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—— Abstract

Onion routing is the most widely used approach to anonymous communication online. The idea
is that Alice wraps her message to Bob in layers of encryption to form an “onion” and routes it
through a series of intermediaries. Each intermediary’s job is to decrypt (“peel”) the onion it receives
to obtain instructions for where to send it next. The intuition is that, by the time it gets to Bob,
the onion will have mixed with so many other onions that its origin will be hard to trace even for
an adversary that observes the entire network and controls a fraction of the participants, possibly
including Bob. Despite its widespread use in practice, until now no onion routing protocol was
known that simultaneously achieved, in the presence of an active adversary that observes all network
traffic and controls a constant fraction of the participants, (a) anonymity; (b) fault-tolerance, where
even if a few of the onions are dropped, the protocol still delivers the rest; and (c) reasonable
communication and computational complexity as a function of the security parameter and the
number of participants.

In this paper, we give the first onion routing protocol that meets these goals: our protocol
(a) achieves anonymity; (b) tolerates a polylogarithmic (in the security parameter) number of
dropped onions and still delivers the rest; and (c) requires a polylogarithmic number of rounds
and a polylogarithmic number of onions sent per participant per round. We also show that to
achieve anonymity in a fault-tolerant fashion via onion routing, this number of onions and rounds is
necessary. Of independent interest, our analysis introduces two new security properties of onion
routing — mixing and equalizing — and we show that together they imply anonymity.
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1 Introduction

Suppose that Alice wishes to send a message anonymously to Bob. Informally, by anonymously,
we mean that no one (not even Bob) can distinguish the scenario in which Alice sends a
message to Bob from an alternative scenario in which it is Allison who sends a message to
Bob. To begin with, Alice can encrypt the message and send the encrypted message to Bob
so that only Bob can read the message. However, an eavesdropper observing the sequence of
bits coming out of Alice’s computer and the sequence of bits going into Bob’s computer can
still determine that Alice and Bob are communicating with each other if the sequences of
bits match. Thus, encryption is not enough.
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Onion routing [11] is the most promising approach to anonymous channels to date. In
onion routing, messages are sent via intermediaries and wrapped in layers of encryption,
resulting in so-called onions; each intermediary’s task is to “peel off” a layer of encryption
and send the resulting onion to the next intermediary or its final destination. The onion’s
layers are unlinkable to each other, and so its route through the network cannot be traced
from merely observing the sequences of bits that Alice transmits and Bob receives. However,
even with Alice sending her message to Bob encoded as an onion, her communication can
still be tracked by a resourceful eavesdropper with an extensive view of the network traffic
(e.g., an ISP-level or an AS-level adversary) who can observe all Internet traffic.

The adversary who can observe all network traffic is called the network adversary.
The adversary who, in addition to observing all network traffic, controls a subset of the
participants is called the passive adversary if it follows the prescribed protocol, or active if it
does not. The three adversary models — the network adversary, the passive adversary, and
the active adversary — are standard for analyzing cryptographic protocols such as multi-party
computation (MPC) [21]. The most desirable goal is to achieve security in the presence of
the most powerful of these, i.e., the active adversary corrupting as large a fraction of the
participants as possible.

It was known how to construct an onion routing protocol that is both efficient and
anonymous from the passive adversary who corrupts a constant fraction of the parties. In
IT, [3], each user forms an onion bearing his message to its recipient; the users’ onions are
routed randomly through a network of servers. II, is anonymous from the passive adversary
provided that the onions travel for a superlogarithmic (in the security parameter) number of
rounds, and the average number of onions per server per round is also superlogarithmic.

However, II,, isn’t anonymous from the active adversary. To see why this is the case,
consider the following attack. Suppose that the adversary A suspects that Alice is commu-
nicating with Bob. Because A is active, he can disrupt Alice’s communication by dropping
Alice’s outgoing onion in the event that Alice’s first intermediary is corrupt (the probability
of this event is identical to the fraction of parties that are under the adversary’s control). If
Bob doesn’t receive an onion at the end of the protocol, then A can infer that her suspicion
was correct: Alice’s interlocutor is Bob!

So what can we do instead? Of course, we could use general-purpose MPC [21]. Every
party will receive as input a message and its destination, and every party will receive as output
the messages that were meant for him/her. In addition to perfect anonymity, this approach
provides fault tolerance: in MPC that is secure against the active adversary, the honest
parties are guaranteed to receive their output no matter how much the adversary deviates
from the protocol. But the problem with this approach is that relying on general-purpose
MPC makes this approach too inefficient: the most efficient general MPC protocol still
requires that at least some of the participants send and receive Q(N) bits, where N is the
number of participants. (See Cramer, Damgard, and Nielsen [16].)

Recently proposed protocols, Stadium [30] and Atom [25], are more efficient. However,
they are not fault-tolerant: honest parties will abort the protocol run whenever even a single
message packet is dropped. Thus, while this approach provides anonymity from the active
adversary, it is also extremely fragile: if just one message is dropped (which could be the
result of an innocuous fault), the entire network suffers a catastrophic failure. In contrast,
we would like to design onion routing protocols that can tolerate faults. Thus, compared to
MPC and Stadium-Atom-type protocols, onion routing appears attractive from the efficiency
and fault tolerance points of view.

In this paper, we answer these fundamental questions: Can an onion routing protocol
be simultaneously anonymous, fault-tolerant, and efficient? What is the communication
complexity of anonymous and fault-tolerant onion routing?
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1.1 Problem setting

Before describing our results in detail, let us first define our problem setting. Let P B

{P1, Ps,..., Py} denote the set of N parties, participating in an onion routing protocol. We
assume that the protocol progresses in global rounds and that an onion sent at round r arrives
at its destination prior to round r 4+ 1. Moreover, the adversary is modelled with rushing,
i.e., the adversary receives onions sent in round r instantaneously in round r.! We assume
that the number N of participants and every other quantity in the protocol is polynomially
bounded in the security parameter A.

We define an onion routing protocol to be a protocol in which the honest parties form and
process only message packets that are cryptographic onions. To do this, the honest parties use
a secure onion encryption scheme which is a triple of algorithms: (Gen, FormOnion, ProcOnion).

See Section 2.1 for more details. During setup of an onion routing protocol, each honest
party P generates a public-key pair (pk(P),sk(P)) < Gen(1*) using the onion encryption
scheme’s key generation algorithm Gen. Each party P publishes his/her public key pk(P) to
a public directory so that everyone knows everyone else’s public keys.

Let M be the space of fixed-length messages. An input o = (01,...,0x) to the protocol
is a vector of inputs, where o; is a set of message-recipient pairs for party P;. For m € M
and P; € P, the inclusion of a message-recipient pair (m,P;) in input o; means that
party P; is instructed to send message m to recipient P;. In this paper, we consider the
following “benchmark” input space, dubbed the simple input/output setting (I/0). An input
o = (01,...,0n) is in the simple I/O setting if there exists a permutation function 7 : P +— P
such that each party P € P is instructed to send a message to party m(P) and no other
message, i.e., VP € P, 3mp € M such that op = {(mp,n(P))}. The simple I/O setting is a
superset of the spaces considered in prior works [3,25,30, 31].

Unless stated otherwise, the adversary is active and can observe the traffic on all com-
munication channels and, additionally, can non-adaptively corrupt and control a constant
fraction of the parties. By non-adaptively, we mean that the corruptions are made independ-
ently of any protocol run.? Without loss of generality, this type of corruption is captured by
allowing the adversary to select the set Bad of corrupted parties prior to the beginning of the
protocol run. Once the adversary corrupts a party, the adversary can observe the internal
state and computations of the corrupted party and arbitrarily alter the behavior of the party.

By VHvA(l’\, o), we denote the view of the adversary A when it interacts with protocol II
on input: the security parameter 1* and the instructions o. The view consists of all the
observations that A makes during the run: the values and positions of every onion at every
round, the states and computations of every corrupted party between every pair of consecutive
rounds, the randomness used by A, and the numbers of messages received by the honest
parties. The view does not include the honest parties’ randomness. V14B2d(12 5 denotes
A’s view given its choice Bad for the corrupted parties. At the end of the protocol run,
each honest party P; outputs the set O?’A(IA, o) of (non-empty) messages from the message

space M that P; receives from interacting with adversary A in a run of protocol IT on input o.

We define the output O"A(1*, &) of protocol II in an interaction with adversary A on input o
as the N parties’ outputs:® O™4(1*, ) & (0141}, 5), OFA (1%, 0),..., 04 (1%, 0)).

! We do not consider the asynchronous communication model [9] in which Alice’s outgoing onions
(including her onion to her recipient Bob) can be delayed indefinitely. In such a case, we cannot even
guarantee correctness (i.e., message delivery when no party deviates from the protocol).

2 If we were to allow the adversary to adaptively corrupt parties, then the adversary could easily block all
of Alice’s onions. For every onion O sent by Alice, the adversary can corrupt the party P who receives
O in time to direct P to drop the onion obtained from processing O before the next round.

3 Technically, the view and the output may depend on other parameters, such as the public parameters
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1.2 OQur results

We now describe our results. Our construction pertains to the problem setting described
in Section 1.1. Our lower bound applies more generally to any arbitrary input set (not
necessarily constrained to the simple I/O setting).

Following prior work [3,25,30,31], we use a natural game-based definition of anonymity:
a protocol is anonymous if the adversary cannot distinguish the scenario in which Alice
sends a message to Bob while Carol sends one to David, from one in which Alice’s message
goes to David while Carol’s goes to Bob; (see Definition 4). More precisely, for any pair
of inputs (¢, 0!) that agree on the inputs and outputs for the adversarial participants,
OA(1A 00) =~ OTA(1*, o1), where “~” denotes indistinguishability.

We relate anonymity of an onion routing protocol to two new concepts: An onion routing
protocol mizes if it sufficiently shuffles the honest users’ onions making it infeasible for the
adversary to trace a received message back to its sender. A protocol equalizes if the adversary
cannot determine the input from the numbers of messages received by the parties; in other
words, the number of messages output by each participant — or the fact that a participant
did not receive an output at all — are random variables that are computationally unrelated
to the input vector o. (See Definitions 5 and 7.)

We show that in many cases, mixing and equalizing implies anonymity, i.e., an onion
routing protocol that mixes and equalizes is anonymous. (See Theorem 3 for the formal
theorem statement.) We use this to prove that our protocol is anonymous. Anonymity also
implies equalizing; this observation is useful for proving a lower bound that (almost) matches
our protocol.

1.2.1 Anonymous, “robust,” and efficient onion routing

As we just explained, our strategy is to construct a protocol that mixes and equalizes.

Intuitively, mixing is the easier one to achieve: the onions need to sufficiently shuffle
with other onions traveling over the network to ensure that each of them is hard to trace.
This intuition is essentially correct with the caveat that an active adversary can strategically
interfere with this process by dropping onions. To ensure that each onion shuffles with a
sufficiently large number of onions (formed by an honest party) a sufficiently large number of
times, our protocol uses checkpoint onions [3] that each intermediary expects to receive, and
if a constant fraction (e.g., one-third) of them don’t arrive because the adversary dropped
them, the protocol aborts.

An active adversary who controls a fraction of the participants can try to “isolate” an
honest party Alice from the rest of the network by dropping all of the messages/onions
received directly from Alice. In a fault-tolerant network protocol, the remaining participants
may still be able to get their messages through to their destinations. In this case, based on
who received an output, an adversary can infer who Alice’s intended recipient was. This
attack explains why equalizing is difficult to achieve.

To overcome this attack, we introduce a new type of onions, called merging onions. When
two merging onions belonging to the same pair arrive at some intermediary I, I recognizes
that they are from the same pair (although, other than their next layer and destination, I
does not learn anything else about them). The protocol directs I to discard one of them

(denoted, pp) and the parties’ states (denoted, states). Thus, we could be more precise by denoting the

view and the output as VI'A(1*, pp, state, o) and O™ (1%, pp, states, ), but we will use the simpler
notation for better readability.
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(chosen at random) while sending its mate along. If only one onion of the pair arrived at
I while its mate is missing (i.e. the adversary dropped it some time earlier in the protocol
run), then I simply sends along the mate that survived, and there is nothing to discard.

Why does this help? Suppose that both Alice and Allison created 2" merging onions; at
rounds 7, Tg, ..., 7, each of these onions (if it hasn’t been deleted yet) will meet a mate.
Say, exactly one of Alice’s onions is dropped by the adversary at some point prior to round
r1, SO its mate (the onion it was supposed to pair with at round r;) was not dropped. Also,
suppose that none of Allison’s onions were dropped. Then at round r; all but one of Alice’s
remaining merging onions will meet a mate, and half of them will be dropped, so exactly
2h=1 of Alice’s onions will remain in the system — which is exactly how many of Allison’s
onions remain. Additional h — 1 opportunities to merge account for the possibility that
the adversary has dropped a larger number of Alice’s onions. Merging onions ensure that
the number of Alice’s onions that remain in the system at the end of the protocol is the
same as the number of Allison’s onions, i.e., that the protocol equalizes. The fact that Alice
was targeted and many of her onions had been dropped upfront doesn’t matter because the
protocol discards all but one of them anyway! (See Section 4 for a more in-depth description
of merging onions and how to construct them.)

Positive result. We construct an onion routing protocol I, pronounced “Pi-butterfly,”
because it uses a butterfly network. Il takes advantage of the merging onions technique
described above. It is (a) anonymous from the active adversary who can corrupt up to a
constant fraction k < % of the parties and (b) robust, i.e. whenever the adversary drops
at most logarithmic (in the security parameter) number of message packets (i.e. onions),
1T, delivers the messages from honest senders with overwhelming probability. Moreover,
(¢) during the execution of the protocol, every honest party transmits up to a polylog (in the
3+72 )\ onions, where N is the
number of participants, and A is the security parameter. v, and 7, are parameters that can
be set as desired: increasing them increases the rate at which the maximum distance in the
adversarial views for any two inputs shrinks. (See Theorem 12 for the precise relationship.)

security parameter) number of onions: specifically v log N log

1.2.2 Matching negative result

Our protocol is essentially optimal as far as both the round complexity and the number of
onions each participant sends out are concerned. In Section 7, we explain why a protocol
that is anonymous and robust in the presence of an active adversary that corrupts a constant
fraction of participants requires a polylogarithmic number of onions sent out per participant.

1.3 Related work

Our work is inspired by the fact that Tor [18], the most widely adopted anonymous com-
munication system, is also known to have numerous security flaws [23,27,29,32]: Tor is
based on a highly efficient design that favors practicality over security and is not secure even
from the passive adversary [17]. Moreover, it has been shown to be vulnerable to network
traffic correlation attacks [23,27,29,32]. Thus, our goal was to design a protocol that was as
close to Tor’s efficiency and fault tolerance as possible, while also being provably anonymous.
We consider a very specific and narrow problem in the much larger field of anonymous
messaging systems. Although our definition of anonymity and adversary models are standard
in cryptography, other definitions have been considered [1,5,6,10,19] and positive results for
alternative models are known [4-6].

9:5
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Other provably anonymous systems exist [12, 14, 15, 28], but they are not nearly as
efficient. Achieving anonymous channels using heavier cryptographic machinery has been
considered also. One of the earliest examples is Chaum’s dining cryptographer’s protocol [12].
Rackoff and Simon [28] use secure multiparty computation for providing security from active
adversaries. Other cryptographic tools used in constructing anonymity protocols include
oblivious RAM (ORAM) and private information retrieval (PIR) [14,15]. Corrigan-Gibbs et
al’s Riposte solution makes use of a global bulletin board with a latency of days [15].

We are not the first to look into lower bounds on the complexity of anonymous messaging
protocols (e.g., [13,17]). However, all other lower bounds are for the setting where every
participant is guaranteed to receive an output, and don’t apply to protocols that allow aborts
or that allow some participants to receive an output while others’ output doesn’t make it
through.

2 Preliminaries

For a set S, we denote the cardinality of S by |S|, and s +—$S denotes that s is chosen from
S uniformly at random. For an algorithm A(z), y + A(x) is the (possibly probabilistic)
output y from running A on the input x. In this paper, log(z) is the logarithm of = base 2.
We say that a function f : N +— R is negligible in the parameter A, written f(A\) = negl(}),
if for a sufficiently large A, f(\) decays faster than any inverse polynomial in \. When X is
the security parameter, an event F) is said to occur with (non-)negligible probability if the
probability of E) can(not) be bounded above by a function negligible in A\. An event occurs
with overwhelming probability (abbreviated, w.o.p.) if its complement occurs with negligible
probability. We use the standard notion of a pseudorandom function [20, Chapter 3.6].

2.1 Onion encryption schemes

Our work on onion routing builds upon a secure onion encryption scheme [2,7,24]. Recall that
an onion encryption scheme is a triple: (Gen, FormOnion, ProcOnion). The algorithm Gen
generates a participant key pair, i.e., a public key and a secret key. The algorithm FormOnion
forms onions, and the algorithm ProcOnion processes onions.

Let P be a set of participants, and let Bad C P be the set of corrupt parties. For
every honest P € P\ Bad, let (pk(P),sk(P)) < Gen(1*, pp, P) be the key pair generated for
party P, where A is the security parameter, and pp, the public parameters. For every corrupt
party P € Bad, let pk(P) denote P’s public key. Let M be the message space consisting of
messages of the same fixed length, and let the nonce space S consist of nonces of the same
fixed length. These lengths may be a function of the security parameter A. Here, a nonce is
really any metadata associated with an onion layer.

FormOnion takes as input a message m € M, an ordered list (Q1,...,Qq4—1, R) of parties
from P, the public keys (pk(Q1),- .., pk(Q4—1), pk(R)) associated with these parties, and a
list (s1,...,84_1) of (possibly empty) nonces from S associated with the layers of the onion.*
The party R is interpreted as the recipient of the message, and the list (Q1,...,Qq—1, R)
is the routing path. The output of FormOnion is a sequence (O1,...,Oy) of onions. Such a
sequence is referred to as an evolution, but every O; in the sequence is an onion. Because it is

4 Technically, the input/output syntax and constructions of [2,7] do not include the sequence (s1,...,5q)
of nonces but can easily be extended to do so; if we use layered CCA2-secure encryption instead of
onion encryption — which is fine for this application — then incorporating the nonces is trivial.
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convenient to think of an onion as a layered encryption object where processing an onion O;
produces the next onion O;41, we sometimes refer to the process of revealing the next onion
as “decrypting the onion” or “peeling the onion.”

For every i € [d — 1], only intermediary party @; can peel onion O; to reveal the next
layer, (O;11,Qi+1, Si+1) < ProcOnion(sk(Q;), O;, Q;), which contains the peeled onion O;41,
the next destination ;41 of the onion, and the nonce s;1. Only the recipient R can peel
the innermost onion Oy to reveal the message, m <— ProcOnion(sk(R), O4, R).

In our constructions, a sender of a message m to a recipient R “forms an onion” by
generating nonces and running the FormOnion algorithm on the message m, a routing path
(Q1,...,Qa4-1, R), the keys (pk(Q1),-..,pk(Q4—1), pk(R)) associated with the parties on the
routing path, and the generated nonces; the formed onion is the first onion O; from the list
of outputted onions.

Secure onion encryption. Suppose that (honest) Alice generates an onion carrying a message
m for Bob. That is, she generates a string of nonces and runs the algorithm FormOnion
on the inputs: the message m, the routing path (Q1,...,Qi—1,1,Qi+1,--.,Q4—1,Bob), the
public keys associated with the routing path, and the nonces. Let O denote the onion
for intermediary party I, i.e., O is the i"* onion in the outputted evolution. Suppose that
(honest) Carol runs the algorithm FormOnion on the inputs: the message m/, the routing
path (Q1,..., Q;ep 1, Q;-H, ..., Q. _1,David), the public keys associated with the routing
path, and some nonces. Let O’ denote the onion for intermediary party I. Provided that the
onion encryption scheme is secure, if party I receives onions O and O’ in the same round and
consequently processes the two onions in the same batch, then the adversary cannot tell which
processed onion resulted from processing O and which resulted from processing O’. In other
words, onions formed by honest parties “mix” at honest parties. For a precise, cryptographic
definition of secure onion encryption, see the recent paper by Ando and Lysyanskaya [2].

2.2 Onion routing protocols

In an onion routing protocol, all the packets sent between protocol participants are treated
as onions; i.e., upon receipt, they are fed to ProcOnion. Moreover, internally, there are
type checks that ensure that these onions are processed properly. There are two cases for
processing an honestly formed onion properly: the case where peeling the onion reveals its
next layer and destination and the case where it reveals a message for the processing party.

If @; runs ProcOnion and outputs the next layer of the onion O;;1 (together with its
destination @Q;y; and nonce s;11), then the only two options for what an onion routing
protocol permits @; to do with O;11 is either send it to Q;41 or drop it (if Q;+1 = @Q; then
this send step is internal to @;). Which of these actions are taken depends on the specifics of
the algorithm and also on the values (Q;+1, Si+1). In other words, an onion routing protocol
cannot have an onion sent to incorrect destinations or fed as input to another algorithm.

Further, if Q; runs ProcOnion and outputs a message m # 1, then this message becomes
(ultimately, at the end of the protocol) part of @;’s output, i.e., it will be on the list of
messages that have been sent to @);. In other words, m cannot be internal to the protocol; it
must be a message that someone sent to (); via the protocol. Conversely, the only way that
a message m can be on the list of messages received by @, is if (); obtained it by peeling one
of the onions it received.

These restrictions on protocol design are natural. Indeed, any implementation of onion
routing would ensure that it is adhered to by using type checking of the objects created, sent,
and processed by the algorithm. Without such a restriction, any protocol can be thought of
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as an instance of onion routing protocol, so limiting our attention in this way is meaningful.
Note that this places restrictions just on the protocol that the honest parties are executing;
the adversary is still free to do anything he wishes: to mismatch types, to route onions
incorrectly, to try to rewrap onions, to form and process onions adversarially, etc.

Onion routing serves a purpose: to route messages from senders to recipients. Therefore,
it needs to satisfy correctness:

» Definition 1 (Correctness). A messaging protocol I is correct if in an interaction with a
passive adversary, it delivers all the messages with overwhelming probability.

In this paper, we will consider only correct onion routing protocols, but we will analyze
their interactions with active adversaries.

Further, the protocols we design in this paper have an additional attractive property of
being indifferent:

» Definition 2 (Indifference). An onion routing protocol 11 is indifferent if two properties hold:
(i) The routing path corresponding to each honestly formed onion is of a fized length. (ii) The
sequence of intermediaries, including the recipients of dummy onions, and the sequence of
nonces corresponding to each honestly formed onion do not depend on the input.

The intuition behind this notion is that the contents of the messages sent and received
between parties have no bearing on how the messages are routed and transmitted. For
protocol design, indifference is an attractive property that allows components of an onion
to be in place (and possibly the bulk of the cryptographic computation finished) before the
message contents even becomes known. Another attractive feature of indifferent protocols is
that their security properties are easier to analyze, as we will explore in the next section.
Our negative results apply to all onion routing schemes, indifferent or not.

3  Security definitions: anonymity, equalizing, and mixing

A motivating example. Consider Ando, Lysyanskaya, and Upfal’s very simple protocol 11,
(p, for passive) in the passive adversary setting [3]. Recall that corrupted parties also follow
the protocol in this setting. Let Servers C P be the set of servers which is a subset of
‘P. During the onion-forming phase, every party P generates an onion from the message-
recipient pair (m, R) in P’s input by first choosing d — 1 servers (S1,...,Sq—1), each chosen
independently and uniformly at random from Servers. Next, P forms an onion O by running
FormOnion on the message m, the routing path P~ = (S1,...,S54-1, R), the public keys
associated with P, and the sequence of empty nonces. At the first round of the execution
phase, each party P sends its formed onion O to the first server S7 on the routing path. For
every round 7 € [d], each server S does the following: Between the r** and (r + 1)* rounds,
S processes all the onions it received at the r* round. At the (r + 1)** round, S sends the
processed onions to their respective next destinations. At the d** round, each party receives
an onion that, once processed, reveals a message m for the party.

II, is anonymous if the protocol sufficiently shuffles the onions during the execution
phase. In prior work [3], Ando, Lysyanskaya, and Upfal showed that sufficient shuffling
occurs when the server load (i.e., the average number of onions received by a server at a

round: ) and the number of rounds (i.e., d) are both superlogarithmic in the security

N
|Servers|
parameter. However, there is no parameter setting for which II, can be anonymous from the
active adversary. If kN out of N participants are corrupted, then with probability , the

adversary can determine the recipient of any honest party, say Alice: Suppose that during
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the onion-forming phase, Alice picks a routing path that begins with an adversarial party S;.

During the execution phase, the adversary can direct S; to drop Alice’s onion before the
second round. In this case, the adversary can figure out who Alice’s recipient is (say, it’s
Bob) by observing who does not receive an onion at the end of the protocol run.

The motivating example illustrates that while mizing (i.e. sufficiently shuffling onions) is
helpful for achieving anonymity, it is not enough. To be anonymous, the protocol must also
guarantee that the numbers of messages received by the parties don’t reveal the input. We
call this property, equalizing.

Here, we provide formal game-based definitions of anonymity (Section 3.1), equalizing
(Section 3.2), and mixing (Section 3.3). Given these definitions, it can be shown that for
indifferent onion routing protocols, equalizing and mixing imply anonymity:

» Theorem 3. For any adversary class A, an indifferent (Definition 2) onion routing protocol
that mizes and equalizes for A in the simple I/0 setting is anonymous for A in the simple
I/0 setting, provided that the underlying onion encryption is secure (i.e., UC-realizes the
ideal functionality for onion encryption [2]).

We omit the proof for brevity. We will use Theorem 3 to prove our upper bound in
Section 6.3.

3.1 Anonymity

Anonymity is a property of a messaging protocol II (i.e., II doesn’t have to be an onion
routing protocol).

In the anonymity game (for defining anonymity), the adversary necessarily learns the
corrupt parties’ inputs and received messages. For example, let N = 4, and let P3; be
a corrupt party. Suppose that the adversary chooses as inputs ¢° = (09,09,09,09) and
ol = (0},0%,0%,01) such that 0§ # 3. Then, the adversary can determine the input from
Py’s input. Suppose that the adversary chooses as inputs ¢° and ¢! such that ¢° contains an

instruction to send message m® to Ps, whereas o!

contains an instruction to send message
m' # mY to Ps. Then, the adversary can determine the input from Ps’s received message.
Thus, the adversary’s choice for (¢°, ') is constrained to pairs of inputs that differ only in
the honest parties’ inputs and “outputs.”

We define this formally by first defining equivalence classes for inputs as follows. Let %
be a set of input vectors. Let A be the adversary, and let Bad be the set of parties controlled
by A. Fixing Bad imposes an equivalence class on Y. Each equivalence class is defined
by a vector (e, ea,...,en). For each corrupted party P; € Bad, ¢; = (0;, M;) “fixes” the
input o; for P; and also, the set M; of messages instructed to be sent from honest parties
to P;. For each honest party P; € P\ Bad, ¢; = V; “fixes” the number V; of messages
instructed to be sent from honest parties to P;. An input vector belongs to the equivalence
class (e1,es,...,en) if for every P; € Bad, the input for P; is o;, the set of messages from
honest parties to P; is M;, and e; = (0, M;); and if for every P; € P\ Bad, the number
of messages from honest parties to P; is V;, and e; = V;. Two input vectors ¢ and ¢! are
equivalent w.r.t. the adversary’s choice Bad for the corrupted parties, denoted ¢® =gaq o, if
they belong to the same equivalence class imposed by Bad.

We now describe the anonymity game (below); the protocol II is anonymous if this induces
indistinguishable adversarial views.

The anonymity game. AnonymityGame(1*,1I, A4, ¥) is parametrized by the security para-
meter 1%, a protocol II, an adversary A, and a set ¥ of input vectors.
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First, the adversary A and the challenger C set up the parties’ keys: A chooses a subset
Bad C P of the parties to corrupt and sends Bad to the challenger C. For each honest party
in P \ Bad, C generates a key pair for the party; the public keys pk(P \ Bad) of the honest
parties are sent to A. A picks the keys for the corrupted parties and sends the corrupted
parties’ public keys pk(Bad)) to C.

Next, the input is selected: A picks two input vectors ¢°, ! € 3 such that ¢° =g,q &
and sends them to C. C chooses a random bit b <—s {0, 1} and interacts with 4 in an execution
of protocol IT on input ¢ with C acting as the honest parties adhering to the protocol and
A controlling the corrupted parties.

At the end of the execution, A computes a guess b’ for b from its view VIL-ABad(1A 50)
and wins the anonymity game if b’ = b.

The standard notion of anonymity is defined as follows:

1

» Definition 4 (Anonymity). A messaging protocol TI(1*, pp,states,$,0) is anonymous
from the adversary class A w.r.t. the input set ¥ if every adversary A € A wins
the anonymity game AnonymityGame(1*, 11, A, X)) with only negligible advantage, i.e.,
|Pr [A wins AnonymityGame (1,11, A, Z)] — %| = negl(\).

The protocol is computationally (resp. statistically) anonymous if the adversaries in A
are computationally bounded (resp. unbounded).

3.2 Equalizing

Here, we introduce a new concept called equalizing, which is closely related to anonymity.
Like anonymity, equalizing is a property of a messaging protocol II.

Informally, IT equalizes if observing how many messages each party received during the
protocol run does not reveal whether the protocol ran on ¢ or ¢!. In II, (in our motivating
example), whether Bob receives a message or not exposes who was sending Bob the message:
Alice or another party, Allison; so II,, does not equalize. Instead, in an equalizing protocol,
the probability that Bob receives a message doesn’t depend on the sender’s identity. Put
another way, Bob is expected to receive the same number of messages in the scenario where
Alice is the sender as the one where it is Allison. Formally, equalizing is defined with respect
to the equalizing game (below).

The equalizing game. EqualizingGame(1*, 11, A, D, ¥0) is parametrized by the security para-
meter 1%, a protocol II, an adversary A, a distinguisher D, and a set 3 of input vectors.

The challenger for the equalizing game first interacts with the adversary exactly the same
way as the challenger for the anonymity game. (See the previous section, Section 3.1, for the
description of the anonymity game.) Recall that at the end of the anonymity game, each
honest party P, outputs the set O4(1* %) of (non-empty) messages from the message
space M that it obtained during the execution from processing onions. Let v, be the number
of messages that P, received during the run, i.e., v, = |OIA(1*, 0%)|. (These statistics are
part of the adversary’s view in the anonymity game.)

We define the statistics for the corrupt parties differently since C does not get to observe
how many messages the corrupt parties output; indeed it is not even clear what it means for
a corrupt party to produce an output. For each recipient P, € Bad, let v, correspond to the
number of onions that C has routed to an adversarial participant P’ such that (1) they had
been formed by an honest participant with P, as the recipient; and (2) all the participants
after P’ on the remainder of this onion’s route are controlled by the adversary. In other
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words, v, is the number of onions from honest participants that P, would receive if, internal
to the adversary, all the onions are processed and delivered to their next destinations. We
define this formally below.

Let msPairs(P,) denote the set of message-sender pairs for P,.. That is, for every (m, Ps) €
msPairs(P,.), the input o, for Py includes the message-recipient pair (m, P,), i.e., (m, P.) € 0s.
Let receivableOnions(P,.) be the following set of onions: An onion O is in receivableOnions(P;)
if there exists a message-sender pair (m, Ps) € msPairs(P,.) such that

i. O was formed by C (on behalf of Ps) by running FormOnion on input the message
m, a routing path P~ = (Q1,...,Q4-1,P) ending in P,, the public keys pk(P~) of
the parties on the path, and a sequence s~ of nonces, i.e., O € {O1,...,04} where
(O1,...,04) < FormOnion(m, (P7), pk(P7),s7);

ii. letting ¢ denote the position of O in the output of the FormOnion call, either ¢ = 1, or
the (7 — 1)* intermediary Q;_; on the routing path is honest; and

iii. O is “peelable all the way” by A; i.e., Q;,...,Qq4_1, P- are all adversarial.

For each adversarial recipient P, € Bad, we define the statistic v, to be the number of
onions in receivableOnions(P,) that the challenger sent out during the execution.

Let v = (v1,v2,...,vy). C provides these statistics v alone (and not the rest of the view)
to the distinguisher D, who outputs a guess b’ for the challenge bit and wins the game if
b = b, i.e. if it correctly determines whether the challenger ran the protocol on input ¢ or
o!. The definition for equalizing is as follows:

» Definition 5 (Equalizing). A messaging protocol TI(1*,pp,states, $,0) equalizes for
the adversary class A w.r.t. the input set X if for every adversary A € A and
distinguisher D, D wins EqualizingGame(1*,11, A, D, X)) with negligible advantage, i.e.,
|Pr [D wins EqualizingGame(l/\,H,A,D,E)] — %| = negl(A).

The protocol computationally (resp. statistically) equalizes if the adversaries and the
distinguishers are computationally bounded (resp. unbounded).

Clearly, a protocol that satisfies anonymity must equalize:

» Theorem 6. For any adversary class A, a protocol that is anonymous for A w.r.t. the
input set 3 equalizes for A w.r.t. 3.

Proof. If D can guess b based on the statistics v alone, then the adversary A who has access
to the entire view of its interaction with C can guess b also. (It is also easy to see that
a protocol need not satisfy anonymity in order to satisfy equalizing. Thus, equalizing is
necessary but not sufficient to achieve anonymity.) <

3.3 Mixing in the simple 1/0 setting

Mixing is a property of onion routing protocols. Informally, an onion routing protocol mixes
if the protocol sufficiently shuffles the honest parties’ “message-bearing” onions. That is, once
an honestly generated onion has traveled far enough, getting peeled at every intermediary,
the adversary cannot trace it to the original sender. If the adversary is the recipient of the
message contained in the onion, it should not be able to trace it to the sender provided the
message itself does not reveal the sender.

b1

Formally, mixing is defined with respect to the mixing game. To keep things simple, we
present the definition in the simple I/O setting, but this can be extended to any arbitrary
input set.
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The mixing game. Let O = (Gen, FormOnion, ProcOnion) be a secure onion encryption
scheme. MixingGame(1*, 11, A) is parametrized by the security parameter 1*, an onion routing
protocol II, and an adversary .A.

First, the adversary A and the challenger C set up the parties’ keys (exactly as we
described above for the anonymity game): A chooses a subset Bad C P of the parties to
corrupt and sends Bad to C. For each honest party in P \ Bad, C generates a key pair for the
party by running the onion encryption scheme’s key generation algorithm Gen and sends the
public keys pk(P \ Bad) of the honest parties to the adversary A. A picks the keys for the
corrupted parties and sends the public-key portions pk(Bad) to C.

Next, the input is selected: A identifies a set S C P \ Bad of honest target senders and
a set R C P, |R| = |S| of target receivers. In addition to S and R, A also decides part of
the input; for every non-target sender Ps € P\ S, A chooses a message m and a unique
non-target recipient P. € P \ R such that P,’s input becomes o5 = {(m, P.)}; and for every
target recipient P, € R, A chooses a message m,. to be sent to P.. We call the portion of
the input that A decides “the partial input vector,” and denote it 5. A sends (S,R, &) to the
challenger C. C supplies the rest of the input vector o = (o1, ...,0x) by choosing a random
bijection g from S to R; each P, € S is instructed to send the message my(p,) to g(Ps) € R,
ie., o5 = {(my(p,), 9(Ps)} where the message mp,) was supplied by A as part of the partial
input vector.

Next, C interacts with A in an execution of protocol II on input o with C acting as the
honest parties adhering to the protocol and A controlling the corrupted parties. Whenever
the protocol II specifies for an onion to be formed or processed, C runs the onion encryption
scheme’s onion-forming algorithm FormOnion or onion-processing algorithm ProcOnion.

Let Og be the set of onions received by the parties in R.

At the end of the execution, A chooses two onions O,, O3 € Or and a target sender
P, € S and outputs (O, Oz, Ps).

Let an onion O be a “valid challenge onion” if (i) there exists a message m, € M and
a target recipient P, € R such that m,. is A’s choice for the message to be sent to P, and
(ii) O is the last onion to be received by the recipient over the network in the onion evolution
generated by C on behalf of one of the target senders running FormOnion on the message m,.
and a routing path ending in P,.

Let sender(O;) be the sender of O, and let sender(O3) be the sender of Oz. To maximize
his chances of winning the game, the adversary wants both Os and O; to be valid challenge
onions such that O, was sent by Py, while Oz was not. Formally, if A chose two valid challenge
onions, and {Ps} C {sender(O;),sender(O;z)} C S, then A wins iff Ps = sender(O;). Other-
wise, if A did not choose two valid challenge onions, or if {P;} ¢ {sender(O;),sender(O3)}
or {sender(O;),sender(O3)} € S, then A wins with probability one-half. See Figure 1 for a
quick reference to the mixing game.

We now define mixing as follows.

» Definition 7 (Mixing). An onion routing protocol TI(1*,pp,states,$,0) mizes
conditioned on the event E for the adversary class A if given E, every
adversary A € A wins MixingGame(1*, 11, A) with negligible advantage, i.e.,
|Pr[A wins MixingGame(1*, 11, A) | E] — 1| = negl(}).

The protocol computationally (resp. statistically) mizes if the adversaries in A are com-
putationally bounded (resp. unbounded).

Now that we have defined mixing formally, let us walk the reader through our definitional
choices. The starting intuition is that this definition needs to capture that it should be hard
for the adversary to pinpoint the origin of an onion received by one of the target recipients.
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MixingGame(1*, 11, A)

A c
pick Bad C P Bad
pk(P \ Bad)
pk(Bad)

pick honest S C P \ Bad
pick RC P s.t. |R| =[]

pick & S;R,&

randomly pick o

output Os,0s € Og and Ps € S

Figure 1 Schematic of the mixing game.

This goal comes with a caveat that of course an adversary can determine the sender of an
onion that one of the target senders has just created, or, more generally, that hasn’t traveled
very far and hasn’t had a chance to mix with any onions from other target senders. Hence,
we need to restrict the set of onions on which the adversary can win to a set of onions that
have traveled far and have already had a chance to mix with other onions. This is why we
have the requirement that the onion be a valid challenge onion. Intuitively, a valid challenge
onion is one that was formed by a target sender and has already arrived at its destination, a
target recipient, and now the adversary’s job is to figure out where it came from.

Next, let us explain why, to win the game, the adversary must produce two valid challenge
onions, and correctly attribute one of them to a sender Ps, while the other must have
originated with another target sender. What does it mean that the adversary cannot trace
an onion? One intuitive approach would be to say: the adversary’s chances of winning the
game where he picks just one onion and guesses its origin are close to a simulator’s chances of
winning a game where he just guesses a sender, and the challenger picks the onion uniformly
at random and independently of the simulator’s guess. The problem with this approach is
that we don’t know the best strategy for such a simulator and with what probability it would
succeed. So our approach is to have the adversary pick a sender and two onions. “Mixing”
means that, if it so happens that exactly one of them comes from P; and the other comes
from another target sender, then try as he may, the adversary cannot tell which is which any
better than by guessing randomly; and if it doesn’t happen that way, then the adversary
wins with probability one-half.

4 Main tools: checkpoint onions and merging onions

We describe the main ingredients for our constructions: checkpoint onions (a tool that was
introduced in prior work [3]) and a new tool: merging onions.
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4.1 Checkpoint onions

Our goal is to achieve anonymity by ensuring that our protocol mixes and equalizes in the
presence of an active adversary that drops onions. The challenge is: if the adversary drops
too many onions, then the remaining ones don’t have enough onions to mix with, and so
the resulting protocol will not mix. Checkpoint onions give the honest participants a way of
checking that there are still enough onions in the system for mixing to be possible.

A checkpoint onion O is a dummy onion (containing the empty message L) formed by a
party P that travels through the network until, at a pre-determined checkpoint round r, it
arrives at the intermediary I, who is expecting it. If it fails to arrive, then I is alerted to
the activity of an active adversary. More precisely, let F.(-,-) be a pseudo-random function
over two inputs, keyed by sk(P, I) which is a secret key shared between P and I. Let b be a
binary predicate. Let D be the diagnostic rounds; the honest parties test whether enough
onions remain in the system after these rounds. For each intermediary I and each round
r € D, P determines whether or not to create a checkpoint onion that will arrive at I at
round r by computing f = F(sk(P, I),(r,0)) and then checking if b(f) = 1; if so, P creates
this checkpoint onion. Similarly, the intermediary I will know to expect a checkpoint onion
from P at round r by computing f = F(sk(P, I), (r,0)) and then checking if b(f) = 1.

P forms O by running FormOnion on input the empty message 1, a randomly chosen
routing path P~ = (I1,...,I;), the public keys associated with parties on P, and a
sequence (81, ...,84—1) of nonces. The nonce s, which will be received by I, is the value that
I will know to expect: s, = F(sk(P,I),(r,1)); the rest are random nonces. The reason that
I will know to expect s, is that I can compute it too, since sk(P,I) is shared between P
and I. Of course, the shared key sk(P, I) need not be set up in advance: it can be generated
from an existing PKI, e.g., using Diffie-Hellman.

If the adversary drops an onion belonging to the same evolution as O before it reaches I,
I will detect it: it will detect that no onion with nonce s, was received in round r. (Since F'
is pseudorandom, it is highly unlikely that another onion peels to the same nonce value.)

4.2 Merging onions

Checkpoint onions help with mixing, but not with equalizing. If our routing protocol just has
every sender form one “message-bearing” onion to its recipient and send it along in addition
to a set of checkpoint onions (as in the protocol II, of Ando, Lysyanskaya, and Upfal [3]),
then an adversary who targets the sender Alice can cause Alice’s recipient Bob to receive the
message with a smaller probability than her alternative recipient, Bill; so this protocol will
not equalize and, from Theorem 6, has no hope of achieving anonymity.

So how can we design a protocol that equalizes? One approach is to detect when the
adversary drops any onions at all (e.g., using verifiable shuffling) [25,30] and abort when
that happens. While this approach equalizes, it is not at all fault-tolerant. To achieve fault
tolerance and equalizing, the protocol must be able to react to the adversary dropping onions
in a way that is less dramatic than total abort. This can be accomplished by using a new
tool: merging onions. The idea here is that a sender P can create two onions, O; and O,
that bear the same message to the same recipient R. Further, they will be routed through
the same intermediary I, arriving at I at the same round r. Let O] (resp. O}) denote the
rt layer of O; (resp. O3) that arrives at I at round r. When I peels both O} and O}, I
discovers that they are (essentially) the same onion, and only forwards one of them to the
next destination. If I receives just one of them (because the other one had been dropped by
the adversary), then it forwards it to the next destination too.
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Why does this approach help with equalizing? Suppose we have a protocol in which every
participant creates two message-bearing onions that merge at round r. Suppose that the
adversary targets the sender Alice and succeeds in dropping one of her two outgoing merging
onions. Since these onions were supposed to merge at round r, after round r, there are just
as many onions for which Alice was the sender (namely, just one onion) as for any other
participant. In general, of course, the adversary may drop more than one onion belonging to
Alice. In fact, in order to guarantee that any of Alice’s onions survive with overwhelming
probability when the adversary controls a constant fraction of the network’s nodes, Alice
needs to send out a superlogarithmic (in the security parameter A) number of onions. In
order to equalize the number of onions that make it to each destination, our protocol will
have to create not a pair, but 2" = Q(polylog \) merging onions, organized in a binary tree
of height h.

We now illustrate how to form 2" merging onions through a toy example for h = 3. We
first construct a binary tree graph of height 3 = log8. We label the root vertex of the tree v,
and the left-child and right-child of v, vy, and v;. More generally, the left-child of a vertex
Uy 1S Uy, and the right-child of v,, is v,,1, so that the leaf vertices are: vggg, voo1, Vo010, Y011,
V100, V101, V110, and v111. Each of these leaf vertices corresponds to a separate onion.

Let y denote a fixed number of rounds; this will later correspond to the length of an
“epoch.” Next, for each vertex v; of the graph, we choose a random sequence I;” = (I},...,I7)
of y parties and a random sequence s;” = (s}, ...,s?) of y nonces, i.e., Vj € [y], Iij +s$P and
sf +3$S. Let the “direct path from a leaf vertex vy to the root” be the path that begins with
vp and recursively moves to its parent vertex until the root vertex v is reached. For example,
the direct path from wvy91 to the root is (v1g1, v10,v1,v). Let the “sequence of intermediaries
corresponding to leaf vertex vy” be the sequence of parties corresponding to the parties on
the direct path from vy to the root, e.g., for vio1, it is (I3, {13, 117, 1), where I is the
sequence of parties assigned to the root. Let the “sequence of nonces corresponding to leaf
vertex vy” be the sequence of nonces corresponding to the parties on the direct path from
vg to the root, e.g., for vigy, it is (s741, 810,51, ), where s is the sequence of nonces
assigned to the root.

For each leaf vertex v;, we form an onion O} using the message m from the input,
the routing path (I7jy, I, I;7, I, R) where R is the recipient from the input, the public
key associated with the routing path, and the sequence (s13;, 15,57 ,$ ) of nonces. We
can generalize this idea to generate an arbitrarily large set of merging onions by using an
appropriately large binary tree.

5 A stepping stone construction, 115
Let us extend the toy example construction we just saw to a protocol, sz’t, which is a
stepping stone for our main construction. 1% is pronounced “Pi-tree” from the fact that
the onions’ routing paths are structured like a binary tree graph and is parametrized by the
number x of merging onions per sender (this is also the expected number of checkpoint onions
per sender), the number y of rounds per epoch, and the threshold ¢ for missing checkpoint
nonces per diagnostic round. (We will generally omit the superscript for better readability.)
We use a secure onion encryption scheme OE = (Gen, FormOnion, ProcOnion) as a building
block. During the setup phase, the participants set up their keys. Every honest party P
sets up his/her keys (pk(P),sk(P)) by running the onion encryption scheme’s key generation
algorithm Gen.
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The onion-forming phase. During the onion-forming phase, each honest party P creates
two types of onions: merging onions and checkpoint onions.
On input {(m, R)}, P forms a set of x merging onions using the number y of rounds in
an epoch, the message m, and the recipient R.
In addition to merging onions, P generates (on average) x checkpoint onions using the
set D = {y,2y,...,(logz + 1)y} as the diagnostic rounds. (Appropriate functions are
chosen for F.(-,-) and b(-) such that P generates x checkpoint onions in expectation.
See Checkpoint onions in Section 4 to recall how these functions are used for generating
checkpoint onions.)
For both merging onions and checkpoint onions, the length of the routing path is fixed; it is
(logz + 1)y + 1.

The execution phase. All onions are created during the onion-forming phase and released
simultaneously in the first round of the execution phase.
After each round r of the execution phase, P peels all onions it received at the r** round
and merges mergeable onions (i.e., if two onions peel to the same nonce value, drop one
of them at random).
If r is a diagnostic round (i.e., r € D), P runs the following diagnostic test: Let Ckpts(P,r)
denote the set of checkpoints that P expects to see from peeling the onions between
rounds r and r 4+ 1. P counts how many checkpoints from Ckpts(P,r) are missing. If
the number exceeds a fixed threshold value ¢, then P aborts. Otherwise, P continues for
another round by sending the processed onions to their respective next destinations in
random order.
At the end of the execution phase, P peels the onions it received at the last round and
outputs the set of (non-empty) messages it received.

» Remark 8. sz’t is anonymous from the adversary who corrupts up to x fraction of the
parties when (i) the onion encryption scheme is secure, (ii) the number x of onions formed by
each (honest) party is (21280008 x+IT) where y = max(y/N log” T X, log? ™) \), (iii) the
number y of rounds per epoch is Q(log'*“\), and (iv) the threshold ¢ is 2(1 — §)(1 —
#)>k1og!T¢ . (See the full version of the paper for the proof.) The reason that TI%”"" needs
so many onions is that the adversary can target Alice and drop a lot of her onions before
the honest participants realize (via checkpoint onions) the presence of an attack and abort.
The protocol Il presented in the next section improves on this by giving the routing paths
enough structure that missing onions can be detected sooner.

6  Our main construction, IT

In this section, we present our main construction Il (pronounced “Pi-butterfly”). I, uses
a variant of a butterfly graph described below.

6.1 The butterfly network and variants

Recall [26, Chapter 4.5.2] that the butterfly network B = (V(B),E(B)) is a directed
graph on (n + 1)2™ vertices. The vertices are organized into N = 2" rows and n + 1
columns, so each vertex has an address (r,¢) where 1 < r < N and 0 < ¢ < n. Vertices
in column 4 represent potential locations of a data packet (here, an onion) at epoch i;
each participant P has a dedicated row. An edge from (P,i) to (Q,i + 1) means that
an onion can travel from participant P to participant @ in epoch i. The edges of the
specific butterfly network that will be useful for us are E(B) = {((P,7),(Q,i + 1)) |
P = @ or binary representations of P and @ differ in position ¢ + 1 only}.
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Let J and J’ be two participants whose binary representation differs in bit 7 + 1 only.

In II.,, epoch i is dedicated to having an onion bounce y times between J and .J’. This
way, by the end of the epoch, the onions that J and .J’ held at the beginning of the epoch
will be mixed together if one of them is honest. More formally, the onions travel along
the edges of a stretched butterfly network, defined as follows: its N(ny + 1) vertices are
organized into N rows and ny + 1 columns; and its edges are: E(8) = {((P,J), (@Q,5+ 1)) |
for i = |j/yl, (P,),(Q,i+1)) € E(B)}.

However, what if both J and J’ are adversarial? Then sending the onions through
the stretched butterfly network just once will result in the adversary knowing the ™"
bit of an onion’s destination! So to prevent this, we will send the onions through the
iterated stretched butterfly network. For an integer z, let 3% denote the stretched butterfly
network iterated z times. More precisely, §? is a directed graph in which the vertices
are organized into N rows and nyz + 1 columns, i.e., a vertex has an address (r,c) where
1 <r < NandO0 < c < nyz The edges are as follows: E(5%) = {((P,J),(®,5+ 1)) |
for i = j mod ny, ((P,4),(Q,i+ 1)) € E(p)}.

To summarize, we begin with a butterfly network B, then we stretch it by y to get 3, then
we iterate it z times to get 5%; see Figure 2. By a “walk through $*” we mean a sequence
(Jo, - - - Jnyz) such that, for each i < nyz, ((J;,19), (Ji41,7+1)) € E(F*). A random walk from
a node Jy is a sequence that begins with Jy such that for i > 0, each J; is a walk selected
uniformly at random conditioned on the first 7 elements being (Jp, ..., Ji—1). A random walk
starting at any address can be sampled efficiently.
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Figure 2 Diagrams of the butterfly network B, the stretched butterfly network 3, and the iterated
stretched butterfly network 3% for n =log(8) = 3, and y = z = 2.

6.2 Description of the construction
I%Y*" consists of setup, the onion-forming phase, and the execution phase. It is paramet-
erized by the number = of merging onions per sender, the number y of rounds per epoch,
the number z of iterations of a variant of a butterfly graph, and the threshold ¢ for missing
checkpoint nonces. The execution phase is further divided into the mizing sub-phase and the
equalizing sub-phase. The iterated stretched butterfly graph determines routing options for
the mixing sub-phase.

Let O = (Gen, FormOnion, ProcOnion) be a secure onion encryption scheme. During
setup, each honest participant P generates its public key pair (pk(P),sk(P)) using Gen.
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6.2.1 The onion-forming phase

On input {(m, R)}, each honest party P generates exactly z merging onions and (on average)
2 checkpoint onions. To form an onion, P first needs to pick a path for it. Each onion will
(potentially) travel to d S (nyz + 1) + ylogx + 1 parties to reach its destination: the first
nyz + 1 steps involve a random walk through the iterated stretched butterfly network (the
mixing sub-phase), and the next ylogx + 1 steps will take the onion through the equalizing
sub-phase and to the recipient.

To begin with, P generates the x merging onions as follows: Let T' be the binary tree
of height logz. Let k be an address of a node in T' (i.e., k is a binary string of length at
most log x); let vy, denote this node. Le., V(T') = {vy | k is a binary string, |k| < logz}. To
each non-leaf vertex vy in T', P assigns a sequence of y random parties and y random nonces;
let 1.7 = (Lu, 15 - -, Luy,,y) denote the sequence of vertices and 5,7 = (sy,,1,..,5y,,y) denote
the sequence of nonces corresponding to vertex vg. (Up until this step, this is exactly how
merging onions are formed in ITx.) For each leaf vertex v, P picks a random walk through
the iterated stretched butterfly 4* and nyz + 1 random nonces; let J, = (Jog,05 -+ > Jopmyz),
denote the random walk, and let ;7 = (t,,,0, . - . s tu, ny=) be the sequence of nonces.

Let vy be a leaf of T'. Let vy; = vi, where k; is the i-bit prefix of £. I.e. v,y = v, and
Vg,0 = Ve, and (Ve p, Ve h—1,- - - ,Ve,0) is the path from v, to the root of the tree, where h = log z.

P will create an onion Oy for each leaf v,. Its routing path is I;” = (J’ @7_)2, e JZ}L, R)

e
where J] is as defined above, I, = I;7 where k; is the i-bit prefix o% ¢, and R is the
recipient, and such that |I;”| = d. Similarly, let s;” = (¢;7, 87y 8p7,) denote the sequence
of nonces corresponding to this path. To form the onion O, corresponding to vy, P runs the
algorithm FormOnion on the message m, the routing path I;”, the public keys associated
with the routing path, and the nonce sequence s;”.

After forming the merging onions, P generates the checkpoint onions. Just as in IIa, the
execution phase consists of epochs, and the last round of every epoch is a diagnostic round.
Here, each epoch lasts y rounds, thus round r > 0 is a diagnostic round if r is a multiple of y.
For each diagnostic round r and for each intermediary I, P uses the pseudorandom function
Fap.n) (r,0) to determine whether to form a checkpoint onion to send to I at round r, and
if so, calculates the nonce s = Fy(p,r)(r,1).

When Fy(pr)(r,0) = 1, P generates a checkpoint onion to be verified by party I in
round r. Recall that d = (nyz + 1) +ylog 2 + 1; so round d is the last round of the execution
phase. Since the checkpoint onion should not be distinguishable from a merging one during
the mixing sub-phase, it needs to travel over the edges of the iterated stretched butterfly
network for the first nyz + 1 rounds, and follow a random path through the network during
the equalizing sub-phase, all the way until the last round d.

As a result, for r > nyz + 1, P generates the routing path by first picking a random
walk J97™= = (Jy,...,Jny,) through the iterated stretched butterfly network starting
at a random node Jy, and then choosing each participant on the next part of the path
JryErl=r=l = (J . 41,. .., Jp—1) uniformly at random from P. Next, J, = I, and each
router on the remaining stretch of the path J"t17% is again, chosen uniformly at random
from P. So the resulting routing path is Jp, = (JO77wz, Jrv=ti=r=l j jrii=d) - p
chooses the corresponding nonces {s7,,;}jeo,....d—1}\{r} uniformly at random, sets sz ., = s,
and gives the resulting routing path, sequence (sz,0,...,Sr,ra—1) of nonces and the empty
message to FormOnion to obtain checkpoint onion Oy ;.

If r < nyz, then round r occurs during the mixing sub-phase, as the onion is making its
way through the butterfly network. So its path has to be formed in such a way that it arrives
at I at round r; but it needs to be a randomly chosen path conditioned on this event (so that
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a checkpoint onion’s path is distributed the same way as one of a merging onion). Let J077¥*
be a random walk through % that is at address I at round r. Let each intermediary in the
sequence J"Y*T17d he chosen uniformly at random from P. Again, for j #r, 0< j <d—1,
the nonce sg . ; is chosen at random, while sy, , = s. Let I‘; = (JO7mwz  Jrwztl=d) Run
FormOnion on input the routing path I_”T, sequence of nonces SZ)T and the empty message
to obtain checkpoint onion Oy .

» Remark 9. In both IIa and Il the onion layers are tagged with their respective round
number to prevent replay attacks. If by peeling an onion received at round r, an honest
relaying party observes a round number 7’ # r, the party drops the onion. (We can, therefore,
assume that replay attacks do not happen. We can safely do so since the security of the
onion encryption scheme prevents the adversary from modifying the onions formed by honest
participants in any meaningful way. See, for example Ando and Lysyanskaya’s work on onion
encryption [2], for a sufficiently strong construction.)

6.2.2 The execution phase

At the beginning of the execution phase, each party P is live. P’s status will change from
live to aborted if it ever receives a special abort message from another party. An aborted
party sends the special abort message to a random sample of = parties. (A slight technicality
is that, since all messages must be onions, the abort message is a specially formed onion.)
For each r € {0,...,d — 1}, each live honest party P first peels all the onions it received
at the r** round. It merges onions that are mergeable: if it received two onions that have
the same nonce, then it drops one of them, selected at random, and sends the other one
to its next destination.
If r is a diagnostic round (i.e., a multiple of y), then P runs the diagnostic test: P
compares the number of checkpoint onions it expects to receive with the number it
received. For every participant Q € P, if Fy (o, p)(r,0) = 1, then P expects to receive a
checkpoint onion with nonce s = Fy (g, p)(r, 1) in this round. In the mixing sub-phase, if
fewer than ¢ checkpoint onions are missing so far in the protocol run (not just in this
round, but cumulatively), then P continues the run by processing all the other onions.
Otherwise, P’s status changes: it is no longer live but becomes an aborted party. In the
equalizing sub-phase, change status to aborted if there are ¢ or more missing checkpoint
onions in this round, else continue.
At the last round (round d) of the execution phase, P peels the onions it received and
outputs the set of (non-empty) messages it received.

6.3 Proof that I is anonymous, robust, and efficient

In this section, we will prove that there exists a parameter setting (for z, y, z, and t) such
that Il is simultaneously anonymous, fault-tolerant, and efficient.

Our measure of efficiency is onion cost per user, which measures how many onions are
transmitted by each user in the protocol. This is an appropriate measure when the parties
pass primarily onions to each other. It is also an attractive measure of complexity because it
is algorithm-independent: If we measured complexity in bits, it would change depending on
which underlying encryption scheme was used. Since an onion contains as many layers as
there are intermediaries, its bit complexity scales linearly with the number of intermediaries.
(We assume that every message m can be contained in a single onion.) To translate our lower
bound from onion complexity to bits, we will consider onions to be at least as long (in bits)
as the message m being transmitted and the routing information. More formally,
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» Definition 10 (Onion cost). Let out'™*(1*, o) denote the number of onions formed by

an honest party that party P; transmits directly to another party in a protocol run of 11
with adversary A, security parameter A and o. The onion cost of 11 is OCH’A(lk,E) £

Eois [out?’A(lA, O’):| . The expectation is taken over the input o <$X, the party P; <s$P,
and the randomness $ of the protocol.

For an adversary class A, the onion cost of 11 interacting with A w.r.t. ¥ is the mazimum
onion cost over the adversaries in A, i.e., OCT* (1} £) & max 4, OCTA(1Y, ).

Our formal notion of fault tolerance is robustness, defined below:

» Definition 11 (Robustness). A messaging protocol 11 is robust if in every interaction
in which the adversary drops at most a logarithmic (in the security parameter) number of
message packets, 11 delivers all messages sent out by honest participants w.o.p.

Let A, denote the class of active adversaries who can corrupt up to a constant x fraction
of the participants. In this section, we will prove the following upper bound on onion cost:

» Theorem 12. For any constants k < % and 1,72 > 0, there is a setting of x, y, z, and
t such that TIZY*" is robust and anonymous from the adversary class A, with onion cost
at most y1 log N log3™72 X (in the presence of Ay ), where X is the security parameter and
N = w(log \) is the number of participants.

Proof. Recall that the number of corruptions is kK < % Set €; such that v, = 66? and €9
such that v, = 3es. Let 2 = y = 2z = €1 log' ™2 \. Let an onion (layer) be commutable if
(i) an honest party formed it, and (ii) it is not a checkpoint onion for verification by an
adversarial party (more precisely, it does not belong to the same evolution as a checkpoint
% is the
expected number of commutable checkpoint nonces at a party at a diagnostic round.

Having set the parameters, we wish to show that the protocol IIz¥"*" (a) is robust; (b) has
onion cost OC < 77 log N log®*2 \; and (c) is anonymous, provided that the underlying
onion encryption scheme is secure.

Part (a) is true by inspection.

To see why (b) follows, recall that each participant forms x merging onions and, on
average, = checkpoint onions; let X be the maximum number of onions formed by an honest

onion for verification by an adversarial party); and let ¢t = %7 where W =

party. Each of these onions will need to be processed in each round, so OC < Xd, where d
is the number of rounds. Using Chernoff bounds, X < 3z with overwhelming probability.
The number of rounds is d = (nyz 4+ 1) 4+ ylog x + 1; for our setting of parameters, therefore,
0OC < 6¢} log N log®(1+€2) ),

We show part (c) via a series of lemmas that follow. First, we invoke the UC composition
theorem of Canetti [8] in order to replace cryptographic algorithms for onion encryption
with ideal encryption; this allows our further analysis to assume that onions reveal nothing
to an intermediary I other than the information that is intended for I (Lemma 13). Let
I1/4¢e! he the resulting protocol. Next, we argue that I1¢4°% is an indifferent onion routing
protocol (Lemma 15). This is helpful because then we will be able to invoke Theorem 3.
Third, we discard, for the purposes of analysis, all the checkpoint onions that are checked
by the adversary; we show that if a protocol mixes (resp. equalizes) in this setting, then it
mixes (resp. equalizes). Finally, we show that in this setting, I, mixes (Lemma 16) and
equalizes (Lemma 17). Then, putting it all together, we get our desired result. |
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» Lemma 13. Let IT be onion routing protocol that makes use of an onion encryption scheme
that is UC-secure [8] under a computational assumption A. Let T1'%% be the same protocol,
but the onion encryption scheme is replaced by the ideal onion encryption functionality
of Camenisch and Lysyanskaya [7]. If T1° s anonymous, then 11 is anonymous under
assumption A.

Proof. The Lemma follows by the UC composition theorem of Canetti [8]. <

» Remark 14. Since CCA2-secure public-key encryption UC-realizes the ideal public-key
encryption functionality of Canetti, and in T, the adversary already knows how many layers
of a given onion have already been peeled, forming onions by using CCA2-secure encryption
to encrypt each layer will also result in an anonymous Ily.

» Lemma 15. 1114 js indifferent.

Proof. In H;ﬁe“l, the length of each routing path is fixed, and the intermediaries and nonces
of honestly formed onion layers do not depend on the input ¢ to the protocol. The procedure
for generating intermediaries and nonces takes as input only the values z, y, and z. Thus, by
definition, Héﬁeal is indifferent. <

For the subsequent lemmas (Lemmas 16-18), we analyze only commautable onions.

» Lemma 16. With parameters x, y, z, and t defined as above, 11:4¢%" mizes for the adversary
who corrupts up to half of the parties.

Proof sketch. If II9°?! delivers messages in the final round d, then w.o.p., the adversary
dropped (at most) a constant fraction of the commutable checkpoint onions before the last
epoch: The adversary cannot drop more than a constant fraction of all commutable onions
without also dropping a proportional number of checkpoint onions. This is because if the
adversary were to drop more than a constant fraction of all commutable onions, then, from
known probability concentration bounds [22], w.o.p., the adversary would drop close to a
proportional number of checkpoint onions, which, in turn, would cause all honest parties
to abort the run. Combining this with Chernoff bounds we get: during each round of
the penultimate epoch e, each honest party processed a polylogarithmic (in the security
parameter) number of commutable onions. From Chernoff bounds, we also get: during
epoch e, each commutable onion went to an honest party a polylogarithmic number of
times. Thus, either the Héﬁe“l aborts, or it sufficiently shuffles the commutable onions
during the penultimate epoch since shuffling for a polylogarithmic number of rounds with a
polylogarithmic number of other onions is sufficient for mixing. Either way, Héﬁe“l mixes. <«

» Lemma 17. With parameters x, y, z, and t defined as above, 11t4°% equalizes for the
adversary who corrupts up to half of the parties, who also receives everything about non-
commutable onions as an auziliary input.

Before proving Lemma 17, let us prove the following:

» Lemma 18. Let I1/4¢! run with parameters x, y, z, and t are as defined above on input o,

with A corrupting up to half of the participants, and receiving an auxiliary input about

non-commutable onions as an auxiliary input. If there is an unaborted honest party at the

beginning of the equalizing phase, then with overwhelming probability for each honest party P,
11—k

at least =5* of P’s merging onions remained undropped by the adversary at the end of the

mixing phase. (Recall that k is the corruption rate.)
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Proof sketch. In the first round, the adversary A knows the sender of each commutable
onion. As the protocol progresses, A loses track of this information. Thus, A’s optimal tactic
is to target Alice upfront by dropping every onion that might have come from Alice that is
routed to an adversarial party during the first three rounds of the first epoch (as well as the
last round of the epoch).

In the first round, some of Alice’s onions route to a corrupt party; A drops all of these.
However, from Chernoff bounds, w.o.p., at least a constant fraction of Alice’s onion go to an
honest party first. Let O be such an onion, and let P be the honest party that receives O in
the first round. Recall that during each epoch of the mixing phase, P shuffles onions back
and forth with another party P’. A can attempt to drop O if P’ is corrupt. However, even
if P’ is corrupt, A cannot drop O if it arrives at P first and remains at P during rounds 2
and 3 (and return to P at round y) — so, using probability concentration bounds, I_T” of the
time. Thus, even if .4 employs the optimal tactic for dropping Alice’s onions, (at least) 1_7“
of Alice’s onions will make it to the equalizing phase. Since A cannot do better than this,
this proves Lemma 18. <

Proof sketch of Lemma 17. From Lemma 18, if Héﬁeal continues into the equalizing phase,
then a constant fraction of each honest party’s merging onions are still in play at the start of the
equalizing phase. However, Lemma 18 does not guarantee that there will be an epoch ¢ > nyz
such that the number of Alice’s merging onions at epoch 7, numMOjjice 5, Will be close to that of
Allison’s, numMOajiison,i- To prove that Héﬁe“l equalizes, we need to show that there exists an
epoch 7 < d such that (for any two parties Alice and Allison), numMOajice,; & NuMMOajiison ;-
If A doesn’t drop any commutable onions during the equalizing phase, then this condition is
satisfied by the merging of onions.

So what can A do? The only information that A has for guessing where any commutable
onion came from is which onions are part of a mergeable pair and which are not; this is
because the onions are shuffled during the mixing phase and each epoch of the equalizing
phase. Let a singleton be a commutable onion that is not part of a mergeable pair; note that
it can be either a checkpoint onion or a merging onion. W.l.o.g., suppose that A dropped
more of Alice’s onions upfront (during the mixing phase) than Allison’s. Then, at the start
of the equalizing phase, it is likely that more singletons are Alice’s merging onions than
Allison’s merging onions. So, A can attempt to prevent the numbers of merging onions from
evening out by dropping singletons. We can show that the best that A can do is to drop as
many singletons as possible (without causing the protocol to be aborted) at the beginning of
the equalizing phase. (Of course, A could also drop onions that belong in a mergeable pair,
but this would only help to even out the numbers of merging pairs.) Even if A does this,
there exists an epoch i < d such that numMOajice; = NUMMO pjiison, ;-

Armed with Lemma 18 and the above analysis, we can prove that IT1:4° equalizes. If
the adversary drops too many onions during the mixing phase, then I1/4°* equalizes since
every honest party stops participating (Lemma 18), and so no one receives their message.
Otherwise, I1/4¢! equalizes since enough of each sender’s merging onions make it to the
equalizing phase (Lemma 18), and the numbers of merging onions are eventually evened out
by the merging of onions (above). <

7  Our lower bound: polylog onion cost is required

In this section, we present our lower bound: an onion routing protocol can be anonymous
from the active adversary only if the onion cost is superlogarithmic in the security parameter.
Our lower bound holds for protocols that are minimally functional for the active adversary.
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We call this notion weakly robustness, defined below. The reason this definition is weaker
than robustness (Definition 11) is that here we only insist that the protocol guarantee delivery
for senders whose onions are never dropped.

» Definition 19 (Weakly robust). Let II(1*, pp, states, $, o) be an onion routing protocol and
let A be an adversary attacking II that drops at most O(log(\)) onions. II is weakly robust if
whenever A doesn’t drop any onions sent by honest party P, P’s message will be delivered to
its recipient with overehlming probability.

» Theorem 20. If the onion routing protocol TI(1*, pp, states, $, o) is weakly robust and
(computationally) anonymous from the adversary A who corrupts up to a constant fraction of
the parties and drops at most f(X) = O(log(\)) onions, then the onion cost of II interacting
with A is w(f(N)).

Proof sketch. Let us give the intuition for the proof of this theorem. If an honest P; sends
out only O(log(\)) onions, then an adversary that chooses which participants to corrupt
uniformly at random has a 1/ A9 chance of controlling each and every participant that
ever receives an onion directly from P;. (This is because O(log(A)) = O(log(NN)), since A
and N are polynomially related.) Thus with non-negligible probability it can cut off P;
entirely by dropping all of the onions it sends out, guaranteeing that the intended recipient
of P;’s message never receives the message; yet, by weak robustness (Definition 19), we can
show that there will be some recipient whose probability of receiving his message is high.
Therefore, IT will not equalize (Definition 5): based on who failed to receive the message,
it is possible to determine whether P;’s intended recipient was Bob or Bill. Since it does
not equalize, by Theorem 6, it is not anonymous. See the full version of this paper for the
proof. <

8 Conclusion and future work

Here, we mention a few extensions of our results: We proved that the required onion cost for
an onion routing protocol to provide robustness and (computational) anonymity from the
active adversary is polylogarithmic in the security parameter. Our proof for the lower bound
can be used to prove the stronger result that polylogarithmic onion cost is required even
when (i) the adversary observes the traffic on only ©(1) fraction of the links and or when (ii)
the security definition is weakened to (computational) differential privacy. (iii) Also, while
we explicitly showed this to be the case for the simple I/O setting, the result holds more
generally whenever any party can send a message to any other party.

We also proved the existence of a robust and anonymous onion routing protocol with
polylogarithmic (in the security parameter) onion cost. (iv) This result also extends beyond
the simple I/0 setting; our onion routing protocol is anonymous w.r.t. any input set where
the size of each party’s input is fixed.

There is a small gap between our lower and upper bounds. A natural direction for future
work is to close this gap.
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