whole image rather than a local context window of a CNN. In our work, we adopt the
LSTM structure to identify critical points on a target object by taking advantage of its power
in capturing global contexts and context dependencies in serialized data.

CTC [16] is a type of scoring function and a neural network output designed for training
RNN:Ss to tackle sequence learning problems such as speech recognition. Instead of the need
for per-frame labels, a CTC only needs “phoneme”-level labels whereby one phoneme can
be mapped to multiple timeframes in the original speech audio. A CTC achieves this by
transforming the network outputs into conditional probabilities and calculating the overall
probabilities of all possible alignments that yield the same label sequence. It then finds the
most probable sequence and corresponding alignment and uses that as the final output. The
alignment can be represented by a set of segmented positions that separate each “phoneme”
in a speech recognition problem. CTC’s ability to handle time sequence data and make
predictions without the per-frame labels significantly broadened the applicability of RNNs.

This paper combines the LSTM and CTC to enable a novel WSOD by leveraging tem-
poral classification. Next section introduces our methodology in detail.
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Figure 1: Architecture of the proposed LSTM-CCTC for count-based WSOD.

3 Methodology

Figure 1 illustrates the overall WSOD network with our proposed LSTM-CCTC as the RPN.
The deep learning pipeline is divided into three main stages. First, a pre-trained CNN is used
as the feature extractor. Second, we propose a new architecture for proposal generation. In
this RPN, the resulting feature map will first be serialized into a 1D vector. This vector
together with the total-class count will then be sent to the proposed LSTM-CCTC network
to identify critical points falling on or near the target objects. A number of proposals with
different aspect ratios and size will be generated around the critical points and sent to the last-
stage of the WSOD network for proposal classification. While our proposed RPN (LSTM-
CCTC) can be integrated into any WSOD, in this paper we used the one reported in [13] for
the classification task in Stage 3. We introduce details of each component in the following
sections.

3.1 Feature extractor

Our feature extractor is built on a pretrained VGG16 neural network [22] that is trained on
ImageNet [7] using image-level labels. The feature map after the last convolutional block
(convolution + ReLU) is fed into the proposed LSTM+CCTC for proposal generation and
then the C-MIDN [13] for classification.

3.2 Region proposal network (RPN)

Our PRN consists of four LSTMs that process the 1D feature map serialized by scan orders
in four different directions (the four colored arrows on the feature map in Stage 2 of Figure
1). Each LSTM is connected to a CTC layer. The original CTC framework is designed
for segmenting sequence data, while here we apply it to WSOD. To do so, we perform a
transformation of the feature map with the size of n Xn Xk to a 1D vector with a length of
n*. Bach element is at 1 Xk in dimension. This conversion makes the feature map suitable to
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Figure 2: Output from the proposed RPN (red point: segmented critical point by LSTM-
CCTC, blue box: ground truth, red box: sample proposals.

serve as the input of the LSTM + CTC network. Different from the traditional CTC model
which trains on and predicts a sequence of (different) labels, our model is based on a count-
based CTC, or CCTC, the goal of which is to inspect objects without the need to differentiate
object type. So this LSTM-CCTC can also be considered as a binary segmentation problem.
The object type is identified by the classifier at the next stage of the WSOD pipeline. After
critical points are located, initial proposals with different aspect ratios (1:1, 2:1, 1:2, 1:3 and
3:1) are generated. Then, proposals are gradually enlarged while keeping at the same shape
(Figure 2) until they hit the border of the feature map.

3.3 Weakly supervised object detection (WSOD)

In this stage, a region-based CNN is trained to classify proposals into different classes. In
this work, we adopt C-MIDN [13] as our WSOD network (Figure 1). This network couples
two WSDDN [2] and contains iterative refinement in its instance classifier [23]. The original
WSDDN map proposal scores in a given image to an image-level classification confidence.
Therefore, it can be trained solely under image-level supervision by optimizing a multi-class
cross-entropy loss. However, the WSDDN often localizes the most discriminative object
parts instead of the entire object because of the non-convex optimization. To address this
issue, C-MIDN leverages a pair of WSDDNSs, and the top-scoring proposals of the first
WSDDN are removed from the input of the second WSDDN, preventing the second WSDDN
from localizing the same proposal again. Furthermore, a segmentation map of the image
is used to improve the robustness of the proposal removal process (Segmentation Guided
Proposal Removal) (SGPR) to ensure that the full-context proposals will be kept. If the
coverage rate between the segmentation map and the proposal is too small, it is more likely
that there exist other tight proposals. Finally, proposals from the two WSDDNs are coupled
to generate the final detection results. Next, the OICR training is adopted. Each stage is
trained under the supervision of instance labels obtained from the previous stage. To obtain
instance labels for supervision, given an image with a class label ¢, the proposal j with the
highest score for class ¢ will be used as the pseudo ground-truth BBOX. Besides labeling j,
other proposals which have a high spatial overlap with j will also be labeled as class c. The
refinement strategy will give a preference to select the BBOX that contains the entire object
instead of a part of it. It is very convenient to generate the pseudo ground-truth BBOX from
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our proposed RPN because these BBOXes (shown in Figure 2) share the same center, and
many of them have a large overlap.

3.4 Implementation details

In the feature extractor implementation, we replaced the last pooling layer with a SPP layer
and combined it with the proposed RPN and a WSOD network ([13]). In the RPN, the
LSTMs are unidirectional with 2 layers, with the size at 512 for the input layer, and 256 for
the hidden layer. The outputs are connected to the same fully-connected layer with the output
size of 2 for binary object detection. We followed the original settings in [ 13] for training
and testing the WSOD network. During training, since the proposals from the first several
iterations are noisy, we trained the proposed LSTM-CCTC for 20 epochs and then connected
it with the WSOD network for an end-to-end training. The number of objects in each image
is transferred into a sequence (e.g. 3 is transferred into ’000’, where 0’ refers to a target
object of any class) to train the LSTM-CCTC. All the initialization for newly added layers
used Gaussian distributions with 0-mean and standard deviation 0.01. For the optimization,
we used Stochastic Gradient Descent (SGD) with a min-batch size of 2. The learning rate
is 0.001 for the first 200 epochs and 0.0001 for the following epochs. The momentum and
weight decay are set to 0.9 and 0.0005 respectively.

We also trained Fast R-CNN [14] with top-scoring proposals generated by our proposed
approach as the pseudo ground-truth. This is a common practice to improve the detection
performance [9, 13, 23, 25].

4 Experiments

In this section, we demonstrate the outstanding performance of our method through a series
of experiments using benchmark datasets. We will also illustrate how different factors in the
proposed method affect the prediction performance through ablation experiments.

4.1 Experimental setup

Datasets We evaluated our method on PASCAL VOC 2007 and VOC 2012 datasets [11]
which are two widely used benchmarks in WSOD. For both datasets, we combined training
and validation images as the trainval set for training and used test images for testing. We
generated the object count for each image from the BBOX annotations to train our proposed
RPN and used image-level labels to train the Stage 3 WSOD network.

Evaluation metrics We used two performance metrics for evaluation: mean average
precision (mAP) [11] and correct location (CorLoc) [8]. mAP is a standard metric to evaluate
the prediction accuracy and CorLoc measures the localization accuracy of a trained model.

Benchmarks We compare our method with seven other popular WSOD networks, in-
cluding (1) WSDDN [2], one of the phenomenal CNN-based networks for WSOD; (2) OICR
[23], an improved WSDDN with a classifier refinement algorithm OICR; (3) WSRPN [25],
a CNN network focusing on generating high-quality proposals. This work shares the same
goal as our proposed method; (4) C-WSL [12], which uses per-class count as the weak labels
for WSOD; and three most recent state-of-the-art WSOD solutions: (5) C-MIDN [13], (6)
C-MIL [28], and (7) MIL-OICR(PCL)+GAM+REG [31].
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Method 2cro bike Bird boal botlle bus car _cal chalr cow (able dog horse mbike person plant shecp sofa train v AP
WSDDN 7] 04 301 315 163 126 645 428 426 10.1 35.7 249 382 344 3556 004 147 302 407 347 469 | 34
OICR [23] 580 62.4 31.1 194 13.0 65.1 622 284 248 447 30.6 253 378 655 157 24.1 417 469 643 62.6 | 412
WSRPN [25] 57.9 70.5 37.8 057 21.0 66.1 692 59.4 034 57.1 57.3 352 642 68.6 328 286 50.8 495 41.1 30.0 | 453
C-WSL+ODR [12] 627 63.7 40.0 255 17.7 70.1 683 389 254 545 41.6 299 379 642 113 274 493 547 614 67.4 | 456
C-WSL+ODR* [12] 62.9 64.8 39.8 28.1 164 69.5 68.2 47.0 27.9 558 43.7 312 438 650 109 26.1 527 553 602 666 | 468
C-MIL [28] 625 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 574 689 084 246 518 587 667 63.5 | 50.5
MIL-OICR+GAM+REG [31] 552 66.5 40.1 31.1 169 69.8 643 67.8 27.8 529 47.0 33.0 608 644 138 260 440 557 689 655 | 486
MIL-PCL+GAM+REG [31] 57.6 70.8 50.7 283 27.2 72.5 69.1 65.0 269 645 47.4 47.7 535 669 137 293 560 549 634 652 | SIS
C-MIDN [13] 533 715 49.8 26.1 203 70.3 699 683 28.7 653 45.1 64.6 580 712 200 27.5 549 549 694 635 | 526
LSTM-CCTC+OICR (Ours) 569 73.4 40.7 263 164 66.8 653 683 23.5 583 40.9 39.6 404 628 246 251 483 512 577 629 | 47.5
LSTM-CCTC+C-MIDN (Ours) | 60.2 717 47.6 29.4 252 72.1 66.8 69.6 27.4 62.9 458 583 546 678 254 268 60.1 60.2 654 642 | 53.1
OICR-Ens TPRCNN [23] T35 CT2 472 216 220 G50 683 330 057 631 293 303 GA7 661 130 236 300 371 602 390 | 470
C-WSL+ODR+FRCNN [12] 619 61.9 48.6 28.7 233 711 713 38.7 28.5 60.6 454 263 497 655 072 273 547 616 632 59.5 | 47.8
C-WSL+ODR*+FRCNN [12] 629 683 52.9 258 16.5 71.1 69.5 482 260 58.6 44.5 282 49.6 664 102 264 553 599 61.6 622 | 482
WSRPN-Ens +FRCNN [25] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 585 10.0 667 60.6 347 757 703 257 265 554 564 555 549 | 50.4
C-MIL+FRCNN [28] 618 60.9 562 289 18.9 68.2 69.6 714 18.5 643 572 669 659 657 138 229 541 619 682 66.1 | 53.1
C-MIDN+FRCNN [13] 54.1 745 569 264 222 68.7 689 74.8 252 648 464 70.3 663 675 21.6 244 530 597 68.7 589 | 536
LSTM-CCTC+FRCNN (Ours) 632 73.6 502 317 24.6 73.4 693 72.6 283 67.1 53.9 557 643 66.1 268 274 612 608 625 594 | 54.6

Table 1: Result comparison in terms of AP (%) and mAP (%) on the PASCAL VOC 2007
test set

Method acro bike bird boal botlle bus car cal chair cow table dog horsc mbike person plant sheep sofa train v mean
WSDDN 7] 651 588 585 33.1 39.8 683 602 59.6 348 645 305 43.0 568 824 255 416 615 559 659 637 335
OICR [23] 81.7 80.4 48.7 49.5 32.8 81.7 85.4 40.1 40.6 79.5 35.7 33.7 60.5 888 21.8 57.9 763 59.9 753 81.4 60.6
C-WSL+ODR [12] 86.3 80.4 58.3 50.0 36.6 85.8 862 47.1 42.7 81.5 422 426 50.7 90.0 143 619 856 642 772 824 63.3
C-WSL+ODR* [12] 85.8 81.2 64.9 50.5 32.1 843 85.9 547 43.4 80.1 422 42.6 60.5 904 137 S57.5 82.5 61.8 74.1 824 63.5
WSRPN [25] 77.5 81.2 553 19.7 443 80.2 86.6 69.5 10.1 87.7 68.4 52.1 84.4 916 57.4 634 773 58.1 57.0 538 63.8
C-MIDN [13] - - - - - .o oo oo oo o] es0
MIL-OICR+GAM+REG [31] 81.7 81.2 58.9 54.3 37.8 83.2 862 77.0 42.1 83.6 51.3 449 782 908 20.5 568 742 66.1 81.0 86.0 66.8
MIL-PCL+GAM+REG [31] 80.0 83.9 74.2 53.2 48.5 82.7 862 69.5 39.3 82.9 53.6 61.4 724 912 224 575 835 648 75.7 771 68.0
C-MIDN [13] - - - - - - - et
LSTM-CCTC+OICR (Ours) 76.9 85.7 60.0 52.5 32.1 82.6 842 80.5 37.7 88.1 45.5 552 564 853 37.1 556 783 59.6 69.4 823 653
LSTM-CCTC+C-MIDN (Ours) | 78.5 83.3 63.9 57.6 43.8 85.5 84.4 83.2 39.0 87.8 504 67.5 67.8 90.2 425 463 87.9 62.5 84.4 84.6 70.0
OICR-Ens TFRCNN 23] 858 827 628 452 435 848 870 468 157 822 3510 456 837 012 222 397 753 651 763 781 573
C-WSL+ODR+FRCNN [12] 85.8 78.0 61.6 52.1 44.7 81.7 88.4 49.1 50.0 82.9 44.1 444 639 924 143 60.4 86.6 683 80.6 828 65.6
C-WSL+ODR*+FRCNN [12] 87.5 81.6 65.5 52.1 37.4 83.8 87.9 57.6 50.3 80.8 44.9 444 656 928 149 612 83.5 685 77.6 835 66.1
WSRPN-Ens +FRCNN [25] 83.8 82.7 60.7 35.1 53.8 82.7 88.6 67.4 22.0 86.3 68.8 50.9 90.8 93.6 440 612 825 659 711 76.7 68.4
C-MIDN+FRCNN [13] B )
LSTM-CCTC+FRCNN (Ours) 84.5 84.7 66.4 59.1 433 86.8 85.3 88.5 52.4 87.0 60.3 714 80.3 89.9 463 58.1 884 59.4 78.8 813 726

Table 2: Result comparison in terms of CorLoc (%) on the PASCAL VOC 2007 trainval set

4.2 Comparison with the state-of-the-arts

Table 1 shows the AP and mAP evaluated on PASCAL VOC 2007 dataset. It can be seen
that our method (LSTM-CCTC+C-MIDN) outperforms all other related works. In particular,
our proposed model achieves better performance (7.8% higher in mAP) than WSRPN [25],
which also aims at improving the quality of generated proposals. Our proposed method also
beats the count-guided C-WSL (C-WSL+ODR) [12] by 7.5% even with the use of weaker
labels (total object count) than the per-class count used in C-WSL. We also integrated our
proposed RPN into two well-performed WSOD frameworks: OICR[23] and C-MIDN[13].
The integrated networks yield a 6.3% and a 0.6% increase in mAP than [23] and [13], re-
spectively. This owes solely to the introduction of LSTM-CCTC for proposal generation.

Our model also achieves the state-of-the-art performance by training Fast R-CNN with
pseudo ground-truths. The statistics on CorLoc are shown in Table 2. The results show
that our proposed WSOD achieves the best CorLoc among all methods compared, including
those utilizing ensemble learning, such as WSRPN-Ens.+FRCNNJ[25].

The same experiments were conducted on VOC 2012 and results are shown in Table
3. The results verify that our proposed model achieves better performance than the other
popular WSOD models.
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Method mAP  CorLoc
OICR [23] 37.9 62.1
WSRPN [25] 40.8 65.6
C-MIL [28] 46.7 67.4
MIL-OICR+GAM+REG [31] 46.8 69.5
MIL-PCL+GAM+REG [31] 45.6 68.7
C-MIDN [13] 50.2 71.2
LSTM-CCTC+OICR (Ours) 423 66.2
LSTM-CCTC+C-MIDN (Ours) | 50.5 72.5
OICR-Ens.+FRCNN [23] 425 65.6
WSRPN-Ens.+FRCNN [25] 45.7 69.3
C-MIDN+FRCNN [13] 50.3 73.3
LSTM-CCTC+FRCNN (Ours) 51.8 75.1

Table 3: Result comparison on the PASCAL VOC 2012 test set

4.3 Ablation Study

We also conducted ablation experiments on PASCAL VOC 2007 to analyze the impact of
different factors on the performance of our proposed network.

Ways of feature map serialization The first factor is ways of feature-map serialization,
or more specifically, the number of scan orders used in serializing feature map at Stage 2. As
described in Section 3.2, we made a point that applying LSTM to serialized data derived from
multiple scanning directions will lead to identification of more (and accurate) critical points
falling on or near a target object. This is based on the assumption that the “temporal” and
contextual patterns exerted by different objects may be more predominantly shown in data
serialized by different scan orders instead of a fixed one. We conducted experiments to apply
only one way of serialization (direction in red in Figure 1), and two ways of serialization
(directions in both red and black in Figure 1) and all four ways of serialization (Figure 1).
The mAP and CorLoc we obtained for the three scenarios are 38.1% mAP and 52.4% CorLoc
for scenario 1, 44.6% mAP and 63.1% CorLoc for scenario 2 and 53.1% mAP and 70.0%
CorLoc for scenario 3. This result verifies our assumption.

Different proposal generation methods Previous studies [18] argued that the quality
of proposals plays an important role in affecting the OD performance. This statement is
especially true in a WSOD context when the exact BBOX labels are not available. Here, we
compare our region generation method with typical methods such as SS and EB. To make
a fair comparison, we integrated these comparing approaches into our learning framework
(LSTM-CCTC+C-MIDN), with the replacement of Stage 2 by SS and EB, respectively. To
ensure other networks to achieve their best possible performance within a reasonable training
time, 2k proposals were generated for each method. Only an average of 200 proposals were
generated by our proposed method instead. The results are: 52.6% mAP and 68.7% CorLoc
for SS and 49.5% mAP and 66.4% CorLoc by EB. Our method (53.1% mAP and 70.0%
CorLoc) clearly outperforms commonly used proposal generation techniques.

Proposal recall Figure 3 shows the proposal recall with ground truth bounding boxes
at different loU levels [25]. According to [4, 18], a high recall is not a necessary condition
of high detection mAP. We simply use this result to measure the quantity and quality of
the generated proposals by our proposed network. In figure 3, we observe that our recall is
not as high as other methods when the IoU level is low. It is because our algorithm highly
relies on finding objects in one-time scanning instead of an exhaustive search. Compared to
an exhaustive search, our network might not be able to locate as many objects as they do,
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Figure 3: Recall vs. IoU for different proposal methods on the VOC 2007 test set.

however, once an object is located, our network generates a proposal of much better quality.
This can be seen in the figure that our curve decays slower than other methods when IoU
level gets higher. Our algorithm proposes multiple candidate boxes with different sizes and
ratios around an object location such that it is more likely to have a better-quality proposal.
The recall curve of RPN [21] is used as a reference here showing the difference between
strong supervision (with bounding box information) and weak supervision.

This result proves that our network can correctly label the position of objects and once we
have correct aspect ratios of objects, the network generates tight proposals pretty well. One
concern of increasing the number of proposals is that it also increases the computation effort.
However, our total number of proposals is still far less than traditional methods like SS [26]
and EB [32]. Only an average of 200 proposals per image were generated by our proposed
method. In addition, unlike other works which generate a fixed number of proposals for
each image, our total number of proposals for each image is proportional to the number of
interested objects in the image. Our network achieves a good trade-off between computation
effort and detection accuracy.

5 Conclusion and future work

This paper introduces a new solution in developing a proposal generation network LSTM-
CCTC to achieve high-confidence WSOD. We converted the 2D object recognition problem
into a 1D sequential data segmentation problem by leveraging the power of a combined
LSTM and CTC network. Specifically, we take advantage of LSTM in its ability of capturing
temporal patterns and context dependencies in sequence data, and the CTC in segmenting
sequence data without the need of providing frame-wise labels. An improvement is made
upon the LSTM-CTC network to create a count-based CTC (CCTC) which will enable weak
supervision through a total object count. Multiple data serialization methods are introduced
to help more accurately identifying the segmented locations —critical points falling on or near
a target object in the original image. Experimental results show that our proposed region
generation method has achieved the state-of-the-art performance for WSOD. In the future,
we will explore ways to further improve the location accuracy of the identified critical points
in the LSTM-CCTC network for better proposal generation.
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