
Cellular-Assisted COVID-19 Contact Tracing

Fan Yi, Yaxiong Xie, Kyle Jamieson
Department of Computer Science, Princeton University

{fanyi,yaxiongx,kylej}@cs.princeton.edu

Abstract

The coronavirus disease (COVID-19) pandemic has caused

social and economic upheaval around the world. Contact

tracing is a proven effective way that health authorities may

contain the spread of COVID-19, but is challenging for air-

borne disease. In this paper, we propose LTESafe, a cellu-

lar-assisted privacy-preserving COVID-19 contact tracing

system. LTESafe leverages a deep neural network based fea-

ture extractor to map the cellular CSI to a high-dimensional

feature space, within which the Euclidean distance between

points indicates the proximity of devices. By doing so, we

preserve user privacy by hiding the physical locations of

smartphones and at the same time achieve high accuracy.

Our preliminary experimental results demonstrate that LTE-

Safe achieves an overall accuracy of 92.79% in determining

whether two devices are within six feet proximity or not,

and only misses 1.35% of close contacts.

CCS Concepts

• Human-centered computing → Ubiquitous and mobile

computing.

Keywords

COVID-19, Proximity estimation, Contact tracing, Cellular

network, LTE, Neural networks

ACM Reference Format:

Fan Yi, Yaxiong Xie, Kyle Jamieson. 2021. Cellular-Assisted COVID-

19 Contact Tracing. In 2nd Workshop on Deep Learning for Well-

being Applications Leveraging Mobile Devices and Edge Computing

(HealthDL’21), June 24, 2021, Virtual, WI, USA. ACM, New York, NY,

USA, 6 pages. https://doi.org/10.1145/3469258.3469848

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

HealthDL’21, June 24, 2021, Virtual, WI, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8598-5/21/06. . . $15.00

https://doi.org/10.1145/3469258.3469848

1 Introduction

The ongoing COVID-19 pandemic has already resulted in

millions of deaths all around the world, causing unprece-

dented social and economic crisis. Except vaccines, a proven

effective way of containing the spread of COVID-19 is accu-

rate, complete and timely contact tracing. According to the

world health organization (WHO), a close contact is a person

who has been within six feet to someone that is COVID-19

positive for more than 15 minutes. Contact tracing is the

process of identifying, assessing, and managing people who

are close contacts with the contagious positive cases. Cur-

rently, contact tracing is accomplished through manually

interviewing each COVID-19 positive cases by the health

authorities, which, however, is extremely labor intensive,

time consuming, and unscalable, motivating techniques that

can accelerate and automate the process of contact tracing.

The core task of contact tracing is to identify the close

contacts of the positive cases, which requires comparing the

locations of two citizens. The ubiquity of smartphones, e.g.,

more than 81% of Americans own a smartphone in 2019,

and their capability of performing device localization and

proximity estimation make them ideal devices for building

an automatic and fast contact tracing system that scales.

Identifying close contacts by comparing the exact loca-

tions of smartphones is a straightforward solution. There

exists many mature techniques we can leverage to accurately

localize the smartphones, including GPS, Wi-Fi based [18–

20], cellular based [6] and Bluetooth based [2, 12]. Exposing

the location to any third party, however, hinders the privacy

of both healthy citizens and the people who have been in-

fected with the virus, making the location based solutions

impractical to implement.

Essentially, identifying close contacts only requires the

distance between two people, so localizing the smartphones

people carry is overkill. Knowing the proximity of devices is

enough for contact tracing, which also preserves user privacy.

Proximity estimation using RSSI of Bluetooth has drawn a

significant amount of attention from the research commu-

nity [5, 16], the industry [1, 8], and the government [4].

RSSI based proximity estimation, however, suffers from

errors [21], as there are many factors other than the dis-

tance that can affect the received signal strength, including

hardware imperfections, interference from other signals that

share the ISM band and multipath effect. Furthermore, these

systems require the device to frequently transmit beacons

1

HealthDL’21, June 24, 2021, Virtual, WI, USA Fan Yi, Yaxiong Xie, Kyle Jamieson

to detect each other, which consumes a large amount of en-

ergy and also makes the device trackable by malicious third

parties.

(a) Location mapping. (b) CSI mapping.

Figure 1: Mapping physical locations of smartphones (a)

and measured CSI (b) to a high-dimensional feature space.

This paper proposes LTESafe, a location based proximity

estimation algorithm that is accurate in estimating proximity

and at the same time preserves user privacy by hiding the

exact user location. We plot the intuition of our algorithm

in Figure 1(a), from which we see that, instead of directly

comparing the physical locations to get the proximity of

two devices, we propose to map the locations to a point

inside a high-dimensional feature space and then calculate

the Euclidean distance inside the feature space to derive the

proximity. To achieve this goal, we have two requirements for

such mapping. First, we require that the Euclidean distance

of two points in the feature space indicates the proximity of

their corresponding physical locations. Second, to preserve

user privacy, the mapping should be irreversible so any third

party cannot reconstruct the exact user location using the

exposed location inside the feature space.

To realize our idea in Figure 1(a), two tasks remain un-

solved: localizing the smartphone and finding a mapping

that that satisfies the aforementioned two requirements.

For the localization task, we rely on the channel state in-

formation (CSI), which fully characterizes the signal propaga-

tion between the transceivers, including both the parameters

of line-of-sight path and surrounding objects’ reflections.

To fully make use of the information conveyed by CSI, we

directly map the CSI to a point in the feature space, as shown

in Figure 1(b). In our implementation, we choose the cellu-

lar CSI because of its wide coverage, and the availability of

fine-grained cellular reference signals.

For the mapping task, we propose to leverage a deep learn-

ing based feature extractor to find the mapping that satisfies

our two requirements, as shown in Figure 1(b). Recent ad-

vances in deep learning has proven that convolutional deep

neural network (CNN), is powerful in selecting represen-

tative features for diverse tasks. Therefore, after training,

a CNN based feature extractor would automatically select

the set of features that forms the desired high-dimensional

feature space within which the Euclidean distance indicates

the proximity. Furthermore, the extracted features become

incomprehensible when the neural network goes deep.

We implement a prototype of LTESafe using USRP as

frontend to collect CSI from commercial cell towers. Our

experiments show that LTESafe achieves an overall accuracy

of 92.79% in determining whether two devices are within six

feet or not, and only misses 1.35% of close contacts.

2 LTE Primer

Figure 2: Location of LTE CRS and the mobile client side

two-dimensional interpolation.

LTE adopts OFDM in the physical layer, so the smallest

time-frequency unit is one subcarrier in frequency and one

OFDM symbol in time, which is also denoted as one resource

element (RE). LTE groups all REs inside a block spanning

seven OFDM symbols and 12 subcarriers into a physical re-

source block (PRB), as shown in Figure 2. To support multiple

access, LTE divides the time into one millisecond length sub-

frames and allocates the PRBs inside each subframe to one

or multiple mobile users for data transmission.

Channel estimation in LTE network. To facilitate chan-

nel estimation, the base station transmits predefined cell

specific reference signal (CRS), inside several specific REs of

a PRB, as shown in Figure 2. The CRSs transmitted by multi-

ple antennas of one base station are non-overlapping with

each other, so a mobile client can separate them and esti-

mate the channel between each transmitting antennas and

its receiving antenna independently. Since the sequence of

CRS is known, a mobile client is able to estimate the channel

of all REs that carry CRS. To obtain the channel estimation

of every RE, the mobile client performs a two-dimensional

interpolation, i.e., over time and frequency, as shown in Fig-

ure 2. We note that the base station always broadcast the

CRS no matter it has data to transmit or not, so a mobile user

can estimate the downlink channel at any time point.

3 LTESafe Design

In this paper, we propose LTESafe, a cellular-assisted, pri-

vacy-preserving contact tracing system, whose architecture

is plotted in Figure 3. Generally, LTESafe consists of a mobile

client data collection module and server side close contact

identifier, which are detailed in the following sections.

Mobile client side. Each cellular-connected mobile client

first measures the CSI of the channels between itself with

2

Cellular-Assisted COVID-19 Contact Tracing HealthDL’21, June 24, 2021, Virtual, WI, USA

Overlapping
cell

Feature extractor

Features

Cell info
Timestamp

Server

User 1

User 1

User 2

User 2

CSI

Close contact
identifier

…

Figure 3: The system architecture of LTESafe. The mobile

clients extract features from CSIs, and then send packed

feature vectors to the server. The server stores feature vectors

reported by all mobile clients, and run close contact identifier

to find all exposed users.

one or multiple cell towers, then maps the CSI to a vector of

contact features via a deep-learning based feature extractor,

and at last tags each feature vector with timestamp and

information about the cell from which the CSI is measured,

including the cell ID, antenna number, and bandwidth. The

mobile client regularly uploads the extracted feature vectors

together with the tagged information to the server.

Server side. The server stores feature vectors reported by

all mobile clients, and runs the proximity estimation process

to find all potentially exposed users. In the proximity esti-

mation process, the server first identify all the users who

appear at the same cell coverage area at the same time with

positive COVID-19 users, by checking the timestamp and

cell information list associated with positive COVID-19 users

against the list of all other users. The server then runs close

contact identifier on feature vectors of potentially exposed

users and that of positive COVID-19 users to further find

out users who have close contacts with positive cases.

3.1 Data Preprocessing

The extracted CSI has a granularity of 14 samples per mil-

lisecond, which has information redundancy in time domain.

To reduce the number of CSI being processed, we downsam-

ple the CSI to one sample per 32ms, if the extracted CSI is

finer than this granularity.

The measured CSI is noisy because of hardware imperfec-

tions. For CSI amplitude, we run Hampel filter to identify

and remove outlier CSIs. To eliminate the phase error intro-

duced by frequency offsets and timing offset, we feed the

phase difference across antennas to the deep neural network.

Phase difference captures the relative relationship between

phase across antennas but loses the absolute value. We, there-

fore, input the sanitized phase of the first antenna [11], to

compensate for the information loss.

6 100
CSI Input 2 ResNet Block 1 … 8 3 FC Layers 1 64

Feature Vector 2

CSI Input 1
1 64

Feature Vector 1

L2 norm
Contrastive

Loss

Feature Extractor

CNN CNN

CNN CNN

Figure 4: The architecture of Siamese network, which runs

two identical neural networks on two CSIs.

3.2 CNN based Contact Feature Extractor

LTESafe leverages a deep neural network to automatically

select a set of features of the CSI. The requirement of the

selected features is that the Euclidean distance between the

feature vectors of any two CSIs represent the physical prox-

imity of twomobile clients fromwhich the CSIs aremeasured.

We plot the structure of LTESafe’s deep learning based fea-

ture extractor in Figure 4, which is modified from ResNet

[10]. The neural network converts the CSI inputs into the

final feature vector.

We adopt the Siamese neural network (sometimes called

the Twin network) to train our feature extractor [3], which

consists of two identical neural networks that run in paral-

lel, as shown in Figure 4. These two neural networks share

weights, and thus extract the same set of features of the input

CSI. The Siamese network outputs the Euclidean distance of

two feature vectors, which are extracted by the two parallel

neural networks.

The goal of training is to minimize the loss function over

the training dataset. We use contrastive loss [9] as our loss

function, which is defined as:

L𝑐 = 𝑌 · 𝐷2 + (1 − 𝑌) · [max (0,𝑚 − 𝐷)]2 (1)

where L𝑐 represents the contrastive loss; 𝐷 is the Euclidean

distance of the two feature vectors generated from the two

feature extractors; and𝑌 is the proximity ground truth of two

CSI inputs, which is a binary value representing whether

the two devices are close or not. The 𝑚 is a configurable

hyperparameter whose value is set to 2 in our training.

The combination of Siamese network and contrastive loss

turn the training process into a process of finding the weights

that guarantee the Euclidean distance is minimized for any

CSI pairs that are measured from two mobile devices that

are within six feet, i.e. the close contacts; and are maximized

for CSI pairs that are measured from two far away mobile

devices. Specifically, for CSI pairs with ground truth 𝑌 = 1,

i.e. two devices are close contact with each other, the loss

equals to L𝑐 = 𝐷2, so the training goal becomes minimizing

the Euclidean distance𝐷 of feature vectors of the CSI pair. On

the other hand, for CSI pairs with ground truth𝑌 = 0, i.e. two

far away devices, the loss equals to L𝑐 = [max(0,𝑚 − 𝐷)]2,

3

HealthDL’21, June 24, 2021, Virtual, WI, USA Fan Yi, Yaxiong Xie, Kyle Jamieson

Figure 5: Each smartphone reports the feature vectors of

a group of neighbouring cells. Two smartphones may have

one or multiple overlapping cells in their reported data.

where the training goal becomes maximizing the Euclidean

distance 𝐷 . The contrastive loss also ignores the CSI pairs

whose distance 𝐷 are already large enough.

3.2.1 Diverse physical layer configurations. The configura-

tions of the cellular physical layer determine the size of CSI

matrices that are fed into the contact feature extractor. To

be more specific, the size of the CSI matrix is represented

as𝑀 × 𝑁 × 𝑆 , where𝑀 and 𝑁 is the number of antennas in

array of the base station and the mobile phone, respectively,

and 𝑆 is the number of subcarriers, which is determined by

the channel bandwidth of the base station 1.

The physical layer configuration varies across base sta-

tions andmobile devices, so the size of CSI varies accordingly.

We train for the combinations of one base station antenna

(𝑀 = 1), twomobile phone antennas (𝑁 = 2) and all available

bandwidth. We separate the CSI with 𝑀 > 1 into 𝑀 CSIs

with antenna number𝑀 = 1, so that we can reuse the single

antenna model.

3.3 Close Contact Identifier

When a positive case is reported, the server runs the close

contact identifier to find all users that are potentially ex-

posed to the COVID-19 positive user, which involves two

steps. First, the identifier reduces the search space by finding

users who has overlapping cells in their reported the feature

vectors, as shown in Figure 5. Second, the identifier scans

all users found in step one and identifies all possible close

contacts that has been exposed to the positive case.

In the rest of this section, we introduce our algorithm to

identify close contacts using reported feature vectors. Since

each user reports feature vectors of a group of neighbour-

ing base stations, the number of overlapping cells between

two users may vary. We, therefore, begin with the introduc-

tion of close contact identification under the scenario of one

overlapping cell and then generalize to multi-cell cases.

3.3.1 Single overlapping cell. Supposing two smart phones

share one base station that has𝑀 antennas in its array, the

1A mobile device measures the CSI of the entire frequency band of the

channel (§2), regardless of the detailed bandwidth allocation.

close contact identifier first calculates the Euclidean distance

𝐷 𝑗 between the feature vector of 𝑓1, 𝑗 and 𝑓2, 𝑗 , as shown in

Figure 5, and then derive the average Euclidean distance

between the feature vectors 𝐹𝑖 of two users as:

𝐷 =
1

𝑀

𝑀∑
1

𝐷 𝑗 , (2)

based on which, the identifier makes a preliminary identifi-

cation 𝑃𝑝𝑟𝑒 :

𝑃𝑝𝑟𝑒 =

{
−1, if 𝐷 ≤ 𝐷𝑡ℎ𝑟𝑒ℎ

1, if 𝐷 > 𝐷𝑡ℎ𝑟𝑒ℎ,
(3)

where 𝐷𝑡ℎ𝑟𝑒ℎ is the prediction threshold. We set 𝐷𝑡ℎ𝑟𝑒ℎ to 0.9

in our experiments. A preliminary identification of 𝑃𝑝𝑟𝑒 = −1

means the two devices, that report the two feature vectors,

are within 6 feet with each other, and vice versa.

We note that this preliminary estimation is made on a

single pair of CSI, which covers only one millisecond in time.

Due to the fine granularity of downlink reference signal, we

have dense preliminary estimations within a short period,

where the specific number of estimations depends on CSI

sampling rates. To mitigate the influence of sudden environ-

mental changes or unpredictable interference, we propose

to add another voting layer on top of the preliminary esti-

mations. The voting result P𝑣 over a series of feature vector

pairs is defined as follows:

P𝑣 =
𝑘∑
𝑡=1

𝑃𝑝𝑟𝑒,𝑡 (4)

where 𝑘 is the number of feature vector pairs in a voting,

𝑃𝑝𝑟𝑒,𝑡 is the preliminary estimation on the 𝑡-th feature vector

pair. If the resulting voting decision P𝑠 ≤ 0, the final esti-

mation is that these two devices has a close contact in the

voting time span, and vice versa.

3.3.2 Multiple overlapping cells. Wemodify the voting scheme

to handle multiple overlapping cells. Supposing two mobile

users share 𝑛𝑐 overlapping cells in their reported feature

vectors, the voting results is given by:

P𝑚 =
𝑘∑
𝑡=1

(
𝑛𝑐∑
𝑖=1

𝑤𝑖𝑃𝑡,𝑖

)
, (5)

where 𝑃𝑡,𝑖 is the preliminary estimation results obtained from

𝑡-th feature vector of the 𝑖-th base station, and the weight𝑤𝑖

is used to adjust the impact of 𝑖-th base station on the final

voting results. Different base station have different band-

width and transmitting antennas, so feature vectors origi-

nated from different bandwidths contain different amount

information. Higher weight should be given to base station

with larger bandwidth and more antennas. In our experi-

ments, we set𝑤𝑖 to 1 when the 𝑖-th base station has 20 MHz

bandwidth and four antennas in its array, and then decrease

4

Cellular-Assisted COVID-19 Contact Tracing HealthDL’21, June 24, 2021, Virtual, WI, USA

the value of𝑤𝑖 proportional to the bandwidth and array size

when the 𝑖-th base station adopts other configurations.

4 Implementation

Mobile client side. As a proof of concept, we implement

the CRS decoding and CSI extraction parts on USRP X310

and B210 radios by modifying srsLTE [7], an open-source

LTE library. We use two laptops, each connecting with two

USRPs, to emulate two mobile clients. Each mobile client

extracts the feature vectors from the measured CSI, tags the

feature vector with timestamps and cell information, and at

last uploads the feature vectors together with the tag to the

server.

Server side.We use PyTorch [17] to train our feature vector

on a server, where the CPU is Intel i7-9700, and the GPU is

Geforce RTX 2060. We set the initial learning rate to 0.01,

and decrease the learning rate by a factor of 0.7 every 5

epochs to stabilize the training. We set the hyperparameters

𝑚 = 2 during the training. The server distributes the CNN

based feature extractor to mobile clients, after finishing the

training. To identify close contacts, the server sets the voting

time span to 18s and the prediction threshold 𝐷𝑡ℎ𝑟𝑒ℎ to 0.9.

5 Evaluation

In this section, we evaluate the performance of LTESafe. We

first introduce our evaluation methodology, and then give

the end-to-end performance under diverse physical layer

configurations, followed by a micro-benchmark evaluating

the accuracy gains arising from each component of LTESafe.

5.1 Methodology

Data collection. We collect a diverse dataset of CSI pairs

by moving the two mobile clients together with two people

around each mobile client to emulate the impact of human

body on wireless signal propagation. To get the ground truth

of proximity between clients, we fix the distance between

two mobile clients to smaller than six feet and larger than

six feet.

In total we collect data at ten different locations over a

period of 16 days. and the signals are from 6 nearby cell

towers owned by three mobile network operators, Verizon,

AT&T and T-mobile The operating frequencies range from

1805MHz up to 2355MHz. These 6 cell towers cover all an-

tenna configurations, i.e., one, two and four transmitting an-

tennas, and three commonly used bandwidths, 5MHz, 10MHz

and 20MHz. Each mobile client has two antennas in its array.

In total, we collect 3,959,442 CSI pairs. We train our feature

extractor using the data we collected from the first six days

and then evaluate the system performance using data from

the later ten days.

Ground truth Close Far

Predictions
Close TP = 48.86% FP = 5.85%

Far FN = 1.35% TN = 43.93%

Table 1: The confusion matrix result of LTESafe

90%

Verizon AT&T T-mobile
Network Operators

0

25

50

75

100

A
cc

ur
ac

y
(%

)

Figure 6: Overall accuracy of LTESafe working with data

collected from different network operators.

90%

1 2 4
Array size

0
25
50
75

100

A
cc

ur
ac

y
(%

)

5MHz 10MHz 20MHz

(a) Varying antenna, 1 cell.

90%

1 2 3 4
Cell number

0
25
50
75

100

A
cc

ur
ac

y
(%

)

5MHz 10MHz 20MHz

(b) Varying cells, 2 antenna.

Figure 7: LTESafe’s performance under diverse physical

layer configurations.

5.2 Close Contacts Identification Accuracy

We evaluate LTESafe’s accuracy in identifying close contacts.

We compare the identification results with the ground truth

to calculate the accuracy. Except the overall accuracy, we also

calculate the true positive (TP), i.e., the correct close contact

discovery rate, the true negative (TN), i.e., the correct far

contact identification rate, the false negative (FN), i.e., the

close contact missing rate, and the false positive (FP), i.e., the

false alarm rate.

5.2.1 End-to-end accuracy. We run LTESafe on all testing

CSI pairs we collected and calculate the accuracy. We give

the confusion matrix of LTESafe’s identification accuracy

in Table 1, from which we see that the overall accuracy of

LTESafe, is 𝑇𝑃 +𝑇𝑁 = 92.79%. In addition, in the context of

Covid-19 contact tracing, missing close contacts is a much

more severe problem than giving false alarms. From Table 1,

we see that even though LTESafe gives false alarms to 5.85%

of CSI pairs, it only misses 1.35% of close contacts in the

dataset. We also provide LTESafe’s identification accuracy

with CSI pairsmeasured from cell towers of different network

operators in Figure 6. We observe that LTESafe achieves a

5

HealthDL’21, June 24, 2021, Virtual, WI, USA Fan Yi, Yaxiong Xie, Kyle Jamieson

high average accuracy working with data collected from

different network operators.

5.2.2 Impact of diverse physical layer configurations. In this

section, we evaluate the impact of diverse physical layer con-

figurations on the end-to-end accuracy. The configurations

we investigate include channel bandwidth, array size of the

cell tower and the number of overlapping cells.

Impact of bandwidth. We plot the accuracy of close con-

tact identification in Figure 7(a) and 7(b). We can observe

from these two figures that LTESafe achieves higher accu-

racy when the bandwidth becomes larger and the highest

achieved accuracy under one overlapping cell is 96.36% with

20 MHz bandwidth and four antennas. Even in the worst

case, where two devices share one overlapping cell that has

5 MHz bandwidth and one antenna in its array, LTESafe can

still achieve an accuracy of 85.14%.

Impact of array size. To evaluate the impact of array size

of the cell tower on the accuracy, we fix the number of over-

lapping cells to one, and plot the accuracy of close contact

identification in Figure 7(a). We see that increasing the array

size significantly improve the accuracy. When the two de-

vices are in connected mode with a configuration of 20MHz,

one overlapping cell, two antennas, which is the most com-

monly used configuration in our collected data, LTESafe can

achieve a accuracy of 91.07% on our testing dataset.

Impact of overlapping cells. To evaluate the impact of the

number of overlapping cells on the identification accuracy,

we fix the array size to two antenna, and plot the accuracy of

close contact identification in Figure 7(b). We note that, since

each mobile user in our implementation has only two radio

chains (two USRPs due to limited available hardware), so

we emulate the four cell cases by concatenating two traces.

We observe higher accuracy when two devices have more

overlapping cells. Specifically, the highest accuracy is 98.74%
when two devices share four cells.

6 Related Work

Contact tracing using device proximity hides the exact user

location and thus preserves user privacy, which makes it a

promising solution. Diverse techniques have been proposed

to estimate the proximity of mobile devices. WiFi proxim-

ity using direct signal transmissions between two device

has been proposed [15], which, however, only works when

the devices are in close proximity, i.e., centimeters apart.

Bluetooth based proximity estimation has been well stud-

ied [13, 14], and its application to contact tracing has been

explored by both the research community [5, 16] and com-

mercial companies like Google and Apple [8]. Most of these

contact tracing systems estimates the proximity using Blue-

tooth RSSI, whose value is affected by several factors other

than distance, including the hardware, interference from

signals that share the 2.4 GHz ISM band and the multipath

effect.

7 Conclusion

We propose a cellular-assisted, privacy-preserving contact

tracing system for containing the spread of COVID-19. We

leverage a deep learning based feature extractor to map CSI

into a point in a feature space, which preserves user privacy

and achieves high accuracy in identifying close contacts.

Acknowledgments

This work is supported by an award from the Office of the

Princeton University Dean for Research. This material is

based upon work supported by the RAPID program of the

National Science Foundation under Grant No. CNS-2027647.

References
[1] N. Ahmed, R. A. Michelin, et al. A survey of covid-19 contact tracing

apps. IEEE Access, 2020.

[2] R. Ayyalasomayajula, D. Vasisht, D. Bharadia. Bloc: Csi-based accurate

localization for ble tags. ACM CoNEXT, 2018.

[3] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah. Signature verifi-

cation using a "siamese" time delay neural network. NeurlIPS, 1993.

[4] CDC. Digital Contact Tracing Tools. [cdc.gov].

[5] J. Chan, S. Gollakota, et al. Pact: Privacy sensitive protocols and

mechanisms for mobile contact tracing. arXiv:2004.03544, 2020.

[6] J. A. del Peral-Rosado, et al. Survey of cellular mobile radio localization

methods: From 1g to 5g. IEEE Communications Surveys Tutorials, 2018.

[7] I. Gomez-Miguelez, A. Garcia-Saavedra, et al. srslte: an open-source

platform for lte evolution and experimentation. ACM WiNTECH, 2016.

[8] Google, Apple. Exposure Notification Bluetooth Specification. [2020].

[9] R. Hadsell, S. Chopra, Y. LeCun. Dimensionality reduction by learning

an invariant mapping. IEEE CVPR, 2006.

[10] K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image

recognition. IEEE CVPR, 2016.

[11] M. Kotaru, K. Joshi, D. Bharadia, S. Katti. Spotfi: Decimeter level

localization using wifi. ACM SIGCOMM, 2015.

[12] P. Lazik, N. Rajagopal, et al. Alps: A bluetooth and ultrasound platform

for mapping and localization. ACM SenSys, 2015.

[13] R. Momose, T. Nitta, M. Yanagisawa, N. Togawa. An accurate indoor

positioning algorithm using particle filter based on the proximity of

bluetooth beacons. IEEE GCCE, 2017.

[14] A. Montanari, et al. A study of bluetooth low energy performance for

human proximity detection in the workplace. IEEE PerCom, 2017.

[15] T. J. Pierson, T. Peters, R. Peterson, D. Kotz. Proximity detection with

single-antenna iot devices. ACM MobiCom, 2019.

[16] R. L. Rivest, J. Callas, et al. The pact protocol specification. Private

Automated Contact Tracing Team., 2020.

[17] P. Team. PyTorch. https://pytorch.org/.

[18] Y. Xie, Z. Li, M. Li. Precise power delay profiling with commodity

Wi-Fi. ACM MobiCom, 2018.

[19] Y. Xie, J. Xiong,M. Li, et al.mD-Track: Leveragingmulti-dimensionality

for passive indoor Wi-Fi tracking. ACM MobiCom, 2019.

[20] Y. Xie, Y. Zhang, J. C. Liando, M. Li. SWAN: Stitched wi-fi antennas.

ACM MobiCom, 2018.

[21] Q. Zhao, H. Wen, et al. On the accuracy of measured proximity of

bluetooth-based contact tracing apps. Springer SECURECOMM, 2020.

6

